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Abstract

Language and Vision-Language Models exhibit
impressive language capabilities akin to hu-
man reasoning. However, unlike humans who
acquire language through embodied, interac-
tive experiences, these models learn from static
datasets without real-world interaction. This
difference raises questions about how they con-
ceptualize abstract notions and whether their
reasoning aligns with human cognition. We
investigate spatial conceptualizations of LLMs
and VLMs by conducting analogy prompting
studies with LLMs, VLMs, and human par-
ticipants. We assess their ability to generate
and interpret analogies for spatial concepts.
We quantitatively compare the analogies pro-
duced by each group, examining the impact
of multimodal inputs and reasoning mecha-
nisms. Our findings indicate that generative
models can produce and interpret analogies
but differ significantly from human reasoning
in their abstraction of spatial concepts — vari-
ability is influenced by input modality, model
size, and prompting methods, with analogy-
based prompts not consistently enhancing align-
ment. Contributions include a methodology for
probing generative models through analogies,
a comparative analysis of analogical reasoning
among models, and humans, and insights into
the effect of multimodal inputs on reasoning.!

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, achieving re-
markable language proficiency and emergent abili-
ties that seem to parallel human reasoning (Brown
et al., 2020; Achiam et al., 2023; Kojima et al.,
2022). Trained on vast corpora of text — or
paired text and images for vision-language models
(VLMs) — these models’ learning paradigms funda-
mentally differ from human language acquisition,
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Figure 1: Human participants (e.g., participant #02),
LLMs (e.g., GPT-4) and VLMs (e.g., Qwen2-VL) are
prompted to provide an analogy for their choice of 1 of
4 items (T, J, <=, —) that best represents 1 of 30 words.

raising questions about how they represent mean-
ing, form abstract ideas, and structure knowledge.

LLMs learn from static, digital artifacts, pro-
cessing accumulated language data without real-
time interaction or sensory experience. Their train-
ing spans weeks to months using massive compu-
tational resources (Hoffmann et al., 2022; Scao
et al., 2023). In contrast, human language ac-
quisition is an embodied process: children learn
through dynamic interactions with their environ-
ment — observing, testing, and experiencing the
world around them (Mandler, 1992). First words
emerge around 12 months, alongside nonverbal
communication (Bretherton and Bates, 1979; Iver-
son, 2010), and foundational language abilities de-
velop over approximately five years, with sensory
experiences and social interactions playing crucial
roles (Clark and Casillas, 2015).

Despite these differences, both LLMs and hu-
mans produce language artifacts and exhibit rea-
soning grounded in language. This raises a fun-
damental question: How can LLMs exhibit rea-
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soning abilities seemingly analogous to human
cognition when their training procedures are
so fundamentally different? Addressing this is
crucial as we integrate LLMs/VLMs into systems
where reasoning and understanding are essential.

Studies have highlighted limitations in LLM rea-
soning capabilities — they often struggle with com-
plex reasoning tasks (Mondorf and Plank, 2024;
Stechly et al., 2023), arithmetic operations (Gam-
bardella et al., 2024), planning (Valmeekam et al.,
2022), and other challenges (Sobieszek and Price,
2022). One potential issue is how LLMs abstract
from their knowledge. It is argued that human cog-
nition largely relies on analogical reasoning, i.e.,
understanding abstract concepts by relating them
to familiar ones (Gentner, 1983; Hofstadter, 2001).
Analogies facilitate learning and are a crucial com-
ponent for human cognitive development (Vosni-
adou and Ortony, 1989; Holyoak, 2012).

We focus on analogical reasoning to investigate
whether LLMs and VLMs can generate and in-
terpret analogies like humans to understand ab-
stract spatial associations. Specifically, we address:
(RQ1): How do LL.Ms and VLMs conceptualize
semantic notions through spatial analogies com-
pared to humans? (RQ2): How do multimodal
inputs (e.g., text and images) affect the models’
analogical reasoning? To answer these questions,
we conduct analogy prompting studies (i.e., requir-
ing to produce an analogy to answer a question)
with LLMs, VLMs, and human participants. We
systematically categorize and compare the analo-
gies generated by each group. Our experiments
examine the influence of different modalities, test-
ing state-of-the-art VLMs with image inputs to
assess how sensory information impacts reasoning
outcomes. Our contributions are:

1. Methodology for probing conceptualization
in models through analogy generation;

2. Comparative analysis of analogical reasoning
abilities of LLMs, VLMs and humans, using
both quantitative and qualitative approaches;

3. Insights into how multimodal inputs influence
models toward human-like reasoning;

4. Evaluation of whether different types of mod-
els, e.g., those with enhanced reasoning, im-
prove analogy and conceptual understanding.

2 Related Work

2.1 Analogical Reasoning in Cognition

Analogical reasoning is a key cognitive strategy
which allows individuals to draw parallels between
disparate domains by mapping relational structures.
Gentner’s structure-mapping theory posits that anal-
ogy involves aligning relational structures from
a base domain to a target domain, emphasizing
the importance of systematic correspondences over
mere attribute similarities. Gust et al. (2008) ar-
gue that analogies underpin key cognitive abilities —
memory adaptation, transfer learning, reasoning,
and creativity — by enabling the application of prior
knowledge to novel contexts; they propose that
analogical reasoning is fundamental for integrating
diverse cognitive processes in large-scale systems.
Evidence for the connection between human rea-
soning and analogies comes from several psycholin-
guistic studies (Richardson et al., 2001; Beitel et al.,
2001; Gibbs et al., 1994). They provide evidence
that certain linguistic representations are grounded
in spatial schemas, which operate as analogical
structures for language comprehension.

2.2 Analogical Reasoning in AI Models

Analogical reasoning in Al has gained attention
through various benchmarks and methodologies, re-
vealing both the strengths and limitations of LLMs.
Sultan and Shahaf (2022) detail a mechanism to
extract analogies from a corpus of data describ-
ing a situation or a process. The entities of these
texts are extracted and a mapping between these
entities, or a cluster of entities, is build, connect-
ing two texts in an analogy-like relation. Sourati
et al. (2024) introduce the Analogical Reasoning on
Narratives (ARN) benchmark, which extends tradi-
tional analogy evaluations by integrating narrative
elements. This framework distinguishes near from
far analogies, demonstrating LLMs’ proficiency
in surface mappings yet exposing their limitations
with abstract, far analogies under zero-shot condi-
tions. Another benchmark is the AnaloBench (Ye
et al., 2024), which tests the capabilities of LLMs
to find analogies in a large dataset of texts. Short
sentence analogies and analogies contained in a
larger paragraph of text are tested, and the authors
demonstrate that models like GPT3.5 and GPT4
still struggle to recognize analogies, especially with
an increase in text size.

In this context, Yu et al. (2023) propose Thought
Propagation (TP), a method that leverages the gen-
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eration and resolution of analogous problems to
iteratively refine model outputs, thereby achieving
significant improvements over conventional base-
lines. Furthermore, Yuan et al. (2024) develop a
knowledge base containing analogies, and show
that training language models on this database im-
proves the model’s ability to recognize and gener-
ate analogies. Complementing these approaches,
Webb et al. (2023) compare LLM performance
with human reasoning across varied analogy tasks,
showing that while models like GPT-3 rival hu-
mans in structured analogies, they struggle with
causal and cross-domain reasoning. Furthermore,
Petersen and van der Plas (2023) align model
evaluations with human-like paradigms, and Hu
et al. (2023) show how encoding visual informa-
tion into textual representations enhances LLMs’
performance on visual analogical reasoning, as they
demonstrate with Raven’s Progressive Matrices.

Chain-of-thought (CoT) prompting encourages
step-by-step reasoning in zero-shot settings (Ko-
jima et al., 2022). In few-shot settings, when ex-
amples contain analogies, the model is explicitly
guided to apply analogical reasoning (Wei et al.,
2022b,a). Moreover, the term "analogy prompting"
has already been used by Yasunaga et al. (2024),
albeit in a different context. The authors further the
idea of chain-of-thought by prompting the model to
find similar math or coding problems in its knowl-
edge base before trying to solve a given problem.
They show that this methodology improves the abil-
ity of the model to solve math and coding prob-
lems in comparison to zero-shot and few-shot CoT.
In the context of this paper, however, "analogy
prompting" refers to prompting the model to gener-
ate analogies.

2.3 Spatial Schemas

Understanding how LLMs and VLMs conceptu-
alize foundational spatial schemas is crucial for
robust, intelligent systems. These schemas are the
basic building blocks that infants use for spatial in-
tegration — a process described by Mandler (1992)
as synthesizing perceptual experiences into concep-
tual representations via analogical reasoning.
Zhang et al. (2025) test the spacial reasoning of
VLMs by asking spacial-related questions about a
given image, i.e., "Is the blue ball in front of the
red ball?", and "From the blue ball’s point of view,
is the red ball to the right of the blue ball?". They
find that VLMSs’ answers tend to not be robust and
consistent, especially when they are asked to adopt

a different frame of reference.

Richardson et al. (2001) study spatial schemas
in adults and finds that commonly used verbs are
consistently associated with a specific spatial direc-
tion (horizontal vs. vertical), which highlights the
importance of spatial schemas in semantic repre-
sentations even after the developmental stage.

Wicke and Wachowiak (2024) and Wicke et al.
(2024) focus on the same stimuli used in Richard-
son et al. (2001) and assess whether a suite of
LLMs and VLMs exhibits word-direction associa-
tions similar to humans’. Our work substantially
extends their effort by using analogy-based prompt-
ing to gain deeper insights into model reasoning,
incorporating state-of-the-art VLMs, and conduct-
ing a human subject study that not only validates
previous results but also provides human analogies
for direct comparison with those of models.

3 Methods
3.1 Experimental Setup

Our aim is to explore spatial intuitions in both hu-
mans and multimodal models by bridging a psy-
cholinguistic study with computational modeling.
We build upon the original study by Richardson
et al. (2001), which provides the experimental stim-
uli of words and schematic directions (up, down,
left, right) but has not been reproduced in over 20
years and did not explore the use of analogies. We
conduct a human subject experiment where partic-
ipants associate words with schematic directions
and, additionally, provide the analogies they use for
these associations (see Fig. 1). We query a variety
of LLMs and VLMs — including GPT-40 (OpenAl,
2024a), Llama3 (Al@Meta, 2024), Molmo (Deitke
et al., 2024), Qwen2-VL (Wang et al., 2024b), and
others — with regular and analogy (i.e., explicitly
asking the model to provide an analogy and to use
it to provide its answer) prompts. We quantify
the correlation between model and human schema
selection in both prompting conditions and sys-
tematically compare the analogies generated by
humans and models. These comparisons provide
insights into how prompting strategies, modalities,
and model architectures affect spatial associations.

Stimuli and Modalities In order to keep our
results comparable to those by Richardson et al.
(2001), we use the same stimuli as the original
study (depicted in Fig. 2). The original stimuli
include 30 verbs and pictures showing arrows. In
Richardson et al.’s study, participants were asked

110



3:‘ A argued with  pointed at
E gordnbed pullﬁdd
—~ — e pushe
,Q‘ </\_”T ( /’4—7 flew regretted
o floated respected
O gave to rested
T hoped rushed
hunted sank
b o~ impacted showed
- W, increased smashed
6 lifted succeeded
= obeyed tempted
a4 offended walked
g ) owned wanted
N perched warned

Figure 2: Left: Schematic directions used in all exper-
iments. Right: Action words as experimental items.
Both sets are adapted from Richardson et al. (2001).

to choose a preferred arrow (spatial schema) to rep-
resent each verb. In case of our studies, we present
these spatial schemas in three different renderings:
i) a reproduction of the original images (visual con-
dition), ii) an equivalent Unicode version (T, |, <,
—) of the arrows (pseudo-visual condition), and
iii) a textual description (up, down, left, right) of
the spatial schemas (fextual condition).

3.2 Human Subject Study

We replicate the experiment by Richardson et al.
(2001) with two key modifications designed to en-
hance both the task setup and subsequent analysis.

First, we introduce a one-shot example that di-
verges from the original relational schema (up,
down, left, right) but retains a similar structure, de-
signed to familiarize participants with the task with-
out revealing the target relations (see App. Fig. 6).
Second, we ask participants to provide an anal-
ogy explaining their choice before selecting one
of the four options (see App. Fig. 7). Participants
are asked to provide informed consent and demo-
graphic information (reported in App. A.2). We
recruit 24 native English speakers, resulting in a
total of 240 responses (30 items with 8 responses
per item).

Schema Choice Evaluation To compare the re-
sults of our human study with those of Richardson
etal. (2001), we calculated item-level agreement us-
ing a normalized concentration metric. This metric
is based on the squared proportions of values within
each distribution, ensuring it ranges from O (com-
plete disagreement) to 1 (complete agreement). To
account for sample size differences, scores were
weighted by the number of observations (N) in both
datasets. Overall agreement was computed as the
weighted average across all items, with variability

assessed via standard deviation, offering insights
into the consistency of item-level distributions.

Labeling Analogies To facilitate comparisons
between human and model-generated analogies,
we design a classification schema that categorizes
them into four types (more details in App. A.4):

* Physical Action Representation

* Interaction or Relationship Between Entities
* Cultural or Conventional Associations

* No Analogy or Direct Explanation Provided

The creation of these labels was guided by prior
NLP work in analogy classification (Mikolov et al.,
2013; Gladkova et al., 2016; Drozd et al., 2016),
as well as recent advancements in analogy eval-
uation (e.g., Wijesiriwardene et al., 2025). With
guidance from these sources and insights from their
analysis, our labels account for semantic and prag-
matic influences on the structure of the analogy.

To label our dataset of +7,000 analogies, we
employ LLMs as judges while acknowledging
their limitations in reliability (Zheng et al., 2023;
Bavaresco et al., 2024). On samples of 3x30 analo-
gies from both human and LLLM data, two annota-
tors achieve an agreement of Cohen’s k = 0.6277
after three annotation schema revisions, indicating
their substantial agreement (Cohen, 1960).

When prompted according to this revised
schema, GPT-40 achieves an agreement with two
human annotators of Fleiss’ k = 0.6024 (Fleiss
and Cohen, 1973) (see details in App. A.4).

3.3 Generative Model Study

Large Language Models We select a diverse
set of state-of-the-art LLMs, including both
open-source and proprietary architectures. As
open-source models, we include two variants
of Llama 3.1 - Llama-70B and Llama-70B-
Instruct (Al@Meta, 2024) — and DeepSeek’s R1-
Distill-Llama (DeepSeek-Al et al., 2025), based
on Llama-3.3-70B-Instruct. As proprietary mod-
els, we evaluate GPT-3.5-Turbo (OpenAl, 2023),
GPT-40, GPT-40-Mini (OpenAl, 2024a), and GPT-
ol-Preview (OpenAl, 2024b), accessed via the
OpenAl API. LLMs were prompted by passing
schemas as textual and pseudo-visual renderings.

Vision-language Models Given the documented
limitations of vision-language models in spatial rea-
soning (Kamath et al., 2023; Wang et al., 2024a),
we conduct a preliminary analysis to verify their
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ability to correctly process the input images used
in the main experiment (see App. B.2 for more de-
tails). VLMs from the LLaVA family (Liu et al.,
2024c,a,b) were found to be incapable of reliably
identifying our stimuli, and therefore excluded
from our main experiment. Our selection of VLMs
includes Molmo-7B, Molmo-72B (Deitke et al.,
2024), Qwen2-VL-7B, and Qwen2-VL-72B (Wang
et al., 2024b). These models were prompted with
schemas in their visual rendering (as images).

Prompts We test both LLMs and VLMs in two
prompting conditions (all with temperature 0, ex-
cept for GPT-01). In regular prompting, models
are simply asked to provide their chosen schema
for each verb; in the analogy prompting condition,
they are asked to rely on an analogy to choose a
schema, and to include both analogy and chosen
schema in their response. Both kinds of prompts
are one-shot, i.e., they include an example question,
in-line with the human subject study. The complete
list of prompts used for all models is provided in
App. B.3. As suggested by Aher et al. (2023), we
employ prompt validation to enhance the validity
of model responses (see App. B.1 for more details).
Despite these mitigation efforts, some invalid re-
sponses persisted (see App. B.4 for details).

3.4 Evaluation Metrics

We evaluate our models along two main dimen-
sions: schema selection (textual, pseudo-visual,
and visual) and labeled analogies.

For both dimensions, we compare model outputs
and human responses with Spearman correlations
and F1 scores (see App. A.6 and B.5 for more
details). While the schema selection evaluation
was performed against both human datasets, the
one regarding analogy labels is only applicable to
our dataset, because Richardson et al.’s data does
not include human-generated analogies.

In addition to these task-level comparisons, we
perform item-level analyses. For the human data,
we assess the agreement between our human sam-
ples and the original data using item-level agree-
ment measures. Moreover, we examine the item-
level correlations of analogy types between se-
lected models by comparing their outputs to our
human-sampled analogies.

4 Results and Discussion

4.1 Human Subject Study

Our human study partially aimed to replicate
Richardson et al. (2001), albeit with significant
procedural differences. The item-level agreement
analysis that we performed to compare Richardson
et al.’s results to ours yields an overall weighted
agreement of 0.49 (£0.15) for Richardson et al.’s
schema choices and 0.62 (£0.26) for ours. Notably,
items such as pointed at (0.80), pushed (0.78), and
bombed (0.76) obtain the highest agreement in the
Richardson dataset, whereas our dataset shows per-
fect agreement for items like fled, pulled, sank, and
increased, albeit with a smaller sample size.
Altogether, our results indicate that the overall
item-level agreement for our data is higher than that
reported by Richardson et al. (2001). For further
details, please refer to App. Tab. 2. We interpret the
higher agreement in our dataset as suggesting that
analogy prompting induces participants to deeply
engage their knowledge about spatial schemas, as
opposed to relying on simpler associations.

4.2 Generative Model Study

Our study with generative models focuses on com-
paring model outputs with human responses on two
levels. First, we investigate how strongly the spa-
tial schemas chosen by models align with those
chosen by human participants from both our exper-
iment and Richardson’s. Second, we explore the
similarity between analogies generated by models
and those provided by participants in our study.

4.2.1 Alignment of Spatial Schema Selection

We quantify alignment between models’ and hu-
mans’ schema choices by computing Spearman
correlations and F1 scores. The former are shown
in Fig. 3 and consider answer distributions aggre-
gated per main direction (‘horizontal’ vs. ‘verti-
cal’); this choice was favored over considering all
four spatial schemas as it yielded more statistically
significant correlations. F1 scores are reported in
Tab. 1 and were calculated considering all four
spatial schemas (up, down, left, right). Both Spear-
man correlations and F1 scores were computed per
prompting condition (regular and analogy) and in-
put type (textual, pseudo-visual, and visual).

Regular vs. analogy prompting Since we ex-
plicitly instructed our participants to employ ana-
logical reasoning while Richardson et al. did not,
we expected analogy-prompting model responses
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Figure 3: Spearman correlations between model and human chosen-concept distributions in the textual, pseudo-
visual, and visual condition for our and Richardson et al.’s data. Values were computed per direction (‘horizontal’:
up/down and ‘vertical’: left/right). Note that the x-axis range in the visual condition is different from the other two.

to align more closely with our dataset, and regular-
prompting ones to be more aligned with Richard-
son et al.’s dataset. However, the Spearman cor-
relations visualized in Fig. 3 indicate that none
of the prompting conditions results in systemati-
cally stronger correlations with human responses.
Moreover, the effect of the prompting condition
is inconsistent even when the same model out-
puts are compared with different human datasets.
As an example of this, in the textual condition,
analogy prompting results in GPT-40 correlating
more strongly with Richardson’s data than ours
(PRich. = 0.45 > pours = 0.29). A similar ef-
fect can also happen for the same model in differ-
ent experimental conditions — e.g., for Llama-70B
analogy prompting yields higher correlations with
our dataset than regular prompting in the textual
condition (p Anatog. = 0.70 > pRreg. = 0.57), but
the reversed trend is observed in the pseudo-visual
condition (pAnaiog. = 0.60 < prey. = 0.82). Re-
garding the schema-wise F1 scores reported in
Tab. 1, they do not indicate a systematic advantage
of analogy prompting for our human data. How-
ever, an interesting trend is that, albeit with a few
exceptions, analogy prompting tends to result in
higher F1 scores for Richardson et al.’s data. Taken
together, these findings suggest that models may
process analogical relationships differently from
humans, potentially relying more on learned asso-
ciative patterns than true analogical reasoning.

Effect of input type Spearman correlations vi-
sualized in Fig. 3 allow a comparison among be-
tween input types (textual, pseudo-visual, visual).
Overall, we observe stronger correlations in the
pseudo-visual condition (p = 0.56-0.90) than in
the textual condition (p = 0.58-0.85), but the trend

Textual condition

Model Our Richardson
R A R A
GPT-3.5 0.46 049 0.60 0.63
GPT-40 0.33 029 040 045
GPT-40-Mini 046 035 045 040
GPT-01-Preview 035 044 035 049
Llama-70B 0.50 0.38 0.51 0.40
Llama-70B-Inst 0.33 037 041 048
R1-Distill-Llama-70B 045 041 0.53 0.58

Pseudo-visual condition

Model Our Richardson
R A R A
GPT-3.5 0.35 0.50 0.53 0.61
GPT-40 041 042 058 0.63
GPT-40-Mini 0.48 045 0.64 0.63
GPT-o01-Preview 0.50 046 0.64 0.67
Llama-70B 0.34 047 044 0.51
Llama-70B-Inst 046 049 06 0.63
R1-Distill-Llama-70B 049 0.45 0.69 0.63
Visual condition
Model Our Richardson
R A R A
Molmo-72B 0.05 0.16 0.05 0.15
Qwen2-VL-7B 023 022 0.18 0.34
Qwen2-VL-72B 0.35 0.38 041 0.51

Table 1: Weighted F1 scores between human and mod-
els’ concept preferences in the textual, pseudo-visual
and visual conditions. Scores are reported for both our
collected dataset and Richardson’s, and for the two dif-
ferent prompting conditions (R indicates regular prompt-
ing and A analogy prompting). Figures were computed
concept-wise, i.e., considering all four spatial schemas.

is not systematic. A similar trend can be detected in
the F1 scores (Tab. 1), whose range is 0.29-0.63 in
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the textual condition and 0.34-0.69 in the pseudo-
visual condition. One plausible explanation for this
is that Unicode symbols reduce semantic ambigu-
ities — particularly for words like "right" — which,
in textual contexts, could be conflated with its "cor-
rectness" meaning. By providing a less ambiguous
representation, pseudo-visual prompts may thus
facilitate more accurate analogical mappings. Fi-
nally, correlations achieved by VLMs in the visual
condition are, in general, lower than those achieved
by LLMs in the other conditions (p = 0.28-0.79).
This may be due to the visual condition posing the
extra challenge of decoding the content of the vi-
sual stimuli. In other words, while LLMs receive
abstract textual or pseudo-visual stimuli — which
they can directly combine with their pretraining
knowledge — VLMs are first tasked with mapping
the different image(s) to abstract spatial notions
and, only after completing this initial step, can they
engage with their pretraining knowledge.

F1 scores and unbalanced concept productions
For some models, we observe systematic con-
cept over- and underproductions, which affect the
weighted F1 scores provided in Tab. 1. For exam-
ple, Molmo-72B never produces ‘down’ and ‘right’
in the regular-prompt setup, while overproducing
the answer ‘up’ (in 97% of its outputs); this results
in an extremely low F1 score (0.05) for both our
human responses and Richardson et al.’s. Simi-
larly, Qwen2-VL-7B generates ‘up’ in 73% of the
cases in the regular-prompting setup. Across all
LLMs, there is a systematic trend to underproduce
the concept ‘left’, and in some cases ‘down’. This
tendency is especially extreme, e.g., for GPT-3.5
regular-prompted in the pseudo-visual condition
(5% of ‘left’ responses), GPT-40 analogy-prompted
in the textual condition (9% of ‘left’ responses),
and Llama-70B regular-prompted in the pseudo-
visual condition (8% of ‘down’ responses); in these
cases, unbalanced model responses are again re-
flected in comparatively low F1 scores. Notably,
while human participants also underproduce ‘left’
(19% in both datasets), this imbalance is not sub-
stantial enough to suggest a bias in the stimuli
themselves. Instead, the models’ consistent un-
derrepresentation of ‘left’ is more likely an artifact
of biases in training data.

4.2.2 Human- vs. Model-generated Analogies

The Spearman correlations quantifying the similar-
ity between analogies provided by human partici-

pants and models are visualized in Fig. 4. Although
correlations are non-significant, some interesting
trends emerge. First, the types of analogies gener-
ated by VLMs are the most aligned with those pro-
vided by humans (p = 0.23-0.55). Second, LLMs
do not systematically generate more human-like
analogies in the textual vs. pseudo-visual condition
(prext. = 0.00-0.17, ppseudo—vis = 0.00-0.20).
Finally, it is interesting that the types of analogies
produced by GPT-o1-Preview — the only reason-
ing model — are the least similar to the human-
provided ones, with a Spearman correlation of 0 in
the pseudo-visual condition. These findings sug-
gest that multimodal pretraining, while not result-
ing in models closely mirroring human schema
choices, may help VLMs generate analogy types
that are more similar to human ones than LLMs’
(examples of generated analogies in App. Tab. 4).
In a more focused analysis, we pick one LLM
(GPT-40) and check whether the items where its
schema preferences align with the human ones are
also those for which it generates more human-like
analogy types. The results of this analysis are dis-
played in Fig. 5, which shows item-wise Spearman
correlations with spatial schemas and analogy la-
bels for the pseudo-visual condition. The correla-
tions reveal a marked divergence between the mod-
els’ analogical mappings and schema selections for
several verbs (e.g., gave to, impacted, obeyed).

Analogy Label Correlations

Molmo-72B -
Qwen2-VL-7B A
Qwen2-VL-72B A
Llama-70B A
Llama-70B-Instruct A
R1-Distill-Llama-70B
GPT-3.5 A

GPT-40 A

GPT-40-mini
GPT-01-preview A

Text
Pseudo-Visual
Visual

0.0 0.2 0.4 0.6 0.8 1.0
Average Spearman Correlation

Figure 4: Correlations of the model’s chosen analogy
types with those analogy types chosen by humans.

These differences may be due to two possible
scenarios. First, a model might produce analo-
gies similar to human analogical associations while
choosing different spatial schemas; this would sug-
gest a decoupling between analogical similarity
and spatial mapping within the model’s reasoning
process. Alternatively, a model might arrive at a
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GPT-40 (pseudo-visual): Analogy Label vs. Direction Choice - Correlation per Word
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Figure 5: Spearman correlations for GPT-4o in the pseudo-visual condition, comparing human-model alignment

on analogy labels (teal) and schema selection (

) responses for 30 words. Highlighted bars and labels denote

words where analogy and direction correlations are opposed, showing cases of potential decoupling of the two.

similar directional assignment as humans, yet the
underlying analogical reasoning, as reflected in the
label correlation, diverges markedly from human
responses. Both of these scenarios occur 8 times in
our example (highlighted bars and words in Fig. 5).

Overall, both model-wise correlations (Fig. 4)
and the item-level analysis (Fig. 5) seem to point
towards a similar conclusion, i.e., that models’
ability to produce analogies that resemble human
ones does not necessarily result in human-aligned
spatial-schema choices, and vice versa. This di-
vergence is especially critical given that the words
span abstract to concrete concepts, suggesting that
the integration of analogical and spatial reasoning
may be more fragile in contexts where multiple
interpretative routes coexist.

4.3 Summary of Findings

Our analyses compare humans’ and generative
models’ spatial intuitions on multiple levels
(schema selection & analogy types) and con-
sider two main experimental factors (prompting &
modality). We now turn to our research questions.

RQ1 - Conceptualization of Abstract Notions
through Analogies Our experiments reveal sub-
stantial discrepancies between models’ and hu-
mans’ spatial conceptualizations. At the level of
alignment between spatial choices, we do not ob-
serve a systematic improvement associated with
analogy vs. regular prompting. These findings, to-
gether with a comparison between analogy types
generated by humans and models, show that, even
when models generate analogies similar to the
human ones, these do not result in more human-
aligned spatial schema choices. More importantly,
this is true even when considering our human
dataset, which was collected by explicitly asking

participants to rely on analogical reasoning. The
discrepancies we document suggest that the pro-
found differences between humans’ and models’
concept-learning processes are indeed reflected in
spatial schemas, which appear to be supported by
analogical reasoning in humans and simpler associ-
ations in models.

RQ2 - Effect of Multimodal Inputs on Analogi-
cal Reasoning Our comparisons between experi-
mental conditions employing different input types
(textual, pseudo-visual, and visual) reveal three
interesting trends. First, LLMs tend to produce
more human-aligned schema choices in the pseudo-
visual condition, which is likely due to reduced se-
mantic ambiguity. Second, VLMs’ schema choices
are, in general, less human-aligned than LLMs’
ones. Indeed, while images should be, in princi-
ple, the least semantically ambiguous input type,
they still posit the extra challenge of extracting ab-
stract meaning from the input stimuli. Finally, we
observe that VLMs tend to generate types of analo-
gies that are more similar to the human ones than
LLMs. Taken together, these findings suggest that
VLMs’ ability to process visual inputs proves ad-
vantageous in terms of producing human-like ana-
logical reasoning. However, when focusing solely
on associations between words and spatial schemas,
Unicode arrows are the stimulus type associated
with the most human-like choices; this may be due
to them being abstract enough to not require per-
ceptual processing and, at the same time, being less
semantically ambiguous tokens than words.

5 Conclusions

Our study evaluates a suite of LLMs and VLMs
concerning their ability to use analogical reason-
ing to support associations between verbs and spa-
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tial schemas, a core component of human con-
cept learning processing. We employ regular and
analogy prompts to elicit these associations and
compare them with human data from Richardson
et al. (2001) and a set of newly collected human
responses which, in contrast to Richardson et al.,
include human-written analogies. In addition, we
explore how stimulus types varying in their degree
of abstractness (textual, pseudo-visual, visual) in-
fluence model responses. Our experiments reveal
substantial discrepancies between models’ ability
to generate analogies similar to the human ones and
their ability to associate verbs to spatial schemas
in a human-like way. LLMs and VLMs are increas-
ingly applied in domains beyond language, includ-
ing robotics, navigation, medicine, scientific dis-
covery, and autonomous systems. However, their
limitations in complex tasks suggest that perfor-
mance gaps cannot be solely attributed to model
size. While scaling improves alignment with hu-
man responses, our findings indicate that underly-
ing analogical structures and spatial intuitions may
diverge from human reasoning. This study high-
lights the need to examine fundamental conceptual-
ization mechanisms to better understand these dis-
crepancies and refine future models accordingly.

Limitations

A key limitation of our study is the potential for
data contamination in Richardson et al.’s dataset.
While it is unlikely that proprietary LLMs were
explicitly fine-tuned on this dataset, it is possi-
ble that Richardson et al.’s paper was included
in the pretraining data of certain models. This
raises concerns that some observed correlations
may not reflect genuine analogical reasoning, but
rather memorized associations from training cor-
pora. At present, a key mitigation effort is the
dataset collected in our study, which was not pub-
licly available during our evaluation phase and thus
was not included in the training data of any model.

Additionally, differences in experimental de-
sign between our dataset and Richardson et al.’s
may introduce confounds. Our explicit analogy-
based prompting method engages different cogni-
tive strategies than the spontaneous associations
likely employed in Richardson et al.’s experiment.
While we anticipated that this methodological dis-
tinction would result in stronger correlations for
analogy-prompted responses in our dataset, our
findings did not consistently support this hypothe-

sis. This discrepancy highlights the need for further
research into how different prompting strategies in-
teract with model architectures and training data to
shape analogical reasoning performance.

We employed LLMs as annotation judges to as-
sist in labeling our analogy dataset. This process
followed an iterative refinement of the label classi-
fication schema, involving two human annotators,
three rounds of revision, and the development of a
carefully engineered prompt to ensure substantial
agreement (Cohen, 1960). While we acknowledge
the reliability limitations of LLM-based annota-
tion (Zheng et al., 2023; Bavaresco et al., 2024),
this approach offered certain advantages over hu-
man annotators, particularly in mitigating inconsis-
tencies that arose even within the same annotator.

While our study examines the reasoning capabil-
ities of models, we include only a single designated
“reasoning model” (ol-Preview). We acknowledge
that such models may provide additional insights
into underlying reasoning processes. However, as
of now, they rely on advanced, predefined reason-
ing templates that are non-deterministic and not
openly accessible. Furthermore, our focus is on
capturing the models’ intuitions after a single ana-
logical reasoning step, rather than tracing multiple,
potentially opaque reasoning iterations.

Responsible Research

Use of Artifacts We use both open and propri-
etary language models in our work. For all models,
we include model cards or references to their re-
spective providers, which specify their licenses and
intended usage. Additionally, we use GitHub Copi-
lot, powered by OpenAl Codex, and ChatGPT to
generate code snippets. These tools provide outputs
that are licensed for free use, ensuring compliance
with their intended access conditions.

We also utilize research data from Richardson
et al. (2001) and Wicke and Wachowiak (2024),
which are publicly available research papers. The
data derived from these sources is used strictly
within research contexts, in accordance with their
original access conditions. To the best of our knowl-
edge, the use of all artifacts aligns with their speci-
fied terms, ensuring compliance with licensing and
intended use policies.

Use of AI Assistance We used Al assistance
tools (ChatGPT, OpenAl Playground, and GitHub
Copilot) to aid in rewriting code, filter large
datasets to identify additional trends, and refining
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our labeling schema. All Al-generated content was
thoroughly reviewed and verified by the authors.
Al was not used to generate new research ideas
or original findings; rather, it served as a support
tool to improve clarity, efficiency, and organization.
In accordance with ACL guidelines, our use of Al
aligns with permitted assistance categories, and we
have transparently reported all relevant usage in
this paper. While Al contributed to enhancing the
quality of the work, no direct research outputs are
the result of Al assistance.
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A  Human Study

A.1 Survey Design

The survey was conducted using Google Forms.
All participants provided their informed consent
to participate in our study. No names, addresses,
IPs or traceable information was collected, and
the participants could decide to end the study at
any point. In order to familiarize the participants
with the task, an example task was provided (Fig.
6). The example task used the same format as
the real task, but the symbols and the direction
(diagonal as opposed to vertical/horizontal) were
different. We tested the survey design with peers
before collecting responses from non-peers. The
test responses have not been included in the final
data collection.

Analogy *

"stopping” often involves ol ing or halting the prog| of something. Raising both
arms and crossing them defensively to physically block someone, for example.

Choice *

® A
OsB
Oc
Obo

Figure 6: All participants in the study are presented
with an example item (one-shot) at the start of the ques-
tionnaire. This allows the participants to familiarize
themselves with the task, while not providing a priming
effect due to the use of a different directionality (di-
agonal as opposed to vertical/horizontal) and different
symbols (triangles as opposed to circle/square).

For each of the 30 items, we generated a question
shown in Fig. 7. We use the same visual stimuli
as Richardson et al. (2001) for our human subject
study. We note that in the original study, the par-
ticipants were presented with the entire list of 30
items at once (next to the same picture, which we
repeat for each item).

Consider the event "o fled o" and the four images below (A, B, C, D). Think be
of an analogy to help you answer the following question: Which of the

images best represents the event? Explain the analogy, then provide your
image choice.

Description (optional)

Image title

A B
c D .
-
Analogy *

Short answer text

Choice *
A
B
c

Figure 7: Example item presented to the participants.
First, they are asked to provide an analogy, then they

are asked to choose one of four images that best relates
to the options (A, B, C, D).

A.2 Demographics

Age Distribution

D
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Figure 8: Distribution of age for N = 24 participants.
Average age is 35.54.
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We sampled N = 24 participants with two restric-
tions: (i) Native English speakers, (ii) no prior
knowledge about this research. To the best of our
knowledge, no participant self-reported significant
or severe visual or cognitive impairments.

Age Distribution (KDE)
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Figure 9: Kernel density estimate (KDE) to represent
participants’ (/N = 24) age as spectrum, with an average
around 35 years.
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Figure 10: Gender distribution of all N = 24 partici-
pants: Male: 14 participant(s), female: 8 participant(s),
other: 1 participant, prefer not to say: 1 participant.
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Figure 11: All participants declared that they are na-
tive English speakers. The regional distribution is as
follows: Europe: 13 participant(s), North America: 6
participant(s), Africa: 1 participant, Asia/Pacific: 3 par-
ticipant(s), Prefer not to say: 1 participant.

A.3 Human Study Results

Comparison of human choices from 2001 (Richardson et al.) vs. 2025 (our study)
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Figure 12: Comparison of the data by Richardson et al.
(2001) with the human choices gathered in our study.

121



A.4 Analogy Annotation Methodology

We sampled 30 analogies (15 human-created,
15 GPT-40-generated) and classified them
into four categories: “Physical Action,” “Cul-
tural/Convention,” “Interactive Entities,” or “No
Analogy/Explanation.” In a second round, two
authors annotated a different set of 30 analogies
using this scheme. Annotator agreement was
measured using Cohen’s s (Cohen, 1960). After
three revisions of the annotation scheme, we
achieved x = 0.6277, indicating substantial
agreement. All annotation schema versions are
available in the code repository. The final schema,
incorporating these revisions as additional rules,
was then formalized into a prompt:

Task: You will be provided with an explanation that
uses a directional or movement analogy to describe
an event, action, or reaction. Your job is to carefully
read the explanation, assess the type of analogy it
employs, and select one of the following labels that
best corresponds to it:

* Physical Action — This label applies if the ex-
planation relies on tangible movements, forces,
or physical processes.

* Cultural/Convention — This label applies if the
explanation relies on societal norms, symbolic
interpretations, or culturally shared meanings
related to direction or movement.

 Interactive Entities — This label applies if the
explanation emphasizes the interaction or rela-
tionship between distinct entities (e.g., square
and circle).

* No Analogy/Explanation — This label applies
if the explanation is purely descriptive, with
no directional, movement-based, or analogical
content.

Additional rules:

”»

* If the explanation mentions “square” or “circle,
it is always labeled Interactive Entities.

If the explanation does not mention these shapes
implicitly or explicitly, and no entities are
present, then it is not Interactive Entities.

If the explanation mentions “culture,” it is al-
ways Cultural/Convention.

If the explanation includes technical or scien-
tific analogies (e.g., diagrams or systems), it is
always Cultural/Convention.

If the explanation references gravity, understand
gravity as a physical action and assign Physical
Action.

Here is the explanation: Explanation

Based solely on your analysis of the explanation
above, provide only one label from the following:
Physical Action, Cultural/Convention, Interactive
Entities, or No Analogy/Explanation.

A.5 Choice Coherence

Item Richardson Our (w/ analogy)
pointed at 0.80 0.78
pushed 0.78 1.00
lifted 0.77 0.78
bombed 0.76 1.00
fled 0.67 1.00
gave to 0.67 0.78
perched 0.60 0.78
pulled 0.59 1.00
sank 0.57 1.00
increased 0.57 1.00
smashed 0.53 0.62
hunted 0.52 0.50
obeyed 0.48 0.53
walked 0.47 0.34
showed 0.47 0.34
argued with 0.44 0.59
warned 0.44 0.38
floated 0.43 0.78
wanted 0.43 1.00
impacted 0.42 0.62
owned 0.39 0.47
respected 0.39 0.28
rushed 0.38 0.53
flew 0.36 0.34
hoped 0.34 0.41
rested 0.32 0.28
tempted 0.32 0.28
succeeded 0.32 0.41
regretted 0.29 0.28
offended 0.29 0.59
Overall 0.49 (x0.15) 0.62 (x0.26)

Table 2: Item-wise agreement scores for the choice
(of direction) measure computed using a normalized
concentration metric (i.e., squared proportions weighted
by the number of observations, yielding values from
0 to 1). This metric quantifies how concentrated the
responses are for each item -— scores near 1 signify that
nearly all raters converge on the same label (indicating
high consensus), whereas lower values reflect greater
variability in judgments. “Richardson” refers to the
human data reported by Richardson et al. (2001) and
“Our” refers to the data collected in the present study.
The final row gives the overall weighted agreement and
its standard deviation.

A.6 Label Evaluation

For each word, we first compute frequency dis-
tributions over the four label categories from hu-
man responses (8 responses) and model responses
(24 responses). These distributions are then con-
verted into ranked vectors by ordering categories
according to their frequencies. Spearman correla-
tion is computed between the human and model
ranked frequency vectors, quantifying the mono-
tonic agreement in label usage. In parallel, for each
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category, the F1 score is calculated via

2 X min(countyyman, COUNtmeder )

by = ey

counthyman + countpmodel

(with a default score of 1 when both counts are
Zero).

Model Condition  Int. Coh.  JSDiv.|{  Entr. |
Human Reference ~ Ref. 0.550 — 1.760
gpt-3.5 Pseudo 0.933 0.436 0.920
gpt-4 Pseudo 0.876 0.443 0.883
gpt-4-mini Pseudo 0.839 0.443 0.904
1lama-70b Pseudo 0.929 0.399 0.830
1lama-70b-inst Pseudo 0.922 0.436 0.642
gpt-3.5 Text 0.907 0.417 0.813
gpt-4 Text 0.861 0.449 0.981
gpt-4-mini Text 0.874 0.450 0.678
llama-70b Text 0.929 0.409 0.885
1lama-70b-inst Text 0.856 0.443 0910

Table 3: Evaluation metrics for five LLM configura-
tions under Pseudo and Text conditions compared to
a human reference. “Int. Coh.” (Internal Coherence)
is the average fraction of label agreement per item, re-
flecting labeling consistency. “Entr.” (Entropy) quanti-
fies the diversity of the label distribution, and “JS Div.”
(Jensen-Shannon Divergence) measures the similarity
of the model’s distribution to that of humans.

A.7 Label Examples
B Model Studies

B.1 Validation Scores

In order to improve model responses, we tested dif-
ferent prompt endings and calculated a validation
score that measured how often the model, when
given a regular prompt, produced a valid response.
To achieve this, we generated a model response for
each of the 30 action words using the following
prompt:

Given the concepts: ’'X’, -7,
Y, /. For the concept
that best represents the event

’stopped’, what concept would
you choose?

[ending]: X’

Given the concepts: ’[concept]’.
For the concept that Dbest
represents the event ’[event]’,

what concept would you choose?
[ending]:

where [ending] is one possible prompt ending
(e.g., “CONCEPT”, “Choice”, and ‘“selection”),

[concept] refers to the four spatial concepts, and
[event] is an action word. We employed Llama3.1-
8B (Al@Meta, 2024) as the LLM for this experi-
ment, based on the rationale that if a smaller model
can produce a valid answer with a specific ending,
then larger models are likely to do so as well. As
described in Wicke and Wachowiak (2024), the
validity score is calculated as follows:

> plalk) )
acV
for a specific prompt &k and a set of valid answers
V.

This evaluation was conducted under both tex-
tual and pseudo-visual conditions, and an average
validation score was computed for each ending. As
a result, the ending “concept” was selected, achiev-
ing a 74% validation score. The full list of prompt
endings, along with their corresponding validation
scores, is presented in Table 5.

B.2 Vision-language Models Validation

The task considered in our main experiment is chal-
lenging even for current vision-language models
for two main reasons. First, it requires correctly
distinguishing the arrow depictions mainly based
on their spatial orientation. Second, it requires the
ability to process multiple images simultaneously.
Since most state-of-the-art VLMs still struggle with
spatial reasoning (Kamath et al., 2023; Wang et al.,
2024a) or are simply not trained for multi-image
inference, we designed a simple validation task to
help us select VLMs that could be suitably included
in our main experiment. The task consisted in re-
sponding correctly to the four possible variations
of the prompt:

Which of the following is the [up,

down, left, right]ward-pointing
arrow?

Image SHTL: <image up>

Image XHWK: <image down>

Image AKRC: <image left>

Image ZHRN: <image right>

Please respond with the

four-letter image id.

The following similar prompt was used for a
single-image scenario, where all the concepts were
provided within the same image:

Which is the [up, down, left,
right]ward-pointing arrow? SHTL,
XHWK, AKRC or ZHRN?
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Action Contributor Example Analogy Assigned Label

wanted Human circle wants square. as circle is first its on the left, furthermore  Interactive Entities
the arrow should point towards the square as it shows circle
acting towards square

fled GPT-3.5 "Fled’ often involves moving quickly away from a dangerous  Physical Action

seudo-visual . L
P ) or threatening situation. An analogy could be a person run-
ning away from a predator in a straight line to escape.

pointed at gi;ﬁg__gzgal) ’Pointing at’ something typically involves directing attention ~ Physical Action
towards a specific object or direction, often using a finger
or hand to indicate where to look. The action of pointing is
about indicating a specific location or item in space.
pulled gl:g:;z—visual) ’Pulling’ often involves drawing something towards oneself ~ Physical Action
or in a specific direction. When you pull an object, you
typically exert force to bring it closer to you or to move it
in a desired direction. In a directional sense, pulling can be
associated with moving something from a lower position to a
higher one, as if lifting or drawing it upwards.
showed g:;;;ls) ’showing’ often involves presenting or revealing something  Physical Action
in a particular direction. For example, pointing towards a
specific direction to indicate where something is located.
GPT-40-mini s ., . . . . .
obeyed (textual) obeying’ often involves following directions or commands, Cultural/Convention
which can be likened to moving in a specific direction as
instructed. When someone is told to go ’up’, they are com-
plying with a directive, just as one would follow orders or
rules in a broader sense.
rushed ((t}f);l;;lt(l)) ’Rushing’ often involves moving quickly and with urgency  Cultural/Convention

towards a destination or goal. It implies a sense of forward

momentum and progress, similar to how one might move in

a straight line without hesitation. In many contexts, moving

’up’ can symbolize advancement, progress, or moving to-

wards a goal, as it is often associated with positive movement

or elevation.

argued with Qwen-VL-72b ’argued with’ often involves opposing or challenging some- Interactive Entities
one’s views. A debate between two people, for example, is a
common representation of this event.

No Analogy /

hoped Qwen-VL-7b hoping’ involves having a desire or wish for something to Explanation

happen. It’s like having a goal or aspiration.

Table 4: Examples of different collected analogies from different contributors. Selection was focused on represent-
ing different assigned labels. Full collection of analogies is available at https://github.com/anonymousACL/
analogy_prompting.

The models tested in the multi-image

Ending Textual Pseudo Avg. scenario ~ were  Qwen2-VL-7B-Instruct?
and 1lava-onevision-qwen2-7b-ov-hf>.

SESESE 822 82; 823 The models tested in the single-image

hoi 0'70 0'77 0'73 scenario were: Molmo-7B-D-0924%,

EE(E(I:ECCTION 0.66 0'73 0.69 1lama3-1lava-next-8b-hf>,

Selection 0'69 0'75 0'72 1lava-v1.6-mistral-7b-hf®,

selection 0.68 0.75 0.71

CONCEPT 0.68 0.75 0.71 *https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

Concept 0.69 0.73 0.71 3https://huggingface.co/1lava-hf/

concept 0.73 0.76 0.74 1lava-onevision-qwen2-7b-ov-hf

*https://huggingface.co/allenai/
Table 5: Overview of the validation scores for each M015m0‘ 7B-D-0924
possible prompt-ending, for textual and pseudo-visual https://huggingface.co/llava-hf/

prompts, along with their average. llagna3_llava_ne)<,t_8b_hf
https://huggingface.co/llava-hf/llava-vi1.

6-mistral-7b-hf
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1lava-onevision-qwen2-7b-si-hf’, ,
llava-interleave-qwen-7b-hf3, and
Qwen2-VL-7B-Instruct’.

The only models which were able to respond
correctly to all variants of the prompts were
Molmo-7B-D-0924 in the single-image scenario
and Qwen2-VL-7B-Instruct in the multi-image
scenario. Given the satisfactory performance of
these 7B-parameter models, we decided to in-
clude their largest versions (Molmo-72B-0924!°
and Qwen2-VL-72B-Instruct-AWQ'!) as well in
the main experiment.

B.3 Prompts

The prompts used for the LLMs and vision-
language models are reported, respectively, in Ta-
bles 6, 7, and 8. To avoid selection bias (e.g., the
model always choosing the option appearing as
first), for each prompt we constructed variations
corresponding to all the possible label permutations
(4! = 24).

Note that, since the preview Molmo version
available when experiments were conducted (Fall
2024) did not support multi-image inference, this
model was prompted with a single image including
all four spatial schemas. As for the Qwen2-VL
models, they were found incapable of discriminat-
ing between schemas when they were provided
within the same image; therefore, each schema was
provided within a separate image.

B.4 Parsing of Model Outputs

Despite our efforts to validate the prompts, there
were still cases where model-generated responses
did not exactly match the expected structure. When
this occurred, we first tried to exploit other regular-
ities (e.g., the model outputting choice: instead
of concept:) to isolate the relevant part of the
output. When no such regularity was present, we
adopted a simpler single-matching approach: if a
single concept could be identified in the output,
we considered that as a valid answer; if not, or in
the case where multiple concepts were present, we
considered the output invalid.

"https://huggingface.co/1lava-hf/
llava-onevision-gqwen2-7b-si-hf

8http://11ava-hf/llava—interleave-qwen—7b—hf

*https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

10https://huggingface.co/allenai/
Molmo-72B-0924

11https://huggingface.co/Qwen/
Qwen2-VL-72B-Instruct-AWQ

To obtain comparable label distributions, we re-
placed the invalid answers with the prevalent valid
answer for the action word. If no valid answer was
returned for a specific action word, we excluded the
action word from further comparisons with human
preferences. The percentage of invalid answers
never exceeded 5%. We report the percentage of in-
valid responses yielded by each model in Table 15.

B.5 Evaluation Metrics

For each model, we obtained 24 outputs for each
verb-stimulus (corresponding to all possible per-
mutations). This allowed us to obtain a percent-
age of ‘up’, ‘down’, ‘left’ and ‘right’ responses
for each verb. Similarly, response distributions
could be obtained for the human datasets based on
multiple participants’ answers. Spearman corre-
lations quantifying the alignment between human
and model responses were computed between the
human and model-generated answer distributions
per each spatial schema. Since most correlations
were non-significant when considering all four spa-
tial schemas, in the main paper we show correla-
tions per direction (‘vertical’ vs. ‘horizontal’). In
the following sections, we report complete results,
including both per-schema and per-direction corre-
lation.

Regarding F1 scores, they were computed be-
tween human and model-generated schema prefer-
ences. For each verb, the schema preference was
defined as the schema appearing in most permuta-
tions or indicated by the majority of participants.

B.6 Extended Results

In Tables 9, 10, and 11 the Spearman correlations
for the LLMs and VLMs are represented. F1 scores
for these models can be seen in Tables 12, 13, and
14.

B.7 Compute Resources

Running our experiments required a total of ap-
proximately 37 hours on an A100 NVIDIA GPU
and 10 hours on an H100 NVIDIA GPU. Labeling
the analogies with GPT-40 using OpenAI’s API
access required approximately 3 hours.
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Model Prompt

Llama (R) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’X’, ’-’, ’)’, ’/’. For the concept that
best represents the event ’stopped’, what concept would you
choose?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>
Given the concepts: "[concept]’. For the concept that best
represents the event ’[event]’, what concept would you choose?

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept:

Llama (A) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: X, =, Yy, /. For the concept
that best represents the event ’stopped’, what  concept
would you choose? Explain the analogy, then provide one

choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
analogy: ’stopping’ often involves obstructing or halting the
progress of something. Raising both arms and crossing them

defensively to physically block someone for example.

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would
you choose? Explain  the analogy, then provide one

choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

analogy:

Llama (Z) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you
choose? Give the chosen concept by surrounding it with

TH#it’ . <|eot_id|><|start_header_id|>assistant<|end_header_id|>

Let’s think step by step.

Table 6: Prompts used for the Llama 3.1 models. The R1-Distill-Llama model used the same prompt as the
regular Llama models. The letters in brackets after the model names refer to the experimental condition (Regular
vs. Analogical vs. Zero-shot.)
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Model Prompt

GPT (R) SYSTEM_PROMPT :

You are a participant in a research experiment. Even if the
answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT :

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose?
concept: X’

TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
concept:

GPT (A) SYSTEM_PROMPT :
You are a participant in a research experiment. Even if the

answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT :

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose? Explain the analogy, then provide one choice.

analogy: ’stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.

concept: "X’

TASK: Given the concepts: "[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Explain the analogy, then provide one choice.

analogy:

GPT (2) You are a participant in a research experiment. Even if the answer is
subjective, provide it. Do not say it is subjective. Follow the given
structure. TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Give the chosen concept by surrounding it with ’##’. Let’s think step
by step.

Table 7: Prompts used for the GPT models. The letters in brackets after the model names refer to the experimental
condition (Regular vs. Analogical. vs. Zero-shot.)
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Model Prompt

Molmo Example task: Consider the event ‘threw’ and the four images below
R) (SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image: XHWK

Task: Consider the event ‘[event]’ and the four images below
(SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image:

Qwen2-VL  Example task: Consider the event ’stopped’ and these four images:

(R) SHTL [image], XHWK [image], AKRC [image], ZHRN [image]. Which of the
images best represents the event?
Image: SHTL

Task: Consider the event ’stopped’ and these four images: [image
label][image], [image labell<image>, [image labell<image>, [image
labell<image>. Which of the images best represents the event?

Image:
Molmo Example task: Consider the event ‘threw’ and the four images below
A) (SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the

following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.

Analogy: ‘throwing’ often involves launching an object in a horizontal
direction. The trajectory followed by the object could be represented
as a rightward-pointing arrow.

Image: XHWK

Task: Consider the event [event] and the four images below
(SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the
following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.

Analogy:

Qwen2-VL  Example task: Consider the event ‘stopped’ and these four images:
(A) SHTL <image>, XHWK <image>, AKRC <image>, ZHRN <image>. Think of
an analogy to help you answer the following question: Which of the
images best represents the event? Explain the analogy, then provide
your image choice.
Analogy: ‘stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.
Image: SHTL

Task: Consider the event ‘[event]’ and these four images: [image
labell<image>, [image label]<image>, [image labell<image>, [image
label]<image>. Think of an analogy to help you answer the following
question: Which of the images best represents the event? Explain the
analogy, then provide your image choice.

Analogy:

Table 8: Prompts used for the vision-language models. The letters in brackets after the model names refer to the
experimental condition (Regular vs. Analogical.)
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A v/ R A
Up 0.45% 0.53%(+) | 0.67% 0.57%(-) 0.61% () | 0.48*%  0.63% (+)
Down 0.47% 031() | 031 027() 033(+) | 0.37%  0.44% (+)
Left 0.34  0.44%(+) | 036 046%(+) 0.07() | 0.25 0.47* (+)
S Right 0.58* 0.56%(-) | 0.58* 0.57%(-) 0.62%(+) | 0.62%  0.61% ()
2 1 0.67% 0.58%(-) | 0.72% 0.66% (-) 0.68%(-) | 0.68*  0.57% ()
R 0.66% 0.38%(-) | 0.48% 0.49%(+) 0.48%(=) | 0.58*  0.62% (+)
5z 0.12  0.61% (+) | 0.42% 0.44%(+) 033() | 043*  0.62% (+)
- 0.47% 0.61% (+) | 0.67% 0.72% (+) 0.77*% (+) | 0.69%  0.68% (-)
Hor/Vert.” | 0.56% 0.73% (+) | 0.72% 0.70% (-) 0.72% (=) | 0.76%  0.79% (+)
Hor/Vert.” | 0.81% 0.76% (1) | 0.89% 0.86* (-) 0.88%(-) | 0.85%  0.87* (+)
Up 0.57% 0.58% (+) | 0.56% 0.51%(-) 0.48* () | 047%  0.58% (+)
Down 0.47% 0.45%(-) | 0.43*% 0.40%(-) 0.40%(-) | 0.53*  0.57%(+)
Left 0.38% 0.42%(+) | 0.39*  036() 0.17() | 0.36%  0.49% (+)
Right 0.47% 0.41%(-) | 037%  035() 0.37%(=) | 0.36* 0.33 (1)
g 1 0.70%  0.52% (-) | 0.64* 0.60% (-) 0.66% (+) | 0.64*  0.50% ()
8 | 0.60% 0.51%(-) | 0.52% 0.53%(+) 0.52%(=) | 0.50*  0.50% (=)
— 0.12  0.59% (+) | 0.38% 0.53% (+) 0.44% (+) | 0.44*  0.55% (+)
- 0.37%  0.45% (+) | 0.50% 0.52% (+) 0.56% (+) | 0.53*  0.41% ()
Hor/Vert.T | 0.57% 0.70% (+) | 0.64% 0.65% (+) 0.62%(-) | 0.64*  0.64* (=)
Hor/Vert.” | 0.82% 0.60% (-) | 0.74*% 0.77% (+) 0.70%* (-) | 0.66*  0.65% ()

Table 9: Spearman correlations between concept distributions by humans and the open-source models (Llama3.1
and DeepSeek R1 Distill Llama). The last four rows report results aggregated into two main directions (‘up’ and
‘down’ into ‘vertical’ and ‘left’ and ‘right’ as ‘horizontal’), for textual (") and pseudo-visual (P) concepts. Values
in the ‘R’ column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates
zero-shot prompting. The signs in brackets indicate whether analogy prompting results in an improved correlation
with respect to regular prompting (+), remained the same (=), or didn’t improve (-). Asterisks mark statistical
significance (p < 0.05).
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GPT-3.5 GPT-40 GPT-40-Mini GPT-01-Preview
R A R A R A R A Z
Up 0.63* 0.48*(-) | 0.59*% 0.61* (+) | 0.61* 0.63* (+) | 0.60* 0.58* (-) 0.57* (-)
Down 0.51*  035(-) | 0.41* 0.45*(+) | 0.26 0.22(-) | 0.41*% 0.34 (-) 0.35(-)
Left 0.43* 0.52*%(+) | 032 045*(+) | 036 047%(+) | 035 045*(+) 0.26(-)
§ Right 0.69*% 0.68* (-) | 0.52* 0.65*% (+) | 0.59* 0.60* (+) | 0.59* 0.69* (+) 0.55* (-)
c 1 0.58* 047*%(-) | 0.73% 0.68* (-) | 0.69* 0.63* (-) | 0.64* 0.69* (+) 0.66* (+)
j:: 1 0.55*  032() | 0.59*% 0.52*%(-) | 0.56* 0.36(-) | 0.59* 0.52*%(-) 0.47*(-)
2 023 029(H) | 036 0.49*(+) | 0.52*% 0.43*(-) | 0.46* 0.53*(+) 0.21(-)
— 0.69* 0.63*% (-) | 0.68*% 0.64* (-) | 0.74* 0.76* (+) | 0.70* 0.68* (-)  0.67* (-)
Hor/Vert.T | 0.72% 0.73* (+) | 0.65% 0.77* (+) | 0.71* 0.77% (+) | 0.71* 0.85% (+) 0.74* (+)
Hor./Vert.r | 0.72%  0.71% () | 0.85*% 0.85* (=) | 0.85% 0.87* (+) | 0.89% 0.90* (+) 0.86* (-)
Up 0.60* 0.44%*(-) | 0.63* 0.58%(-) | 0.61* 0.56* (-) | 0.55* 0.49*(-) 0.49* (-)
Down 0.62* 0.44*(-) | 0.49*% 041*%(-) | 0.33 037*(+) | 0.54* 0.48*(-) 0.45*(-)
Left 0.36* 0.56* (+) | 0.38* 0.38* (=) | 0.38* 0.50%(+) | 0.24  0.36 (+) 0.10 (-)
Right 0.47*% 0.50* (+) | 0.37*  036(-) | 0.40* 0.40* (=) | 0.43* 0.57* (+) 0.44* (+)
Z 7 0.54* 0.46* (-) | 0.63* 0.67* (+) | 0.59* 0.64* (+) | 0.55* 0.56* (+) 0.58* (+)
5 1 0.54* 036(-) | 0.55% 0.54%(-) | 0.58* 0.45*(-) | 0.59* 0.51*(-) 0.39* (-)
— 025 028(+) | 034 0.54* (+) | 0.50% 0.42*(-) | 0.51* 0.54*(+) 0.35()
— 0.52* 0.42*%(-) | 0.44*% 047* (+) | 0.50% 0.54% (+) | 0.48* 0.48* (=) 0.50* (+)
Hor/Vert.T | 0.76% 0.58% (-) | 0.64* 0.59% (-) | 0.69% 0.65% (-) | 0.64* 0.72% (+) 0.59* (-)
Hor./Vert.? | 0.58* 0.56* (-) | 0.74% 0.67* (-) | 0.72% 0.73% (+) | 0.71% 0.67*%(-) 0.65* (-)

Table 10: Spearman correlations between concept distributions by humans and the GPT models. The last four
rows report results aggregated into two main directions (‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’ as
‘horizontal’), for textual (7") and pseudo-visual (P) concepts. Values in the ‘R’ column refer to the regular prompting
condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The signs in brackets
indicate whether analogy prompting results in an improved correlation with respect to regular prompting (+),
remained the same (=), or didn’t improve (-). Asterisks mark statistical significance (p < 0.05).

Molmo-7B Molmo-72B Qwen2-VL-7B Qwen2-VL-72B

R A R A R A R A
Up 011 029(+) | 0.19  032(+) | 022 0.56* (+) | 0.53* 0.37*(-)
£ Down 036 -0.17(-)| - -0.04 | 0.45% 0.52% (+) | 0.50%  0.42% (-)
T Left - - 027 -0.07(+) | 005 0.11(+) | 031  0.36(+)
£ Right 034 -026()| - 015 | 019 022(+) | 0.44* 0.52(+)
& Hor/Vert. | 033 -025(-) | 030 0.52%+) | 0.66* 0.79%(+) | 0.71% 0.67* (-)
Up -0.05 0.03(+) | 0.17 030(+) | 030 0.46* (+) | 0.44* 0.28(-)
Down 011 -008(-) | - -0.11 | 026 044*(+) | 031  0.37*(+)
£ Left - - -0.15 -0.10(-) | 025  0.13(-) | 0.41% 0.37*(-)
& Right 030 -024(-)| - 005 | 006 006 | 030 0.33(+)
Hor./Vert. | 023 -022(-) | 0.28 0.37*(+) | 0.61% 0.73* (+) | 0.59* 0.56* (-)

Table 11: Spearman correlations between concept distributions by humans and vision-and-language models. Results
are reported both per-concept and per-direction, i.e., aggregating ‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’
into ‘horizontal’. Values in the ‘R’ columns refer to the regular prompting condition, while ‘A’ indicates analogy
prompting. The signs in brackets signal whether analogy prompting results in an improved correlation with respect
to regular prompting (+) or not (-). Asterisks mark statistical significance (p < 0.05).
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A Z R A
S Concept” | 051 040(-) | 041 048(+) 0.36(-) | 0.53 0.58 (+)
'§ Concept” | 044 051(+) | 0.60 0.63(+) 0.60 (=) | 0.69 0.63 (-)
j:: Direction” | 0.73 0.64(-) | 0.65 0.72(+) 0.53(-) | 0.83 0.87 (+)
& Direction” | 0.60 0.70 (+) | 0.83 0.90(+) 0.80(-) | 0.93 0.90 (-)
Concept’” | 0.50 038(-) | 033 037(+) 033(=) | 0.45 0.41 (-)
£ Concept!” | 034 047(+) | 046 049(+) 042(-) | 0.49 0.45 (-)
5 Direction” | 0.67 0.71 (+) | 0.58 0.72(+) 0.67 (+) | 0.77 0.73 (-)
Direction” | 0.52 0.70 (+) | 0.70 0.77 (+) 0.67(-) | 0.73 0.70 (-)

Table 12: Weighted F1 scores between human and the open-source models’ concept preferences. The first two rows
report results considering all four concepts (up, down, left, right) for textual (7°), and (7, |, -, —) for pseudo-visual
(P), while the last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’
column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot
prompting. The signs in brackets indicate whether analogy prompting results improved F1 score with respect to
regular prompting (+), remained the same (=), or didn’t improve (-).

GPT-3.5 GPT-40 GPT-40-Mini GPT-o0l1-Preview
R A R A R A R A Z
S Concept” | 0.60 0.63(+) | 0.40 0.45(+) | 045 0.40(-) | 035 0.49(+) 0.40+)
'§ Concept” | 0.53 0.61 (+) [ 0.58 0.63(+) | 0.64 0.63(-) | 0.64 0.67 (+) 0.67 (+)
:_.-‘j Direction” | 0.87 0.90 (+) | 0.76 0.76 (=) | 0.55 0.68 (+) | 0.55 0.64(+) 0.60 (+)
& Direction” | 0.80 0.90 (+) | 0.90 0.87(-) | 0.90 0.76(-) | 0.80 0.90 (+) 0.83 (+)
Concept” | 046 049 (+) | 033 0.29(-) | 046 0.35(-) | 035 044 (+) 0.35(=)
g Concept” | 035 0.50(+) | 041 0.42(+) | 048 045(-) [ 0.50 046(-) 0.46(-)
& Direction” | 0.80 0.63(-) | 0.62 0.55(-) | 0.62 0.61(-) | 0.62 0.71 (+) 0.67 (+)
Direction” | 0.67 0.76 (+) | 0.77 0.67(-) | 0.76 0.69(-) | 0.73 0.70(-) 0.70 (-)

Table 13: Weighted F1 scores between human and GPT’s concept preferences. The first two rows report results
considering all four concepts (up, down, left, right) for textual (1), and (7, |, <—, —) for pseudo-visual (P), while the
last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’ column refer to
the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The
signs in brackets indicate whether analogy prompting results improved F1 score with respect to regular prompting
(+), remained the same (=), or didn’t improve (-).

Molmo-7B Molmo-72B | Qwen2-VL-7B  Qwen2-VL-72B
R A R A R A | R A

Concept | 030 0.15(-) | 0.05 0.15(+) | 0.18 034(+) | 041 0.51 (+)
Direction | 0.39 0.25(+) | 0.33 0.68(+) | 0.60 0.55(-) | 0.60 0.90 (+)

Concept | 020 0.12(-) | 0.05 0.16(+) | 023 0.22(-) | 0.35 0.38 (+)
Direction | 0.44 0.32(-) | 040 0.61(+) | 0.60 0.62(+) | 0.52  0.69 (+)

Ours | Rich.

Table 14: Weighted F1 scores between VLM and human concept preferences from both Richardson’s and our
dataset. Results are reported for both concept preferences and direction preferences. Values in the ‘R’ columns refer
to the regular prompting condition, while ‘A’ indicates analogy prompting. The signs in brackets signal whether
analogy prompting results in an improved F1 score with respect to regular prompting (+) or not (-).
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Model % Inv. Resp. | # AWs w/ Inv. Resp. | | # Removed AWs |
R A Z | R A Z R A Z
Llama-70B” 944 1389 - |14 18 - 0 0 -
Llama-70B” 250 972 - |10 14 - 0 0 -
Llama-70B-Inst” 0 069 1940 2 9 0 0 0
Llama-70B-Inst” 0 028 6940 2 16 0 0 0
R1-Distill-Llama-70B” 0 028 - | 0 1 - 0 0 -
R1-Distill-Llama-70B” 0.14 0.69  — 1 2 - 0 0 -
GPT-3.57 0.14 153 - 1 3 - 0 0 -
GPT-3.57 0 042 - |0 1 - 0 0 -
GPT-40” 222 0 - 1 0 - 0 0 -
GPT-40" 0 0 - 10 o0 - 0 0 -
GPT-40-Mini” 0 0 - 10 o0 - 0 0 -
GPT-40-Mini” 0 0 - 10 o - 0 0 -
GPT-0l1-Preview” 0 0 0 1 0 0 0 0 0
GPT-01-Preview” 0 0 0 1 0 0 0 0 0
Molmo-7B" 17 0 - |5 0 - 5 0 -
Molmo-72BY 0 0 - 10 o - 0 0 -
Qwen2-VL-7BY 0 0 - 10 o0 - 0 0 -
Qwen2-VL-72BY 0 0 - 10 o - 0 0 -

Table 15: Overview of invalid responses in the Regular, Analogy, and Zero-shot prompting conditions, for the
textual (7"), pseudo-visual (P), and visual (V') conditions. The first column contains the overall percentage of invalid
responses, the second the number of action words for which at least one invalid response was generated, and the last
the number of action words that were removed because none of the generated answers was valid. A “~” indicates
that the model was not evaluated under the corresponding prompting condition.
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