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Abstract

Naphtha Cracking Center scheduling aims to
develop optimal multi-week plans under opera-
tional constraints and fluctuating demand. Our
prior work (Hong et al., 2024b) introduced a
multi-agent reinforcement learning (RL) sys-
tem that is currently deployed in a petrochemi-
cal plant. However, standalone RL agents face
several limitations: the environment is sensi-
tive—one suboptimal action can invalidate the
entire plan—and reward functions are often
difficult to specify. We propose Population-
Based Multi-Scenario Planning (PBMSP), a
novel planning algorithm designed to comple-
ment RL agents. PBMSP maintains a diverse
set of candidate schedules optimized for dis-
tinct objectives and constraints, and extends
RL-based scheduling by enhancing adaptabil-
ity, stability, and operational profitability.

1 Introduction

Scheduling in Naphtha Cracking Centers (NCCs)
presents a fundamental challenge in petrochemical
manufacturing. It involves planning a continuous,
multi-stage process that converts raw naphtha into
high-value products, primarily ethylene. This pro-
cess includes three interdependent stages: 1) un-
loading naphtha from vessels into receipt tanks, 2)
blending selected receipt tanks in the blending tank
to achieve the target composition, and 3) cracking
the blended feed in furnaces (LG, 2024).

The strong coupling among these stages, along
with operational constraints and fluctuating de-
mand, necessitates robust long-term scheduling.
Effective plans must consider plant status, vessel
arrival schedules, tank capacities, feedstock qual-
ity, and external factors such as market conditions.
Based on advance shipment data, operators pre-
pare multi-week schedules, illustrated in Figure 1,
that specify which tanks receive incoming naphtha,
how blending is performed, and furnace settings
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Figure 1: Simplified representation of an NCC schedule.

like feed flow rates and coil outlet temperatures.
These schedules are crucial for maintaining safe,
stable, and efficient operations under uncertainty.

Previous research on NCC scheduling has pri-
marily addressed individual process components
in isolation (Lee et al., 2010; Lee, 2012; Joo et al.,
2023; Kim et al., 2023). Our prior work (Hong
et al., 2024b)—a demonstration paper highlight-
ing the system architecture and web-based inter-
face! of its reinforcement learning (RL)-based
scheduling system deployed at a petrochemical
plant—proposed a cooperative multi-agent system
(MAS) framework integrating the three interde-
pendent stages of the NCC process into a unified
scheduling model. In this framework, agents are
assigned to manage the unloading, blending, and
cracking stages respectively, and generate produc-
tion plans collaboratively.

This MAS framework inherently creates oper-
ational asynchronicity, with agent actions having
varied start times and durations. For example, un-
loading actions commence with non-periodic ves-
sel arrivals and their durations depend on shipment
volumes, while durations of blending actions vary
based on receipt tank inventories. To manage it,
our prior work (Hong et al., 2024b) employed the
MacDec-POMDP framework (Amato et al., 2019;
Xiao et al., 2022; Hong et al., 2024a; Jung et al.,
2025). This framework is designed for modeling

'A web-based demonstration in our earlier work is at
https://www.youtube.com/watch?v=TxoWG7_SLLU.
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multi-agent decision-making with asynchronicity
by defining macro-actions (sequences of predefined
micro-actions over multiple time steps). This repre-
sentation naturally accommodates the varied start
times and durations of actions inherent in the NCC.

Building on our prior work, this paper proposes
a complementary planning algorithm to enhance
the practical usability, robustness, and adaptability
of RL-based scheduling. While our deployed multi-
agent RL system demonstrates promising perfor-
mance, real-world implementation reveals several
challenges that limit its standalone effectiveness.

First, the NCC scheduling environment is inher-
ently sensitive. A single suboptimal action—even
one that may appear minor—can invalidate an en-
tire schedule, eventually leading to operational fail-
ure. For instance, failing to initiate blending on
time may cause receipt tank overflows, while im-
proper blending may result in off-specification feed-
stock and downstream disruptions. Such fragility
makes it difficult for RL agents alone to consis-
tently produce valid and safe schedules without
additional safeguards.

Second, the design of a scalar reward function
for RL agents is fundamentally limited in captur-
ing the complex, often conflicting objectives inher-
ent to petrochemical operations. Operators must
frequently balance priorities such as maximizing
profitability, ensuring process stability, and satis-
fying operational constraints—priorities that dy-
namically shift based on market conditions, feed-
stock availability, and plant status. A static reward
model cannot fully reflect these evolving trade-offs,
leading to policy behaviors that may diverge from
operator intent or practical feasibility.

To resolve these issues, we propose Population-
Based Multi-Scenario Planning (PBMSP), a novel
algorithm designed to complement existing RL
agents. PBMSP maintains a diverse population of
candidate schedules, each optimized under differ-
ent objectives and constraint levels. This diversity
enables the system to handle shifting operational
criteria and priorities, providing operators with a ro-
bust set of scheduling options that better align with
current plant conditions and strategic goals. Fur-
thermore, PBMSP supports efficient asynchronous
planning by identifying synchronized time points
across candidate schedules, allowing fair compar-
isons for effective local search.

In summary, our primary contribution lies in
the design and integration of PBMSP, a planning
algorithm that bridges the gap between the poten-
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tial of RL-based scheduling and the demands of
real-world NCC operations. Through PBMSP, we
enhance the usability, robustness, and adaptability
of multi-agent RL systems, moving closer to their
deployment in actual industrial environments.

2 Population-Based Multi-Scenario
Planning (PBMSP)

This section presents our algorithm for multi-
scenario scheduling, built on a structured popu-
lation model. Specifically, the algorithm organizes
these candidate solutions by operational character-
istics and details their generation and improvement
under varying constraint levels.

2.1 Structured Population Design

Unlike approaches that rely on a single population
(Jaderberg et al., 2017; Jung et al., 2020; Parker-
Holder et al., 2020; Wu et al., 2023; Zhao et al.,
2023), our framework structures the population into
distinct groups.

Each group is associated with a specific opera-
tional scenario. This scenario is defined by a unique
combination of an operational criterion and an op-
erating level. The criterion is evaluated by a scalar
fitness function reflecting aspects like profitabil-
ity and stability. The operating level dictates the
stringency of operational constraints. These levels
span a spectrum from conservative (using a limited
control range) to stressed (pushing equipment op-
eration to near its critical limits). A higher level
signifies more restrictive operational constraints.

The resulting hierarchical structure of operat-
ing levels presents a useful characteristic. Sched-
ules satisfying stricter constraints (higher level)
inherently meet looser ones (lower level), poten-
tially enabling the transfer of promising solutions
across different operational priorities. This de-
sign choice mirrors real-world NCC operations
where constraint stringency naturally varies based
on plant conditions or goals; for instance, stressed
levels might suit high demand while conservative
levels prioritize safety during stable periods.

By adopting this structured population, we aim
to leverage the inherent benefits of population-
based approaches—such as parallel exploration and
local optima escape—while directly addressing the
challenges posed by the multi-faceted nature of
NCC scheduling. The dedication of specific groups
to distinct scenarios is intended to improve the effi-
ciency and effectiveness of the search process.
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Figure 2: Multiple groups, each tied to a specific operational criterion and operating level, maintain branch
schedules progressing via iterative rollouts (completion percentage tracked). At synchronized times, each group’s
pivot schedule is chosen from its branch schedules and those of equal or higher level groups. Failures are managed
by intra/inter-group recovery. The final schedules are selected from the set of complete pivot schedules. For clarity,

Group 1-1’s rollout is detailed; others are brief.

This organization facilitates targeted exploration
under diverse operational priorities and constraints,
with the expectation of yielding a more compre-
hensive and robust set of high-quality schedules
compared to a uniformly explored population.

2.2 Schedule Construction Process

Based on the group defined above, our framework
generates a diverse set of schedules through the
following iterative process as depicted in Figure 2.

Initialization At the beginning of the planning,
each group’s pivot schedule—which serves as the
current best-known solution and the baseline for
exploration for that group’s scenario—is initialized
as an empty sequence of macro-actions, reflecting
the initial status of the NCC system.

Iterative construction The following steps are
repeated iteratively until planning horizon:

(1) Pivot-based branching: The pivot schedule
is replicated in parallel to create multiple branch
schedules. This allows a broad exploration of vari-
ous alternative decisions.

(2) Rollout based on scenario: Each branch
schedule undergoes a rollout process considering
its associated group’s scenario. This process pro-
gressively constructs a complete schedule by se-
quentially applying macro-actions.

(3) Synchronized evaluation and update: At
predefined synchronized time—specific moments
where all branch schedules have reached an iden-

tical operational time (e.g., a shared event like a
vessel arrival)—each group evaluates not only its
own branch schedules but also those from all other
groups operating at an equal or higher level, based
on their respective fitness functions. This strategy
facilitates the discovery of solutions that effectively
balance diverse priorities and constraints.

Throughout the rollout process, the algorithm
incorporates a robust failure recovery mechanism.

- Intra-group recovery: A failing schedule within
a group is replaced by a copy of the current best-
performing schedule in that group (based on its
fitness), and rollout continues.

- Inter-group recovery: 1If all schedules in a
group fail, the entire group is re-initialized with
a copy of the best-performing schedule from all
groups at an equal or higher operating level, and
rollout resumes.

Furthermore, if all schedules across all groups
fail, the algorithm restarts exploration from each
group’s pivot schedule at the last synchronized time.
These layered mechanisms enhance the planning
robustness by preventing premature termination.

Final schedule selection Once the iterative plan-
ning process is complete, a final selection step is
performed. Instead of directly presenting all group-
specific pivot schedules, a separate set of final eval-
uation criteria is applied to assess these complete
schedules. This is because, unlike the fitness func-
tions used during the planning process, the final
criteria can consider aspects that can only be accu-



Methods

Success Rate (%) Normalized Return

Time (min.)

PBMSP (Full resources for parallel rollout)
PBMSP (50% resources for parallel rollout)
Simple RL Rollout (10k sampling)

Simple RL Rollout (1k sampling)

93.8 0.994 38.8
87.5 0.988 37.8
37.5 0.922 516.5
12.5 0.926 57.1

Table 1: Quantitative comparison of PBMSP and Simple RL Rollout methods.

rately assessed once a complete schedule has been
generated. The top-performing schedules, accord-
ing to these final criteria, are then presented to the
human operator for review and implementation.

3 Evaluation

Quantitative Analysis We assess the effective-
ness of the proposed method through experiments
based on diverse expert-designed backtest sched-
ules. Each schedule captures the full information
describing the operational status of the NCC plant
at the time of scheduling, including inventory lev-
els, equipment availability, and process constraints.

Due to confidentiality agreements with industry
collaborators, we omit specific configuration de-
tails and parameter values; however, results are pre-
sented in an abstracted form that faithfully reflects
the comparative performance and key insights.

We compare two methods for schedule gener-
ation based on a pre-trained RL policy from our
prior work (Hong et al., 2024b): 1) PBMSP, our
proposed method that actively explores diverse
schedule groups, and 2) Simple RL Rollout, a
baseline that samples 1,000 or 10,000 schedules
using the policy and selects the highest-return one
that successfully completes. All experiments were
performed on two AMD EPYC 7453 28-core pro-
cessors, with both methods parallelized to fully
utilize available resources.

We evaluate these methods using key metrics:

- Success Rate: The average success rate in gen-
erating a complete schedule without failure.

- Normalized Return: The maximum return
among successfully generated schedules. Normal-
ized by the maximum return across all methods for
each specific data point.

- Wall-clock Time: The average time taken to
generate a schedule across all data points.

PBMSP consistently outperforms Simple RL
Rollout by generating schedules from a broader
range of initial operational status (higher success
rate) and achieving higher returns, while also re-
quiring significantly less time due to more efficient

33

sampling. Although PBMSP (50% resources) has
similar wall-clock time due to parallelization, its
reduced group size leads to fewer schedules and
thus lower performance than the full PBMSP.

Qualitative Insights from Deployment We in-
troduced an online web service (Hong et al., 2024b)
to optimize NCC operational schedules. This plat-
form enabled users to upload the current opera-
tional status and generate schedules. The service
then presented these schedules with figures and
statistics in staff-friendly downloadable formats.

We have integrated PBMSP into this web service.
Feedback from operators indicates this integration
has significantly enhanced the service’s real-world
utility, delivering several key improvements:

- Enhanced Schedule Generation and Utilization:
The frequency of generating successful schedules
has dramatically increased. This allows users to
rely on service-generated schedules more often in
practice, leading to greater operational reliability
and reduced need for manual intervention.

- Diverse and Adaptable Schedule Offerings:
The service now provides a broader range of suc-
cessful schedules. This variety gives users the flex-
ibility to select schedules that best align with their
current operational priorities.

- Increased Profitability: Backtesting data re-
veals that the PBMSP-enhanced service consis-
tently generates more profitable schedules com-
pared to those created by human experts.

4 Conclusion

This paper presents PBMSP, a population-based
approach that enhances NCC scheduling to over-
come the limitations of standalone RL. By main-
taining a diverse population of candidate sched-
ules optimized for varied objectives and constraints,
it improves schedule completeness and efficiency,
as confirmed by operator feedback. PBMSP also
shows strong potential for broader industrial opti-
mization problems with dynamic constraints and
can contribute to the planning capabilities increas-
ingly needed by modern large language models.
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