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Introduction

We are pleased to present the proceedings of the Sixth Workshop on African Language Processing (Afri-
caNLP 2025), held on July 31st, 2025 in Vienna, Austria. The theme for this year’s workshop is “Multi-
lingual and Multicultural-aware LL.Ms,” reflecting the need for language technology to be tailored to all
users, especially those on the African continent.

These proceedings are the first archival proceedings of the AfricaNLP workshop, and this is the first
time the workshop has been held at ACL. We accepted approximately 60% of accepted papers, reflecting
our desire to balance inclusion and selectivity. In addition to the 28 archival papers that appear in the
proceedings, 7 non-archival papers were also presented at the workshop.

We would like to thank the sponsors of the workshop for their generous support: Google DeepMind,
Apple, Distributed Al Research Institute (DAIR), Masakhane, and Meta.

With gratitude,
The AfricaNLP 2025 Organizers
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Invited Talk
Building with Africa: Afrocentric Natural Language
Processing

Muhammad Abdul-Mageed
The University of British Columbia

Abstract: Africa’s linguistic landscape is one of the richest in the world, with over 2,000 languages
and dialects spoken across the continent. This diversity creates a unique environment for innovation
in natural language technologies. In this talk, I will describe our collaborative journey to close the te-
chnology gap and bring African languages into mainstream NLP research. I will focus on seven key
publications—Towards Afrocentric NLP, AfroLID, SERENGETI, Cheetah, Toucan, Sahara, and Voice
of a Continent—outlining the goals that drove each project, the obstacles we overcame and the insights
we gained along the way. Finally, I will examine the impact that culturally rooted NLP systems can have
on African communities, from richer digital communication and the preservation of linguistic heritage
to more inclusive and equitable technological innovation.

Bio: Muhammad Abdul-Mageed is the Canada Research Chair in Natural Language Processing and Ma-
chine Learning and is an Associate Professor at the University of British Columbia. As director of the
UBC Deep Learning & NLP Group, co-director of the SSHRC I Trust Artificial Intelligence partnership
and co-lead of the SSHRC Ensuring Full Literacy initiative, his work develops multilingual, multimodal
and cross-cultural large-language models that are culturally sensitive, equitable, efficient and socially
aware. These models advance applications across speech, language and vision—supporting improved
human health, more engaging learning, safer social networking and reduced information overload. His
research has been funded by the Gates Foundation (through Clear Global), NSERC, the Canada Founda-
tion for Innovation, with additional support from Google, AMD and Amazon. He has authored over 180
peer-reviewed publications, advised the Government of Canada on generative Al policy, and delivered
invited lectures, keynotes and panel presentations in more than 25 countries. His work has been featured
in outlets such as MIT Technology Review, The Globe and Mail, Euronews and Libération.
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Invited Talk
Mapping Progress in African NLP

Jesujoba Oluwadara Alabi
Saarland University

Abstract: NLP research on African languages is active and growing, even though recent efforts—
including work on large language models—have primarily focused on high-resource languages. In the
past 5 years, there has been a surge of interest in African NLP, which we recently surveyed. In this talk, I
will present key takeaways from that work: where research has been concentrated, and where new efforts
are most needed. I will also present our recent efforts to address some of these gaps and future directions:
AFRIDOC-MT, a multilingual document-level translation benchmark targeting health and tech domains,
and AfriHuBERT, a compact self-supervised speech model designed to help close the speech technology
gap for African languages. Overall, these insights and projects showcase the progress made and the path
forward to more inclusive and impactful NLP for African languages.

Bio: Jesujoba Oluwadara Alabi is a PhD candidate and researcher at Saarland University, Germany,
advised by Prof. Dr. Dietrich Klakow. His research focuses on natural language processing (NLP)
for low-resource (African) languages, with interests in machine translation, speech processing, NLP
model adaptation, and interpretability of model adaptation methods. He is a member of the Masakhane
community and has contributed to several key projects advancing NLP for African languages. Notably,
one of his publications received a Best Paper Award (Global Challenges) at COLING 2022 for developing
AfroXLMR, a multilingual pre-trained language model for African languages. Other notable awards
include an Area Chair Award at ICNLP-AACL 2023 and Outstanding Paper Award at NAACL 2025.
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Invited Talk
Scaling Speech Recognition for African Languages

Joyce Nakatumba-Nabende
Makerere University

Abstract: Automatic speech recognition (ASR) for African languages remains challenging due to limited
labeled data and a lack of practical guidance to build effective systems in low-resource settings. Although
pretrained models such as Whisper, XLS-R, MMS, and W2v-BERT have improved access, their compa-
rative performance across languages, training scales, and decoding strategies remains understudied. In
this talk, I will discuss the evaluation of ASR models on thirteen African languages, fine-tuning each
on training subsets. The talk will also cover the assessment of the impact of language model decoding
using n-gram models trained on open-source text. Finally, I will delve into a framework and results for
evaluation of ASR models beyond WER and CER metrics.

Bio: Dr. Joyce Nakatumba-Nabende is a senior lecturer in the Department of Computer Science at Ma-
kerere University and the current director for the Makerere University Center for Artificial Intelligence.
She is a research scientist addressing global and African challenges as part of “CoRE-AI" Africa-Europe
Clusters of Research Excellence on Innovation and Technology. Dr. Nakatumba-Nabende has worked on
research in the development and application of Artificial Intelligence and machine learning models and
contributes to sustainable and equitable outcomes in health and agriculture, advancing digital inclusion,
and improving African language representation in Al



Invited Talk
Building Language Technologies for Low-Resourced
Languages

Hellina Hailu Nigatu
University of California, Berkeley

Abstract: In recent years, we have seen an increase in the number of languages included in NLP resear-
ch. Particularly, “low-resource languages” are gaining attention after decades of neglect from mainstream
research. While inclusion in NLP research certainly has benefits for speakers of these languages, there
are also some risks in how we design and build NLP systems. In this talk, we will first cover background
on what low-resourced languages are and what gaps exist in current NLP research when designing lan-
guage technologies for speakers of these languages. Then, we will take a magnifying lens and look at a
pre-processing step performed in Amharic NLP and its impact on monolingual and cross-lingual model
performance for Machine Translation. We will end by connecting to literature on technology-facilitated
language change and why it is important for us to critically reflect on each stage of the NLP pipeline.

Bio: Hellina Hailu Nigatu is a PhD Candidate at UC Berkeley. She received her BSc from Addis Ababa
University in Electrical Engineering and her MSc from UC Berkeley in Computer Science. Her research
is at the intersection of HCI, NLP, and Al Ethics, with a specific focus on languages with limited data
available online. Hellina studies how current language technology design fails for speakers of these
languages and how we can design better, contextual language technologies with users’ needs in mind.
Hellina holds fellowships from SIGHPC and FAccT. Her research has won several awards, including the
Outstanding Paper Award at EMNLP 2024, the Best Paper Award at Black in Al 2024, and the Research
of the Year Award from the Wikimedia Foundation.

X1



Invited Talk
Multilingual Modeling and Evaluation in Llama 4 and
Beyond

Sebastian Ruder
Meta

Abstract: Multilingual LLMs have become so powerful that they can be used in real-world conversations
in a variety of applications. While this presents many opportunities, it also poses challenges associated
with the complexity of natural language. In this talk, I will seek to connect academic research to real-
world challenges of multilingual conversational Al I will first provide an overview of multilinguality in
Llama 4, highlighting the importance of evaluation. I will then discuss what it takes to bridge the gap
between academic and real-world evaluations. Finally, I will discuss how we can develop models that are
useful to speakers in their local context, across the globe and for African languages.

Bio: Sebastian Ruder is a research scientist at Meta based in Berlin, Germany where he is working on
multilingual LLMs. Previously, he led the Multilingual team at Cohere and worked as a research scientist
at Google DeepMind. He completed his PhD in Natural Language Processing Insight Research Centre
for Data Analytics, while working as a research scientist at Dublin-based text analytics startup AYLIEN
and studied Computational Linguistics at the University of Heidelberg, Germany and at Trinity College,
Dublin.
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Yankari: Monolingual Yoruba Dataset

Maro Akpobi
African Center for Language Preservation
maro@acflp.org

Abstract

This paper presents Yankari, a large-scale
monolingual dataset for the Yoruba language,
aimed at addressing the critical gap in Natural
Language Processing (NLP) resources for this
important West African language. Despite be-
ing spoken by over 30 million people, Yoruba
has been severely underrepresented in NLP re-
search and applications. We detail our method-
ology for creating this dataset, which includes
careful source selection, automated quality con-
trol, and rigorous data cleaning processes. The
Yankari dataset comprises 51,407 documents
from 13 diverse sources, totaling over 30 mil-
lion tokens. Our approach focuses on ethical
data collection practices, avoiding problem-
atic sources and addressing issues prevalent
in existing datasets. We provide thorough au-
tomated evaluations of the dataset, demonstrat-
ing its quality compared to existing resources.
The Yankari dataset represents a significant ad-
vancement in Yoruba language resources, pro-
viding a foundation for developing more accu-
rate NLP models, supporting comparative lin-
guistic studies, and contributing to the digital
accessibility of the Yoruba language.

1 Introduction

Natural Language Processing (NLP) has made
tremendous strides in recent years, yet these ad-
vancements have primarily benefited high-resource
languages, leaving many African languages, in-
cluding Yoruba, underrepresented in NLP research
and applications. This paper introduces Yankari, a
large-scale, high-quality monolingual dataset for
Yoruba, a language spoken by over 30 million peo-
ple in West Africa. Despite its significant speaker
population, Yoruba has long suffered from a lack
of comprehensive, ethically-sourced language re-
sources suitable for modern NLP tasks.

1

Yankari addresses this critical gap by providing a
carefully curated corpus of 51,407 documents from
13 diverse sources, totaling over 30 million tokens.
Our methodology prioritizes ethical data collec-
tion, rigorous quality control, and the preservation
of linguistic authenticity. By avoiding problem-
atic sources such as religious texts and machine-
translated content, Yankari offers a more balanced
and representative sample of contemporary Yoruba
language use.

This paper details our data collection and pro-
cessing pipeline, discusses the challenges encoun-
tered in creating resources for low-resource lan-
guages, and provides a thorough analysis of the
dataset’s composition and potential biases. We also
offer insights into the ethical considerations sur-
rounding the creation and use of such resources.
Through Yankari, we aim to facilitate the develop-
ment of more accurate and culturally appropriate
NLP models for Yoruba, contribute to the preser-
vation of linguistic diversity in the digital age, and
provide a replicable approach for creating high-
quality datasets for other low-resource languages.

To our knowledge, Yankari represents the first
large-scale, non-religious domain monolingual re-
source created specifically for Yoruba. This work
not only provides a valuable asset for Yoruba NLP
but also offers a replicable approach for developing
similar datasets for other low-resource languages.

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 1-6
July 31, 2025 ©2025 Association for Computational Linguistics



Source Docs Type Domain
yo.wikipedia.org 16809  Encyclopedia General
alaroye.org 10535 News Current Affairs
www.bbc.com 8252 News Current Affairs
www.awikonko.com.ng 5438 Blog Culture
yoruba.von.gov.ng 2542  News Current Affairs
sportsinyoruba. 2328 Blog Sports
wordpress.com

www.asejere.net 2079 Blog Entertainment
asa.ooduarere.com 1744  Blog Culture
radionigeriaibadan. 824  News Current Affairs
gov.ng

iroyinowuro.com.ng 603  News Current Affairs
oroyoruba.blogspot. 139 Blog Culture

com

yo.globalvoices.org 81 News Current Affairs
edeyorubarewa.com 33 Blog Fashion

Total 51407

Table 1: Data sources for the Yankari dataset.

2 Related Works

This section examines existing resources for
Yoruba NLP, highlighting their limitations and
the need for a comprehensive, ethically-sourced
Yoruba dataset.

2.1 Monolingual Yoruba Datasets

2.1.1 Yoruba Text C3

Alabi et al. (2020) introduced Yoruba Text C3, com-
piled from various web sources including the Bible,
JW300 (Agi¢ and Vulié, 2019), books, news arti-
cles, and Wikipedia. While broad in scope, this
dataset is heavily skewed towards religious con-
tent, particularly Christianity. This bias signifi-
cantly limits its utility for NLG tasks requiring
balanced and diverse text. Moreover, the inclu-
sion of JW300 data raises serious ethical and legal
concerns. Hutchinson (2024) points out that the
Jehovah’s Witnesses have explicitly prohibited the
use of their data in NLP research, making the con-
tinued use of JW300 not just ethically questionable
but potentially illegal.

2.1.2 MENYO-20k

Adelani et al. (2021) developed MENYO-20k, a
multi-domain English-Yoruba corpus primarily for
machine translation tasks. While it offers more di-
verse content, its relatively small size of 20,100 sen-
tences and focus on translation rather than mono-
lingual text generation limit its applicability for
large-scale NLG tasks.

2.2 Multilingual Datasets Including Yoruba

2.2.1 Wura Dataset

The Wura dataset, developed by Oladipo et al.
(2023), is a multilingual dataset containing approxi-
mately 68,000 Yoruba documents. It integrates con-
tent from JW300 and Wikipedia, inheriting similar
biases and ethical issues as Yorubd Text C3. Our
manual inspection of the Wura dataset revealed crit-
ical quality issues not previously reported, includ-
ing formatting errors and inappropriate content.

2.2.2 Large-Scale Web-Crawled Corpora

Multilingual datasets such as mC4, OSCAR, and
the Afriberta-Corpus also include Yoruba con-
tent. However, these datasets often suffer from
noise, poor formatting, and limited source diver-
sity. Ogueji et al. (2021) used the Afriberta-Corpus,
which primarily sources data from the BBC News
and Common Crawl, resulting in a dataset lacking
the domain diversity necessary for robust NLG.

Nguyen et al. (2023) introduced CulturaX, cov-
ering 167 languages. However, its Yoruba sub-
set showed an alarmingly high duplication rate of
24.48% and contained machine-translated pages,
false positives in language detection, and a signifi-
cant amount of religious text.

2.3 Large-Scale Multilingual Efforts for
African Languages

The Cheetah project by Adebara et al. (2024)
focuses on natural language generation for 517
African languages, including Yoruba. This ambi-
tious project utilizes existing corpora from various
sources, including OSCAR (Ortiz Suérez et al.,
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2020), CC-100 (Conneau et al., 2020), Afriberta-
Corpus (Ogueji et al., 2021), and mC4 (Xue et al.,
2021).

While Cheetah represents a significant step to-
wards improving NLP capabilities for African lan-
guages, it faces challenges common to large-scale
multilingual efforts. These include potential issues
with data quality, bias towards certain domains or
text types, and the inclusion of machine-translated
content.

2.4 Ethical Considerations in Using Religious
Texts

The ethical implications of using religious texts in
NLP, particularly for low-resource languages, are
profound and often overlooked. Hutchinson (2024)
challenges the NLP community’s casual approach
to sacred texts, arguing that the prevalence of Chris-
tian texts in datasets for low-resource languages re-
flects a legacy of colonialism and missionary work.
This creates an ethical dilemma where NLP tech-
nologies risk becoming unwitting agents of cultural
imperialism and religious proselytism.

3 Motivation for Yankari

Given these severe limitations and ethical concerns
in existing resources, there is an urgent need for a
high-quality, diverse, and extensive monolingual
Yoruba dataset that does not rely on restricted or
problematic sources. This is where Yankari comes
in, directly addressing the gaps and ethical issues
left by previous datasets.

Yankari aims to provide a large-scale, ethically
sourced corpus that represents a wide range of
Yoruba language use. By avoiding the pitfalls of
previous datasets, such as over-reliance on religious
texts or machine-translated content, Yankari seeks
to offer a more balanced and authentic representa-
tion of the Yoruba language. This approach aligns
with recent calls in the NLP community for more
thoughtful and ethical dataset creation, particularly
for low-resource languages.

4 Methodology

This section details our approach to creating the
Yankari dataset, including data collection, process-
ing, quality assurance steps, and corpus analysis.

4.1 Data Collection

Our data collection process focused on gather-
ing content from diverse, high-quality sources to

ensure a representative sample of contemporary
Yoruba language use. We carefully selected 13
sources, including news outlets, blogs, educational
websites, and Wikipedia. Table 1 provides an
overview of these sources and their contributions
to the dataset.

4.2 Analysis of Existing Datasets

To inform our data collection and curation pro-
cess, we conducted a detailed analysis of the Wura
dataset (Oladipo et al., 2023). Our investigation
revealed several critical issues:

* High repetition: 18.01% of the dataset con-
tains the word "asteroidi’ (asteroid), indicating
a significant bias towards astronomical con-
tent.

* Duplication: After removing duplicates and
cleaning, only 17,103 unique entries re-
mained, representing just 45% of the original
dataset.

* Quality issues: We found formatting errors, in-
appropriate content, and entries in non- Yoruba
languages.

These findings highlight the pressing need for
more stringent data curation practices in low-
resource language datasets. The recent study by
Hernandez et al. (2022) on scaling laws and the in-
terpretability of learning from repeated data offers
valuable insights that influenced our methodology.
Their extensive research reveals that data repetition
can severely hinder model performance, particu-
larly by disrupting the balance between memoriza-
tion and generalization. Additionally, repeated data
can obstruct the development of "induction heads,"
which are vital for in-context learning in large lan-
guage models. Most importantly, their work un-
derscores the pivotal role that high-quality training
data plays in the effectiveness of language mod-
els. These insights significantly shaped our careful
approach to developing Yankari, underscoring the
critical need for rigorous data curation, quality con-
trol, and the preservation of diversity in our dataset.

4.3 Data Processing Pipeline

Our data processing pipeline consisted of several
key steps:



4.3.1 HTML Parsing and Text Extraction

We implemented a robust HTML parsing system
using BeautifulSoup to extract clean text from web
pages. This process involved:

* Removing all script and style elements

* Extracting text from relevant HTML tags (e.g.,
<p>, <hl>, <h2>, etc.)

* Preserving the document structure by main-
taining paragraph boundaries

It is important to note that, beyond basic structural
parsing, no specific sentence-level filtering based
on the presence or absence of terminal punctuation
was applied at this stage, as the primary goal was
to capture full textual content from the identified
relevant HTML elements.

4.3.2 Deduplication
We employed a two-step deduplication process:

1. Exact matching at the document level to re-
move duplicate web pages

2. Near-duplicate detection at the paragraph
level using MinHash and Locality-Sensitive
Hashing (LSH) techniques

4.4 Corpus Statistics

Our final Yankari dataset consists of:
¢ Total number of documents: 51,407
* Total number of tokens: 30,438,702
* Average tokens per document: 592.11

4.5 Domain Analysis

The distribution of web domains in our corpus re-
flects the diverse sources we targeted. The top 5
domains by number of documents are:

1. yo.wikipedia.org: 32.70%

2. alaroye.org: 20.49%

3. www.bbc.com: 16.05%

4. www.awikonko.com.ng: 10.58%
5. yoruba.von.gov.ng: 4.94%

This distribution ensures a balance between en-
cyclopedic content, news, and cultural discussions,
providing a comprehensive representation of writ-
ten Yoruba across various domains.

4.6 Ethical Considerations and Excluded
Content

Throughout our data collection and processing, we
prioritized ethical considerations:

* We explicitly removed data from restricted
sources, such as those with terms prohibiting
use in NLP research.

* We filtered out suspected machine-translated
content to maintain linguistic authenticity.
This was primarily a manual process con-
ducted by the author, a native Yoruba speaker,
during data spot-checking and review. Docu-
ments exhibiting unnatural phrasing, common
translation artifacts, or content inconsistent
with known source characteristics were ex-
cluded.

* We removed inappropriate or offensive ma-
terial to ensure the dataset’s suitability for a
wide range of applications. This was also a
manual review process performed by the au-
thor. The guidelines focused on excluding
hate speech, explicit adult content, and other
materials generally considered unsuitable for
a public research dataset.

* We respected copyright and intellectual prop-
erty rights. Content was sourced primar-
ily from publicly accessible websites. For
sources like Wikipedia, explicit open licenses
(e.g., CC-BY-SA) were followed. For other
public news and blog content without explicit
licenses for redistribution, we operated under
the principles of fair use for non-commercial
research, providing clear attribution via source
URLSs. Direct contact for explicit redistribu-
tion permission was not feasible for every
source due to the scale of collection; this is a
recognized challenge in web-scale data gath-
ering and is noted as a limitation.

In line with our commitment to transparency, we
acknowledge that our content filtering process may
have introduced certain biases:

* The removal of very short texts may have dis-
proportionately affected certain types of con-
tent.

* Our focus on standard Yoruba may have led
to the underrepresentation of regional dialects
or colloquial expressions.



* Excluding content with non-Yoruba charac-
ters might have removed some culturally rele-
vant content involving code-switching or bor-
rowings.

4.7 Output Format

The final dataset is stored in JSONL format, with
each line containing a separate JSON document
with the following fields:

e text: The main content of the document in
Yoruba.

e url: The original URL from which the content
was sourced.

* source: A code indicating the source of the
document.

Here is a sample entry:

{

"text": "O ma se o! Ijamba oko
ofurufu gba emi eeyan marun-—
un...",

"url": "https ://www.awikonko.
com.ng/2024/03/0—ma—se —o—
ijamba—-oko—ofurufu—gba-emi.
html",

"source": "ACFLP"

}

4.8 Quality Assurance

To ensure the highest quality of our dataset:

* We involved native Yoruba speakers in the
data cleaning and validation process.

* We conducted regular spot checks throughout
the data processing pipeline.

* We performed a final manual review of a ran-
domly selected subset of the data to verify its
quality and authenticity.

4.9 Limitations and Potential Biases

We acknowledge the following limitations and po-
tential biases in our dataset:

* Internet Bias
* Written Language Bias
¢ Source Bias

* Temporal Bias

e Standardization Bias

These limitations highlight areas for future work
and expansion of the Yankari dataset.

5 Limitations and Ethical Considerations

While the Yankari dataset represents a significant
contribution to Yoruba language resources for NLP,
it is important to acknowledge its limitations and
the ethical considerations that arise from its cre-
ation and potential use.

5.1 Representation Bias

* Spoken Language: The dataset does not in-
clude samples of spoken Yoruba.

* Informal Variants: Internet sources may favor
more formal language use.

* Demographic Skew: Internet access and con-
tent creation are not uniformly distributed
across all Yoruba-speaking demographics.

5.2 Diacritization Challenges

* Tonal Ambiguity: Incorrect or missing diacrit-
ical marks can cause ambiguity.

* Standardization Issues: The lack of a univer-
sally adopted standard for Yoruba orthography
may result in inconsistencies.

6 Conclusion

The Yankari dataset represents a significant step
forward in addressing the resource gap for Yoruba
in Natural Language Processing. By providing
a large-scale, high-quality, and ethically sourced
corpus, we have laid a foundation for advancing
NLP research and applications in this important
West African language. Our rigorous methodology,
which prioritizes data quality, diversity, and ethi-
cal considerations, sets a new standard for the de-
velopment of language resources for low-resource
languages.

The creation of Yankari highlights several crit-
ical challenges in developing NLP resources for
languages like Yoruba, including the scarcity of di-
verse, high-quality online content, the complexities
of automated processing for languages with limited
existing NLP tools, and the ethical considerations
surrounding data collection and potential misuse.
By transparently discussing these challenges and
our approaches to addressing them, we hope to con-
tribute to the broader conversation on responsible



Al development for diverse languages and cultures.
Future work will focus on rigorously evaluating
Yankari’s utility in various downstream NLP tasks,
such as language modeling, machine translation,
and text classification, including comparative per-
formance analyses against other available Yoruba
corpora. Such evaluations will further quantify the
benefits of Yankari’s curated nature and diverse
domain coverage.

The dataset is available on Hugging Face:
https://huggingface.co/datasets/acfip/ YANKARI
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Abstract

Understanding written content can vary signif-
icantly based on the linguistic complexity of
the text. In the context of Amharic, a morpho-
logically rich and low-resource language, the
use of complex vocabulary and less frequent
expressions often hinders understanding, par-
ticularly among readers with limited literacy
skills. Such complexity poses challenges for
both human comprehension and NLP applica-
tions. Addressing this complexity in Amharic
is therefore important for text readability and
accessibility. In this study, we developed a text
complexity annotation tool using curated list
of 1,113 complex Ambharic terms. Utilizing
this tool, we collected and annotated a dataset
comprising 20,084 sentences. Based on the
annotated corpus, we developed a text com-
plexity classification model using both tradi-
tional and deep learning approaches. For tra-
ditional machine learning models, the dataset
was vectorized using the Bag-of-Words repre-
sentation. For deep learning and pre-trained
models, we implemented embedding layers
based on Word2Vec and BERT, trained on a
vocabulary consisting of 24,148 tokens. The
experiment is conducted using Support Vec-
tor Machine and Random Forest for classical
machine learning, and Long Short-Term Mem-
ory, Bidirectional LSTM, and BERT for deep
learning and pre-trained models. The classi-
fication accuracies achieved were 83.5% for
SVM, 80.3% for RF, 84.1% for LSTM, 85.0%
for BiLSTM, and 89.4% for the BERT-based
model. Among these, the BERT-based ap-
proaches shows optimal performance for text
complexity classifications which have ability
to capture long-range dependencies and con-
textual relationships within the text.

1 Introduction

Natural language processing is recently emerging
area in the machine learning research community
(Santucci et al., 2020). It is applicable in many ar-
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eas such as text classification for automatic under-
standing(Dalal and Zaveri, 2011), Information ex-
traction(Bosco et al., 2018), and sentiment analy-
sis(Seelam et al., 2023). To present language learn-
ers and low literacy readers with texts suitable to
their level, the morphological, lexical, syntactic,
and discursive complexity of a text is to be consid-
ered(Nigusie and Tegegne, 2022). NLP became in-
terested in automatically classifying the complex-
ity of a text, typically using lexical features as a
key solution for presenting documents appropriate
to concerned bodies (Zakaria, 2019).

When organizing documents, utilizing a wide
variety of vocabulary, some of those words seem
to be unfamiliar to low literacy readers which
can cause miss understandability problems and in-
crease document complexity(Nigusie and Tesfa,
2022). This complexity is the degree of difficulty
in reading and understanding a text, which can
be determined based on a variety of characteris-
tics such as familiarity with words, knowledge de-
mands, and the educational background of readers.
The appropriateness of a text for a certain learner
group needs to be in line with the proficiency level
of the learners (Dina and Banerjee, 2016). The dif-
ficulty of vocabulary within a text, caused by un-
familiar or rare words, plays a significant role in
content understood. This challenge is highly im-
pacting for second language learners, who often
struggle with word recognition and interpretation
(Gala and Ziegler, 2016).

Detecting and classifying documents containing
such challenging words is an essential step toward
text simplification (Shardlow et al., 2020). By cat-
egorizing texts according to its difficulty, it is pos-
sible to tailor materials to the needs of diverse read-
ers, enhancing accessibility for those with limited
literacy, including young learners and non-native
speakers (Stefan et al., 2012). Additionally,this
classification process helps to improve NLP appli-
cations(Sulem et al., 2018).

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 7-14
July 31, 2025 ©2025 Association for Computational Linguistics



1.1 An Overview of the Amharic Language

Ambharic is a morphologically rich language be-
longing to the Semitic language family and is
widely spoken in Ethiopia. The language is widely
used in Natural Language Processing research
(Woldeyohannis and Meshesha, 2022). Ambharic
texts can contain a wide range of vocabulary, and
some lexical items may be unfamiliar to certain
readers, particularly second language learners and
individuals with low literacy skills, making com-
prehension challenging (Belete et al., 2015). The
Ethiopia Early Grade Reading Assessment stud-
ies targeted in grade 2 and grade 3 students for
letter/alphabet sound fluency, naming fluency of
unfamiliar words, and reading comprehension as-
sessment indicated that Fidel naming fluency in
grade 3 scores are significantly higher than those
of grade 2 however childrens in all languages have
limited skills in reading and understanding unfa-
miliar words. To overcome such text complexity
issues many researches are conducted for differ-
ent languages such as Text Complexity Classifi-
cation Based on Linguistic Information for Italian
text (Santucci et al., 2020), Efficient Measuring of
Readability to Improve Documents Accessibility
for Arabic Language (Sulem et al., 2018).

The complexity of text depends on the lan-
guage script, structure, and morphology which
leads to different languages needing to be stud-
ied separately for such text complexity problems.
So, studying the complexity classification model
for the Amharic language helps in solving text
complexity for a target population. It can also
help to improve the performance of NLP appli-
cations, such as parsing, information extraction,
and Machine translation. Furthermore, classifying
Ambharic text complexity is the base for future re-
search on text simplification. Due to this, some
works are conducted for such text complexity clas-
sification for Ambharic text using classical machine
learning model (Nigusie and Tegegne, 2022). In
previous works, the data collection and annotation
process for such Ambharic text complexity classifi-
cation experiments was the big challenge and the
work needs to be extended for deep learning mod-
els to cover large dataset sizes. So in this study,
we attempt to address the problem by developing
a new complexity annotation tool and integrating
it on the top of the classification models, because
text annotation is a critical step toward solving su-
pervised NLP issues. We have developed this new

annotation tool for maintaining annotation quality
and consistency (Rodolfo et al., 2018). The tool
works based on segments large unlabeled Amharic
text to sentence level and labels it automatically
as complex or non-complex. In this paper, we
have compared human annotation with the annota-
tor tool to evaluate its performance, and different
supervised machine learning and deep learning al-
gorithms have used for classifying Amharic text
complexity using Bag-of-Word(BOW), word2vec
and BERT embedding layer as feature extraction
techniques.

2 Related work

Assessing the appropriateness of a text for specific
readers is particularly important in educational set-
tings, where it helps in selecting content that aligns
with learners comprehension levels. It also sup-
ports educators in developing textbooks and cur-
ricula that are suitable for students abilities (de-la
Pefia and Luque-Roja, 2021). Additionally, text
complexity classification plays a vital role in var-
ious NLP applications such as sentiment analysis,
text simplification, and machine translation. For
non-native readers, ensuring that the complexity
of a text matches their language proficiency is
essential for effective communication and under-
standing (Dina and Banerjee, 2016).

A study on reading proficiency for Ethiopia’s
Achievement Development Monitoring and Eval-
uation program (Read, 2019) examines key sub-
tasks such as familiar word reading, new word
reading, and reading comprehension among early-
grade students. The research involved data col-
lected from 459 schools, with assessments con-
ducted on 17,879 students. The findings help eval-
uate students’ ability to understand texts, answer
factual questions, and draw inferences from their
reading. One of the key conclusions is that using
grade level appropriate vocabulary enhances stu-
dents’ reading recognition and comprehension. In
another study, supervised machine learning tech-
niques were applied to assess Arabic text complex-
ity (Bessou and Chenni, 2021). The researchers
employed Bag-of-Words and TF-IDF feature ex-
traction methods, along with classifiers such as
Naive Bayes, Logistic Regression, Support Vector
Machines, and Random Forest. The best perfor-
mance (87.14%) was achieved using SVM with
TF-IDF combined with word based unigrams and
bigrams. The study suggests that future work



should incorporate syntactic and semantic features
for improved classification.

A study by Liu (2017) focused on estimating
sentence complexity for Chinese-speaking learn-
ers of Japanese, aiming to support their under-
standing of Japanese functional expressions(Liu,
2017). To address the complexity of Japanese
texts for Chinese native speakers, the researchers
compiled a dataset of 5,000 sentences and orga-
nized them into 2,500 sentence pairs. These were
evaluated by 15 native Chinese speakers learning
Japanese. The study employed a Support Vector
Machine (SVM) model for ranking sentence dif-
ficulty, using fivefold cross validation, with each
fold training on 4,000 sentences and testing on
1,000. The model achieved an accuracy of 84.4%
in ranking sentence difficulty. However, certain
features such as the number of verbs, which may
influence sentence complexity and the learner’s
cognitive load were not considered and were sug-
gested for future exploration. With the advance-
ment of deep learning, the focus in text complex-
ity classification has shifted toward neural mod-
els(Bosco et al., 2018), the study proposed a Neu-
ral Network architecture based on Long Short-
Term Memory units, which is capable of automat-
ically learning lexical complexity patterns from
data. This model demonstrates the potential to
evaluate sentence complexity by distinguishing be-
tween complex and simple constructions without
relying on hand crafted features.

3 Methodology

For conducting this Amharic text complexity clas-
sification work, we have followed an experimen-
tal research design for manipulating the effect of
different variables such as dataset size, text pre-
processing, and feature representation technique
on the result of the accuracy of such an Amharic
text complexity classification task. The follow-
ing phases are the main components of our work
dataset collection, dataset annotation using both
annotator tool and human annotators, preprocess-
ing, word representation, training classical ma-
chine learning and deep learning models, and eval-
uation of the performance of the models.

3.1 Ambharic Text Dataset

The dataset used for Amharic text complexity clas-
sification is compiled from a diverse range of
sources, including academic textbooks (grades 6

through 12) (Alemu et al., 2015) and journal news.
These sources were selected due to their inclusion
of complex text identified by linguists and book
authors. The dataset collection process is a criti-
cal component of our research, requiring careful
and thorough analysis. In addition to gathering
sentences containing complex terms identified by
linguists, we conducted a sample survey evaluated
by three Amharic linguists. The survey consisted
of six pages of Amharic text randomly extracted
from student textbooks, news articles, and fiction.
Annotators were asked to identify sentences con-
taining unfamiliar words. From this evaluation,
123 sentences were consistently marked as com-
plex by all three annotators.

While collecting data in this manner is time con-
suming and costly a challenge noted in previous
studies (Nigusie and Tegegne, 2022; Nigusie and
Tesfa, 2022). We addressed these issues by devel-
oping an Amharic text complexity annotation tool.
For the classification experiments, we compiled a
dataset of 20,084 Amharic sentences. The annota-
tion tool played a crucial role in efficiently collect-
ing this dataset, ensuring an optimal distribution
of complex and non-complex sentences.

3.2 Ambharic Text Complexity Annotator
Tool

Linguistic corpus annotation is a critical step to-
ward solving NLP tasks because these methods are
heavily reliant on building machine learning mod-
els. The classification model that we have built
is based on supervised machine learning and neu-
ral network approaches, which employ the anal-
ysis of corpus. Annotated data is necessary for
building the model that performs complexity clas-
sification tasks. Using manually annotated meta
data is a time consuming and costly component
of many NLP research works, which motivates us
to develop a new Ambharic text complexity anno-
tator tool that performs sentence annotation from
large unlabeled Amharic text. The document is
segmented into sentence level then, word tokeniza-
tion, and root extraction processes are applied to
accurately identify the sentence that contains com-
plex terms.

Following analysis, the text proceeds to the an-
notation phase. Sentences identified as contain-
ing complex lexical terms that increase semantic
difficulty are tagged as complex, while the sen-
tences do not contain complex elements are tagged
as non-complex using the help of the automatic



Ambharic text complexity annotator tool.
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Figure 1: Text complexity annotator tool sample result

To validate the complexity level of the dataset iden-
tified by the annotation tool, we have randomly
taken 1000 sentences and evaluated them by hu-
man annotator. From these total sentences, the
human annotator and the tool agreed on 680 sen-
tences.

3.3 Data Preprocessing

This stage is a very common task in NLP applica-
tions to have the representative features from the
dataset even the way of preprocessing depends on
the type of dataset and the language because to
develop an optimized model, appropriate data are
required, and preprocessing is a vital part of ac-
quiring such data. We have applied different pre-
processing stages for our dataset because we have
collected the dataset from different sources which
contain noise such as special characters and stop
words.

3.3.1 Ambharic Sentence Segmentation

We have applied sentence segmentation to unla-
beled large corpus to detect the sentence boundary
and split the document to sentence level (Gillick,
2009). Since the Amharic language has punctua-
tion marks such as ?, ! which occurs at the end of
the sentence. This segmentation is a preliminary
step for automatic annotation further processing.

3.3.2 Tokenization and Stop-word Removal

In this step, dataset is split into individual tokens.
During this process, special characters such as
apostrophes, exclamation marks and others are re-
moved, as they contribute little to the models effec-
tiveness and may introduce unnecessary noise dur-
ing training. Next, stop words which are common
words exist frequently in both labels are removed
from the dataset. Examples include le (said), wede
(to), and ih (this). Eliminating these words re-
duces the datasets size and complexity, allowing
the model to focus on the most relevant features.
This step improves both the efficiency and accu-
racy of the classification model by minimizing ir-
relevant information (Kaur, 2018; Li et al., 2022).
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3.3.3 Normalization

Some Amharic words can be written in a differ-
ent format for the same representation and func-
tion(homophones). To reduce such word variation,
we have transformed those words into a single
representation (homophone normalization). For
example, the phoneme /h/ can be represented by
the h, and ha>series of graphemes (Stefano et al.,
2022), to reduce such Fidel variation in Ambharic
words we have applied this normalization.

3.3.4 Morphological analysis

Morphological analysis of highly inflected lan-
guages is a non-trivial task and Amharic is one
of the most morphologically complex languages
(Adam and Maciej, 2014). At this stage, we
have reduced morphological variants of Amharic
tokens to their representative morpheme by remov-
ing affixes. To do this morpheme extraction pro-
cess, we have used the hybrid technique of our root
analyzer algorithm with HornMorpho (Michael,
2011). The reason for a hybrid of such methods
is to handle words that are not analyzed by Horn-
Morpho and to enable the analyzer to work on doc-
ument level analysis.

3.3.5 Sentence Annotation

The purpose of our sentence annotator tool is to
automate the labeling of segmented documents
based on sentence complexity. During annotation,
each segmented and preprocessed sentence is eval-
uated for the presence of complex terms. Sen-
tences containing complex terms are marked as
complex, while those without are designated as
non-complex and incorporated into the dataset.
Using the annotator tool instead of a human
annotator has a significant advantage in terms of
dataset balancing, time saving, and accuracy. The
tool helps us to balance complex term distribution
in sentences beyond this, it takes an average of 3
minutes to check the sentence that contains com-
plex terms from 10 pages of the document and an-
notate it automatically, however, when we use a
human annotator, it takes an average of 45 - 55
minutes to complete the annotation. In addition
to time, human annotators make more mistakes
than the annotator tool (Rodolfo et al., 2018). For
example, the sentence beseferi yemewedajeti baz
inidetetenawetachewi libi nilimi (We do not no-
tice that they are obsessed with being friends in
the neighborhood) is annotated as noncomplex by
human but when we use the annotator tool iden-



tify it as complex sentence due to the existence of
the morphologically inflected complex term. Us-
ing this Amharic text complexity annotator tool,
we have collected a total of 20,084 sentences with
10,084 sentences labeled as complex and 10,000
sentences labeled as noncomplex with a maximum
sentence length of 14 and minimal sentence length
of 5 tokens after the sentence is preprocessed for
train classification models.

3.3.6 Feature extraction

To build a machine learning model for Amharic
text complexity classification, it is necessary to ap-
ply feature extraction operations on text data, in
order to transform it into computer understandable
format. We have converted the preprocessed text
to numeric format using BOW with bi-gram lan-
guage modeling to handle the context and order
of the tokens for classical machine learning mod-
els training. Other Word embedding techniques
such as Word2vec is used as feature extraction
for LSTM and BiLSTM models which is unsuper-
vised neural network that processes text to create
vectors of the word’s feature representations. We
have selected word2vec because it uses informa-
tion about the co-occurrence of words in a text cor-
pus (Vahe et al., 2019). For the early emerged pre-
trained model (BERT) we have used its embed-
ding layer by assigning unique vocabularies of our
dataset to the layer this BERT embedding helps to
extract features of sentences that contain up to 512
tokens to handle the semantics of long sentences.

4 Supervised Learning Models

Train machine learning models for classifying the
document as complex or noncomplex was the next
task after the dataset was preprocessed and repre-
sented in the form of a numeric vector by comput-
ing the linguistic features of text, it is now possible
to train the machine learning model. The shift to-
ward using machine learning, rather than relying
solely on the annotator tool, is due to its limita-
tion that it can only identify sentences containing
terms from a predefined list of complex expres-
sions which will restricts its ability to generalize
beyond the terms it was explicitly designed to rec-
ognize. For this classification task from classical
machine learning, we have conducted experiment
on SVM which is a widely used algorithm for bi-
nary classification problems, and RF which con-
sists of a combination of tree predictors (Ahmad
A. Al et al., 2015).
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Beyond those classical algorithms, we have
used recently emerging deep neural network mod-
els such as LSTM, Bi-LSTM, and transformer-
based model BERT. These models have gained
more attention because of their ability to model
complex features without the necessity of expert
involvement and appropriate representations for
textual units by considering features that are se-
mantically meaningful and contextual representa-
tive (Andrea et al., 2022). These classical ma-
chine learning and deep learning models were ap-
plied previously for Amharic text complexity clas-
sification(Nigusie and Tegegne, 2022; Nigusie and
Tesfa, 2022). From such previous studies, the big
challenge that we have identified is the dataset col-
lection and annotating process for train these mod-
els with large dataset sizes. So to collect a large
dataset an automatic means of data collection pro-
cess is required that motivates us to develop new
Ambharic text complexity annotation tool and inte-
grate it on the top of the classification models.

4.1 Results of Baseline Machine Learning
Models

We have trained SVM by setting hyperparameters,
optimization (C=0.9), degree=1, and linear kernel
type. The second model we have selected from
such classical algorithms is RF using 10 estimators
of trees it builds before averaging the predictions,
and a random state of 3. The training is conducted
using 80/20 data split and the performance of the
models is validated using 10-fold cross-validation.
The training accuracy of the models was improved
from 50% to 85% of SVM and from 50% to 81%
of RF using 65 iterations of sampling. At the
initial stage, we used 2265 data, and the dataset
size was increased by 53 in each iteration. The
model’s training performance was improved un-
til the dataset size reached 5000. Beyond this,
both models cannot show significant improvement.
Due to this reason, we have used 6039 sentences to
reduce training time and resource usage for these
classical machine learning models. The overall ex-
perimental result of these two models is summa-
rized in Table 1.

Model Precision Recall Fl-score Accuracy

SVM  84% 84% 84% 83.9%

RF 85% 80% 80% 80.3%
Table 1: Experimental result of classical machine

learning models.



4.2 Performance Evaluation of Deep
Learning Models

While the classical machine learning models do
not scale well to large dataset sizes we have con-
ducted further experiments on recently emerging
deep learning and pre-trained transformer-based
models to capture the semantics and feature se-
quence of the data (Andrea et al., 2022). LSTM,
BiLSTM, and BERT are used for our experiment
from these deep learning models. The pre-trained
model BERT has achieved state-of-the-art results
in NLP classification tasks and outperforms most
of feature based representation methods (Shan-
shan et al., 2019). To train the BERT pre-trained
model we have fine-tuned its base parameters by
adding two hidden layers with 64 and 32 neurons
respectively and one output layer with two neu-
rons (one for complex and the other is for non-
complex class) on the top of the base model. The
experiments for these three deep learning models
was conducted using 20,084 sentences by apply-
ing the 80/10/10 data split rule (16,067 sentences
for training, 2,008 sentences for testing, and 2,008
sentences for validation). The BERT model, pre-
training on a large corpus and fine-tuning it for
specific tasks (Shanshan et al., 2019), has better
Ambharic text complexity classification with con-
text handling capability. The model scores a vali-
dation accuracy of 89.4% and testing accuracy of
89.4%. The model is also preferable for long doc-
uments up to 512 tokens in a single sentence (Ah-
mad A. Al et al., 2015), the training accuracy and
loss curve of this pretraind model is depicted in
Figure 2.

Figure 2: Training accuracy and loss curve of BERT
model.

The other two RNN models namely LSTM and
BiLSTM models score classification accuracy of
84.1% and 85% respectively. When we com-
pare the BERT model result with these RNN mod-
els, BERT has significant accuracy improvement.
So we can conclude that the pre-trained model
BERT has better Amharic text complexity classi-
fication performance. When we compare the re-
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sult of this BERT model with previous studies
on Amharic language text complexity classifica-
tion(Nigusie and Tesfa, 2022), the newly trained
model has more flexibility to handle large features
of the dataset that are collected with the help of the
newly integrated Ambharic text complexity annota-
tor tool, this new annotated tool helps to introduce
objectivity for the pre-trained classification model.
The experimental evaluation results of these deep
learning models are summarized in Table 2.

Model Precision Recall Fl-score Accuracy
BERT 89.4% 89.4% 89.4% 89.4%
BILSTM 85% 85% 85% 85%
LSTM 85% 84% 84% 84.1%

Table 2: Deep learning models experimental result.

4.3 Error Analysis

Machine learning becoming an important tech-
nique to review large volumes of data and dis-
cover specific trends and patterns. In some cases,
these models are potentially susceptible to bias
and some error rates. As we have seen the predic-
tion results of the models using test data they have
some error prediction results. The reason for the
model miss predictions is because of the existence
of the major tokens of some sentences on the oppo-
site side of its actual label or target during training.
When we see the sentence betekalayi kekababna
ketefetiro gari hibiri yefetere hotlina rzoriti newi
maleti yichalali (In general, it can be said that it is
a hotel and resort that has created a union/harmony
with the environment and nature). Its actual label
was complex. However, all three deep learning
models predict it as non-complex due to the exis-
tence of the words betekalayi (in general), ketefe-
tiro(nature), yefetere (created), and yichalali (pos-
sible), in non-complex training dataset more fre-
quent than complex dataset. When we compute
the MSE result of the BERT model (which has bet-
ter classification accuracy), it scores 10.6% error
rat

5 Conclusion

In this work, we have designed Ambharic text com-
plexity classification model using annotator tool
and supervised machine learning. The motivation
behind this work is because Amharic language has
lexical complexity which is not familiar to low lit-
eracy readers and the manual data collection and
annotation process for building these complexity



classifications models. Beyond this, as we have
tested one of the popular machine translation sys-
tems called Google translator, the sentences con-
taining these complex terms identified by linguists
are translated incorrectly. To address the issue,
we have conducted this work for one of morpho-
logically rich languages Amharic. For the exper-
iment, we collected 20,084 sentences using the
sentence annotator tool in collaboration with hu-
man annotators. The annotation tool filters the
document that contains complex terms from unla-
beled large Amharic documents by applying differ-
ent preprocessing stages. Then for the classifica-
tion problem, we have conducted experiments on
both classical (SVM, RF) and deep learning mod-
els (LSTM, BiLSTM, and BERT). Based on the
experimental results we have got an accuracy of
83.9%(SVM) and 80.3%(RF) using classical ma-
chine learning models. However, these traditional
machine learning models have limitation of han-
dling sentence context. Due to this reason, we
have conducted further experiments on deep learn-
ing models (LSTM,Bi-LSTM and BERT). The
LSTM scores an accuracy of 84.1%, BiLSTM
scores 85%, and BERT scores 89.4% which has
better prediction performance than the RNN and
classical ML models. Improving dataset collec-
tion consistency and annotation quality, classify-
ing Ambharic text complexity, and identifying text
complexity as one challenging task for ML appli-
cations such as machine translations are the main
contributions of this study. Syntactic and mor-
phological complexity of the Amharic text are the
other types of complexity that need to be studied
in the future.
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Abstract

State of the art end-to-end automatic speech
recognition (ASR) models require large speech
datasets for training. The Mozilla Common
Voice project crowd-sources read speech to ad-
dress this need. However, this approach often
results in many audio utterances being recorded
for each written sentence.

Using Kiswahili speech data, this paper first ex-
plores how much audio repetition in utterances
is permissible in a training set before model
degradation occurs, then examines the extent
to which audio augmentation techniques can
be employed to increase the diversity of speech
characteristics and improve accuracy.

We find that repetition up to a ratio of 1 sen-
tence to 8 audio recordings improves perfor-
mance, but performance degrades at a ratio of
1:16. We also find small improvements from
frequency mask, time mask and tempo aug-
mentation. Our findings provide guidance on
training set construction for ASR practition-
ers, particularly those working in under-served
languages.!

1 Introduction

Automatic Speech Recognition(ASR) is the
process of converting acoustic speech into
text (Washani and Sharma, 2015). This task has
gained significance with the increased use of com-
puting systems by humans via voice commands.
End-to-end (E2E) speech recognition models have
several components that contribute to the develop-
ment of the overall system. These include an acous-
tic model which gives the most likely acoustic unit
(phone) based on the acoustic properties of the in-
put signal, a language model which can represent
the linguistic form of a language, and thus defines
the words in this language and how likely they are

'This research was conducted while the authors - Kathleen
Siminyu, Rebecca Ryakitimbo, Britone Mwasaru and Chenai
Chair - were affiliated to Mozilla Foundation.
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to occur together and a lexicon which explains the
vocabulary at the phone-level (Leino et al., 2015).
These models require large volumes of speech data
for training.

The accuracy of E2E ASR models is typically
evaluated using two metrics - word error rate
(WER) and character error rate (CER). WER and
CER are defined as the number of word or char-
acter insertions, omissions and substitutions in a
transcription, divided by the number of matching
words or characters respectively (Kamath et al.,
2019). WER measures the accuracy of the lan-
guage model while CER measures the accuracy of
the acoustic model. We acknowledge that the suit-
ability of these metrics is contested per Aksénova
et al. (2021).

In a bid to reduce error rates, the ASR com-
munity continues to call for greater quantities of
data to train systems, going from 50 to 500 to 500
hours of speech (Moore, 2003). Speech Recogni-
tion datasets are composed of recordings of speech
which are accompanied by corresponding texts or
transcripts. They can be obtained by taking existing
audio recordings, having them transcribed, split-
ting them into shorter audio segments and aligning
the recordings to their transcriptions. This pro-
cess describes the creation of a spontaneous speech
dataset, which is speech produced by a speaker
in an informal, dynamic, unrehearsed, casual man-
ner (Tucker and Mukai, 2023). Datasets such as the
FAU Aibo Emotion Corpus (Batliner et al., 2008)
contain spontaneous speech. In some cases, the
script or transcription comes first then audio record-
ings are created through speakers being prompted
to read out the script while recording themselves,
resulting in an elicited or read speech dataset.
Datasets such as Multilingual LibriSpeech (Pratap
et al., 2020) and Mozilla Common Voice (Ardila
et al., 2019) are examples of read speech datasets.
The Mozilla Common Voice(MCV) dataset is a
multilingual speech corpus developed for Auto-
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matic Speech Recognition purposes (Ardila et al.,
2019). The data collection efforts are entirely
crowd-sourced through organising and engaging
language communities.

This paper documents work that has focused on
the Kiswabhili language dataset available on MCV.
Kiswahili is a Bantu language originally spoken by
the Swahili people of Eastern Africa. It is one of the
official languages of the East African Community
in addition to being a national language in Tanzania,
Kenya, the Democratic Republic of Congo and
Uganda. Kiswahili has over 200 million speakers?.
It is the most widely spoken African language.

The efforts in building the Kiswahili dataset
on MCYV, are described in greater detail in §3.1.
This dataset contains an underlying text corpus of
134,653 Kiswahili sentences and from this, over
700,000 audio clips have been recorded totalling
1,081 hours of audio data. There are over 1,454 in-
dividual speakers that have contributed their voices
to create the dataset. While these efforts are com-
mendable, the resulting dataset for Kiswahili, MCV
167 in some cases has up to 16 corresponding audio
recordings to a single sentence. These are instances
of different speakers having recorded themselves
reading the same sentence out loud.

This work is to help us determine how best to
utilise our dataset in training a neural model for
speech recognition that is able to generalise well.
This set of experiments examines: 1) how much
audio repetition, in relation to a sentence, can be
included in a training dataset, before this leads to
a degradation of performance of the output model,
and 2) whether audio augmentation techniques can
be employed to reduce repetition and increase di-
versity (speaking rate, background noise and inter-
ference, pitch) within our dataset.

We find that repetition up to a ratio of 1 sentence
to 8 audio recordings improves performance, but
performance degrades at a ratio of 1:16. Addition-
ally, various augmentation techniques lead to im-
provements; time mask augmentation led to an im-
provement of up to 4.2%, tempo augmentation led
to an increase of up to 3.36% and frequency mask
augmentation led to an increase of up to 2.4%.

2 Prior Work

We infer from speech recognition literature, specif-
ically from the descriptions of the creation of

2Swahili gaining popularity globally
*Mozilla Common Voice Kiswahili dataset
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elicited speech datasets, which are comparable to
MCYV, such as Librispeech (Panayotov et al., 2015)
and Multilingual Librispeech (Pratap et al., 2020),
that in an ideal data setting we expect a 1:1 ratio
of audio to transcript to ensure adequate variety of
content in the dataset. In these datasets, the data
is derived from read audio books and each book
contains only one accompanying audio recording.

While machine learning literature suggests that
the more data available to train a model, the better
an output system would be (Halevy et al., 2009;
Brill, 2003), there is also literature indicating that,
particularly in supervised learning scenarios, insuf-
ficient samples for learning or repetition within a
dataset would lead a model to overfit during train-
ing (Ying, 2019). Overfitting is an issue in super-
vised machine learning where a model is unable to
generalize on unseen data, thus performing poorly,
despite appearing to generalise on observed data
available in the training set (Russell and Norvig,
2010).

Augmentation of data is another strategy that can
be used to prevent overfitting. Data augmentation
is the generation of synthetic data from already
existing data (Ko et al., 2015). Rebai et al. (2017)
have shown that data augmentation techniques can
be employed to instances where limited data is
available with the intent to modify instances of
the data so as to increase the amount of training
data. These techniques are also used to improve
the performance of resulting systems as they serve
to introduce variety in training data; frequency and
pitch masks can help make the model more robust
when faced with background noise and interference
in audio recordings, pitch and tempo augmentation
can serve to add more ’speakers’ to a dataset by
adding speakers with the same articulation patterns
or creating speakers with new articulation patterns,
respectively (Zhang et al., 2023; Zevallos et al.,
2022; Ying, 2019).

3 Methodology
3.1 Data Collection

There are several stages in the data collection pro-
cess on MCV.

3.1.1 Creation and Collection of Sentences

Existing texts can be added onto the platform pro-
vided they are in the public domain. This is a re-
quirement because the entirety of the MCV dataset
is licensed as CC Zero (CCO). This is a Creative
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Figure 1: The y-axis shows the number of number of
sentences and the x-axis shows the accompanying au-
dios recorded for instances in the validated set.
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Figure 2: Similar to figure 1, the y-axis shows the num-
ber of sentences and the x-axis shows the accompanying
audios recorded for sentences. In this case, in addition
to the number of clips that have been validated, we in-
clude those that have been invalidated and those that are
yet to be validated.

Commons License that allows creators to give up
their copyright and put their works into the world-
wide public domain. CCO allows re-users to dis-
tribute, remix, adapt and build upon the material in
any medium or format, with no conditions . Where
there is existing text with ownership attributed to an
individual or an organisation, and they are willing
to waive these rights so that the content is added
onto the platform, they need to sign a waiver giving
MCV permission >. In our work, community initia-
tives and events have been organised in support of
the creation of original Kiswahili texts for addition
onto the platform. One example is a partnership
with Hekaya Arts Initiative, a writers collective
based in Mombasa Kenya, which saw us organise

“4Creative Commons Licenses
>Common Voice Contribution Agreement for Pre-existing
Works
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Figure 3: The pie chart shows the percentage of au-
dios that have either been validated, invalidated - has
received two or more down-votes - or are yet to be
validated (i.e. unvalidated) in version 16 of the MCV
Kiswabhili dataset.

a series of writing competitions. Submission to
the competitions have been added onto the MCV
platform and winners in each edition were awarded

prizes ©.

3.1.2 Validation of Sentences

These sentences then need to go through a valida-
tion process. Each language may have slightly dif-
fering requirements for sentence validation. Some
general reviewing criteria include ensuring that the
spelling and grammar in a sentence are correct, that
they are natural and conversational (should be easy
to read the sentence), that there is no use of abbre-
viations or acronyms and that there are no digits in
the source text. These should all be written down
in full and in text format to avoid ambiguity when
reading aloud. Each sentence requires at least 2 up
votes to be added onto the MCV platform for voice
contributions.

3.1.3 Collection of audio recordings

Contributors can choose the *Speak’ feature on the
MCYV platform, where a single sentence at a time is
displayed and the contributor is prompted to record
themselves reading it out loud. New sentences,
those that do not yet have an accompanying record-
ing, are prioritised on the platform. Once each
sentence has at least one accompanying recording,
the sentences then begin being looped over again.
Should the voice contributions come in faster than
the text contributions, some sentences will have
more than one accompanying audio. The platform

SCommon Voice, Hekaya Arts Initiative Announce
Kiswahili Writing Competition Winners
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tracks what sentences an individual contributor has
already recorded an audio for, provided they are
signed in. They will therefore ideally contribute
only one audio recording per sentence. In the event
that a ’super’ contributor provides an audio for the
entire underlying text corpus, they will then start to
be presented with sentences for speech elicitation
that they have already recorded an audio for. It
is therefore possible for a single sentence to have
more than one accompanying audio, provided by
different speakers. It is also possible, however
rare, for there to be duplicates of an individual
speaker contributing more than one audio to a sin-
gle sentence. These features of the platform impact
characteristics of the dataset, in terms of creating
opportunity for repetition. In our work collecting
data for Kiswahili, we experienced significant chal-
lenges in accessing text data early on in the project.
Our efforts in collecting text were happening con-
currently with community efforts to contribute and
validate audios. We soon found ourselves with up
to 30 audios per sentence for the texts that were
seeded onto the platform in the very beginning as
evidenced by figure 2, which shows the amount of
repetition in all available sentences and their ac-
companying audios and figure 1, which shows the
amount of repetition in the validated subset of the
dataset.

3.1.4 Validation of audio recordings

Contributors can choose the "Listen’ feature where
they will be prompted to play already recorded au-
dios and to validate them, by giving them a thumbs
up, or invalidate them, by giving them a thumbs
down, depending on whether or not the audios fit
the reviewing criteria provided. This includes lis-
tening to ensure that the contents of the audio align
with the accompanying text, that the speaker is au-
dible enough and that they do not hesitate or stam-
mer. This validation is important when producing
a speech recognition corpus as they will directly
impact the quality of models produced. If the tran-
script and audio recording are not accurate, then
the model becomes less likely to be accurate. This
validation work is crowd-sourced and takes place in
community events’. The participants are therefore
not trained linguists or language professionals for
the most part, they are native speakers of the lan-
guage. Given the diversity of Kiswahili speakers,
and the varying accents available, it is important to

"Common Voice Kiswahili Festival Brings Community
Together To Grow Dataset
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curate a diverse group of validators to ensure that
this diversity is maintained in the dataset that is
curated for Machine Learning. We found that voice
validation is not as popular as voice contributions
in our community activities. This has resulted in
only 48.2% of our dataset having undergone vali-
dation (37% validated and 11.2% invalidated), as
of the MCV 16 release. This is approximately 400
hours of data that is considered fit for use, i.e. vali-
dated, compared to the 1081 hours available. Due
to concerns about the quality of unvalidated data,
we use only data that is validated and more than
half of the data available is left unutilised. Figure
3 shows the validation rate of Kiswabhili data in the
MCV 16 release.

3.2 Data Pre-processing

The Kiswahili dataset on MCV 16 comes with
seven files:

e validated. tsv - contains information on
the audios that have been validated, i.e. have
received at least 2 up-votes

* reported.tsv - contains information
about sentences that have been reported to
have a grammatical or spelling error, having
offensive language, having a different lan-
guage or being difficult to pronounce

e invalidated. tsv - contains information
of audios that have received at least 2 down-
votes, and less than two up-votes

e other.tsv - contains information of audios
that have neither been validated nor invali-
dated

* train.tsv - contains the list of audios in-
cluded as part of the training data

* dev.tsv - contains the list of audios in-
cluded as part of the development data used to
validate the model’s learning during training

* test.tsv - contains the list of audios in-
cluded as part of the test data

In this work, we curate our own experimental
splits as opposed to using the train, dev and test
splits provided with MCV. We make the decision to
use only the instances that have been validated, i.e.,
those that are listed in the validated.tsv file
as having been reviewed and verified by Kiswahili
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speakers. There are approximately 400 hours of
validated data in the Kiswabhili dataset.

We filter out several subsets that have been
created specifically for purposes of evaluation of
certain demographic groups. These are data for
dialects and variants that are closely related to
Kiswahili: Kiunguja, Kibajuni, Kimakunduchi,
Kimvita, Kipemba, Kitumbatu and Kiswahili cha
Bara ya Tanzania (Kiswahili from Inland Tanza-
nia). These subsets were developed through work-
ing with linguists and language experts, work that
has been documented (Siminyu et al., 2022).

We investigated the existing CorporaCreator
repository®, a command line tool to create Mozilla
Common Voice corpora for use in this work, how-
ever it did not provide the flexibility to curate
our own evaluation sets, particularly how big they
should be. We found that while it is useful to be
able to select the number of audio repetitions in-
cluded in the training set, this changed the com-
position of the development and test sets in each
instance, a behaviour which makes the first set of
experiments in this work incomparable. We there-
fore chose to create our own scripts for data pre-
processing.

We split our data into 3 sets, a training set, a
development set and a test set, in the ratio 60:20:20.

In constituting our training, development and
test sets, we consider several factors:

* That all audios corresponding to a single sen-
tence should only appear in one set

* That all audios contributed by a single speaker
should also all be in only one set

* Where a single speaker may have contributed
to an individual sentence more than once, we
drop duplicate instances

4 Experiments

4.1 Experiment 1: More Data versus Less
Repetition Trade-off

In the first set of experiments, we consider a trade-
off in constituting the training set. On one hand,
an increase in audio repetition, in relation to a sin-
gle sentence, creates more training data. On the
other hand, repetition of audio recordings relative
to an individual sentence may decrease the perfor-
mance of the output model due to overfitting. We

8CorporaCreator Github repository
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increase the text to audio ratio following a geo-
metric progression up to the maximum number of
repetitions available, in this case 16, with the intent
of drawing a curve that can visualize the results
and determine whether there is a point at which
more data and more repetition leads to a degrada-
tion of performance in the output models. The data
is constituted in the following settings;

* 1:1 - each sentence with 1 accompanying au-
dio recording

* 1:2 - each sentence with 2 accompanying au-
dio recordings

* 1:4 - each sentence with 4 accompanying au-
dio recordings

* 1:8 - each sentence with 8 accompanying au-
dio recordings

* 1:16 - each sentence with 16 accompanying
audio recordings

We use the Coqui Al Speech-to-Text(STT)
toolkit” for these experiments. The Coqui STT
architecture consists of a recurrent neural net-
work(RNN) with 5 hidden layers, where the first
three and the fifth layers are non-recurrent and use
a clipped rectified-linear (ReLu) activation function
while the fourth layer is a bidirectional recurrent
layer. The CTC loss function is used by the net-
work. The system is integrated with an N-gram lan-
guage model. To identify the ideal hyper-parameter
settings, we run several iterations of the experiment
with a 1:1 mapping of the data with the following
settings:

* —n_hidden: 1024, 2048, 5024

e —reduce_lr_on_plateau: true

e —plateau_epochs: 10

e —plateau_reduction: 0.025, 0.05, 0.1
* —early_stop: true

* —es_epochs: 25

e —es_min_delta: 0.01, 0.02, 0.05

* —dropout_rate: 0.3

* —epochs:
search)

60 (for our hyper-parameter

Coqui STT Github repo
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Once we have selected the ideal hyper-
parameters for our experiment, we do training runs
with the different sentence to audio ratio settings;
1:1, 1:2, 1:4, 1:8 and 1:16. We then use the best
score as a baseline for our second set of experi-
ments.

4.2 Experiment 2: Data Augmentation for
More Data

In this set of experiments, we further wish to ex-
plore methods that allow us to make maximum use
of the data available to us, in spite of the repetition.
We explore the use of audio data synthesis meth-
ods to augment subsequent repetitions of audio
recordings relative to an individual sentence. The
following augmentations are applied to the audio
recording repetitions:

* Pitch augmentation shifts the pitch of a wave-
form by scaling it on the frequency axis. By
shifting the pitch, we attempt to add to the
variety of "speakers" in the dataset, (Bellet-
tini and Mazzini, 2008) particularly as it re-
lates to age given the skew of available data
towards younger speakers (Shahnawazuddin
et al., 2020)

* Tempo augmentation changes the playback
tempo by scaling the waveform along the time
axis. This will help our models become robust
to speakers with varying speaking rates (Ko
etal., 2015)

Frequency mask augmentation sets frequency-
intervals within the augmented samples to
zero (silence) at random frequencies. This
helps the model to be robust when it encoun-
ters background noise and other interferences
in audios (Park et al., 2019)

* Time mask augmentation sets time-intervals
within the augmented samples to zero (si-
lence) at random positions. This adds variety
in a manner similar to the frequency mask, by
making models robust to background noises
and interferences (Park et al., 2019)

For this experiment, we use the data from the "1:4"
(1 sentence with 4 accompanying audio recordings)
setting and the results of the first experiment as our
baseline, because this setting represents an accept-
able amount of repetition before additional data
becomes noisy.
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Figure 4: The character error rates and word error rates
for the different sentence to audio recordings ratio set-
tings. These steadily decrease with increasing repetition
until you reach the 1:8 setting after which there is an
increase.

In this experimental setup, given 4 audio record-
ings relative to one sentence, we vary the ratio
of original audio recordings to augmented audio
recordings as follows:

* 3:1 - 3 audios in their original form and the
final audio recording is augmented. In this
case 25% of the data is augmented.

* 2:2 - 2 audios in their original form and 2 of
the subsequent repetitions are augmented. In
this case 50% of the data is augmented.

* 1:3 - 1 audio is in its original form and 3 of
the subsequent repetitions are augmented. In
this case, 75% of the data is augmented.

The Coqui AI STT toolkit has implemented a
pre-processing pipeline with various augmentation
techniques. This feature allows us to set a probabil-
ity value for each augmentation used. We therefore
use the values 0.25 to achieve the "3:1" setting, 0.5
to achieve the "2:2" setting and 0.75 to achieve the
"1:3"

We use the ideal hyperparameters selected in
experiment 1 to run our experiments.

5 Results

Figure 4 shows results for the first set of experi-
ments in 4.1. It shows WERs and CERs for the
different ’sentence to audio ratio’ experimental set-
tings, i.e. 1:1, 1:2, 1:4, 1:8 and 1:16. We see a
steady decline in both the WERs and CERs, which
is consistent with our expectation that with more
data, the models’ overall performance improves.
This is true up to the 1:8 setting, when we get to



Table 1: The CER obtained as well as the percentage change (denoted as A) given the baseline when 25%, 50% and
75% of the data is augmented using frequency mask, time mask, tempo and pitch augmentations.

25% augmentation | 50% augmentation | 75% augmentation

CER A CER A CER A
frequency mask | 0.097 1.12% 0.096 2.40% 0.096 2.23%
time mask 0.094  4.20% 0.099  -0.44% | 0.095 2.65%
tempo 0.100  -2.20% | 0.095 3.36% 0.099  -1.20%
pitch 0.319 -224.42% | 0.101  -3.39% | 0.112 -14.57%

250

hours

Figure 5: The amount of data, in terms of hours, con-
tained in each of the ’sentence to audio ratio’ settings in
experiments in 4.1

the 1:16 setting, the performance is seen to dete-
riorate. This deterioration in performance may be
indicative of how much repetition is acceptable,
demonstrating that 16 audio instances of the same
sentence is too much despite the additional variabil-
ity introduced by each subsequent audio being read
out by a different speaker. Interrogating the amount
of data in each setting reveals that the difference
between the 1:4 and 1:8 settings is 19 hours while
that between the 1:8 and 1:16 settings is 0.6 hours,
as shown in figure 5. In investigating duplicate
instances, we found evidence of noise. Audios that
were included as duplicates beyond the fourth and
eighth instance were likely to have received both
up-votes and down-votes from the validation pro-
cess, e.g. 2 up-votes and 1 down-vote, 4 up-votes
and 3 down-votes.

We then used the results of the 1:4 experimen-
tal setting as our baseline score for comparison
in the second set of experiments to exclude these
contentious instances.

The results of the second experiment are shown
in Table 1. We find that the frequency mask aug-
mentation consistently led to an improvement of
up to 2.4% in CER over the baseline score obtained
in the first experiment. This is likely due to the
great variation of acoustic settings represented in

the data, given that this dataset is crowd sourced by
communities. It is likely that frequency mask aug-
mentation leads to zero-ing out of noise in audio
samples enabling the model to learn more from the
speech to be transcribed.

Time mask augmentation led to an improvement
in performance when 25% and 75% of the dataset
is augmented, up to 4.2%, but a decrease in per-
formance when 50% of the dataset is augmented.
Similar to the frequency mask, the time mask leads
to zero-ing out of time steps which possibly contain
noise.

Tempo augmentation only led to an improve-
ment when 50% of the dataset is augmented and
pitch augmentation did not lead to any increase in
performance but showed a shocking decrease of
-224.42% when 25% of the dataset is augmented.
The frequency axis was scaled by a pitch factor of
0.1 to 0.3, which implies a significant lowering of
the pitch far below the original which led to audios
becoming low-pitched and likely unintelligible. A
better approach would have been to alter the pitch
progressively by octave, i.e. 0.5 to take it one oc-
tave down, 0.25 to take it two octaves down and
2.0 to raise the pitch by one octave.

There are no consistent gains in perfomance
across any of the data augmentation settings(25%,
50% or 75%), leading us to conclude once again
that selecting the right augmentation type given
the data in question is more pertinent. Overall, we
have determined that having more data, despite
repetition, can be useful and that the choice of an
appropriate data augmentation technique can add
greater variation in the dataset making it more use-
ful.

6 Future Work

Given the difficulty faced in identifying Kiswahili
text data sources, future work could explore data
selection methods for speech utterances and/or text
data. This could help eliminate redundancies in
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data and enable better targeted text data collection,
and subsequently speech data collection for low-
resource languages. Additionally, as there is a lot
of data available that we could not use due to lack
of validation, we encourage continued community
efforts to validate this data. One limitation of this
work is that the experiments have been run on a sin-
gle dataset and a single language, the work would
benefit from scaling up to additional languages
and datasets as evidence of generalisability to ad-
ditional contexts. Finally, given some availability
of data for dialects and variants closely related to
Kiswahili, it would be great to see how the sys-
tem developed performs when evaluated on speech
from these dialects and variants.

7 Conclusions

In this paper, we articulated the data collection
method for read speech in MCV and highlighted
the constraint of having many recorded audio ut-
terances from a single written sentence when con-
structing an ASR training set.

To assess how much sentence repetition is per-
missible, we trained multiple ASR models on
Kiswahili data using varying sentence to audio
recording ratios, finding that a ratio of 1:8 is opti-
mal, with performance declining at 1:16. Further,
we performed multiple forms of audio augmenta-
tion, demonstrating some small improvements in
CER for time mask augmentation (4.20% improve-
ment) at 25% augmentation and tempo augmenta-
tion (3.36% improvement) at 50% augmentation.

The key take-away for ASR practitioners, par-
ticularly those working with under-resourced lan-
guages having limited speech data, is that it is
worthwhile to include repeated sentences in the
training set, however the choice of optimal audio
augmentation is likely context-dependent.
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Abstract

The integration of Artificial Intelligence
(AD) in agriculture has significantly im-
pacted decision-making processes for
farmers, particularly in regions such as
Kenya, where access to accurate and
timely advisory services is crucial. This
paper explores the deployment of Retrieval
Augmented Generation (RAG) agents
powered by fine-tuned quantized language
models to enhance Al-driven agricultural
advisory services. By optimizing model
efficiency through quantization and fine-
tuning, our aim is to deliver a specialized
language model in agriculture and to en-
sure real-time, cost-effective and contextu-
ally relevant recommendations for small-
holder farmers. Our approach takes advan-
tage of localized agricultural datasets and
natural language processing techniques to
improve the accessibility and accuracy of
advisory responses in local Kenyan lan-
guages. We show that the proposed model
has the potential to improve information
delivery and automation of complex and
monotonous tasks, making it a viable solu-
tion to sustainable agricultural intelligence
in Kenya and beyond.

1 Introduction

Despite Open-source and proprietary Pre-
trained Language Models (PLMs) being
trained on large sets of text data, they may
lack fundamental principles, in each domain
like Agriculture, which govern use of words
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to predict subsequent words in a sentence.
This limitation is demonstrated by the fact
that, most LLMs (Large Language Models)
today have an exceptionally good global per-
formance but fail in specific task-oriented prob-
lems (Josep, 2024). This research focuses on
leveraging fine-tuning and quantization tech-
niques for both small and large language mod-
els to create specialized models and agents
for the agricultural sector in Kenya. While
PLMs have demonstrated significant perfor-
mance on downstream tasks for both high-
and low-resourced languages, there is still a
large drop in performance for underrepresented
African languages during pre-training (Alabi
et al., 2022).

Existing efforts, such as AfroLM, majorly
focused on a multilingual language model pre-
trained on 23 African languages using a self-
active learning framework. Even though it per-
forms well on various NLP downstream tasks
like Named Entity Recognition (NER), text
classification, and sentiment analysis (Dossou
et al., 2022), these models lack sufficient lin-
guistic and contextual grounding in Kenyan
languages and agricultural knowledge.

In the plant health domain, studies have
shown that PLMs are useful for text-mining ap-
plications but face challenges in low-resource
settings due to limited labelled data. For ex-
ample, research on text mining for plant health
hazard detection highlights the need for models

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 24-30
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trained on recent, domain-specific agricultural
datasets (Jiang et al., 2023). To address these
gaps, this research proposes fine-tuning exist-
ing PLMs on a corpus of Kenyan agricultural
data, enhancing their ability to understand both
domain-specific terminology and Kenyan lan-
guages. The goal is to develop a compact and
efficient quantized language model optimized
for agriculture, along with an Al agent capa-
ble of both comprehending Kenyan languages
and executing task-oriented actions based on
natural language inputs.

The absence of specialized agriculture mod-
els in Kenyan languages presents a significant
gap. Kenyan farmers lack access to adequate
and efficient Al-powered solutions that can
provide up-to date, localized and contextually
relevant agricultural information. Currently,
available language models do not incorporate
extensive agricultural expertise, nor are they
optimized for Kenyan languages, making them
ineffective for tasks such as farming guidance,
risk assessment, financial literacy, and market
insights.

This limitation demonstrates potentially dire
consequences in the agricultural sector and
Kenya’s economy at large. Kenyan farmers
struggle to access reliable and actionable farm-
ing information, from best planting practices to
market trends and financial advice. The avail-
able resources are often generic, presented in
English or Swahili, and fail to offer localized
insights tailored to farmers’ specific regions
and crops. Sometimes farmers do not have
adequate access to extension services. As a
result, misinformation and a lack of accessible
knowledge contribute to poor farming deci-
sions, lower yields, and financial instability.

While Al-driven agricultural solutions in
Kenya primarily focus on weather, soil anal-
ysis, crop disease detection, and pest control,
they typically follow a three-step approach: de-
tect a problem, offer recommendations, and
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direct farmers to Agro-vets for solutions. How-
ever, these solutions lack a unified access point,
personalization and context-aware support that
empowers farmers with continuous assistance.
LLMs and Al agents have demonstrated their
effectiveness in delivering instant, tailored in-
formation and executing actions in other do-
mains, yet their potential remains untapped in
Kenyan agriculture.

The purpose of the study is to develop a
compact and efficient language model that un-
derstands Kenyan languages and agricultural
terminology while integrating with Al agents
to assist farmers. In doing so, our goal is to
bridge the knowledge gap in agriculture, im-
prove decision-making, and empower farmers
with accessible and language-inclusive Al sup-
port.

2 Related Work

Adapting Pre-trained Language Models for
African Languages Several efforts to use pre-
trained models have led to multilingual fine-
tuning approaches for African languages. One
of the most effective approaches to adapt to a
new language is language adaptive fine-tuning
(LAFT) — fine-tuning a multilingual PLM on
monolingual texts of a language using the pre-
training objective. However, adapting to a tar-
get language individually takes a large disk
space and limits the cross-lingual transfer abil-
ities of the resulting models because they have
been specialized for a single language. They
performed multilingual adaptive fine-tuning in
17 most resourced African languages and three
other high-resource languages widely spoken
on the African continent to encourage cross-
lingual transfer learning (Alabi et al., 2022).
AfroLM a multilingual language model pre-
trained from scratch on 23 African languages
(the largest effort to date) using our novel self-
active learning framework. Pretrained on a
dataset significantly (14x) smaller than exist-



ing baselines, it outperforms many multilin-
gual pre-trained language models (AfriBERTa,
XLMR-base, mBERT) on various NLP down-
stream tasks like NER and text classification
(Dossou et al., 2022).

Tool-calling Other models outperform Text-
Davinci-003 and Claude-2, achieve compa-
rable performance to ChatGPT, and is only
slightly inferior to GPT4. Besides, models
(ToolLLaMA ) exhibits robust generalization
to previously unseen APIs, requiring only the
API documentation to adapt to new APIs ef-
fectively. They majorly focus on Supervised
fine-tuning to enhance tool calling capabili-
ties with synthesized training data (Qin et al.,
2023).

3 Standard and Instruction-based
Chain of Thought Annotation

Current LLMs also exceed in areas such as tool
calling and reasoning with chain-of-thought
(CoT). CoT instruction tuning has drawn at-
tention for its potential to encourage complex,
step-by-step reasoning. LLMs can demonstrate
CoT abilities with proper prompting and in-
struction engineering (Liu et al., 2023), but this
is something that lacks in most parts of Africa
given the state of underrepresented African lan-
guages.

Tool-calling is a focus area in this research
where we aim to achieve a model that can sup-
port tool calling in local Kenyan languages. To
achieve this, we focus on adopting Supervised
fine-tuning (SFT). It is a method to enhance
the tool calling capabilities of LLMs, with the
training data often being synthesized. The cur-
rent data synthesis process generally involves
sampling a set of tools, formulating a require-
ment based on these tools, and generating the
call statements (Wang et al., 2024).

Data based on local Agriculture documents
have been created with paired translations
from vernacular languages to English. We em-
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ploy an instruction-based format in the dataset,
heavily focusing on tuning the training data
to employ a Chain of Thought format and fo-
cus on tool calling annotation for single-tool
calling in Kenyan languages, with standard
prompts we focus on enhancing chat comple-
tion capabilities based on the corpus that has
been translated to specific native Kenyan lan-
guages.

“api_list": [

“category_name": "maize",
"tool_name": "plant_diagnosis",
“"api_name": "CheckPlantHealth",
“api_description": "Checks for crop health in maize.”,
“required_parameters": ["location", "crop_type"],
“method": "GET"

}

1

“query": "Apidho ga oduma, to adak Kisumu, Kenya. Odumba gi nitie gi kumoro ma rateng'. Ango
ma chamo gi?",

“relevant APIs": [

[
"CheckPlantHealth"

1
"query_id": 1

Figure 1: Example of the tool calling dataset used
with queries in Kenyan languages. This particular
training data uses Dholuo.

Construction of the tool-calling dataset for
training is split into three stages: collect-
ing existing APIs and creating missing APIs
spanning across different categories (such as
Agribusiness, Weather, News for Farmers),
writing instructions in given languages cov-
ering APIs for single-tool scenarios, and the
solution path annotation for each instruction
(Qin et al., 2023). An example of this is found
in Figure 1.

4 Method

To develop a multilingual model specialized
in the agricultural domain, we adopted the fol-
lowing steps to achieve the goal of creating a
model specialized for a subset of African lan-
guages and measuring how well a fine-tuned
and quantized PLM can perform in various
agricultural tasks in Kenya.



4.1 Data Collection

Data was collected from disparate sources. For
instance, the language pair sentences provided
by Tech Innovators Network Kenya (THiNK),
publicly available websites and documents
about agriculture and biblical text extracted
using OCR. The THiNK dataset comprised of
local-language and swahili pairs!, therefore, to
have a local-language and english pair of each
language (Luyha, Luo, Kalenjin, Kidaw’ida-
Kiswahili) the dataset comprising of 91,097
sentence pairs was changed to accomodate the
manual translation of Swahili words to English.
See Table 1 for an example of the Language
pair for local-language and swahili sentence
pairs.

Language Train Set  Test Set  Total Size

Pair Size Size (bytes)
Kidaw’ida-Kiswahili (dav_swa) 21,329 5,333 1,973,706
Kalenjin-Kiswahili (kln_swa) 28,101 7,026 3,537,847

Dholuo-Kiswahili (luo_swa) 23,446 5,862 4,387,588

Table 1: Total number of language pair sentences
provided by THiNK.

4.2 QLoRA for Finetuning

For efficient fine-tuning, we propose using
QLoRA (Quantized model weights + Low-
Rank Adapters) with the models Llama-2-7B,
Llama-3-8B Instruct and Llama-3.1-8B, which
reduces memory usage without compromising
a model’s initial performance as demonstrated
in Figure 2. This fine-tuning technique offers
several advantages: 4-bit NormalFloat, which
outperforms 4-bit Integers and 4-bit Floats in
empirical results; Double Quantization, which
compresses quantization constants, saving an
average of 0.37 bits per parameter; and Paged
Optimizers, which mitigate memory spikes
caused by gradient checkpointing when pro-
cessing long-sequence mini-batches (Dettmers

"https://huggingface.co/datasets/
thinkKenya/kenyan-low-resource-language-data
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et al., 2023).

This approach is informed by the adoption
of Quantile Quantization, an optimal data type
that estimates the quantile of the input ten-
sor using the empirical cumulative distribution
function (Dettmers et al., 2023). While quan-
tization of LLMs has traditionally focused on
inference, QLoRA has demonstrated a break-
through by enabling backpropagation through
frozen, quantized weights at large model scales
(Belkada et al., 2023).
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Figure 2: QLORA proves to be efficient than LoRA
by quantizing the transformer model to 4-bit preci-
sion and using paged optimizers to handle memory
spikes. the image is taken from (Dettmers et al.,
2023)

4.3 Supervised Fine-tuning

SFT (Supervised Fine-tuning), adapts a pre-
trained model to a specific task by taking la-
belled datasets as input constructed for in-
tended tasks. To be effective, a significant
amount of raw data and resources are required
to construct and label SFT datasets (Ross et al.,
2025).

The research aims to use refined Africa cor-
pora from various languages in Kenya. These
data will be further added to standard and
chain-of-thought instruction sets with trans-
lation pairs from English to local Kenyan
languages. During this process of SFT the
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Figure 3: A brief workflow of the training process.
This summarizes how the annotated language data
is passed over for training to QLoRA and further
subjected to testing.

data will then be fed to the training stage
where we will use Transformer Reinforcement
Learning (TLR)? that provides SFTTrainer
that makes it straightforward to supervise
fine-tune open LLMs, it is a subclass of the
Trainer from the transformers library and sup-
ports all the same features, including logging,
evaluation, and checkpointing, but adds addi-
tional quality of life features, including PEFT
(parameter-efficient fine-tuning) support in-
cluding Q-LoRA, or Spectrum (Schmid, 2025)
This stage has been indicated on Figure 3.

4.4 Post-Training Quantization

This involves taking our fine-tuned model and
quantizing the model parameters during the in-
ference phase. This method does not involve
any changes to the training process itself. The
dynamic range of parameters is recalculated at
runtime, like how we worked with the example
matrices (Valenzuela, 2024). This technique
allows reducing the size of these increasingly
the fine-tuned models with an aim of making
it perform better at Agriculture but can also be
easily allowed to run on consumer-grade de-
vices with minimal performance depreciation.
The quantized model will then be subjected
to further testing based on various agricultural
areas and the performance will be evaluated

2https ://huggingface.co/docs/trl/index
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and tuned further to achieve optimal results.

4.5 RAG Agents and Tool-calling

In this research, we utilize LangGraph to de-
velop an external agent and create Agentic
RAG applications that enhance the decision-
making process of the deployed model. These
applications enable the model to determine
whether to retrieve information from the vector
store or generate responses directly, as illus-
trated in Figure 4. Additionally, we extend the
agent’s capabilities by leveraging LangChain
and LangGraph to orchestrate a fine-tuned
open-source model deployed on Hugging Face.
This allows farmers to interact with the sys-
tem using natural language to retrieve relevant
information and seamlessly access various au-
tomated tools for diverse functions.

L8
=

Annoted High Quality Supervised Finetuning
(with QLORA)

Prompts
(Local Kenyan languages)

LangGraph

......

;;;;;;;;

Figure 4: Implementation of the fine-tuned model
for AI Agents using LangChain

Beyond this, we will evaluate the in-built
too-calling to determine its performance and
effectiveness. The capability of tool-calling


https://huggingface.co/docs/trl/index

is achieved by the annotated data set that had
CoT format instructions that improves reason-
ing and also the trained model benefits from
the instruction-format based data given during
training.

5 Conclusion

This study demonstrates the potential of quan-
tized fine-tuned language models in improving
Al-driven farming advisory services through
efficient RAG agents. By optimizing model
size and computational efficiency, we enable
real-time, localized, and cost-effective recom-
mendations tailored to the needs of smallholder
farmers in Kenya. Our findings indicate that
the proposed approach enhances response ac-
curacy and system performance compared to
conventional models, reducing resource con-
straints while maintaining high-quality advi-
sory outputs. Future work will focus on ex-
panding dataset coverage, integrating multi-
modal inputs such as satellite imagery, and
refining model interpretability to further en-
hance Al-driven agricultural decision-making
in resource-limited environments.

Limitations

Fine-tuning methods utilized in this study have
proven to be effective, although, a significant
limitation is the scarcity of high-quality, an-
notated datasets available for fine-tuning mod-
els in African languages. The process of cre-
ating such datasets is resource-intensive and
time-consuming, requiring extensive hours of
data preparation. This scarcity of readily avail-
able data has created challenges in develop-
ing robust and accurate models tailored for the
agricultural sector in Kenya and other African
contexts.Africa faces a significant shortage of
diverse language corpus datasets that authen-
tically capture the nuances of communication
in its indigenous languages. To address this,
we propose the development of comprehensive,
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high-quality datasets that reflect the linguistic
diversity and cultural contexts of African in-
digenous languages, enabling more accurate
and inclusive natural language processing ap-
plications.
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Abstract

This research article examines the effectiveness
of various pretraining strategies for develop-
ing machine translation models tailored to low-
resource languages. Although this work consid-
ers several low-resource languages, including
Afrikaans, Swahili, and Zulu, the translation
model is specifically developed for Lingala,
an under-resourced African language, building
upon the pretraining approach introduced by
Reid and Artetxe (2021), originally designed
for high-resource languages. Through a series
of comprehensive experiments, we explore dif-
ferent pretraining methodologies, including the
integration of multiple languages and the use of
both monolingual and parallel data during the
pretraining phase. Our findings indicate that
pretraining on multiple languages and leverag-
ing both monolingual and parallel data signifi-
cantly enhance translation quality. This study
offers valuable insights into effective pretrain-
ing strategies for low-resource machine trans-
lation, helping to bridge the performance gap
between high-resource and low-resource lan-
guages. The results contribute to the broader
goal of developing more inclusive and accurate
NLP models for marginalized communities and
underrepresented populations. The code and
datasets used in this study are publicly avail-
able to facilitate further research and ensure
reproducibility, with the exception of certain
data that may no longer be accessible due to
changes in public availability.!

1 Introduction

In recent years, pretraining techniques have gained
significant popularity and transformed the field of
natural language processing (NLP). Pretraining in-
volves training a language model on a large corpus
of text data, enabling it to learn general linguis-
tic patterns and representations. The pretrained
model can then be fine-tuned for specific down-
stream tasks, such as sentiment analysis, named
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entity recognition, or machine translation, leading
to substantial performance improvements. While
pretraining has shown remarkable success in high-
resource languages like English, Spanish, and Chi-
nese, applying these techniques to low-resource
languages poses significant challenges. These lan-
guages often lack the extensive datasets required
for effective pretraining, limiting the performance
of NLP models.

Despite these challenges, researchers have ac-
tively explored various pretraining techniques tai-
lored to low-resource languages (Costa-Jussa et al.,
2022). These approaches include unsupervised and
semi-supervised learning, transfer learning, and
cross-lingual pretraining (Khoboko et al., 2025).
Unsupervised methods leverage large amounts of
unlabeled data to learn meaningful representations,
while semi-supervised techniques enhance model
performance by combining limited labeled data
with abundant unlabeled data. Transfer learning
involves pretraining a model on a high-resource
language and fine-tuning it on a low-resource lan-
guage, exploiting linguistic similarities (Zheng
et al., 2021). Cross-lingual pretraining extends this
concept by training models on multiple languages
simultaneously, enabling them to learn shared rep-
resentations.

These techniques hold great promise for advanc-
ing NLP in low-resource languages, which are of-
ten spoken by marginalized and underrepresented
communities. Developing more effective pretrain-
ing strategies can help mitigate data scarcity and
contribute to more accurate, inclusive, and cultur-
ally sensitive NLP models (Adebara et al., 2024).
Ensuring that NLP technologies benefit all lan-
guages and communities, regardless of available
resources, is a crucial step toward linguistic inclu-
sivity (Okolo and Tano, 2024).

In this work, we evaluate the effectiveness of
various pretraining techniques for low-resource
languages, with a particular focus on Lingala, an
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under-resourced African language. To this end,
we combined monolingual and parallel data, hy-
pothesizing that this approach would yield the best
results. We pretrained multiple models using meth-
ods described in Reid et al. (2021) and Reid and
Artetxe (2021), which differ in the types of data
used for pretraining. Specifically, we examine the
impact of incorporating multiple languages and
leveraging both monolingual and parallel data dur-
ing pretraining. Finally, we evaluated these pre-
trained models by fine-tuning them on an English-
Lingala sequence-to-sequence machine translation
task. Our findings offer valuable insights into effec-
tive pretraining strategies for low-resource machine
translation and contribute to the broader goal of de-
veloping more inclusive NLP technologies.

2 Related Work

Most previous studies on multilingual pretraining
have primarily relied on monolingual data (Reid
et al., 2021; Pires et al., 2019; Song et al., 2019;
Liu et al., 2020). While foundational, this ap-
proach does not fully exploit the potential of par-
allel data. Several proposals have attempted to
incorporate parallel data into encoder-only mod-
els by training two models simultaneously: one
encoder-only model trained on the source language
and one decoder-only model trained on the target
language. During training, the encoder-only model
generates hidden representations of the source sen-
tences, which are then used to train the decoder-
only model to generate target sentences (Lample
and Conneau, 2019; Hu et al., 2020). Some ap-
proaches replace words based on a bilingual dictio-
nary, similar to the dictionary denoising objective
(Wu et al., 2019), while others use multilingual dic-
tionaries but focus only on high-resource languages
(Reid and Artetxe, 2021).

However, these methods often fail to effectively
leverage the rich information in parallel data, par-
ticularly for low-resource languages. In contrast,
sequence-to-sequence models provide a more flex-
ible and natural way to integrate parallel data.
Building on the work of Reid and Artetxe (2021),
we incorporated parallel corpora into sequence-
to-sequence pretraining by feeding concatenated
parallel sentences to the encoder and applying
different masking strategies. Unlike Reid and
Artetxe (2021), our approach specifically targets
low-resource languages while maintaining a similar
methodology.
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Recent advancements in multilingual pretrain-
ing have further improved the performance of NLP
models for low-resource languages. For example,
(Pires et al., 2019) demonstrated that multilingual
BERT (mBERT) effectively captures cross-lingual
representations, though their study primarily fo-
cused on high-resource languages. Similarly, (Song
et al., 2019) introduced the MASS framework,
which employs a masked sequence-to-sequence
pretraining objective to enhance machine transla-
tion models. However, these studies did not exten-
sively explore the integration of parallel data for
low-resource languages.

Additionally, (Liu et al., 2020) proposed multi-
lingual denoising pretraining for neural machine
translation, highlighting the benefits of training on
multiple languages. Their work underscored the
importance of leveraging both monolingual and par-
allel data to improve translation quality. Building
on these insights, our study extends these pretrain-
ing strategies to low-resource languages.

By integrating both monolingual and parallel
data during pretraining, we aim to overcome the
limitations of existing approaches and develop
more effective strategies for low-resource machine
translation. Our work contributes to the growing
body of research on multilingual pretraining and
provides valuable insights into the development of
inclusive and accurate NLP models for underrepre-
sented languages.

3 Problem

Despite significant advancements in natural lan-
guage processing (NLP) and machine translation,
the benefits of these technologies are not evenly
distributed across all languages. High-resource
languages, such as English, Spanish, and Chinese,
have seen substantial improvements in translation
quality and NLP applications due to the availability
of large datasets and extensive research. However,
low-resource languages, which are often spoken by
marginalized communities and underrepresented
populations, continue to lag behind (Costa-Jussa
et al., 2022). This disparity poses significant chal-
lenges in various domains, including education,
healthcare, and digital communication.

In the context of education, the lack of effec-
tive machine translation tools for low-resource lan-
guages creates a barrier to accessing educational
materials and resources. Students and educators
in regions where these languages are spoken often



rely on materials in high-resource languages, which
can hinder comprehension and learning outcomes.
Enhancing machine translation for low-resource
languages can facilitate the creation and dissemi-
nation of educational content in native languages
(Steigerwald et al., 2022), thereby improving edu-
cational accessibility and effectiveness.

Moreover, in healthcare settings (Al Shamsi
et al., 2020), accurate communication is crucial for
diagnosing and treating patients. Language barriers
can lead to miscommunication, misdiagnosis, and
inadequate treatment. Machine translation tools
tailored to low-resource languages can help bridge
these gaps, ensuring that healthcare providers can
effectively communicate with patients who speak
these languages.

Additionally, the digital divide is exacerbated by
the lack of support for low-resource languages in
web-centric applications and technologies (Kreien-
brinck et al., 2024). Users who speak these lan-
guages often face difficulties in accessing and in-
teracting with digital content, which limits their
participation in the global digital economy. By
improving machine translation for low-resource
languages, we can make digital platforms more in-
clusive and accessible to a broader range of users
(Bella et al., 2023).

This research aims to address these challenges by
exploring effective pre-training strategies for ma-
chine translation models tailored to low-resource
languages. Specifically, we focus on Lingala, an
under-resourced African language, and investigate
the impact of incorporating multiple languages and
both monolingual and parallel data during the pre-
training phase. Our goal is to develop more accu-
rate and inclusive NLP models that can enhance
communication, education, and digital accessibility
for speakers of low-resource languages. By doing
so, we hope to contribute to the broader goal of
reducing linguistic disparities and promoting equi-
table access to information and services.

4 Dataset

We utilized various datasets in our pretraining pro-
cess for different models, including monolingual
datasets (English, Lingala, Afrikaans, Swahili, and
Zulu), as well as parallel datasets for fine-tuning.
To provide a comprehensive summary of the data
used for each language, please refer to Table 1
below. It should be noted that we use both mono-
lingual and parallel data for pretraining, while for
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fine-tuning, only parallel data is used.

4.1 Data Source

We used both parallel and monolingual datasets in
our study. Specifically, the parallel datasets were
obtained from AfroMT (Reid et al., 2021), a com-
prehensive benchmark for African language transla-
tion. The monolingual datasets Afrikaans, English,
Lingala, Swahili, and Zulu were sourced from the
open-source CC-100 dataset, which provides a di-
verse collection of monolingual corpora for various
languages. It is worth noting that some of this data
may no longer be publicly available. The datasets
originate from different sources and vary in size
and the number of sentences per language, as de-
tailed in Table 1.

4.2 Data Quality and Preprocessing

To ensure the robustness of our models, we ap-
plied several preprocessing steps to clean and aug-
ment the data. These steps included tokenization,
normalization, and duplicate removal. Addition-
ally, we addressed data imbalance, particularly for
low-resource languages like Lingala, by employing
techniques such as data augmentation and oversam-
pling. These preprocessing steps were essential
for improving the quality and consistency of the
datasets used in our experiments.

4.3 Data Split

Based on the number of sentences per language
shown in Table 1, we allocated 3,000 sentences
each for testing and validation in the parallel data,
with the remaining sentences used for training dur-
ing both pretraining and fine-tuning. For the mono-
lingual data, we designated 10% for testing, 10%
for validation, and the remaining 80% for train-
ing in each language, but only during the pretrain-
ing phase. This data-splitting strategy ensured a
balanced and representative dataset for both the
pretraining and fine-tuning phases.

5 Models and Methods

This section presents the models and methodolo-
gies used in our study, with a focus on the pretrain-
ing and fine-tuning processes (see Figure 1). Our
goal is to assess the effectiveness of various pre-
training techniques and compare their impact on
the performance of machine translation models for
low-resource languages. Specifically, we pretrain
our models on four African languages (Lingala,



Language Code Parallel data (En-XX) Monolingual data
Size Sentences Size Sentences
Afrikaans  Af 77TMB 749K 1.2G 7979K
Lingala Ln 45MB 388K 10.3MB 143K
Swabhili Sw 80MB 706K 2G 12000K
Zulu Zu 75MB 670K 18.6MB 209K
English En 7TMB - 27.2MB 259K
Table 1: Dataset Description
Bilingual Aligned
Data (English - Lingala)
Preprocessing:
T:mmlz:t?l;ﬂ Preprocessing:
cm‘:’:‘::&xlzltlnn

African Multilingual Data
(Lingala, Afrikaans,
Swahill, Zulu)

Pre-trained Multilingual Model
(mBART, mBARTbase)
Objective: Masked Language
D Aut

_,[

language structures

7’

Model capable of
understanding

\ 4

Task: A T
Objective: Minimize Cross-Entropy
Loss

Fine-Tuned Model (Seq2Seq)
En <> Li

A\,

Evaluation on test set
BLEU and chrF

A\ 4

Final Model

Figure 1: Flowchart from pretraining to finetuning

Afrikaans, Swahili, Zulu) and evaluate them on
English-Lingala machine translation tasks.

5.1 Model Architectures
5.1.1 mBART Architecture

The mBART model (Liu et al., 2020) is a sequence-
to-sequence denoising autoencoder pretrained on
large-scale monolingual corpora spanning 25 lan-
guages. It employs a standard Transformer architec-
ture with 12 encoder layers and 12 decoder layers,
each featuring a hidden dimension of 1024 and 16
attention heads. The model is trained using a de-
noising objective, in which the input is corrupted
by masking, deleting, or permuting tokens, and the
model learns to reconstruct the original sequence.
mBART has demonstrated strong performance in
multilingual machine translation tasks, particularly
in zero-shot and few-shot scenarios.

5.1.2 AfroBART Architecture

The AfroBART model (Reid et al., 2021) is a
variant of the BART model specifically designed
for African languages. It is pretrained on a com-
bination of monolingual and parallel data from
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eight African languages, including Lingala. Afro-
BART employs a Transformer architecture similar
to mBART but is adapted to the unique character-
istics and data constraints of African languages.
The model seeks to address the challenges of low-
resource languages by leveraging multilingual pre-
training and transfer learning techniques.

6 Hardware and Schedule

We pre-trained our models on a single machine
equipped with two NVIDIA T4 GPUs, 32 vCPUs,
and 120 GB of RAM, with each pretraining run tak-
ing approximately four days. Fine-tuning was con-
ducted on a machine with one NVIDIA T4 GPU,
32 vCPUs, and 60 GB of RAM, requiring about
one day to complete.

The computational resources used in this study
were sufficient to efficiently handle both pretraining
and fine-tuning. The NVIDIA T4 GPUs acceler-
ated the training processes, enabling us to run mul-
tiple experiments within a reasonable time frame.
Additionally, the ample RAM and vCPUs facil-
itated smooth execution, allowing us to process
large datasets and train complex models without



significant bottlenecks.

Pretraining was the most time-intensive phase,
requiring up to five days for some experiments, par-
ticularly those involving multiple languages and
large datasets. In contrast, fine-tuning was rela-
tively faster, taking approximately one day to com-
plete. This efficient use of computational resources
and careful time management enabled a thorough
evaluation of various pretraining strategies and
their impact on machine translation performance
for low-resource languages.

6.1 Pretraining

To better understand the impact of different data
types on the pretraining strategy, we conducted
multiple pretraining sessions, making minor modi-
fications such as altering the type of data or the de-
noising task used. The details of these pretraining
approaches are provided in the following sections.

6.1.1 First Pretraining

For the first experiment, we used only monolingual
Lingala data from the AfroMT repository (Reid
et al., 2021) (see the dataset description in Table
1). We tokenized all the data using SentencePiece
(Kudo and Richardson, 2018), employing a multi-
lingual vocabulary of 80k subwords.

We utilized the mBART implementation and the
simple denoising task from the fairseq? library (Ott
etal., 2019) to train our models. Our setup included
a Transformer-base architecture with a hidden di-
mension of 768, a feed forward size of 3072, and
6 layers for both the encoder and decoder. The
maximum sequence length was set to 1024, and
we trained our models with a batch size of 1024
for 100k iterations on a single NVIDIA T4 GPU,
with 32 vCPUs and 60 GB of RAM. The training
process lasted approximately 24 hours.

6.1.2 Second Pretraining

For this experiment, we used both the monolingual
data of all languages, except English, for the de-
noising task and the parallel data of all languages
for the translation task. This approach combined
two tasks (denoising and translation) on two differ-
ent types of data. While this method was proposed
in (Reid and Artetxe, 2021), it focused primarily
on high-resource languages; we applied the same
approach but focused on low-resource languages.
Regarding the hyper-parameters, we used Sen-
tencePiece (Kudo and Richardson, 2018) to tok-
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enize all the data, employing a multilingual vocab-
ulary of 80K sub-words. We also used the mBART
implementation from the fairseq2 (Ott et al., 2019)
library to train our model. Our configuration in-
cluded a Transformer-based architecture with a hid-
den dimension of 768, a feed forward size of 3072,
and 6 layers for both the encoder and decoder. The
maximum sequence length was set to 1024, and
we trained our model with a batch size of 1024
for 100K iterations. The model contained approx-
imately 162 million parameters and the training
lasted 4 days.

6.1.3 Third Pretraining

For this experiment, we used monolingual data
from all languages (Afrikaans, English, Lingala,
Swahili and Zulu) for the denoising task, as well as
parallel data from all languages (English-Lingala,
English-Afrikaans, English-Swabhili, and English-
Zulu) for the translation task. This experiment com-
bined two pretraining tasks (denoising and transla-
tion) using two different types of data (monolingual
and parallel). It is worth noting that we selected
a random sample of 10MB of monolingual data
from the English language. By incorporating all
languages in this phase, we aimed to achieve a
more permanent model.

Regarding the hyper-parameters, we used the
same configuration as in the previous experiment.
The model had approximately 162 million param-
eters, and training lasted for 5 days. We later re-
sumed this experiment with the same configura-
tion but increased the English data from 10MB to
112MB.

6.1.4 Fourth Pretraining

We conducted a fourth experiment in which we
used only the parallel and monolingual data of
two languages, English and Lingala. It should
be noted that we used the same tasks and hyper-
parameters as in the previous experiment. Regard-
ing pre-training time, it took about two days.

6.2 Finetuning

This section summarizes the various fine-tuning
experiments we conducted on existing models, in-
cluding those we pre-trained ourselves. We utilized
the parallel data described in Table 1 to fine-tune
all pre-trained models, with a primary focus on
machine translation between English and Lingala.

As a baseline, we started by fine-tuning the
mBART (Liu et al., 2020) model, which is pre-
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trained on 25 high-resource languages but does not
include Lingala. Next, we fine-tuned the Afro-
BART (Reid et al., 2021) model, which is pre-
trained solely on low-resource monolingual data,
including Lingala. Finally, we proceeded to fine-
tune our own pre-trained models.

We evaluated the system outputs using two auto-
matic evaluation metrics: detokenized BLEU (Pap-
ineni et al., 2002) and chrF (Popovié, 2015). While
BLEU is a standard metric for machine translation,
we use chrF to measure performance at the charac-
ter level, given the morphological richness of the
languages in the AfroMT benchmark. Both metrics
were calculated using the SacreBLEU library.

7 Results and Discussion

As shown in Table 2, we performed fine-tuning
on five pretrained models with highly varied struc-
tures. We used the mBART and AfroBART mod-
els as starting points to train an automatic transla-
tion model from English to Lingala. Evaluation
of this model showed that AfroBART outperforms
mBART in terms of both BLEU and chrF scores.
This can be explained by the fact that the monolin-
gual data used to pretrain AfroBART includes Lin-
gala, the target language of the translation, whereas
mBART is pretrained only on high-resource lan-
guages.

The BLEU and chrF scores of Experiment 1 are
significantly lower than those of mBART and Afro-
BART. This can be attributed to the fact that the
data used to pretrain our experimental model con-
sisted solely of monolingual data from a single lan-
guage (Lingala), while mBART is pretrained on 25
languages, and AfroBART is trained on 8 African
languages, including Lingala. Therefore, we can
reasonably conclude that pretraining on multiple
languages positively impacts the performance of
the resulting translation model.

The scores obtained from the evaluation of the
model in Experiment 1 led us to consider another
approach that involved using both monolingual and
parallel data during the pretraining phase. This
approach resulted in a gain of 2 BLEU points and 2
chrF points compared to Experiment 1. Therefore,
we can confidently state that the strategy used in
this experiment is more beneficial in terms of both
BLEU and chrF scores compared to Experiment 1.

We conducted an additional experiment in which
we introduced a 10 MB random sample of mono-
lingual English data. This resulted in notably low
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scores, as shown in Table 2. Subsequently, we in-
creased the size of the English monolingual data to
112 MB, which led to a gain of 4 BLEU points and
3 chrF points.

Finally, we conducted a final experiment using
only the parallel and monolingual data of English
and Lingala. We observed a significant decrease
in both the BLEU and chrF scores, as shown in
Table 2. From this, we can affirm that pretraining
a model that includes other African languages is
more effective than pretraining a model solely on
the source and target languages.

8 Conclusion

In conclusion, our study aimed to investigate pre-
training strategies for machine translation models
using low-resource languages. We conducted a
series of experiments, gradually introducing mono-
lingual and parallel data to pretrained models.

We first fine-tuned a pretrained model using only
parallel data from the source and target languages.
Next, we added monolingual data to the pretraining
process, which resulted in a significant improve-
ment in the model’s BLEU and chrF scores.

Then, we introduced a random sample of English
monolingual data, which led to very low scores.
However, when we increased the size of the En-
glish monolingual data, we observed a notable im-
provement in the model’s translation performance.

Finally, we conducted an experiment using par-
allel and monolingual data from both English and
Lingala. We observed a decrease in BLEU and chrF
scores. However, when we pretrained the model
using multiple African languages, including the
low-resource language, we saw a positive impact
on translation performance. Our study underscores
the importance of considering pretraining strategies
for low-resource languages in machine translation.

It is worth noting that the pretraining approach
we used was introduced by Reid and Artetxe
(2021), but it originally focused solely on high-
resource languages. Our study demonstrates that
this approach can also be beneficial for low-
resource languages. Interestingly, mBART, which
was not pretrained on any African languages, still
outperformed our multilingual pretraining setup in
some cases. While the scores were close, mnBART
performed slightly better, which may be attributed
to its larger model size, more extensive pretraining
on high-quality data, or architectural advantages.
This suggests that pretraining on high-resource lan-



Model BLEU chrF Pretrained Data Lingala include
mBART 28.5 54.03 Monolingual X
AfroBART 2933  54.67 Monolingual v
Experiment 1 6.1.1 25.34  51.26 Monolingual v
Experiment 2 6.1.2  27.38  53.24 Monolingual & Parallel v
Experiment 3 6.1.3  21.8 48.16 Monolingual & Parallel
Experiment 37 6.1.3 25.18  51.11 Monolingual & Parallel v
Experiment 4 6.1.4  21.02  48.92 Monolingual & Parallel v

Table 2: Finetuning on top of English and Lingala

guages may still offer transferable benefits to low-
resource scenarios. Future research in this area
can explore different pretraining techniques and
incorporate more linguistic knowledge to further
improve the performance of machine translation
models for low-resource languages.

Limitations

Despite the valuable insights gained from this study,
there are several limitations to consider. The avail-
ability and quality of data for low-resource lan-
guages, such as Lingala, significantly impact the
effectiveness of the pretraining strategies. Addi-
tionally, the findings may not generalize to all low-
resource languages due to linguistic differences.
Computational resources required for pretraining
and fine-tuning can also be prohibitive, and the re-
liance on BLEU and chrF scores may not fully cap-
ture translation quality, especially for morphologi-
cally rich languages. Future work should explore
more diverse data sources and evaluation methods,
such as human evaluation, to better address these
challenges.
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Abstract

Pretrained language models (PLMs) for
African languages are continually improving,
but the reasons behind these advances remain
unclear. This paper presents the first systematic
investigation into probing PLMs for linguistic
knowledge about African languages. We train
layer-wise probes for six typologically diverse
African languages to analyse how linguistic fea-
tures are distributed. We also design control
tasks, a way to interpret probe performance,
for the MasakhaPOS dataset. We find PLMs
adapted for African languages to encode more
linguistic information about target languages
than massively multilingual PLMs. Our results
reaffirm previous findings that token-level syn-
tactic information concentrates in middle-to-
last layers, while sentence-level semantic infor-
mation is distributed across all layers. Through
control tasks and probing baselines, we confirm
that performance reflects the internal know-
ledge of PLMs rather than probe memorisation.
Our study applies established interpretability
techniques to African-language PLMs. In do-
ing so, we highlight the internal mechanisms
underlying the success of strategies like active
learning and multilingual adaptation.

1 Introduction

The past few years have seen the proliferation of
pretrained language models (PLMs) across vari-
ous domains including education, healthcare, and
finance (Hadi et al., 2024). The blackbox nature
of these models, paired with their increasing size
and complexity, has prompted the growing subfield
of NLP interpretability (Luo and Specia, 2024).
These methods aim for insights into the internal
mechanisms underlying the success and failures of
PLMs. One of the earliest interpretability methods
to gain traction in NLP was probing (Alain and
Bengio, 2017), which trains a classifier on interme-
diate PLM representations. Probing measures to
what extent specific linguistic features, such as part-
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Figure 1: POS probe performance (selectivity), aver-
aged over 6 African languages.
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Figure 2: NER probe gains (over random baselines)
across layers, averaged over 6 African languages.

of-speech (POS) categories or semantic concepts,
are encoded in hidden layers.

Probing provides insights into the internal mech-
anisms of PLMs by revealing how models acquire,
store, and leverage linguistic information in hidden
layers. This allows NLP practitioners to better un-
derstand the mechanisms by which PLMs succeed
in certain tasks, and can also point to the underlying
reasons for failing in others. Besides contributing
to a greater, linguistically grounded understanding
of PLM computations, probing also has the poten-
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Model Layers Params Swahili Igbo Hausa Luganda isiXhosa Naija
XLM-R-base (Conneau et al., 2020) 12 270M * % PAGAS * % PAGAS * % PA%e
XLM-R-large (Conneau et al., 2020) 24 550M * %k PAS*e * % WY * % PAR% e
AfroXLMR-base (Alabi et al., 2022) 12 270M *k ** *k PASS ok ok
AfroXLMR-large (Alabi et al., 2022) 24 550M * * * * * % PASKS ** **
Nguni-XLMR (Meyer et al., 2024) 24 550M K v * v K e PASS ok PARS
AfriBERTa (Ogueji et al., 2021) 10 126M * * * % %k RAgAS PAR%e %k
AfroLM (Dossou et al., 2022) 10 264M * % * % * % * % * % * %

Table 1: Language coverage of PLMs. v¢3¥ indicates no data from the language was included in pretraining or
adaptation. %% shows the language was included in the base model but not in the adapted model. %% shows the
model was either pretrained or adapted for the language.

tial to contribute to performance gains by guiding
the finetuning process for downstream tasks. For
example, knowing which layers encode specific
properties can inform which layers should be tar-
getted for finetuning, optimising both performance
and efficiency (Katinskaia and Yangarber, 2024).
Probing is an established tool in NLP inter-
pretability, having been extensively applied and
studied across different settings. One area where it
has yet to be applied is the growing body of work
on PLMs for African languages. Most African
languages are under-represented in the pretraining
data of multilingual PLMs, which limits their per-
formance. Efforts to address this gap have led to the
development of PLMs targeting African languages,
such as AfriBERTa (Ogueji et al., 2021), AfroLM
(Dossou et al., 2022), and AfroXLMR (Alabi et al.,
2022). These models leverage strategies such as
cross-lingual transfer (Conneau et al., 2020), active
learning (Dossou et al., 2022), and multilingual
adaptive fine-tuning (MAFT) (Alabi et al., 2022) to
improve performance for low-resource languages.
Despite this progress, there is limited understand-
ing of how these PLMs encode African languages
internally, which is where probing holds promise.
Most probing research targets higher-resourced lan-
guages such as English, French, and Russian (Arps
et al., 2024; Katinskaia and Yangarber, 2024; Con-
neau et al., 2018; Hou et al., 2024). Previous works
have explored some low-resource languages, such
as Tagalog, Hindi and Tamil (Arora et al., 2023; Li
et al., 2024), but to the best of our knowledge, there
has been no research targeting African languages.
In this paper, we conduct the first systematic
probing study for PLMs focussed on African lan-
guages. We design probes for POS tagging, named
entity recognition (NER), and news topic classi-
fication (NTC), using the MasakhaPOS (Dione
et al., 2023), MasakhaNER (Adelani et al., 2022),
and MasakhaNEWS (Adelani et al., 2023) datasets
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respectively. We train probes on seven masked
PLMs (listed in Table 1), representing different
approaches to developing PLMs for low-resource
languages. We evaluate how syntactic and semantic
information is encoded for six African languages,
which cover different language families and vary-
ing levels of data availability, as shown in Table 1.

To interpret probe accuracies, one has to isolate
the contribution of model-encoded knowledge, as
opposed to the probe itself learning the task. To
enable such probe interpretability for African lan-
guages, we design a control task (Hewitt and Liang,
2019) for MasakhaPOS. Control tasks are synthetic
tasks that measure to what extent probes can learn
a task without model-encoded knowledge. Our
control task enables researchers to contextualise
probing results for MasakhaPOS.

Our main findings can be summarised as follows:

1. Word-level linguistic knowledge (POS, NER)
concentrates in middle layers, while sentence-
level information (NTC) is spread out.

2. The inclusion of target languages in pretrain-
ing or multilingual adaptation improves probe
performance across all tasks.

. Cross-lingual transfer improves probe perfor-
mance for languages not in pretraining, but
less so for low-resource language families.

2 Background

PLMs for African Languages Multilingual
modelling has been leveraged in different ways
to build PLMs for African languages. The mas-
sively multilingual XLLM-R (Conneau et al., 2020)
is trained on 100 languages, of which only 8 are
African languages. AfroXLMR (Alabi et al., 2022)
improves performance by adapting XLM-R for 17
African languages, while Nguni-XLMR (Meyer



et al., 2024) adapts XLM-R for the four Nguni lan-
guages (isiXhosa, isiZulu, isiNdebele, and Siswati).
AfriBERTa (Ogueji et al., 2021) is a smaller model
pretrained from scratch on 11 African languages
on less than 1GB data. AfroLM (Dossou et al.,
2022) is also trained from scratch on 23 African
languages, using self-active learning (the model
learns to identify beneficial training samples).

Contextualising Probe Performance Probes are
not direct measures of model-encoded knowledge,
since the probe itself can contribute to perfor-
mance by learning the task. Probing studies use
baselines, such as majority class prediction (Be-
linkov et al., 2017; Conneau et al., 2018) or probes
trained on random representations (Zhang and Bow-
man, 2018; Conneau et al., 2018; Chrupata et al.,
2020; Tenney et al., 2019b), to contextualize per-
formance.

However, even random baselines may encode
information that a sophisticated classifier could ex-
ploit. As an alternative, Hewitt and Liang (2019)
propose control tasks: pairing word types with ran-
dom labels to neutralise the linguistic information
required for the original task. They define selec-
tivity as the difference between original task and
control task accuracy. Selectivity captures the con-
tribution of linguistic knowledge to probe perfor-
mance, so it is a more reliable measure of model
knowledge than raw probe accuracies. To enable
probe contextualisation for African languages, we
design a control task for the MasakhaPOS dataset.

3 Probing Framework

3.1 Probe Design

Some works advocate for linear probes (Alain and
Bengio, 2017; Hewitt and Liang, 2019), arguing
that they are less prone to memorisation, while
others argue that some linguistic features might not
be linearly separable in the representation space
(Conneau et al., 2018; Pimentel et al., 2020).

For our experiments, we select a probe to strike
a balance between complexity and simplicity. Our
probe classifier is a multilayer perceptron (MLP)
with a single hidden layer of 50 neurons, which we
formally define as

y = f(Wg O‘(Wlx + bl) + bz), (D)

where x € R" is the input representation, W1 €
R™*™ is the weight matrix for the hidden layer,
W, € RFX™ s the weight matrix for the output
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layer, by € R™ and by € RF are bias vectors,
o(+) is the ReLu activation function, and f(-) is a
softmax function for label prediction.

For POS tagging and NER, we define a word-
level task as a function f that maps an input
sequence X to an output sequence Y. That is
f X — Y, where X is a sequence of con-
textualized hidden representations (embeddings)
of the input text, and Y is the sequence of output
labels corresponding to the words encoded by X.
Given that some words are tokenized into multiple
subwords, we use the first subword in each word to
represent the word in the classifier.

For news topic classification (NTC), we define
a sentence-level task similarly. Instead of passing
word embeddings to the probe classifier, we pass
the embedding of the special token for sequence
classification (e.g. <s> for XLLM-R). We truncate
inputs consisting of more tokens than the maximum
sequence length of PLMs.

3.2 MasakhaPOS Control Task

As discussed in section 2, control tasks (Hewitt and
Liang, 2019) can be used to contextualise probe
results. A probe could achieve a high raw accuracy
by learning to map word types to labels, without
relying on linguistic knowledge. For example, a
probe classifier could learn to map the embedding
of “walk” to the POS tag “verb”, by learning the
mapping between word type and label (instead of
the mapping between syntactic role and label). He-
witt and Liang (2019) propose selectivity as an
alternative to raw accuracy. Selectivity is defined
as the difference between linguistic task accuracy
and the control accuracy. As a measure, it iso-
lates the contribution of model-encoded linguistic
knowledge to probe performance.
A control task is designed in two steps:

1. Define the random control behavior for each
word type i.e. assign a label randomly to each
word in the vocabulary.

Deterministically label the original task cor-
pus based on control behaviour i.e. annotate
each word with its assigned random label.

To define a control task for MasakhaPOS, we
randomly map each unique word in the dataset to
a random POS tag. Next, we use this synthetic
mapping to re-annotate the train / validation / test
set. As per Hewitt and Liang (2019), when creat-
ing the random mapping (the control behaviour)



we sample POS tags according to their empirical
distribution in the original MasakhaPOS dataset.
Control tasks are designed to have both structure
and randomness. Our MasakhaPOS contains struc-
ture in that a word type is always mapped to the
same tag, but the assignment is random in that it is
independent of the linguistic role of words.

3.3 NTC and NER Probe Baselines

Control tasks define word-level control behaviour,
so they are not applicable to sentence-level tasks.
To interpret NTC probes, we compare the perfor-
mance of probes trained on PLMs to those trained
on random contextual representations. Following
Hewitt and Manning (2019), we use an untrained
bi-LSTM, and mean-pooling word-level outputs to
produce a single sentence representation. Probes
trained on these outputs can leverage contextual
information, but no linguistic knowledge.

NER is a word-level task, so controls tasks could
plausibly be designed for MasakhaNER. However,
the procedure is complicated by the fact that NER is
actually a span-level task (named entities can span
multiple words). It is not obvious how to extend
the control behaviour design of Hewitt and Liang
(2019) to multi-word spans. To contextualise NER
results, we randomly re-initialise the architectures
of our seven probed PLMs to serve as random base-
lines (Zhang and Bowman, 2018; Conneau et al.,
2018). We estimate model-encoded knowledge by
subtracting the F1 score of a random model from
the F1 score of the corresponding PLM. For each
layer, we refer to this as the probe gain over the
random baseline.

4 Experimental Setup

4.1 Data

Both MasakhaPOS (Dione et al., 2023) and
MasakhaNER (Adelani et al., 2022) cover 20
African languages. MasakhaNEWS (Adelani et al.,
2023) covers 16 African languages and contains
news articles annotated with one of seven topic
labels (business, entertainment, health, politics, re-
ligion, sports, technology).

4.2 Languages

The six language in our study (Swahili, Igbo,
Hausa, Luganda, isiXhosa, and Naija Pidgin) are in-
cluded in all three Masakhane' datasets. We chose

"https://www.masakhane.io/
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Language Family Region  mC4 tokens
Swahili Bantu East 1B
Igbo Volta-Niger West 90m
Hausa Chadic West 200m
Luganda Bantu East 0
isiXhosa Bantu Southern 60m
Naija Pidgin Creole West 0

Table 2: The languages used in our study. The number
is tokens in the mC4 corpus (Xue et al., 2021) serves to
give an indication of broader data availability.

these languages specifically to cover several lan-
guage families, a broad range of data availabil-
ity, and varying levels of representation in existing
PLMs (as shown in Table 1). As shown in Table 2,
the languages cover four language families across
East, West, and Southern Africa.

4.3 PLMs

The seven PLMs selected for our study represent
established approaches to developing PLMs for
African languages. XLM-R-base and XLM-R-
large (Conneau et al., 2020) employ massively
multilingual pretraining, while AfroXLMR-base,
AfroXLMR-large (Alabi et al., 2022), and Nguni-
XLMR-large (Meyer et al., 2024) adapt XLM-R
to a more limited set of African languages. Afro-
XLMR takes a broader adaptation approach than
Nguni-XLMR, which focusses only on the four
Nguni languages, a group of related languages
which includes isiXhosa. AfriBERTa (Ogueji et al.,
2021) represents memory-efficient pretraining — it
is our smallest model both in terms of parameters
and training data size. AfroLM (Dossou et al.,
2022) represents sample-efficient pretraining, since
its self-active learning maximizes available data by
identifying beneficial training samples.

5 Results

We plot probing results for POS, NER, and NTC
respectively in Figure 3, Figure 4, and Figure 5.
We report and compare best-layer results for each
language, model, and task in Table 3.

5.1 POS Tagging

We evaluate our POS probes based on selectivity,
which is computed using the MasakhaPOS control
task described in subsection 3.2. As shown in Fig-
ure 3, the PLMs exhibit positive selectivity across
all layers for all languages, except in the case of
Igbo. This aligns with previously reported PLM re-
sults for MasakhaPOS (Dione et al., 2023), where
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Figure 3: Probe selectivity for POS tagging (the difference between MasakhaPOS accuracy and control task

accuracy), across all layers and 6 African languages.

POS tagging accuracies for Igbo were lower than
all other languages. Igbo is from the Volta-Niger
family, which is under-represented in the datasets
of all seven models (as shown in Table 4 in the
appendix). This limits the benefit of cross-lingual
transfer for Igbo.

For all other languages, POS selectivity is con-
sistently positive, indicating that syntactic roles
are reliably being encoded in the hidden represen-
tations of the PLMs. A clear pattern emerges in
the distribution of POS information across layers.
Probe selectivity is low in early layers, increases
steadily in middle layers, peaks and plateaus in
deeper layers, and finally decreases slightly in final
layers. This pattern aligns with existing literature
showing that middle-to-last-layers encode syntactic
features more effectively (Rogers et al., 2020).

AfroLLM stands out as encoding a high amount
of POS information, achieving the highest selec-
tivity overall on four of the six languages. While
the exact reason for this is unknown, it is possible
that self-active learning is used to select training
examples that improve the model’s syntactic knowl-
edge during pretraining. Among the deeper models,
AfroXLMR-large exhibits the greatest internal syn-
actic knowledge overall, even achieving reasonable
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selectivity scores for Igbo in deeper layers. The
difference in selectivity between AfroXLMR and
XLM-R highlights the ability of multilingual adap-
tation to encode linguistic knowledge about spe-
cific languages. Similarly, Nguni-XLMR, exhibits
the best probe performance for isiXhosa, one of its
four target languages.

We include the raw probe accuracies for POS
tagging in Figure 6 in the appendix. The accura-
cies are quite high, comparing favourably to previ-
ously reported PLM performance for MasakhaPOS
(Dione et al., 2023).

5.2 NER

To contextualise our NER probes, we compute
the per-layer difference between the F1 scores of
probes trained on PLMs and their re-initialised
counterparts (described in subsection 3.3). As
shown in Figure 4, probes trained on PLMs consis-
tently exhibit performance gains over random base-
lines across all layers and languages. The general
trends observed for NER probes are similar to those
of POS probes. AfroXLMR achieves the high-
est probe gains across different languages, while
Nguni-XLMR does particularly well for isiXhosa.
As in POS tagging, probe performance peaks in
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Figure 4: Probe performance gains for NER tagging (F1 improvements over randomly re-initialised PLM architec-

tures), across all layers and 6 African languages.

middle-to-later layers.

We also observe evidence of cross-lingual knowl-
edge representation. Luganda is not included in the
pretraining data of either AfroXLMR or Nguni-
XLMR but both exhibit high probe performance
gains for Luganda than AfroLLM, which is pre-
trained on Luganda. Luganda is of the Bantu lan-
guage family, which is better represented than other
families in the pretraining data of our PLMs (as
shown in Table 4 in the appendix). This shows
that the PLMs are encoding linguistic similarities
between different languages. This cross-lingual
representation learning is the mechanism behind
the impressive zero-shot performance of PLMs pre-
viously reported on MasakhaNER (Adelani et al.,
2022).

5.3 News Topic Classification (NTC)

To contextualise our NTC probes, we compare the
classification accuracies of probes trained on PLMs
and probes trained on random, contextual baselines
(described in subsection 3.3). Figure 5 plots probe
accuracies alongside random baseline performance.
As for POS and NER, multilingual adaptation en-
hances sentence-level representations for target lan-
guages. Beyond this, NTC probing results diverge
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from the trends reported for POS and NER.

Probe accuracy remains relatively consistent
across layers, which aligns with previous work
showing that sentence-level semantic information
is spread across layers (Tenney et al., 2019a). The
one exception to this is Luganda, which exhibits
high variance across layers and is the only language
for which some PLM layers fall below random
probe performance. We are unable to explain this
behaviour. It is possible that the data scarcity of Lu-
ganda (see Table 2) is a contributing factor and that,
unlike for syntactic knowledge, cross-lingual se-
mantic knowledge does not transfer as effectively.

5.4 Analysing Trends Across Tasks

Table 3 lists results for the top-performing layer
for each PLM, across all languages and tasks. For
each PLM and language, it also shows to what
extent the language is represented by the model:
(1) not included at all, (2) included in pretraining
but not adaptation, or (3) included in pretraining
or adaptation. The table reveals trends that hold
across all three tasks.

Multilingual adaptation is known to be a reliable
method to improve downstream performance for
low-resource languages. Our results show that this
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Figure 5: Probe accuracy for news topic classification (visualised in comparison to a random contextual baseline)

across all layers and 6 African languages.

is being achieved, in part, by enhancing internal
representations of target languages. AfroXLMR-
large and Nguni-XLMR-large have the most in-
stances of top-performing layers (six cases each).
AfroXLMR-large performs best across Swabhili,
Igbo, and Hausa, all three of which belong to dif-
ferent language families. The multilingual adapta-
tion of AfroXLLMR is highly effective at enhanc-
ing linguistic feature encoding across typologically
diverse languages. Nguni-XLMR-large performs
best for isiXhosa and Luganda (which is also of the
Bantu language family). The more focussed, lin-
guistically oriented adaptation of Nguni-XLMR ef-
fectively enhances linguistic knowledge for a more
limited set of related languages.

A clear pattern in Table 3 is the fact that all top-
performing layers (except two) occur in PLMs that
represent probed languages in their final pretrain-
ing stage (either during adaptation or in pretraining
without subsequent adaptation). Best-layer perfor-
mances (boldface in the table) almost always co-
occur with maximal language representation (¥ %).
The only exception to this is Luganda, for which
Nguni-XLMR-Ilarge achieves two best-layer results.
While we have previously discussed evidence of
zero-shot cross-lingual representation learning, it
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is clear that including languages in pretraining is
essential for encoding language-specific syntactic
and semantic knowledge.

6 Conclusion

This paper presents a systematic analysis of the
linguistic knowledge encoded in PLMs for African
languages. Through extensive probing experiments
across seven PLMs and six typologically diverse
African languages, we highlight trends in how
PLMs represent syntactic and semantic informa-
tion. To contextualise our results we design a con-
trol task for POS tagging and employ randomly
initialised baselines to compare against NER and
NTC probing results. We show that multilingual
adaptation reliably enhances hidden representa-
tions for target languages. While token-level lin-
guistic knowledge is primarily encoded in middle
and deeper layers, sentence-level semantic infor-
mation is distributed across layers. We find ev-
idence that cross-lingual learning enhances rep-
resentations for low-resource languages, such as
Luganda, but cannot be relied on to do so for under-
represented languages, such as Igbo. We hope this
work inspires further research at the intersection of
interpretability and NLP for African language.



| | Swahili  Igbo Hausa Luganda isiXhosa Naija

Language coverage %k AR ok PARS %k PAQAS

XLM-R-base POS selectivity 16.39 5.98 13.15 19.23 36.32 15.39
NER gain 41.54 37.79 60.84 60.95 55.16 58.46

NTC accuracy 84.03 74.23 87.38 64.55 82.15 92.11

Language coverage ** PAQAS * PAQAS * %k W

XILM-R-large POS selectivity 19.09 3.29 14.54 19.97 38.15 19.56
g NER gain 79.98 45.03 66.63 66.95 68.97 74.20

NTC accuracy 81.93 73.20 87.38 61.82 86.87 92.76

Language coverage * %k * %k * % W %k 2.8 ¢

POS selectivity 16.73 4.22 14.40 24.18 38.48 16.28

AfroXLMR-base NER gain 4707 5055 6606 577 6527  69.52
NTC accuracy 80.46 76.80 86.12 70.00 87.54 90.79

Language coverage %k %k ok W %k %k

POS selectivity 21.82 7.62 16.56 26.97 42.49 22.03

AfroXLMR-large NER gain 7841 5520 7063 7579 7796  76.27
NTC accuracy 84.24 82.47 88.33 74.55 92.93 90.79

Language coverage * w7 R @A R 8A¢ RARS * PAgAt

. POS selectivity 19.09 3.6 9.76 25.67 43.13 18.92
Nguni-XLMR-large | \pp oain 7310 4752 6057 7728  80.18 5846
NTC accuracy 80.25 82.47 83.28 77.27 94.61 92.76

Language coverage %k ok ok PARS PAQAS * %

. POS selectivity 18.79 -0.82 14.77 18.85 30.87 14.55
AfriBERTa NER gain 4245 5378 6452 4875 6736 57.80
NTC accuracy 82.56 84.02 87.38 74.55 81.48 92.76

Language coverage ** ** * ** * % * %

AfroLM POS selectivity 23.64 3.37 26.55 27.98 38.92 27.28
NER gain 39.45 46.33 61.21 45.90 62.07 47.97

NTC accuracy 76.05 76.29 85.80 69.09 80.47 92.76

Table 3: Best-layer performance for each probing task, with best task performance overall indicated in boldface.
We show this alongside model language coverage to indicate how language inclusion improves probe performance.
w¢ indicates no language included in pretraining or adaptation, %5 shows the language was included in the base
model but not in the adapted model, while %% shows the model was either pretrained or adapted for the language.

Limitations

As discussed in Section 2, designing control tasks
for NER proved challenging. While control tasks
are primarily designed for word-level tasks, NER
presents complications because named entities of-
ten span multiple words. This makes it difficult
to apply the typical control task framework in a
meaningful way. Instead, we relied on random
baselines, which, although commonly used, are
known to have certain limitations (Belinkov, 2022;
Hewitt and Liang, 2019).

In this study, we used the first subword as in-
put for the classifier to align tokens with their hid-
den representations. However, even the choice of
subword pooling strategy can make a difference in
probing performance (Acs et al., 2021). Other pool-
ing strategies, such as last subword, mean pooling,
or attention over subwords, could provide differ-
ent insights, especially for morphologically rich
languages with high subword tokenization rates.
Future work should systematically compare the ef-
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fects of different subword pooling strategies across
various syntactic and semantic tasks for African
languages.
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A Data Information

Bantu (%) Volta-Niger (%) Afro-Asiatic (%) Others (%)
XLM-R 333 0.0 60.4
AfroXLMR 28.0 5.8 58.8
AfriBERTa 0.0 7.4 16.0 76.6
AfroLM 32.8 9.7 18.4 39.1

Table 4: Distribution of African datasets by language family
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Abstract

In this paper, we introduce the first publicly
available English-Kpelle dataset for machine
translation, comprising over 2,000 sentence
pairs drawn from everyday communication, re-
ligious texts, and educational materials. By
fine-tuning Meta’s No Language Left Behind
(NLLB) model on two versions of the dataset,
we achieved BLEU scores of up to 30 in the
Kpelle-to-English direction, demonstrating the
benefits of data augmentation. Our findings
align with NLLB-200 benchmarks on other
African languages, underscoring Kpelle’s po-
tential for competitive performance despite its
low-resource status. Beyond machine transla-
tion, this dataset enables broader NLP tasks, in-
cluding speech recognition and language mod-
eling. We conclude with a roadmap for future
dataset expansion, emphasizing orthographic
consistency, community-driven validation, and
interdisciplinary collaboration to advance in-
clusive language technology development for
Kpelle and other low-resourced Mande lan-
guages.

1 Introduction

Several notable initiatives have sought to address
the challenges of low-resource languages, par-
ticularly in Africa. Collaborative projects like
Masakhane (Nekoto et al., 2020; Orife et al., 2020)
have created and publicly released several machine
translation datasets and baseline models for African
languages (Nekoto et al., 2020; Orife et al., 2020;
Nakatumba-Nabende et al., 2024). The Lacuna
Fund has also played a vital role in accelerating
the creation of openly accessible text and speech
datasets for various African languages (Nakatumba-
Nabende et al., 2024; Asamoah Owusu et al., 2022;
Vydrin et al., 2022; Asmelash Teka Hadgu et al.,
2022; Wanjawa et al., 2024; Adelani et al., 2022).
Additionally, there is Meta’s "No Language Left
Behind" (NLLB) project aimed to develop high-
quality machine translation systems for over 200
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languages, including many low-resource languages
in Africa (Team et al., 2022). Despite these efforts,
languages such as the Kpelle language have not
been explored, leaving the language marginalized
in natural language processing (NLP) research.

Kpelle is a language primarily spoken in Liberia
and Guinea, with over one million speakers across
these two countries (Vydrin, 2018). It is clas-
sified as a macro-language due to distinct vari-
ants—Liberian Kpelle and Guinean Kpelle—that,
while closely related, constitute separate linguistic
entities (Vydrin, 2018). Belonging to the South-
western subgroup of the broader Mande language
family, Kpelle is part of a larger linguistic fam-
ily that includes approximately 70 languages spo-
ken by at least 25 million native speakers and an
additional 30 million second-language speakers
throughout West Africa (Konoshenko, 2008; Vy-
drin, 2018). Within Liberia specifically, Kpelle
represents the largest indigenous language, spoken
by approximately 20% of the population (Vydrin,
2018).

Although Kpelle boasts a considerable num-
ber of speakers, it remains largely absent from
digital platforms, including Al tools. Kpelle is
a low-resourced language, which means the lan-
guage lacks sufficient digital resources to sup-
port the development of NLP applications. There-
fore, by extension, Kpelle faces the same chal-
lenges that are unique to low-resourced languages.
These challenges include data scarcity (Kusam-
pudi et al., 2021; Maillard et al., 2023; Nakatumba-
Nabende et al., 2024; Nguyen et al., 2022), data
quality(data limited to specific domains like re-
ligious texts) (Nakatumba-Nabende et al., 2024;
Maillard et al., 2023; Kusampudi et al., 2021; Team
et al., 2022), multilingualism, and dialectical varia-
tions(difficulty determining boundaries within di-
alects) (Konoshenko, 2024).

To address this significant gap, we present the
first-ever dataset for Kpelle. This dataset is de-
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signed for machine translation and language learn-
ing of Kpelle and English and vice versa. Our work
aims to lay the foundations for intensive research
for Kpelle and other low resource Liberian lan-
guages, enabling the development of NLP applica-
tions and solutions that can enhance the way speak-
ers of the language interact with everyday technolo-
gies. This paper begins with an introduction high-
lighting our work’s foundations and motivations.
The continuing sections present the related work for
machine translation for African languages. We then
present the history of the Kpelle language, exam-
ining its unique linguistic features. Following that,
we discuss the dataset creation process and the cor-
pus benchmarking using the NLLB model and the
results obtained. Our contributions are as follows:!

(a) Created a bilingual English-Kpelle corpus that
has 3234 translation pairs. (b) The methodological
data collection, cleaning, and alignment approach
offers a replicable framework for other researchers
working with low-resource languages. (c) Bench-
marked the dataset on NLLB achieving a BLEU of
~ 30 for kpe_Latn — eng_Latn translation and a
BLEU of =~ 24 eng_Latn — kpe_Latn translation.

2 Related Work

2.1 Review of Efforts in Low-Resource
Language Datasets

The development of robust NLP tools for low-
resource languages is limited by data scarcity,
creating significant challenges for tasks like ma-
chine translation. Addressing this challenge
has prompted various initiatives to expand lan-
guage coverage and improve translation quality.
Community-led projects like Masakhane have
played a pivotal role in building datasets and mod-
els for African languages through a collaborative
approach involving researchers and native speak-
ers (Nakatumba-Nabende et al., 2024; Akinfaderin,
2020). The Lacuna Fund has further supported
these efforts by funding the creation of open-source
text and speech resources for African languages
(Akinfaderin, 2020; Nakatumba-Nabende et al.,
2024; Asamoah Owusu et al., 2022; Vydrin et al.,
2022; Asmelash Teka Hadgu et al., 2022; Wanjawa
et al., 2024; Adelani et al., 2022). Meta’s ambi-
tious “No Language Left Behind” (NLLB) project
has made significant progress in building machine
translation systems for over 200 languages, includ-

!Dataset is made available at https: //huggingface.co/
datasets/IARG-UF/English-Kpelle-Corpus
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ing many that are under-resourced (Team et al.,
2022). The NLLB Team et al. (2022) used data min-
ing to transform vast monolingual datasets into new
training data for low-resource languages and em-
ployed new modeling approaches, like the Sparsely
Gated Mixture of Experts, to improve translation
quality (Team et al., 2022). However, NLLB (Team
et al., 2022), like many other initiatives, primarily
focuses on languages with established written stan-
dards, leaving languages with limited or no written
traditions largely unaddressed .

Beyond large-scale projects, creating specialized
corpora has proven vital in addressing the data di-
versity and domain adaptation needs of specific
languages and regions (Agyei et al., 2024; Mail-
lard et al., 2023). The Twi-2-ENG corpus from
(Agyei et al., 2024) is a recent example, providing
a comprehensive resource for the Twi language,
encompassing a wide range of genres relevant to
Ghanaian Twi-speaking communities. This cor-
pus aims to support NLP applications like machine
translation and linguistic research by offering a
searchable platform for accurate translations and
a deeper understanding of Twi linguistics (Agyei
et al., 2024; George et al., 2024; Williams et al.,
2018). Another example is the LORELEI program,
initiated by DARPA, which targets research and
development of language technologies that aim to
reduce the dependency on manually transcribed
and translated corpora (Nguyen et al., 2022; Agyei
et al., 2024; Goyal et al., 2021). This program
has facilitated the collection of language samples
and data for several African languages, including
Hausa, Zulu, Yoruba, Twi, Somali, Swahili, and
Wolof, contributing to the growth of language re-
sources for these languages (Agyei et al., 2024;
Goyal et al., 2021; Team et al., 2022).

2.2 Prior Work on the Mande Language
Family

Existing NLP research on the Mande languages
primarily focuses on individual languages, with
limited cross-linguistic studies or comprehensive
datasets representing the broader family (Vydrin,
2018). A few studies have investigated specific
linguistic phenomena, such as the origin of the S-
O-V-X word order (Vydrin, 2018), motion events
in Bambara (Vydrin, 2018), and the evolution of
tonal systems (Konoshenko, 2008; Vydrin, 2018).
Efforts in language documentation and corpus cre-
ation for Mande languages have also been under-
taken (George et al., 2024; Nakatumba-Nabende
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et al., 2024; Akinfaderin, 2020; Team et al., 2022).
For instance, a grammatical sketch of Beng, a
Southern Mande language, has been developed (Pa-
perno, 2014). Additionally, research on the Kakabe
language, a Western Mande language, has focused
on prosody in grammar (Vydrina, 2017). How-
ever, these efforts typically focus on individual
languages or specific linguistic phenomena, and
thus do not provide comprehensive resources or
datasets necessary for cross-lingual NLP applica-
tions across the broader Mande language family.

2.3 Gap Filled by the Kpelle Dataset

The Kpelle Dataset aims to address a critical gap
in the current research by providing the first, pub-
licly available bilingual dataset for the Kpelle lan-
guage. Despite being one of the most widely spo-
ken languages in Liberia and Guinea, Kpelle re-
mains severely underrepresented in NLP research,
lacking any existing publicly available datasets.
This absence stems from several factors, includ-
ing Kpelle’s status as a low-resource language with
limited digital presence, the complexities arising
from its dialectal variations across Guinea and
Liberia (Konoshenko, 2008; Vydrin, 2018), and
the lack of standardized orthography (Konoshenko,
2024). The dataset from this work will provide a
much-needed resource for developing and evaluat-
ing NLP tools for Kpelle, enabling advancements
in tasks like machine translation, language model-
ing, and speech recognition. By making this dataset
publicly available, the project contributes to the
broader goal of promoting language diversity and
inclusion for African Languages.

3 Overview of Kpelle

As previously mentioned, Kpelle belongs to the
Southwestern Mande branch of the larger Mande
language family. Figure 1 illustrates how Kpelle
fits within this broader linguistic context, demon-
strating its relationship to other languages spoken
throughout Liberia.

Kpelle boasts of a rich oral tradition, with sto-
rytelling, proverbs, and songs playing a pivotal
role in preserving the history and cultural values
of the people (Thach, 1981). Oral tradition has
been key in maintaining the language across gen-
erations, especially since written text is limited
(Thach, 1981). Also, Kpelle faces challenges in
representation and expansive linguistic research
due to its low-resources status.
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Further, external influences have impacted the
Kpelle language. In the 19th and 20th centuries,
interactions with European colonizers and neigh-
boring ethnic groups introduced new vocabulary
into the language (Thach, 1981). However, Kpelle
has kept its core linguistic structure and continues
to thrive as a means of communication and cultural
identity for its speakers (Thach, 1981).

3.1 Linguistic Features

In this paper, we focus on Liberian Kpelle which
exhibits distinct linguistic features that set it apart
within the Mande Language family.

3.1.1 Phonetics

Kpelle uses a sound system with a rich array of con-
sonants and vowels (Thach, 1981; Vydrin, 2018;
Konoshenko, 2024; Thach et al., 1981). Notably,
it includes labiovelar stops such as /gb/ and /kp/,
which are said simultaneously at the velar and bi-
labial places of articulation and represent single
consonant sounds (Thach, 1981; Thach et al., 1981;
Vydrin, 2018). These sounds are relatively rare in
global languages and contribute to Kpelle’s unique
phonological profile. The vowel system in Kpelle
has seven oral vowels and their nasal counterparts,
making for a complex vocalic inventory (Vydrin,
2018). Dialectical variations influence pronuncia-
tion, particularly with the /s/ sound (Thach, 1981).
In some regions, the /s/ can resemble the English
/s/; in others, it may sound like /[/ (as in "ship")
or /h/ (Thach, 1981). These forms of variations
can pose difficulties for language learners.

3.1.2 Syntax

Kpelle follows a Subject-Verb-Object(SVO) sen-
tence structure, which aligns with the syntactic
patterns of many languages in the world, including
English (Thach, 1981; Vydrin, 2018; Konoshenko,
2008). This syntactic structure facilitates the trans-
lation of Kpelle to English to some extent. Kpelle
also distinguishes between dependent and indepen-
dent nouns, akin to the idea of inalienable and alien-
able possession seen in other languages (Thach,
1981; Vydrin, 2018). For example, body parts and
kinship terms are treated differently grammatically
compared to other nouns, affecting possessive con-
structions (Thach, 1981; Vydrin, 2018).

Modifiers in Kpelle usually follow the nouns
they describe (Thach, 1981), and the language em-
ploys postpositions rather than prepositions (Vy-
drin, 2018). Verb serialization is also a feature
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Figure 1: Overview of Liberian language family under the Niger-Congo Branch.

in Kpelle (Heine and Reh, 1984), where multiple
verbs are used sequentially to convey complex ac-
tions or events without conjunctions.

3.1.3 Grammar

Kpelle grammar has a complex system of pronouns
that reflect distinctions in person, number, and
sometimes gender (Thach, 1981; Vydrin, 2018).
The verb system marks tenses, aspect, and mood
through affixes and particles (Thach, 1981; Thach
et al., 1981). For example, there are specific mark-
ers for past, present, and future tenses and for com-
pleted and ongoing actions (Thach et al., 1981).

Noun classes in Kpelle are less prominent than
in some other African languages but do exist and
can affect agreement within the sentence (Vydrin,
2018). Kpelle employs emphatic particles like 'bé’
to convey emphasis or focus within a sentence
(Thach, 1981). Since tone and stress are primarily
used to convey lexical and grammatical meaning
(Thach, 1981; Thach et al., 1981; Vydrin, 2018)-
these particles play an important role in adding
nuance and emphasis without altering the tonal
structure.

3.1.4 Tonality

Liberian Kpelle is a tonal language, meaning that
the pitch at which a syllable is said can change
the word’s meaning entirely (Thach, 1981; Thach
et al., 1981; Vydrin, 2018; Konoshenko, 2024,
2008). Kpelle features three tone levels: high, mid,
and low (Thach, 1981; Vydrin, 2018; Konoshenko,
2008). Tones can be level (staying the same
throughout the syllable) or contour (changing pitch
within the syllable) (Thach, 1981; Thach et al.,
1981; Konoshenko, 2008). This tonal system is
essential for distinguishing words that are other-
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wise identical phonetically (Konoshenko, 2008).
For example, (Konoshenko, 2008) presents that
"simple words in Kpelle form several groupings
according to the tonal patterns which are assigned
to these words lexically," and the groupings can
be binned into categories known as tonal classes
(Konoshenko, 2008). Also, a single syllable pro-
nounced with a high tone might mean one thing
(la, meaning mouth); in a mid-tone, that same sylla-
ble communicates (la, meaning it), while the same
syllable with a low tone means something entirely
different (la, meaning if) (Thach, 1981).

Tone also plays a grammatical role in Kpelle,
affecting verb tenses and aspects (Konoshenko,
2008). Tonal patterns indicate whether an action
is completed, ongoing, or habitual. This reliance
on tone adds a layer of complexity to Kpelle learn-
ing and computational processing since accurate
tonal representation is critical, especially for this
work. Table 1 presents the tones seen in Kpelle
with examples.

Table 1: Tonal Levels in Kpelle adapted from (Thach,
1981; Weako, 2024)

Tonal Level Mark Kpelle English
Example Version
High z60 native doctor
Mid no mark/" tuna rain
Low nydo be afraid
High-Low - sda today
Mid-High-Low " tiso sneeze
Low-High v k3 to plant
Nasal - sd to dance

3.1.5 Writing System

Historically, Kpelle has been primarily an oral lan-
guage, but people have worked to develop writ-



ing systems that promote literacy and documen-
tation. An example is the Kpelle syllabary cre-
ated by Chief Gbili in the 1930s, an indigenous
script designed to represent the sounds of Kpelle
(African 671, 2019). However, few people use this
script today (African 671, 2019).

More commonly, Kpelle is written using Latin-
based orthography (Vydrin, 2018). This system has
been influenced by various scholars and linguists,
such as William E. Welmers, who worked on devel-
oping practical orthographies for African languages
in the mid-20th century (Konoshenko, 2008).
The Latin-based orthography often has diacritical
marks to show tonal variations (Konoshenko, 2024;
Thach, 1981); moreover, the lack of standardiza-
tion leads to inconsistencies in written materials
(Konoshenko, 2024; Thach, 1981).

The Kpelle dictionary by (Leidenfrost and
McKay, 2005) incorporates tonal markings and
provides valuable resources for language learners
and researchers (Thach, 1981; Konoshenko, 2008).
Materials from the Kpelle Literacy Center in Totota
also use the Latin script to promote written literacy
among native speakers of Kpelle (Thach, 1981).
The absence of a universally accepted orthography
remains challenging, considering the variations be-
tween Liberian and Guinean Kpelle (Thach, 1981;
Konoshenko, 2008).

4 Dataset Creation

Creating the English-Kpelle dataset involved plan-
ning and execution to ensure the data’s relevance,
accuracy, and cultural appropriateness. Our pri-
mary goal was to compile a corpus facilitating ef-
fective communication for individuals who may
not speak Kpelle, particularly in everyday social
interactions and essential services. This section
outlines the data collection sources and methods,
preprocessing steps, and translation alignment pro-
cesses used in building the dataset.

4.1 Data Collection

4.1.1 Sources

The sources used in building the dataset covered
a combination of practical and culturally relevant
scenarios:

Travel and Tourism Phrases. We identified
common phrases and questions frequently asked
by tourists and travelers when they visit a new lo-
cation. Usually, due to their unfamiliar disposition
to the place, we focused on phrases that covered
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greetings, inquiries about locations, costs, weather
conditions, and other essential interactions. The
phrases were sourced from the following respected
travel and language teaching website: Business
Insider’s Travel Language Phrases(Abadi, 2018),
EF Education First’s Essential Phrases(B, 2018),
Online Teachers UK’s English for Tourism and
Travel (Writer, 2017), Go Overseas’ Language
Phrases Before Travelling (Perez, 2022), Accessi-
ble Travel Phrasebook by Premiki (Limited, 2018),
and Wikivoyage’s Afrikaans Phrasebook (Wikivoy-
age, 2005).

Religious Texts. Religious literature, like the
Bible, often contains a wealth of translated mate-
rial that can be valuable for language datasets. We
added a few excerpts from publicly available reli-
gious texts that have been translated into Kpelle.

Educational Material. Significant portions of
the dataset were sourced from the book A Learner
Directed Approach to Kpelle by Sharon V. Thach
(Thach, 1981), English-Kpelle Dictionary, with a
Grammar Sketch and English-Kpelle Finder List
(Leidenfrost and McKay, 2005), We Have Come
To Learn Kpelle (Ricks, 2009). These resources
had bilingual content, including matching English-
Kpelle sentence pairs, standalone English para-
graphs, and standalone Kpelle paragraphs.

4.1.2 Methods

Data Extraction. We gathered a list of essential
phrases and sentences relevant to everyday com-
munication from the travel and tourism websites.
These phrases were selected based on their fre-
quency of use and utility in facilitating introductory
interaction.

Translation. For English or Kpelle paragraphs
that did not have the corresponding translation, we
engaged a native Kpelle speaker with linguistic
expertise to provide accurate translations.

Segmentation of Paragraphs. In cases where
the source material provided paragraphs rather than
individual sentences, we segmented the text into
sentence pairs. This approach increased the granu-
larity of the dataset, making it suitable for machine
translation tasks.

Expert Verification. All translated sentences
were reviewed by Kpelle language experts to verify
the accuracy of the translations, the correctness
of tone and grammar, and the appropriateness of
context.



4.2 Data Preprocessing
4.2.1 Cleaning

The raw data collected contained inconsistencies
such as typographical errors, informal language,
and irrelevant content. We performed a thorough
cleaning process to remove these anomalies. This
included spell-checking, correcting grammatical
errors, and eliminating duplicate entries. Special
attention was given to resolving translation incon-
sistencies, especially where multiple translations
existed for a single English phrase. The most ac-
curate and contextually appropriate translation was
selected based on expert advice.

4.2.2 Normalization

Given Kpelle’s lack of a universally accepted writ-
ing system, we adopted the Latin-based orthogra-
phy commonly used in educational materials and
literacy programs. Diacritical marks were standard-
ized to represent tonal variations accurately. All
text data was encoded using UTF-8 Unicode to en-
sure compatibility across different platforms and
tools. This was essential for preserving special
characters and tonal markers unique to Kpelle. To
maintain consistency, all text was converted to a
standard case format, except where capitalization
was necessary for proper nouns and the beginning
of sentences.

4.2.3 Segmentation

The text was segmented into individual sentences
using punctuation cues and linguistic rules specific
to Kpelle. This process was manually verified due
to the potential for misinterpretation by automated
tokenizers not tailored to Kpelle. Within sentences,
words were tokenized based on whitespace and
morphological patterns. This facilitated subsequent
processing tasks such as alignment and statistical
analysis. Kpelle often uses contractions and com-
pound words. These were carefully identified and
treated according to linguistic guidelines to ensure
accurate tokenization.

5 Dataset Statistics and Analysis

5.1 Quantitative Overview

The dataset has 32342 entries corresponding to
unique Kpelle-English translation pairs. Typically,
each entry has one Kpelle sentence paired with its

This count refers specifically to Version 2 of our dataset,
which extends the initial 1,518 sentence pairs to 2,005 and
increases word entries from 1,181 to 1,229.
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English equivalent; however, some entries contain
sentences under a single translation unit (e.g., com-
pound or complex sentences kept intact to preserve
context). In total, the dataset contains 30,021 words
(14,790 in Kpelle and 15,231 in English) and 4,369
sentences (2,202 in Kpelle and 2,167 in English).
The longest sentences contain 70 Kpelle words and
49 English words, with the shortest being a single
word in either language. Moreover, there are 4,702
unique Kpelle words and 3,579 unique English
words, resulting in an overall vocabulary of 8,281
entries. These statistics make this the largest pub-
licly available bilingual English—Kpelle resource
to date.

5.2 Sentence Length

After our distribution analysis, we observed that
most of the English sentences ranged from 3 to 15
words, with an average length of around 8 words
per sentence. The Kpelle sentences vary more due
to certain functional words’ presence (or absence)
and the possibility of encoding multiple concepts
in a single phrase. However, the average Kpelle
sentence length approximates 7 words, with most
sentences falling between 3 and 12.

English Sentence Length Distribution

500

frequency

0 10 20 30

Sentence Length (words)

20

(a) English sentence length distribution

Kpelle Sentence Length Distribution

36
Sentence Length (words)

(b) Kpelle sentence length distribution
Figure 2: Sentence length distributions for English (top)

and Kpelle (bottom), illustrating the corpus’s inherent
variability.

The wide range of sentence lengths reflects the
dataset’s inclusion of both simple and more com-
plex utterances. Short, single-word sentences of-
ten correspond to exclamations, greetings, or short
prompts, while longer sentences derive from reli-



gious or educational materials that contain embed-
ded clauses and descriptive text.

5.3 Vocabulary Frequency

In terms of vocabulary, the top ten most frequent
english words were man (116), good (93), town
(93), want (83), go (75), going (65), one (61), house
(59), baby (54), went (53). Similarly, the top ten
most frequent Kpelle words were su (177), pdi
(143), la (123), kaa (123), k& (112), me (108)ni,
pori (104), li (101), ke (99), k&i (82).

Even though we remove common stop words,
frequent English words indicate a high presence
of articles, pronouns, and commonly used verbs,
mirroring everyday conversational usage. On the
Kpelle side, repeated use of function words like
a, da, and e underscores similar syntactic necessi-
ties. These observations led to an English Hapax
Legomena (words that appear once) of 1732 and a
Kpelle Hapax Legomena of 2714.

A high number of hapax legomena suggests a
rich and diverse vocabulary, but it also indicates
that many words appear in the dataset with minimal
frequency. This sparsity could pose challenges for
certain NLP models, as low-frequency words often
result in less robust embeddings and higher rates
of out-of-vocabulary (OOV) tokens.

5.4 Domain Coverage

We conducted a keyword-based classification
across common categories to understand the
dataset’s topical breadth. Table 2 shows that Daily
Conversation (664) and Household (214) predom-
inate, while underrepresented categories were Re-
ligion (27), Health (21), and Education (14). It
is worth noting that around 30% of the dataset re-
mains unclassified, reflecting idiomatic expressions
and content not easily mapped to predefined cate-
gories. However, the broad coverage of the dataset,
given the number of entries, ensures the dataset can
serve a variety of use cases.

5.5 Observations and Challenges

Even though we adopt a standardized Latin-based
script, Kpelle orthography’s dynamic and evolving
nature continues to introduce spelling and tone-
marking variations throughout the dataset. These
inconsistencies highlight the broader challenges of
documenting a language with limited written tra-
ditions and underscore the importance of ongoing
refinement in orthographic conventions. Addition-
ally, the low representation of domains such as
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Domain Number of Sentences
Daily Conversation 664
Household 214
Business & Finance 142
Family 93
Time & Events 91
Nature & Environment 80
General Purpose 59
Religion 27
Health 21
Travel & Tourism 19
Education 14
Unclassified 581

Table 2: Distribution of Sentences by Domain

Religion, Health, and Education highlights future
avenues for data collection to achieve more bal-
anced coverage. The distribution of topics also
shows that key domains, such as Religion, Health,
and Education, remain underrepresented, empha-
sizing potential areas for future data collection and
corpus expansion to achieve more balanced cover-
age.

6 Experiments and Benchmarking

This section presents our machine translation exper-
iments and benchmarking using the NLLB model
by (Team et al., 2022). We describe our base-
line models, outline the fine-tuning process, re-
port quantitative results using standard evaluation
metrics, and provide an analysis comparing our
outcomes with previously reported NLLB-200 per-
formance in other African languages. Figure 3
visually summarize this process.

6.1 Baseline Models and Experimental Setup

Given its strong performance across low-resource
African languages, we leveraged Meta’s NLLB
model as a baseline. Our experiments focus on
two Kpelle dataset versions:Version 1 (V1) con-
tains 1,667 Kpelle and 1,638 English sentences
(3,852 and 2,952 unique words). Version 2 (V2)
benefits from data augmentation efforts, yielding
2,202 Kpelle and 2,167 English sentences (4,702
and 3,579 unique words). We aimed to assess how
expanding the corpus (from 1,518 to 2,005 trans-
lation pairs) affects translation quality in both En-
glish — Kpelle (eng_Latn — kpe_Latn) and Kpelle
— English (kpe_Latn — eng_Latn). We split each
dataset into two sets, train and test, according to
a 9:1 ratio and hold out the test set. Then, these
sets were fine-tuned for 10k, 30k, and 60k steps
on top of NLLB using Adafactor as the optimizer
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Figure 3: NLLB-200 fine-tuning with Kpelle: (a) Model adaptation for bidirectional translation, and (b) a sample

translation.

with a batch size of 8, constrained by the memory
requirements of the Quadro RTX 6000 GPU, train-
ing times ranged between 30 minutes to 6 hours,
dependent on the number of steps and the version
of the dataset. We trained a Kpelle-specific tok-
enizer (a SentencePiece model (Kudo and Richard-
son, 2018)) on data from Penedo et al. (2024) to
handle out-of-vocabulary tokens and then enriched
the standard NLLB tokenizer with any missing
tokens, ensuring compatibility with the model’s
subword vocabulary. Finally, we used sacreBLEU
(Post, 2018) to measure BLEU, 1-4-gram precision,
brevity penalty (BP), hypothesis/reference lengths,
and chrF2++ to evaluate the fine-tuned model.

6.2 Results

eng_Latn — kpe_Latn

Precision (1-4 grams)

Steps  BLEU  chrF2++ BP
l-gram  2-gram  3-gram  4-gram
10k 24.09 38.24 49.3 28.7 20.5 16.8 0913
NLLB 30k 24.46 38.20 50.2 29.1 20.6 16.8 0.918
60k 24.00 38.19 50.1 28.2 19.5 16.1 0.930
10k 19.80 38.26 49.6 25.4 15.5 10.0 0.942
NLLB V2 30k 19.97 38.42 49.1 24.6 152 10.2 0.961
60k 20.79 38.83 515 26.9 16.9 114 0.915
kpe_Latn — eng_Latn
Steps BLEU  chrF2++ Precision (1-4 grams) BP
I-gram  2-gram  3-gram  4-gram
10k 23.16 38.29 42.5 24.7 18.6 14.7 1.000
NLLB 30k 24.31 39.60 44.1 26.6 19.4 15.3 1.000
60k 23.65 39.41 43.1 25.2 189 152 1.000
10k 26.39 40.22 50.0 30.6 20.9 152 0.999
NLLB V2 30k 30.03 44.00 524 34.0 247 18.4 1.000

60k 30.28 44.28 534 34.5 24.8 18.3 1.000

Table 3: NLLB performance when fine-tuned on two
versions of the English-Kpelle dataset (V1 and V2) at
10k, 30k, and 60k steps. Metrics (BLEU, chrF2++,
1-4-gram precision, and BP) are reported for both
eng_Latn—kpe_Latn and kpe_Latn—eng_Latn. Bold
scores denote the best performance.

Table 3 summarizes the results for NLLB fine-
tuned on V1 and V2 of the Kpelle dataset across
10k, 30k, and 60k training steps.

We observe that moving from V1 (1,518 en-
tries) to V2 (2,005 entries) improved BLEU scores
in some scenarios, particularly for kpe_Latn —
eng_Latn translation at higher step counts (e.g.,
30k, 60k). This outcome aligns with the broader ex-
pectation that additional in-domain data can boost
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model performance in low-resource settings. Fur-
ther, we also observe that increasing the fine-tuning
steps from 10k to 30k and 60k generally yielded
incremental gains for both versions. However, the
improvements were again more pronounced when
translating from Kpelle to English. In contrast,
eng_Latn — kpe_Latn translation showed modest
gains, suggesting that further optimization may be
necessary to achieve comparable results in transla-
tion quality for Kpelle.

6.3 Analysis and Comparison with NLLB-200
Benchmarks

Reports by Team et al. (2022) highlight NLLB-
200’s performance across multiple African lan-
guages (e.g., Hausa, Igbo, Swahili, Yoruba). As
shown in Table 4, M2M-100, MMTAfrica, and
NLLB-200 yield varying BLEU and chrF2++
scores for these languages. Given the differences in
language structure, dataset sizes, and domain cov-
erage, cross-lingual comparisons should be made
cautiously. However, the scores we observe for
Kpelle (BLEU in the range of 20-30 depending
on the direction and training steps) are gener-
ally consistent with NLLB-200’s range for other
African languages..

eng_Latn-xx
MMTAfrica M2M-100*

xx—eng_Latn
MMTAfrica M2M-100*

NLLB-200 NLLB-200

hau_Latn -I- 4.0/- 33.6/53.5 -I- 16.3/- 38.5/57.3
ibo_Latn 21.4/37.2 19.9/- 25.8/41.4 15.4/38.9 12.0/- 35.5/54.4
lug_Latn -I- 7.6/- 16.8/39.8 -/- 7.7/~ 27.4/46.7
luo_Latn -I- 13.7/- 18.0/38.5 -I- 11.8/- 24.5/43.7
swh_Latn  40.1/53.1 27.1/- 37.9/58.6 28.4/56.1 25.8/- 48.1/66.1
wol_Latn -I- 8.2/- 11.5/29.7 -/- 7.5/- 22.4/41.2
xho_Latn  27.1/44.9 /- 29.5/48.6 21.7/48.6 -I- 41.9/59.9
yor_Latn 12.0/28.3 13.4/- 13.8/25.5 9.0/30.6 9.3/- 26.6/46.3
zul_Latn -I- 19.2/- 36.3/53.3 -/- 19.2/- 43.4/61.5

Table 4: BLEU/chrF2++ performance on selected
African languages (eng_Latn <+ xx) for MMTAfTica,
M2M-100%*, and NLLB-200 from (Team et al., 2022).

Our kpe_Latn — eng_Latn best BLEU of
30.28 at 60k steps surpasses NLLB-200’s lower-
bound performances (22.4 BLEU on Wolof), mid-
range(24.5 BLEU on Luo, 26.6 BLEU on You-
ruba, 27.4 BLEU on Luganada) results, though it
remains below the model’s high performance (48.1
BLEU on Swahili). The eng_Latn — kpe_Latn



translation lags slightly behind, reaching approx-
imately 24.46 BLEU with V1 at 30k steps. This
result is comparable and higher to NLLB-200’s re-
sults (= 25.8 BLEU in some languages) but lower
than its highest observed values (37.9 BLEU in
Swabhili). Kpelle translations have the potential to
reach NLLB-200’s highest performance levels with
further data augmentation and fine-tuning. How-
ever, language-specific nuances, such as Kpelle’s
orthographic variations, limited standardization,
and relatively small corpus size, currently limit
model performance.

7 Conclusion

This paper introduced the first publicly available
English-Kpelle dataset for machine translation.
Our corpus has over 2,000 translation pairs from
diverse domains, such as daily conversation, house-
hold activities, and religious texts. We demon-
strated the dataset’s usability by fine-tuning Meta’s
NLLB model on two corpus versions. Our experi-
ments revealed that data augmentation significantly
benefits translation performance, particularly in the
Kpelle-to-English direction at higher fine-tuning
steps. These findings highlight the importance of
domain-specific data expansion in enhancing trans-
lation quality for low-resource languages. More-
over, comparative analysis against reported NLLB-
200 results highlights the potential for Kpelle NLP
systems to achieve competitive performance levels,
given continued data curation and iterative fine-
tuning.

8 Limitations

1. Dataset Expansion and Domain Coverage:
While we have made progress in building a
representative English-Kpelle dataset, some
gaps remain. Future efforts could focus on
collecting domain-specific materials from un-
derrepresented categories such as nature, en-
vironment, and specialized technical fields to
enhance the domain coverage of the dataset
further. Adding more varied dialectal data is
also essential to capture the linguistic richness
of Kpelle more comprehensively.

Broader NLP Applications: Beyond ma-
chine translation, the dataset can be a founda-
tion for other NLP tasks, including speech
recognition, language modeling, and senti-
ment analysis. We intend to explore these
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avenues, building on the groundwork estab-
lished here to develop robust and context-
aware Kpelle language tools.

Limited Cross Model Evaluation: Our cur-
rent evaluation relies exclusively on fine-
tuning Meta’s NLLB model. While NLLB
provides a strong baseline for low-resource
translation, this restricts our understanding of
how the dataset performs across diverse archi-
tectures. As future work, we plan to bench-
mark an expanded version of the dataset on
additional models, including M2M-100 and
BLOOMZ, to better assess transferability and
generalization. We also intend to incorporate
complementary evaluation metrics, such as
TER and METEOR, to provide a more com-
prehensive analysis of model performance.

Lack of Qualitative Error Analysis: The
current scope of this work sought to present
the first English-Kpelle dataset and under-
stand Kpelle’s potential by benchmarking on
a strong baseline like Meta’s NLLB model.
Given this, we failed to conduct a qualitative
error analysis on the translation generated for
the held-out test set. In future work, we plan
to introduce human evaluation loops where na-
tive Kpelle speakers assess translation quality
and identify systematic errors. This feedback
will guide targeted model improvements and
support a more fine-grained understanding of
the dataset’s linguistic challenges.

8.1 Call to Action

We invite researchers, linguists, and language tech-
nology enthusiasts to collaborate in expanding and
refining this dataset. By contributing additional
Kpelle text resources, validating translations, or de-
veloping novel NLP techniques, the research com-
munity can help bridge the digital divide faced by
low-resource languages. We hope the work pre-
sented here will spark renewed interest in Kpelle
and other underrepresented Mande languages, ulti-
mately driving innovation and inclusivity in multi-
lingual NLP.
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Abstract

The performance of Automatic Speech Recog-
nition (ASR) depends on the availability of
transcribed speech datasets—often scarce or
non-existent for many of the world’s lan-
guages. This study investigates alternative
strategies to bridge the data gap using zero-
shot cross-lingual transfer, leveraging translit-
eration as a method to utilize data from other
languages. We experiment with transliteration
from various source languages and demonstrate
ASR performance in a low-resourced language,
Ambharic. We find that source data that align
with the character distribution of the test data
achieve the best performance, regardless of
language family. We also experiment with
fine-tuning with minimal transcribed data in
the target language. Our findings demonstrate
that transliteration, particularly when combined
with a strategic choice of source languages, is
a viable approach for improving ASR in zero-
shot and low-resourced settings.

1 Introduction

Automatic Speech Recognition (ASR) is an essen-
tial technology used in digital accessibility, video
captioning, and virtual assistants. The performance
of ASR models depends on the availability of large
transcribed speech data for supervised training;
yet, such data is lacking for the majority of the
world’s languages. Attempts to address this data
resource gap include data augmentation techniques
via self-training and speech synthesis (Bartelds
et al., 2023; Kahn et al.), transfer learning by multi-
lingual pre-training alongside high-resourced lan-
guages (Radford et al., 2022), or zero-shot transfer
(Zelasko et al., 2020; Feng et al., 2021). Zero-
shot approaches are particularly appealing in low-
resourced settings as they eliminate the require-
ment of aligned data in the target language.
Languages use different writing scripts; hence,
direct zero-shot transfer to the target language writ-
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ing system may not be possible. Prior works ad-
dress this challenge by relying on phonetic tran-
scriptions, namely the International Phonetic Al-
phabet (IPA), as a universal system that can be
applied zero-shot to unseen languages (e.g. Feng
et al., 2021). While IPA representations are benefi-
cial for building text-free speech recognition sys-
tems for unwritten languages, they are not suitable
for use cases where users interact directly with the
ASR output, such as automatic dictation or video
captioning, as most people cannot decode IPA. An-
other challenge in zero-shot ASR is that languages
have different phonetic distributions. In such cross-
lingual settings, a deeper investigation of the choice
of transfer languages can improve performance (Do
et al., 2022; Khare et al., 2021).

We explore how to best utilize transliteration as
a mechanism for zero-shot ASR transfer. We fo-
cus on a single low-resourced language, Amharic,
as a target language, and experiment with Ara-
bic, Xhosa, French, and Spanish as our trans-
fer languages. We selected Arabic and Xhosa
based on language family and shared phonetic dis-
tribution(§3.1), and French and Spanish as high-
resourced but unrelated languages. We automati-
cally transliterate the transcriptions of the transfer
languages to our target language script and experi-
ment with zero-shot transfer with wav2vec2 XLS-R
and GMM-HMM models (§3.3). While zero-shot
speech recognition generally has high error rates
(Gao et al., 2021), our approach demonstrates im-
provements over prior work and gives insights into
best practices for cross-lingual transfer.!

Contributions Our results demonstrate how
transliteration can be used for effective zero-shot
transfer even when the source language does not
fully cover the phonemes of the target language
(§5.2). With only 22 hours of data from transfer

'Data, code and models will be aviable at

https://github.com/hhnigatu/ASR-via-Translitration
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languages—which is just 4% of the data size used
in prior work—zero-shot transfer through translit-
eration results in performance gains over existing
baselines (§5.3). In addition, with 10 minutes up
to one hour of target language data, we find that
transliteration offers an effective means for data
augmentation, resulting in up to ~30% absolute
reduction in CER compared to augmentation with
source language scripts (§5.4).

2 Related Work

In this section, we describe prior work on zero-shot
ASR, the use of transliteration for ASR transfer,
Ambharic ASR, and the impact of transfer language
selection in cross-lingual ASR.

Zero-Shot ASR: Prior work has explored zero-
shot cross-lingual ASR, mainly relying on IPA-
based transcriptions and measuring Phoneme Error
Rates (PER) (Xu et al., 2022) or Phonetic Token
Error Rates (PTER) (Zelasko et al., 2020). Cross-
lingual settings involve shared acoustic models
trained on single or multiple languages and tested
on an unseen language(s). However, performance
in this zero-shot setting has high error rates, in
the 70-90% range (Gao et al., 2021). Prior work
has relied on linguistic knowledge to improve zero-
shot ASR under these constraints: Xu et al. (2022)
mapped phonemes across transfer and target lan-
guages based on edit distance between articula-
tory features to capture Out-Of-Vocabulary (OOV)
phonemes in the target language. Gao et al. (2021)
improve zero-shot ASR by adding language em-
beddings to capture “phylogenetic similarity and
phone inventory” of the target language, in addi-
tion to masking phonetic tokens that do not exist
in the target language. However, IPA-based cross-
lingual ASR requires mapping back to the original
orthography of the target languages when used in
user-facing applications. Additionally, PER and
PTER do not reflect the performance at the word
level, which is the basic unit for many languages.

Ambharic ASR: Prior works have investigated
both zero-shot and supervised ASR systems for
Ambharic. Tachbelie et al. (2014) found that us-
ing morphemes in lexical and language modeling
led to improved performance gain for Amharic
with GMM-HMM models. In multilingual set-
tings, Whisper (Radford et al., 2022) which con-
tains 32 hours of Amharic speech with translated
English corpus reports a 140% WER. MMS (Pratap
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et al., 2023) which contains Amharic speech data
achieved 52.9% WER with CTC decoding and
30.1% WER with an external language model for
Ambharic. Previous work (Feng et al., 2021) in-
cluded Ambharic in a cross-lingual setting and found
that, when using a monolingual 3-gram language
model for decoding, the PER for Amharic was
74.8% on the Babel (Gales et al., 2014) data. Ze-
lasko et al. (2020) got a similar performance for
Ambharic in zero-shot cross-lingual transfer with a
PTER of 75.2% on the Babel dataset.

Transfer Language Selection: Prior work
showed that phonetic similarity of transfer and tar-
get languages improves performance (Khare et al.,
2021; Tachbelie et al., 2020a). Phonemes that are
not shared between transfer and target languages
suffer in cross-lingual ASR (Li et al., 2022; Khare
et al., 2021). Do et al. (2022) found that languages
that had higher Angular Similarity of Phoneme
Frequencies (ASPF) scores were better transfer lan-
guages for cross-lingual Text-To-Speech (TTS) as
compared to selecting a transfer language based
on language family. Tachbelie et al. (2020b) used
phonetic overlap to select a transfer language for
training an acoustic model and test ASR perfor-
mance on the target language. However, Tachbelie
et al. (2020b) used a phonetic dictionary and lan-
guage model in the target language.

Transliteration: When the transfer language or-
thography is different from the target language,
one potential solution is to use transliteration. By
transliterating all transcripts in a multilingual set-
ting to a single writing system, models can benefit
from cross-lingual transfer more effectively (Datta
et al.). Transliteration has also been used as a data
augmentation strategy: Khare et al. (2021) found
that further pre-training a model on transliterated
English data before finetuning on target language
data improved performance for all languages in
their experiments except Amharic. To the best of
our knowledge, zero-shot transfer with translitera-
tion has not been explored.

3 Transliteration-Based Zero-Shot ASR
for Amharic

As described in the previous section, most previ-
ous works on zero-shot ASR are based on pho-
netic transcriptions, which limits the usability of
the resulting ASR system. In addition, previous
works show relatively poor performance in zero-



shot Amharic ASR, even as measured in phoneme
error rates, compared to other languages. We uti-
lize transliteration as a means to achieve zero-shot
ASR directly in the target language orthography.
Additionally, we experiment with four transfer lan-
guages, looking at phonetic coverage and approxi-
mation through transliteration. We experiment with
fine-tuning a XLS-R model for zero-shot ASR. Ad-
ditionally, we experiment with GMM-HMM mod-
els with a Language Model (LM) trained in the
target language data. We report performance in
terms of Word Error Rate (WER), Character Error
Rate (CER), and Phone Token Error Rate (PTER).

3.1 Source & Target Languages

There are several strategies for selecting transfer
languages in cross-lingual speech systems, such
as using similarity in unigram phonetic distribu-
tion for ASR (Khare et al., 2021), or Angular
Similarity of Phoneme Frequencies (ASPF) (Do
et al., 2022). Mismatch in phonetic inventories
between source and target languages presents a
challenge for cross-lingual zero-shot ASR, which
degrades performance (§2). We experiment with
transfer language (1) from the same language fam-
ily (Arabic) (2) maximum unigram phonetic cov-
erage (Xhosa), and (3) unrelated higher resourced
languages (Spanish and French).

Target Language: Ambharic is an Afro-Semitic
language spoken in Ethiopia. It is written using the
Ge’ez script (Adugna, 2023) and has an Abugida®
writing system, which consists of consonant-vowel
sequences written as a unit. Ambharic has 38
phonemes (31 consonants and 7 vowels) (Leslau,
2000). It includes glottalized sounds or ejectives’
that are not found in many higher-resourced lan-
guages (Tachbelie et al., 2014).

Source Language: Arabic is an Afro-Semitic
language, which is the same language family as
Ambharic. The Arabic language has only three vow-
els with long and short versions (ara, 2023) and
short vowels are not always marked in writing as
they are in the form of diacritics (Contributors to
Wikimedia projects, 2023).

Source Language: Xhosa is a Niger-Congo lan-
guage spoken in Southern Africa. It uses the Latin
script and is known for having a heavy load of click
sounds*. Xhosa has 30 common phonemes with
Ambaric, the highest coverage from all of our other

Zhttps://www.omniglot.com/writing/ethiopic.htm
3https ://wals.info/chapter/7
*https://www.omniglot.com/writing/xhosa.htm
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transfer languages. Specifically, Xhosa covers the 5
ejective phonemes (k’, p’,t’, /tg’/,/lf’/ ) in Ambharic
that are not found in any of the other three transfer
languages.

Source Language: Spanish is an Indo-European
language that uses the Latin script. It has 5 vowels
and fewer than 20 consonants (Hualde, 2005); it
only covers 21 out of the 38 phonemes in Amharic.
Spanish is considered a high-resourced language
based on the availability of data, the number of
speakers, and the availability of language technolo-
gies.

Source Language: French is an Indo-European
language that also uses the Latin script. It is also
considered a high-resourced language. French cov-
ers 23 of the 38 phonemes of Amharic.

3.2 Transliteration

We transliterate the transfer language transcriptions
to the target language script. None of the languages
fully cover the phonemes in the target language (see
Table 2). There are also phonemes in the source
languages that do not exist in Amharic. In both
cases, the transliteration process approximates the
phonemes to the target language in a way that max-

imizes coverage; as an example, the Arabic
/y/ character is transliterated into the Ge’ez ‘ﬂ’/gg
For Xhosa, French, and Spanish we used the
google-transliteration-api® and for Arabic,
we built a rule-based transliterator.

Language | Original Word | Lexicon Entry Pronunciation
Arabic =3 ech. ™ CAd A A
/rahima/ rahima rahima
Xhosa waguqa PrP @ Al AP A
/waguk!a/ /waguk’a/ waguk’a
Ambharic m+TS M+ TR PRI AT A
t’ok’ometa t’ok” ometa t’ok’ ometa

Table 1: Sample lexicon entries for training (Arabic
and Xhosa) and testing (Amharic). We show both
original and IPA transcriptions for readability.

3.3 Models

GMM-HMM are traditional ASR models, in
which the distribution of acoustic features at each
time step is modeled as Gaussian Mixture Mod-
els (GMMs), and the transitions between phones
(or sub-phones) are modeled using HMMs. For
inference, a word-level grammar transducer G, a
pronunciation lexicon L, context dependency graph
C, and learned HMM states H are used to create a
WEST graph for decoding. To use this architecture

Spypi.org/project/google-transliteration-api
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in zero-shot transfer, we create a training lexicon
using the transliterated words from our transfer
languages. Each entry in the lexicon consists of
a transliterated source language word, along with
the sequence of Ge’ez characters which we use
in place of phonemes. For the pronunciation lex-
icon, we split the consonant-vowel sequences of
the Ge’ez script so each resulting character repre-
sents a single phoneme®. Table 1 presents sample
lexicon entries. For decoding, we use an Ambharic
lexicon and language model. Hence, the L and
G graphs at test time include words in the target
language, which are combined with the H and C
graphs trained on the transliterated transfer lan-
guage data to create our decoding graph. This way,
the model is equipped with knowledge of the target
language without the need for aligned speech data.

XLS-R-53 is a self-supervised end-to-end neu-
ral acoustic model pre-trained on 56k hours of 53
languages (Conneau et al., 2021). The model can
be fine-tuned for speech recognition by adding a
linear projection layer and optimizing it using the
CTC loss (Conneau et al., 2021). For our pro-
posed transliteration-based zero-shot ASR, we use
the audio and transliterated transcripts from the
source languages to fine-tune the XLS-R model.
Hence, the model is trained to directly predict the
graphemes of our target language.

4 Experimental Settings

In this section, we describe the datasets we used
for our experiments, the training settings for our
models and the language combinations we tried.

4.1 Datasets

Table 2 shows the datasets we used for each of
our transfer languages. For Arabic, the majority of
speech data sets do not contain diacritics (Aldar-
maki and Ghannam, 2023), which is a shortcom-
ing that may negatively impact the effectiveness
of transliteration’. Hence, we used the CIArTTS
dataset (Kulkarni et al., 2023), which consists of
read speech by a single male speaker in Classical
Arabic and is transcribed with complete diacritics.
To control for the effect of data size on perfor-
mance, we downsample all train sets to match the
size of the smallest set, which is around 12 hours.

SFor instance, ¢- /ra/ is split into C /t/ and A /a/ characters.
"We performed preliminary experiments without diacritic
marks and obtained poor performance.
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For Amharic, we use two publicly available
datasets: FLEURS (Conneau et al., 2022) and
ALFFA (Tachbelie et al., 2014). FLEURS is a
102-way parallel read corpus of sentences trans-
lated from English Wikipedia with about 12 hours
of speech per language. The Amharic test set of
FLEURS includes 516 utterances. In all our ex-
periments with the FLEURS test set, we ran both
the hypothesis and predictions through Whipser’s
normalizer®. ALFFA contains about 20 hours of
Ambharic speech from the news domain. The tran-
scriptions for ALFFA have been segmented using
Morfessor (Creutz and Lagus, 2005) to obtain mor-
phemes; we manually reconstructed the test set
transcriptions, which has 359 utterances, as we are
interested in word-level performance. We also used
the Babel dataset (Gales et al., 2014), which con-
tains scripted phone conversation data, to compare
to prior work. We resampled all data to 16 kHz.

4.2 GMM-HMM Model

Training We trained triphone GMM-HMM mod-
els using the Kaldi® toolkit on the transliterated Ara-
bic and Xhosa data'®. As described in §3, we used
the transliterated words in the two languages to cre-
ate the training lexicon. For decoding in Amharic,
we created a lexicon using text data in the Ambharic
language from (Azime and Mohammed, 2021). For
experiments using a single source language for
training, we used the same training lexicon with
transliterated words from both languages to avoid
OQV characters in decoding. Hence, phonemes
that are not in Arabic but are in Xhosa, for exam-
ple, would be initialized but not trained.

Monolingual vs Multilingual Transfer For our
GMM-HMM experiments, we selected the lan-
guages with the highest and lowest phonetic cov-
erage with our target language: Arabic and Xhosa.
We trained monolingual models using data from
each language and multilingual transfer models
with data combined from the two languages.

4.3 wav2vec2 XLS-R

Training As described in §3, we fine-tune XLS-
R using transliterated data from our transfer lan-
guages. We used the XLS-R 53 model (Conneau

8https ://pypi.org/project/whisper-normalizer

9https ://kaldi-asr.org

%We experimented with speaker adaptive training (SAT),
but found that speaker-independent triphone models perform
better. This is in line with prior work (Rouhe et al., 2022) with
low-resourced languages using GMM-HMM.


https://pypi.org/project/whisper-normalizer
https://kaldi-asr.org

Language | Language Family | No. of Common | Source Dataset Domain Hours
Phonemes
Arabic Afro-Semitic 19 CIACTTS (Kulkarni et al., 2023) Religious 12
French Indo-European 23 VoxPopuli (Wang et al., 2021) Parliament | 211
Spanish Indo-European 21 Common Voice 9.0 (Ardila et al., 2020) | Diverse 408*
Xhosa Niger-Congo 30 NCHLT isiXhosa Speech Corpus | Diverse 56
(de Vries et al., 2014)

Table 2: Comparison of phoneme overlap and datasets used for transfer languages. Xhosa has the highest
number of common phonemes with Amharic, while Spanish has the lowest. The datasets vary by domain and
duration, with the Spanish dataset showing the number of validated hours. All datasets were down-sampled to match

the size of the Arabic dataset for uniformity.

(a) Xhosa

(b) Arabic

(c) French (d) Spanish

Figure 1: Log frequency of characters in the train sets (yellow) compared with the FLEURS test set (blue).
Only characters that have a minimum relative frequency of 0.01 in all sets are included in the visualization.

ALFFA FLEURS

WER CER | WER CER

Arabic 9723  84.07 | 9793 8731

GMM-HMM | Xhosa 9294 7574 | 93.17 76.24
Combined | 9223 75.12 | 93.16 77.40

Arabic 100.33  86.67 | 100.10  82.72

XLS-R Xhosa 9991 78.70 | 9991 77.88
Combined | 99.85 73.46 | 99.81 73.72

XLS-R+LM | Combined | 99.14 7798 | 99.17  78.57

Table 3: Zero-shot performance on test sets for
Ambharic using GMM-HMM and XLS-R models We
report performance on training with Arabic only, Xhosa
only, or both (combined) data.

et al., 2021) which has 317M parameters. The
model was trained on a total of 56K hours of data
from 53 languages, which includes Arabic, French,
and Spanish but not Amharic or Xhosa''. We ex-
perimented with different learning rates [3e-5, 1le-4,
le-6, 3e-4] and used a linear learning rate scheduler
with 500 steps as warmup. We trained for a max-
imum of 18.5K steps, with early stopping based
on the performance on the validation set. All our
experiments were conducted on two 24GB Titan
RTX GPUs with CUDA Version 11.2.

"The model includes Arabic data from Common Voice.
While Xhosa is not included, XLS-R training data include
Zulu, a related and mutually intelligible language to Xhosa
(Spiegler et al., 2010).
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Monolingual vs Multilingual Transfer We ex-
periment with monolingual transfer where we train
on an equal amount of transliterated data from each
of the transfer languages separately. This results in
four models trained on transliterated transcripts and
speech data in each of the transfer languages. Then,
we trained on pairs of the four languages resulting
in 6 unique pairs for multi-lingual transfer.

Comparison with GMM-HMM Models To
compare with the GMM-HMM models, we used
data from (Azime and Mohammed, 2021) to train
a trigram language model for decoding using the
SIRLM'? toolkit. The shallow fusion with this ex-
ternal LM is used only in comparison with GMM-
HMM performance, ensuring our results in other
settings are fully zero-shot.

5 Results

In this section, we report the results of the various
experimental settings described above.
5.1 Transfer with GMM-HMM

As Table 3 shows, we find that the GMM-HMM
models outperform the XLS-R models in zero-shot
settings in terms of WER. The XLS-R model, on

2http://www.speech.sri.com/projects/srilm
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ALFFA FLEURS

WER CER | WER CER

Arabic 100.33  86.67 | 100.10 82.72

Monolingual Xhos_a 9991 78.70 | 9991 77.88
Spanish 101.67 7525 | 121.72 81.46

French 116.95 87.29 | 140.81 84.09

French-Arabic 98.79  85.57 | 100.11  87.57

Multilingual French—Xhos_a 99.19 82.10 | 99.95 87.29
French-Spanish | 99.51  73.14 | 105.19 74.08

Spanish-Arabic | 99.87  69.70 | 115.06 72.71

Spanish- Xhosa | 99.63  69.61 | 103.24 70.39

Arabic-Xhosa 99.85 7346 | 99.81 73.72

Table 4: Performance of models trained on monolingual and multilingual settings. Models trained on Spanish
and Xhosa data significantly outperform the models trained on Arabic and French. Pairing the least-performing
transfer languages with the better-performing ones improves performance.

Training Set | ALFFA | FLEURS
Arabic 7.65% 1.78%
French 11.23% | 4.02%
Spanish 2.05% 0.08%
Xhosa 3.12% 0.03%

Table 5: Percentage of characters that are not found
in the test sets but are found in the training set of the
transliterated data. Each percentage quantifies how
much percent of the total number of characters in the
total training set the unique characters account for.

the other hand, achieved similar or slightly better
CER, but much higher WER, as the model was
unable to predict correct words in the target lan-
guage. In the GMM-HMM set-up, we enforce
the language structure during test time through an
Ambharic lexicon and an Amharic LM. Adding an
external LM for decoding with the XLS-R model
improved the WER but only slightly, which shows
the advantage of the HMM model where target
language structure can be incorporated at decod-
ing time. We see these patterns in examples for
both test sets using the Arabic-Xhosa combined
model in Figure 2. While the full sentences do not
make sense, we see highlighted in green full words
that were captured by the GMM-HMM model. In
the ALFFA example in Figure 2, we see the first
word highlighted in red having a similar sound with
the word in the hypothesis but a completely unre-
lated meaning: the word in the hypothesis says
“ye biraw” meaning “The beer” while the word
in the prediction says “ye birow” meaning “The
bureau.” Table 3 also presents results using Arabic-
only and Xhosa-only data for training; we find that
the Xhosa-only models outperform the Arabic-only
models. This is likely due to the higher coverage
of Ambharic phonemes in Xhosa compared to Ara-

Hypothesis: ¢(1--hcir: £ eohhAF @ NAP? AT haTe: (LU Good-1 (1AL 1CT° @ T YIC AT £U
EOLA RS €100 NI A2 oo £ Caveav @ RIVle AEITOA ADEUY RS, ek RECHTFPA
GMM-HMM: ¢4 heivd-£3- haras €74A (1LI)A Tih Go0240 (AL A1AeF® oG A+671 e-ah @+

S0 AE PTITINTIG G0 TOA 195 DAL R OPESA

Hypothesis: ¢iLs.@ A5400d 1% e2-hi1 P4 LELINTT® To99° KLY €P) AP ALHGH
Py s

GMM-HMM: ¢0.C 7 @:4L9° NAd-d-h 49 (LELTATI® TTPTITTA: NAA FOCHTTyel: PA G71F° 5719

Figure 2: Samples showing the predictions of the
GMM-HMM model trained on Arabic-Xhosa data.
While the full sentences of the predictions do not make
sense, highlighted in green are words and characters
that the model correctly predicted.

bic. The best performance is achieved when both
languages are combined.

5.2 Transfer with XLS-R

Monolingual Transfer We find that the mono-
lingual XLS-R model trained on Xhosa outper-
forms all the other models for both dataset, ex-
cept for CER on the ALFFA dataset where the
Spanish-trained model outperforms (see Table 4).
The French model is the least-performing model
in both settings across both metrics. Interestingly,
French performs worse than Spanish despite hav-
ing a higher overlap with Amharic phonemes. We
hypothesize the good performance of the Xhosa
model can be explained by the coverage of 30 out
of 38 of the Amharic phonemes by Xhosa. Addi-
tionally, since we did soft approximation through
transliteration (§3.2), we hypothesize that even if
the phoneme is not present in the language, the
transliteration might still approximate the character
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Method LM No. Languages | Train Data Hours | PER/PTER
Prior Work

Feng et al. (2021) Cross Mono-tg 3-gram 12 554.40 74.80
Zelasko et al. (2020) Cross None 12 554.40 75.20
Ours

Xhosa-Arabic None 2 22 76.32
Spanish-Xhosa None 2 22 73.54

Table 6:

Comparison of our top two best performing models with prior work reported performance. With just

4% of training data size and two transfer languages, our best performing model outperforms the reported PTER in

zero-shot ASR for Ambharic.

representing the phoneme.

To understand the performance gap further, we
looked at the distribution of the characters in the
test sets and the transliterated training data of each
of the languages. Figure 1 shows radar plots of
each distribution in terms of log frequencies (the
log is used to enable interpretable visualization
of the power distribution of characters). Due to
the large number of composite characters in the
Ambharic script, we only show the characters that
have a minimum relative normalized frequency of
0.01 in each set. The plots show a clear pattern:
both Xhosa and Spanish train sets have better cover-
age of the frequent characters in the test set. Arabic
is missing many of the frequent characters, and
French includes a high relative frequency of char-
acters that are infrequent in the test set. As Table
5 shows, both French and Arabic have characters
that are not found in the test set that account for a
higher percentage of their total number of charac-
ters. For example, characters that are in the training
set of transliterated French but not in the ALFFA
test set account for 11.23% of the total. On the
other hand, for both Spanish and Xhosa training
sets, the characters that exist in the training set but
do not exist in the test set account for less than
4% of the total. This analysis suggests that char-
acter distribution plays a larger role than phoneme
coverage in zero-shot performance.

Multilingual Transfer In testing with models
trained by combining two languages, we find that
the combination of Spanish and Xhosa gives the
best performance, which is expected since the two
languages had the top two best performances in
the single-language setting. The combination of
the least-performing models resulted in an improve-
ment over performance in either of the languages in-
dependently for ALFFA ( 86.67% with Arabic only
and 87.29% in French only to 85.57% in French-
Arabic combined) However, for FLEURS, the per-
formance degraded, with a 3% absolute increase
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of CER from the French-only model and 5% in-
crease in the CER from the Arabic-only model. We
also find that pairing the least performing transfer
languages with the better performing languages im-
proves performance on the single-language models:
pairing Arabic and Xhosa data reduced CER from
the Arabic-only model by a 10% absolute drop for
both test sets.

5.3 Comparison with Baselines

We compare with two prior works that experiment
with Ambharic in zero-shot: Feng et al. (2021)
trained hybrid DNN-HMM models with training
data from 12 phonetically diverse languages and
tested cross-lingually on Amharic. Zelasko et al.
(2020) trained an end-to-end ASR model with CTC
loss on 12 languages and tested on Amharic. Both
works train models with IPA transcriptions and re-
port Phone Error Rate (PER) and Phone Token Er-
ror Rate (PTER) respectively on the Babel dataset.
In Table 6, we show the reported results for our
two best models on Babel and compare them to the
baselines. Since our models are trained to predict
graphemes of the target language, we use Langua-
geNet grapheme-to-phone (g2p)'3 converter, which
is also used in (Zelasko et al., 2020), to covert our
model predictions and Babel hypothesis to IPA.
We then calculate PTER on the IPA transcriptions.
With just 4% of training data size compared to prior
work, our best-performing model trained with only
two languages outperforms the baselines.

5.4 Few-Shot Fine-Tuning

As noted in Section 2, performance in zero-shot
cross-lingual ASR typically has high error rates,
even at the phoneme level. Hence, we investigate
the performance of further fine-tuning of the ASR
models in low-resource settings, where we only
use 10 minutes to 1 hour of target language data.
In this setting, the transliterated data serve as a

Bhttps://github.com/uiuc-sst/g2ps



WER/CER without LM WER/CER with LM
ALFFA FLEURS ALFFA FLEURS

Ambharic Only 101.08 79.77 | 101.16 7832 | 99.32 84.74 | 9891 81.74

10 minutes | Source script + Amharic | 101.94 7838 | 104.06 7691 | 99.12 81.32 | 99.12 78.52
Transliterated + Amharic | 102.87 71.42 | 10298 70.72 | 98.80 66.99 | 97.72 70.21

Amharic Only 100.52  80.38 | 101.35 80.37 | 99.57 83.02 | 99.44 80.67

20 minutes | Source script + Amharic | 101.61  69.54 | 100.72 68.17 | 99.02 71.19 | 97.47 68.13
Transliterated + Amharic | 95.32  42.22 | 92.41 40.34 | 8341 38.10 | 80.24 36.42

Ambaric Only 101.29  74.68 | 100.55 73.96 | 98.89 79.23 | 98.64 78.08

30 minutes | Source script + Amharic | 99.54 51.86 | 98.84 49.37 | 91.37 50.16 | 89.09 46.73
Transliterated + Amharic | 91.46 36.75 | 88.25 33.88 | 76.00 32.04 | 70.01 28.46

Ambharic Only 83.55 3034 | 7477 26.29 | 64.30 26.76 | 5595 23.19

1 hour Source script + Amharic | 99.54 51.01 | 99.41 47.48 | 77.10 3531 | 71.85 30.90
Transliterated + Amharic | 82.57  30.19 | 75.51 26.54 | 66.67 25.77 | 5791 21.47

Table 7: Performance of XLS-R further fine-tuned with small amounts of Amharic data, from 10 minutes to 1
hour. We compared direct fine-tuning on Ambharic data, vs. fine-tuning first with transfer language data, original

script, or transliterated script.

form of data augmentation, where the model is first
fine-tuned on the source languages, then further
optimized on the target language. For these experi-
ments, we used a linear learning rate scheduler with
100 steps as warmup and we trained models with
smaller steps depending on data size to avoid over-
fitting. For comparison, we (1) directly fine-tune
XLS-R on the target Amharic data and (2) fine-tune
XLS-R with transfer language data without translit-
eration then further fine-tune on Ambharic data. The
results are shown in Table 7.

We note how further fine-tuning with small
amounts of supervised data in the target language
results in significant performance improvements.
With 20 minutes or more, we observe large reduc-
tions in error rates. We observe that the model
trained on the transliterated data outperforms both
the model trained on original source transcripts (up
to 30% absolute reduction in CER) as well as the
model directly fine-tuned on Amharic data alone.
The performance gap between the three setups is
most pronounced as the data is smaller, indicating
the benefits of using transliteration with carefully
selected transfer languages for low-resource ASR.
Compared to zero-shot, we observe roughly 40%
and 10% absolute reduction in CER and WER, re-
spectively with 30 minutes of Ambharic data.

6 Discussion

Our experiments show how to use transliteration for
zero-shot transfer in low-resourced settings. With
just a fraction of the training data size compared to
prior work, our best-performing model outperforms
the reported performance on Amharic in a zero-shot
setting. Additionally, by training on transliterated
data, we predict directly in the target language or-
thography.
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Error rates in zero-shot ASR are generally high
for direct use of the systems (Gao et al., 2021).
However, zero-shot approaches give us insights to
how to best select transfer languages when we have
limited data available. In line with prior work, we
find that languages that have high unigram phonetic
coverage with the target language are better trans-
fer languages. Further, we find that through soft
approximation via transliteration, even languages
that do not have high phonetic coverage can be
good transfer languages. Our analysis reveals that
transfer languages with the least post-transliteration
rate of Out-Of-Vocabulary (OOV) characters in the
target test set perform best as transfer languages,
regardless of their language family or degree of
inherent phonetic coverage.

In zero-shot settings, GMM-HMM models result
in significantly lower WER, which is ascribed to
the fact that the models incorporate the target lan-
guage lexicon in decoding, unlike the end-to-end
models that lack such linguistic knowledge with-
out supervised training. However, CER is much
lower using the XLS-R model. In low-resource
settings, with 10 minutes to 1 hour of training data
in the target language, transliteration results in im-
proved performance compared to direct fine-tuning
on the target language or using the transfer lan-
guages without transliteration.

7 Conclusion

In this study, we explored the use of translitera-
tion for zero-shot and low-resource cross-lingual
ASR transfer. We find that, with careful selection
of source languages, using ~22 hours of source
data, we can build zero-shot ASR systems that can
transcribe words directly in the target language or-
thography. With small amounts of transcribed data



in the target language, large reductions in error
rates can be achieved through using transliteration
for data augmentation.

Limitations

While our results show promising results for zero-
shot transfer for Amharic, there are several avenues
for improvement. First, the Arabic and French data
are domain-limited. The Arabic data is further con-
strained by having a single speaker. As discussed
in Section 4.1, we could not find multi-speaker
diverse domain data with diacritic markers for Ara-
bic. While this is a limitation, it is also reflective
of the real state of building language technologies
for low-resourced languages. Our current work
explores how far we can go with data and tools
that are currently available to us in a low-resourced
setting. For future work, we will explore using
automated methods for adding diacritic markers
to existing Arabic datasets. Additionally, we were
limited to trying multilingual transfers with just
two transfer languages due to compute resource
constraints. However, our results still demonstrate
that our transliteration-based approach outperforms
the previously reported performance for zero-shot
ASR for Amharic. Future work can explore adding
more languages and trying more combinations of
languages in the multi-lingual setting. Addition-
ally, our work focused on just one target language;
future work could explore our approach on more
languages.
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Abstract

Automatic Speech Recognition (ASR) tech-
nologies have seen significant advancements,
yet many widely spoken languages remain un-
derrepresented. This paper explores the fine-
tuning of OpenAIl’s Whisper Tiny model (39M
parameters) for Swahili, a lingua franca for
over 100 million people across East Africa. Us-
ing a dataset of 5,520 Swabhili audio samples,
we analyze the model’s performance, error pat-
terns, and limitations after fine-tuning. Our
results demonstrate the potential of fine-tuning
for improving transcription accuracy, while
also highlighting persistent challenges such
as phonetic misinterpretations, named entity
recognition failures, and difficulties with mor-
phologically complex words. We provide rec-
ommendations for improving Swahili ASR, in-
cluding scaling to larger model variants, archi-
tectural adaptations for agglutinative languages,
and data enhancement strategies. This work
contributes to the growing body of research
on adapting pre-trained multilingual ASR sys-
tems to low-resource languages, emphasizing
the need for approaches that account for the
unique linguistic features of Bantu languages.

1 Introduction

Automatic Speech Recognition (ASR) has revo-
lutionized human-computer interaction, but many
widely spoken languages, including Swahili, re-
main underrepresented in ASR technology. Swahili
(Kiswahili) is a lingua franca for over 100 mil-
lion people across East Africa, yet its presence
in modern speech recognition systems is minimal
compared to high-resource languages like English,
Mandarin, and Spanish.

This study explores the fine-tuning of OpenAlI’s
Whisper Tiny model - a lightweight variant of the
Whisper ASR system - for Swahili speech recogni-
tion. Whisper, trained on an extensive 680k hour
multilingual dataset, shows promise across multi-
ple languages but requires targeted adaptation for
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low-resource languages like Swahili to perform ef-
fectively. We investigate the impact of fine-tuning
on model performance, focusing on transcription
accuracy, error patterns, and the challenges of
adapting compact ASR models for low-resource
languages.

To guide this research, we aim to answer the

following key questions:
How does fine-tuning the Whisper Tiny model
(39M parameters) improve its performance for
Swahili speech recognition? What are the main
transcription errors observed in the fine-tuned
model, and how can they be addressed? What are
the challenges of using compact ASR models for
low-resource languages, and how can they be miti-
gated through training strategies and architectural
adaptations?

By addressing these questions, this work con-
tributes to the ongoing effort to improve ASR for
languages with limited digital resources, paving the
way for more inclusive speech technologies. Our
findings highlight the importance of fine-tuning for
low-resource languages and provide actionable rec-
ommendations for future research and development
in Swahili ASR.

2 Background and Related Work

2.1 Automatic Speech Recognition for
Low-Resource Languages

Developing ASR systems for low-resource lan-
guages like Swabhili comes with significant chal-
lenges, primarily due to the scarcity of transcribed
speech data. Most state-of-the-art ASR models rely
on large-scale paired audio-text datasets, which
are often unavailable for such languages. Recent
advances in transfer learning have enabled the adap-
tation of models pre-trained on high-resource lan-
guages, allowing ASR systems to perform well
even with limited native-language data (Besacier
et al., 2014). Fine-tuning these models is critical
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to achieving optimal performance, as it allows the
system to adapt to the unique phonetic and linguis-
tic characteristics of the target language. Our study
explores this process by fine-tuning the Whisper
Tiny model for Swahili, evaluating its performance
and identifying areas for improvement.

2.2 The Whisper ASR System

OpenAl’s Whisper model represents a major step
forward in multilingual ASR Radford et al. (2023).
Trained on a diverse dataset of 680,000 hours of
labeled audio, it offers robust transcription capa-
bilities across multiple languages. The Whisper
family consists of models of varying sizes, ranging
from Tiny (39M parameters) to Large (1.5B param-
eters), each balancing computational efficiency and
transcription accuracy. Researchers have success-
fully fine-tuned Whisper for several low-resource
languages, such as Amharic (Abdou Mohamed
et al., 2024), Yoruba (Ahia et al., 2024), and Nepali
(Ghimire et al., 2024). Despite these advancements,
comprehensive studies on Whisper’s adaptation
for Swahili remain limited. Our work addresses
this gap by evaluating the impact of fine-tuning
on Swahili ASR performance, providing insights
into the challenges and opportunities of adapting
compact ASR models for low-resource languages.

While ASR for major languages has seen sub-
stantial advances, Swahili ASR development re-
mains limited despite its widespread use. Re-
cent efforts include work by Tunde-Onadele and
Chao (2022) who developed initial speech recog-
nition models for Swahili using traditional Hid-
den Markov Model approaches. In the neural era,
several pre-trained models have been adapted for
Swahili, including wav2vec 2.0 variants (Akash,
2023; SpeechBrain Team, 2022) which leverage
self-supervised learning on unlabeled audio. These
efforts, however, often lack detailed documenta-
tion of the fine-tuning process and error analy-
sis specific to Swahili’s linguistic characteristics.
Our work complements these efforts by provid-
ing a systematic analysis of fine-tuning a com-
pact transformer-based model and documenting
language-specific challenges.

3 Methodology

3.1 Dataset Characteristics

This study utilized a comprehensive Swahili speech
dataset comprising 5,520 audio samples with cor-
responding transcriptions.

75

The dataset was sourced from KenSpeech (Awino
et al., 2022), and from an initial pool of approxi-
mately 6,300 samples. The audio files were scraped
in batches with appropriate processing delays to
ensure data integrity. Each audio file was paired
with its corresponding transcript, creating a parallel
corpus suitable for ASR model training.

We filtered transcripts using automatic language
detection via the langdetect library. Transcripts
predominantly identified as Swahili were retained,
while those detected as primarily English were ex-
cluded. This filtering process ensured the linguistic
purity necessary for training a robust Swahili ASR
system.

3.1.1 Length Distributions

The dataset’s transcript lengths follow a roughly
normal distribution, with a slight negative skew.
The majority of samples (69.7%) contain between
21-40 words, indicating a prevalence of medium-
length utterances suitable for ASR training. Figure
1 shows the distribution of transcript lengths by
category.

Distribution of Transcript Length Categories
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Figure 1: Distribution of Transcript Length Categories
showing the number of samples in each word count
range. The 21-30 and 31-40 word ranges contain the
majority of samples (69.7%).

The detailed frequency distribution of word
counts is illustrated in Figure 2, showing the mean
and median values.

The tokenized transcripts exhibit a similar distri-
bution pattern but with higher values, as illustrated
in Figure 3. This reflects the nature of subword to-
kenization, where individual words are often split
into multiple tokens, particularly in morphologi-
cally rich languages like Swahili.

Through the statistical analysis, we find that the
Swahili transcriptions averaged 27.23 words and
71.5 tokens, with maximums of 67 words and 170
tokens; medians were slightly higher than means.
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Figure 2: Histogram of Transcript Lengths showing
the frequency distribution of word counts. The mean
(27.23 words) and median (29.00 words) are indicated
by vertical dashed lines.
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Figure 3: Distribution of Token Lengths across the
dataset. The mean (71.50 tokens) and median (76.00
tokens) are indicated by vertical dashed lines, showing
the increased granularity when words are tokenized.

3.1.2 Data Partitioning

To facilitate model training and evaluation, the
dataset was partitioned using a standard 80/20 split,
resulting in a Training set of 4,416 samples (80%),
and a Validation set of 1,104 samples (20%).

This partitioning strategy ensures sufficient data
for model training while retaining an adequate por-
tion for validation to assess generalization perfor-
mance. The stratified splitting approach maintained
similar transcript length distributions across both
sets to prevent evaluation bias.

3.2 Model Architecture!

This study employed OpenAl’s Whisper Tiny
model as the foundation for Swahili ASR devel-
opment. The Whisper family of models represents
a state-of-the-art approach to multilingual speech
recognition, with variants ranging from Tiny (39M
parameters) to Large (1.5B parameters).

'The configuration is in the Appendix A
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Figure 4: Simplified diagram of the Whisper model ar-
chitecture, showing the processing pipeline from audio
input to text output through the encoder-decoder trans-
former structure.

3.2.1 Whisper Tiny Specifications

The Whisper Tiny model (OpenAl, 2023), selected
for its computational efficiency while maintaining
reasonable performance, features the architectural
specifications shown in Table 1.

Component Specification

Model type Encoder-decoder
transformer

Parameter count 39 million

Encoder layers 4

Decoder layers 4

Model dimension 384

Attention heads 6

Audio feature extractor CNN

Maximum context length 3,000 frames (=
30s)

Table 1: Architectural Specifications of Whisper Tiny
Model

Compared to larger Whisper variants, the Tiny
model offers substantially reduced computational
requirements while retaining the core architectural
elements that enable effective speech recognition.
Figure 4 illustrates the overall architectural design
of the Whisper model.

3.2.2 Audio Processing Pipeline

The Whisper architecture processes audio through
a multi-stage pipeline designed to efficiently



transform raw audio into transcribed text:

Audio Preprocessing: Raw audio is resampled
to 16 kHz and converted into 80-channel log-Mel
spectrograms with 25ms windows and 10ms stride.
Encoder Processing: The encoder, consisting of 4
transformer layers with 4 attention heads each, pro-
cesses these spectrograms to create contextual au-
dio representations. This stage captures the acous-
tic and phonetic features of the input speech.
Decoder Generation: The decoder, also compris-
ing 4 transformer layers, generates text tokens au-
toregressively based on the encoded representa-
tions. The decoder incorporates cross-attention
mechanisms that attend to the encoder outputs, en-
abling the model to align speech features with tex-
tual elements.

Token Prediction: At each decoding step, the
model predicts the next token from a multilingual
vocabulary of approximately 50,000 tokens, which
includes subword units for Swahili and other lan-
guages.

3.2.3 Adaptation for Swahili

While the base Whisper Tiny model includes some
support for Swabhili through its multilingual pre-
training, specific adaptations were implemented to
enhance its performance:

Language-Specific Initialization: The decoder
was initialized with Swahili language ID tokens to
bias generation toward Swahili output.

Task Configuration: The model was config-
ured specifically for transcription tasks rather than
translation, focusing its capabilities on accurate
within-language processing.

4 Results

4.1 Training Progress

The model was trained for both 5 and 100 epochs,
with evaluation metrics captured at intermediate
and final stages. The 5-epoch training proceeded
without significant technical issues, though some
audio processing challenges were observed. The
extended 100-epoch training demonstrated substan-
tial improvements, with validation loss decreas-
ing steadily and WER improving from 82.95% to
30.62%, highlighting the benefits of extended fine-
tuning for low-resource languages.

Compared to the small Whisper model trained
by Pplantiga on Hugging Face (Plantinga, 2025),
which achieved a WER of 27.62%, our tiny model,
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with a WER of 30.62%, offers a better trade-off by
significantly reducing complexity, even though the
performance is slightly lower.

4.2 Training and Validation Dynamics

Table 2 summarizes the Training and Validation
metrics for both 5-epoch and 100-epoch training
regimes.

Metric 5 Epochs 100 Epochs
Training Loss 0.8426 0.0001
Validation Loss 1.2317 1.5977
WER 82.95% 30.62%

Table 2: Metrics for 5-Epoch and 100-Epoch Training

The 100-epoch model achieved a WER of
30.62%, representing a 63.1% improvement over
the 5-epoch model. This reduction in WER un-
derscores the importance of extended training for
low-resource languages, though challenges remain
in achieving practical usability (typically <20%
WER).

4.3 Qualitative Error Analysis

A detailed examination of model outputs revealed
several recurring error patterns, with notable im-
provements in the 100-epoch model.

4.3.1 Phonetic Approximations

The model frequently produced phonetically plau-
sible but incorrect transcriptions, as shown in Table
3. While the 100-epoch model reduced errors like
double vowel omissions and segmentation issues,
challenges persisted.

Reference S5-Epoch Pre- 100-Epoch
diction Prediction
muunganisho munganisho = muunganisho
wa maarifa wa maarifa wa  maarifa
asilia na asilia na asilia na
sayansi ya sayansi za sayansi ya
kisasa utaleta gisasa utalita kisasa utaleta
jitthada  ya jitiada ya jitthada ya
ubindamu ubina damu ubindamu

kuleta amani
na mazingira
yetu ushauri
wangu

kuleta amani
na mazingi
rahetu ushauri
wangu

kuleta amani
na mazingira
yetu ushauri
wangu

Table 3: Example of Phonetic Approximation Errors



4.3.2 Named Entity Recognition

The model exhibited difficulty with proper nouns,
as demonstrated in Table 4. The 100-epoch model
showed slight improvements but still struggled with
non-Swabhili names.

Reference 5-Epoch Pre- 100-Epoch
diction Prediction
moto shuleni moto  shule moto shuleni
bweni la shule ya ni bweni bweni la shule
ya st brigid’s la shule ya ya st brigid’s
kiminini sandbridge kiminini
liliteketea jana it kimi mini liliteketea jana
usiku hakuna ililitaketea usiku hakuna
mwanafunzi jana usiku  mwanafunzi
aliyejeruhiwa  hakuna aliyejeruhiwa
lakini uchun- mwanafunzi lakini uchun-

guzi umeaanza

aliye jeruhiwa

guzi umeaanza

na kini uchun-
guzi umehan
za

Table 4: Example of Named Entity Recognition Errors

4.3.3 Repetitive Pattern Generation

In several instances, the model produced repetitive,
non-informative output, particularly when encoun-
tering challenging audio, as shown in Table 5. The
100-epoch model reduced the frequency of such
errors but did not eliminate them entirely.

Reference 5-Epoch Pre- 100-Epoch
diction Prediction
murang’a vion- mwanamke murang’a vion-
gozi wa kidini bomba tu- gozi wa kidini
wazidiwa na nawakata wazidiwa na
hisia hasa wakati wa hisia hasira
wanapo- kisii kwa waziri waadi
hudhuria kama kama wa wad-
maombolezo kama kama haingizaa
kama kama Kkutangaza
kama kama
kama...

Table 5: Example of Repetitive Pattern Generation

4.3.4 Sentence Length Correlation

Analysis indicated that transcription accuracy had a
moderate negative correlation with sentence length,
with longer sentences generally exhibiting higher
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error rates. This trend persisted in the 100-epoch
model, though the magnitude of the correlation was
slightly reduced.

5 Discussion

5.1 Model Capacity Limitations

The high Word Error Rate (WER) observed in the
5-epoch model (82.95%) suggests that the Whis-
per Tiny model’s capacity (39M parameters) is in-
sufficient for robust Swahili ASR. The 100-epoch
model achieved a WER of 30.62%, demonstrating
significant improvement but still falling short of
practical usability.

5.2 Linguistic Challenges in Swahili ASR
Several linguistic features of Swahili present par-
ticular challenges for ASR systems:

5.2.1 Morphological Complexity

As an agglutinative language, Swahili constructs
words by combining multiple morphemes. A single
Swabhili verb can encode information about subject,
object, tense, aspect, and mood through prefixes
and suffixes. This complexity increases the vocab-
ulary space and makes word boundary detection
challenging, as evidenced by errors like splitting
Jjitihada into jiti ada. The 100-epoch model showed
slight improvements in handling morphologically
complex words but still struggled with segmenta-
tion.

5.2.2 Tonal Variations

While Standard Swahili is not strictly tonal, varia-
tions in intonation can affect meaning, particularly
in regional dialects. The model’s difficulty with
certain phonetic distinctions may be partially at-
tributed to inadequate representation of tonal fea-
tures. Extended training reduced some phonetic
errors but did not fully address this challenge.

5.2.3 Dialectal Diversity

Swahili exhibits significant dialectal variation
across East Africa, with notable differences be-
tween Tanzanian and Kenyan varieties. The
dataset’s regional representation may impact the
model’s ability to generalize across dialectal bound-
aries. The 100-epoch model showed improved gen-
eralization but still struggled with dialect-specific
variations.



5.3 Data Considerations

The size of the training dataset (5,520 samples ~
19.7 hours) is relatively small compared to datasets
used for high-resource language ASR development,
which often include tens of thousands of hours of
audio. Table 6 provides a comparison with other
ASR datasets.

Dataset Size Language
Current Study 19.7 hours  Swahili
LibriSpeech 960 hours English
Common Voice 1,400+ hours Multiple
lang.
High-resource ASR 10,000+ hours  Various

Table 8 presents our recommendations for ar-
chitectural adaptations to better handle Swahili’s
linguistic features.

2. Architectural Adaptations

Consider modifications to the base Whisper archi-

tecture to better accommodate Swahili’s linguistic

features:

Tokenization | Enhanced subword tokenization
specifically designed for agglutina-
tive languages to address segmenta-
tion errors.

Attention Augmented attention mechanisms
to better capture long-range depen-
dencies in morphologically complex
words.

Audio Fea- | Additional acoustic feature extrac-

tures tion layers to better represent tonal
variations and phonetic nuances.

Table 6: Comparison of Dataset Sizes for ASR Devel-
opment

The limited data diversity may constrain the
model’s ability to generalize to varied speakers,
acoustic environments, and linguistic contexts. Ex-
tended training improved performance but did not
fully compensate for the dataset’s limitations.

6 Future Work

Based on our findings from both 5-epoch and 100-
epoch fine-tuning, we propose several recommen-
dations for improving Swahili ASR performance:

6.1 Model Architecture Enhancements

Table 7 summarizes our recommendations for scal-
ing to larger model variants, which could further
reduce the WER observed in our experiments.

1. Scale to Larger Model Variants

The most immediate improvement would
likely come from utilizing larger Whisper
models:

Base 74M parameters - Recommended
minimum for Swahili ASR, with ex-
pected WER improvements of 30-

50% over Tiny.

Small 244M parameters - Optimal balance
of performance and efficiency, often

achieving WERs below 30%.

Medium | 769M parameters - For research
contexts with sufficient computa-
tional resources, offering potential

for further improvement.

Table 7: Model Scaling Recommendations
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Table 8: Architectural Adaptation Recommendations

6.2 Training Methodology Improvements

1. Extended training duration: Our 100-epoch
training demonstrated significant WER im-
provements, suggesting that longer training
durations are beneficial for low-resource lan-
guages. Early stopping based on validation

performance can prevent overfitting.

. Learning rate scheduling: Implement more
sophisticated learning rate schedules, such
as cosine annealing with warm restarts, to
improve optimization dynamics and conver-
gence.

. Hyperparameter optimization: Conduct
systematic grid search or Bayesian optimiza-
tion of key hyperparameters, including batch
size and learning rate, to maximize perfor-
mance.

Progressive training: Implement a curricu-
lum learning approach where the model ini-
tially trains on shorter, simpler utterances be-
fore progressing to more complex examples,
as longer sentences remain challenging.

6.3 Data Enhancement Strategies

Table 9 outlines our recommended data enhance-
ment strategies to address the limitations of the
current dataset.

7 Conclusion

This study evaluated fine-tuning the Whisper Tiny
model for Swahili ASR with 5-epoch and 100-
epoch training regimes. The 100-epoch model



Strategy Approach

Data augmenta- | Time stretching, pitch shifting,

tion background noise, room im-
pulse response, speed perturba-
tion (0.9x, 1.0x, 1.1x)

Data quality Review audio-transcript pairs

for misalignments or errors.

Dialectal balanc-
ing

Represent major Swahili di-
alects to improve regional gen-
eralization.

Additional sources | Public archives, parliamentary
proceedings, educational mate-

rials, user recordings.

Table 9: Recommended Data Enhancement Strategies

achieved a WER of 30.62%, significantly better
than the 5-epoch model (82.95%). However, per-
formance remains below practical utility, highlight-
ing challenges in adapting compact ASR models
for low-resource languages.

Error patterns, such as phonetic approximations
and difficulties with named entity recognition and
dialectal variations, suggest limitations in capturing
Swahili’s linguistic complexities. While extended
training reduced some errors, issues with morpho-
logically complex words persist.

This research contributes to adapting multilin-

gual ASR systems for low-resource languages and
emphasizes the need for approaches tailored to
Bantu languages like Swahili. The work should
focus on:
Evaluating larger Whisper models for scalability.
Developing architectural adaptations for Swahili
and Bantu languages. Creating more diverse
Swahili speech datasets. Exploring multitask learn-
ing approaches. Developing ASR systems for lan-
guages like Swabhili is a crucial step toward more
inclusive speech technology for diverse linguistic
communities.

Limitations

This study has several limitations. First, only the
Whisper Tiny model was used, which may not rep-
resent the performance of larger Whisper variants
for Swahili ASR. Second, the dataset, with 5,520
samples, is small, potentially limiting exposure to
diverse Swabhili speech patterns. Third, we focused
on the standard Swabhili dialect without accounting
for regional variations. Fourth, further hyperparam-
eter optimization could improve results, despite
training for 100 epochs. Finally, our evaluation
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based on Word Error Rate may not fully reflect
the semantic accuracy or practical usability of the
transcriptions.
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Appendix
A Fine-Tuning Configuration

The adaptation of the Whisper Tiny model for
Swahili ASR was accomplished through a targeted
fine-tuning process optimized for efficient learn-
ing while preventing overfitting. Table 10 details
the hyperparameters selected for this fine-tuning
procedure.

Hyperparameter Value
Batch size 8
Gradient accumulation steps 4
Effective batch size 32 (8 x4)
Learning rate 5e-5
Learning rate scheduler Linear

with warmup
Warmup ratio 0.1
Number of epochs 57100
Optimizer AdamW
Weight decay 0.01
Mixed precision FP16 (enabled)
Gradient checkpointing Enabled

Forced decoder
IDs set to Swabhili
Maximum generation length 225 tokens

Language configuration

Table 10: Hyperparameters for Whisper Tiny Fine-
tuning

The selection of these hyperparameters was
guided by several considerations:
Memory Optimization: The combination of a
moderate batch size (8) with gradient accumula-
tion steps (4) yielded an effective batch size of 32,
balancing between statistical efficiency and GPU
memory constraints.
Learning Dynamics: The learning rate of Se-5
with a warmup ratio of 0.1 was chosen to allow
gradual adaptation of the pre-trained weights while
avoiding destructive updates early in training.
Computational Efficiency: Mixed precision train-
ing (FP16) and gradient checkpointing were en-
abled to optimize GPU memory usage and acceler-
ate training without sacrificing model quality.
Language Specificity: Forced decoder IDs en-
sured that the model generated Swahili text regard-
less of the detected language in the audio, which
was critical for focused adaptation.
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A.1 Training Infrastructure

The fine-tuning was conducted on a high-
performance computing environment with the spec-
ifications shown in Table 11.

Component Specification

GPU NVIDIA A100

GPU Memory 16GB VRAM

Training Framework | PyTorch 1.13
HuggingFace Trans-
formers

Training Duration 34 minutes (5 epochs)
11 hours (100 epochs)
690 (5 epochs)

13,500 (100 epochs)

Total Training Steps

Table 11: Training Infrastructure Specifications



Who Wrote This? Identifying Machine vs Human-Generated Text in Hausa

Babangida Sani', Aakansha Soy', Sukairaj Hafiz Imam?3, Ahmad Mustapha'?,
Lukman Jibril Aliyu?, Idris Abdulmumin®*, Ibrahim Said Ahmad??3"°,
Shamsuddeen Hassan Muhammad?3
'Kalinga University, *Bayero University, Kano, *HausaNLP

4DSFSI, University of Pretoria, 5Northeastern University, 6Imperial College London

correspondence: bsani480@gmail.com

Abstract

The advancement of large language models
(LLMs) has allowed them to be proficient in
various tasks, including content generation.
However, their unregulated usage can lead to
malicious activities such as plagiarism and gen-
erating and spreading fake news, especially
for low-resource languages. Most existing
machine-generated text detectors are trained on
high-resource languages like English, French,
etc. In this study, we developed the first
large-scale detector that can distinguish be-
tween human- and machine-generated content
in Hausa. We scraped seven Hausa-language
media outlets for the human-generated text and
the Gemini-2.0 flash model to automatically
generate the corresponding Hausa-language ar-
ticles based on the human-generated article
headlines. We fine-tuned four pre-trained Afri-
centric models (AfriTeVa, AfriBERTa, AfroX-
LMR, and AfroXLMR-76L) on the resulting
dataset and assessed their performance using
accuracy and Fl-score metrics. AfroXLMR
achieved the highest performance with an ac-
curacy of 99.23% and an F1 score of 99.21%,
demonstrating its effectiveness for Hausa text
detection. Our dataset is made publicly avail-
able! to enable further research.

Keywords: Large Language Model (LLM), Nat-
ural Language Processing (NLP), Hausa, Trans-
former, Gemini, Fine-tune

1 Introduction

Hausa is among the most spoken Chadic languages,
belonging to the Afroasiatic phylum. Over 100
million people are estimated to speak the language,
with the majority of speakers living in Northern
Nigeria and the Republic of Niger, respectively
(Inuwa-Dutse, 2021). However, from computa-
tional linguistics, it is regarded as a low-resource

"https://github.com/TheBangis/hausa_corpus
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language, having insufficient resources to sup-
port tasks involving Natural Language Processing
(NLP; Adam et al. 2023; Muhammad et al. 2023).

Hausa language is written in either the Latin (or
Boko) and Arabic (or Ajami) script (Jaggar, 2006).
The Boko script, existing since the 1930s, was intro-
duced by the British colonial administration, and is
used in education, government, and digital commu-
nication. The Ajami script, an order writing system
of the Hausa language that existed in pre-colonial
times, is used mostly in religious, cultural, and in-
formal writing. For the purpose of our work, and
as Hausa is widely written nowadays, we scraped
and generated data based on the Latin-based script.

Large language models (LLMs) are becoming
mainstream and easily accessible, ushering in an
explosion of machine-generated content over vari-
ous channels, such as news, social media, question-
answering (QA) forums, educational, and even aca-
demic contexts (Wang et al., 2023). The human-
like quality of texts generated by LLMs models for
different languages including Hausa language is al-
ways advancing, allowing them to generate diverse
content. LLMs, intentionally or unintentionally,
have the potential to be used to create and propa-
gate harmful or misleading content, such as fake
news or hate speech (Xie et al., 2024), or even fake
or artificial scholarship. To ensure the authenticity,
accuracy, and trustworthiness of content, there is
a need for machine-generated text detectors. Ex-
tensive research has been undertaken to differenti-
ate between machine-generated texts (MGTs) and
human-generated texts (HGTs), primarily employ-
ing model-based approaches (Wang et al., 2023;
Alshammari, 2024; Ji et al., 2024).

In existing studies, (i) focus has mainly been on
high-resource languages like English; (ii) there are
no reliable detectors for detecting human vs. Al-
generated text in the Hausa language; (iii) ensuring
content authenticity is difficult, especially for low
resource languages like Hausa (Ji et al., 2024). We

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 8§2—88
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aim, therefore, to develop an automatic detector to
classify human-generated and machine-generated
text in Hausa, focused on the news domain, hence
filling this gap. The following are our contribu-
tions:

* We are the first to develop a Hausa detector
that is capable of differentiating HGT and
MGT in Hausa. We believe it would help in
ensuring content authenticity in digital com-
munication, academia, and mitigating fake
news.

We curated a dataset that consists of human-
generated data by scraping seven Hausa me-
dia outlets and machine-generated data using
Gemini, addressing the lack of high-quality
data in the area.

By focusing on the Hausa language, we con-
tribute to the expanding NLP capabilities for
low-resource languages.

All our resources will be open-source to en-
courage future academic research in the Hausa
language.

2 Related Work

2.1 Detection of MGTs before ChatGPT

Radford et al. (2019) raised concerns regarding us-
ing machine-generated text for malicious purposes
such as spam, fake news, plagiarism, and disinfor-
mation. The GLTR (Giant Language Model Test
Room) tool (Gehrmann et al., 2019), released in
June 2019, is an open-source system for detect-
ing GPT-2-generated text using baseline statistical
methods. Later that year, OpenAl enhanced the
Roberta model (Liu et al., 2019) by introducing a
dedicated GPT-2 detector (Radford et al., 2019).
Another major advancement was the GROVER
model (Zellers et al., 2019), which can both gener-
ate and detect fake news. With 5,000 self-generated
articles and extensive real news content, GROVER
achieved a 92% detection accuracy, surpassing
models like the Plug and Play Language Model
(PPLM) (Dathathri et al., 2019) and BERT (Devlin
etal., 2019). Another study by Ippolito et al. (2019)
examines the detection of machine-generated texts
(MGTs) from GPT-2 with decoding strategies such
as top-k, untruncated random sampling, and nu-
cleus sampling in English. They discovered that op-
timized BERT was best but had poor cross-strategy
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generalization, whereas automatic classifiers per-
formed better than humans, who misclassified Al
text more than 30% of the time. AraGPT-2 (Antoun
et al., 2020) introduced the first advanced Arabic
language model that aides in distinguishing human-
written and machine-generated Arabic text.

2.2 Detection of MGTs after ChatGPT

The launch of ChatGPT in late 2022 and later
sequential models like GPT-4, Gemini, Claude,
Llama, DeepSeek, etc., have posed new challenges
as machine-generated texts (MGTs) mimic human
writing styles more effectively than ever before.
This raises concerns and the need for detection
models to discern between HGTs and MGTs in
different fields, such as academia, to mitigate pla-
giarism. In 2024, a study by Jawaid et al. (2024)
presents a systemic approach for discerning be-
tween HWTs and MGTs using a combination of
deep learning models, textual feature-based mod-
els, and machine learning models. Similarly, Xie
et al. (2024) used eight traditional machine learning
models and integrate statistical analysis, linguistic
patterns, sentiment analysis and fact-checking as
factors to differentiate between human-generated
and machine-generated content across the three dif-
ferent datasets. In another study, Mitrovi¢ et al.
(2023) examines ChatGPT-generated short text de-
tection using DistilBERT and a perplexity-based
classifier on online reviews, creating three datasets:
human-written, ChatGPT-generated, and ChatGPT-
rephrased. DistilBERT achieved 98% accuracy
on original Al-generated text but only 79% on
rephrased text, indicating the challenge of detecting
Al-rewritten text.

3 Methodology

3.1 Datasets

We used both human-generated text (HGTs) and
machine-generated text (MTGTs) for the Hausa
language in the news domain. We collected 2,586
HGTs from seven different local and international
news outlets and generated equal amounts of texts
for the MGTs by leveraging the Gemini-2.0-flash
closed-source model. We merged the datasets into
a single file and created a source column to label
whether a text is a HGT or MGT and then shuffled
the data for effective training and evaluation. Ta-
ble 1 displays selected samples from our HGT and
MGT dataset used in the experiments and Table 2
provides information on the composition of our
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Figure 1: Overview of the pipeline’s data collection for
human-generated texts.

Web Scraping

dataset in terms of the number of sentences, words,
and unique words.

Human-Generated Data The human-generated
data was extracted from seven different local and
international online news outlet websites written in
the Hausa language through web scraping, struc-
tured into headlines and content. Initially, we ex-
tracted 3,700 news articles; and after automatically
filtering out unwanted texts, we preprocessed the
dataset to remove rows with empty content, reduc-
ing the news articles to exactly 2,586. Figure 1
shows an overview of the pipeline’s data collection
process for human-generated data.

Machine-Generated Data For the machine-
generated text, we used the Gemini-2.0 flash model,
through Google Al Studio, to automatically gen-
erate corresponding Hausa news articles based
on each of the article headlines in the human-
generated text. The dataset consists of head-
lines, content, and a word count for every arti-
cle so that the text length of the generated arti-
cle is near or equal to the actual article. To pro-
duce the machine-generated articles, we processed
the dataset in batches of 10 and checked whether
machine-generated text existed and initiated miss-
ing values where required. For every batch, the
model generated full articles from the headlines,
and after every batch, progress was saved so as not
to lose data, and a 10-second delay was added be-
tween batches to avoid exceeding API limits. This
iterative process continued until machine-generated
articles were created for all headlines.

Data Processing

The data collected, particularly the human-
generated data, was noisy, containing many du-
plicates, English content, and other markup lan-
guage symbols. Furthermore, some rows in the
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generated data produced an error message, while
others included headlines that required cleaning.
We identified and removed all unwanted content,
including URLs, in both datasets before merging
them into a single file to ensure effective training
of our detection model.

Subdomain Analysis In order to get a clearer
view of our dataset, we carried out an analysis
of how articles are distributed in different news
subdomains. The aim was to see how the content
is distributed in terms of categories like politics,
health, sports, business, entertainment, religion,
and technology. Table 3 shows the distribution of
news articles in different subdomains of the dataset.

The dataset is dominated by political content,
which makes up more than half, 53.5% of the
total articles. Categories such as health, 10.4%
and sports, 9.7% have moderate representation,
whereas business, 8.8%, entertainment, 7.9%, re-
ligion, 5.2%, and technology, 4.5% are less repre-
sented in the dataset.

Data Splits and Contamination Avoidance To
ensure robust evaluation, we split the dataset
into training (80%), validation (10%), and test
(10%) sets, with no overlap of headlines across
splits. Each headline (and its associated human and
machine-generated articles) was grouped and as-
signed to a single split to avoid contamination. This
ensures that the model does not encounter semanti-
cally similar content across training and evaluation
phases. The dataset consists of 5172 samples (2586
human-generated and 2586 machine-generated),
corresponding to 2586 unique headlines. These
were divided into 2068 headlines (4136 samples)
for training, 258 headlines (516 samples) for valida-
tion, and 260 headlines (520 samples) for testing.

4 Experiments setup

For our experiments, we utilized four Afri-centric
transformer pre-trained language models: three
multilingual and one monolingual. These mod-
els were selected due to their prior optimization for
African languages, including Hausa. The mod-
els are AfriTeVa (Jude Ogundepo et al., 2022),
AfroXLMR-76L (Adelani et al., 2023), AfroX-
LMR (Alabi et al., 2022), and AfriBERTa (Ogueji
et al., 2021), respectively. Each pre-trained lan-
guage model was fine-tuned on our constructed
dataset by training it up 3 epochs. The models
were optimized with AdamW, with a learning rate
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Man City ta kusan kam-
mala aukar mai tsaron
baya Reis

Matar Havertz ta samu
saonnin cin zarafi a kafar
sada zumunta

Yadda wani farar fata ya
kashe mata biyu ya bai wa
alade gawarsu a Afirka ta
Kudu

Yadda fasinjojin Algeria
suka makale a Paris

Yan wasa 10 da hankali zai
karkata kansu a AFCON

Babu gaskiya a zargin da
shugaban sojin Nijar ya yi
wa Najeriya - Ribadu

Manchester City ta kusan kammala cinikin matashin an wasan
Palmeiras mai tsaron baya, Vitor Reis. City ta auki matakai tana
zawarcin an wallon tawagar Brazil, yanzu dai ta kai ga cewa sauran
iris ungiyar Etihad ta kammala sayen mai shekara 19. Tun farko
Palmeiras ta so rie mai tsaron bayan har zuwa gasar cin kofin
duniya, domin a lokacin zai kara tsada...

Matar Kai Havertz ta sanar da samun saonnin cin mutunci da zarafi
a kafar sada zumunta, bayan tashi wasan da Manchester United ta
fitar da Arsenal a FA Cup ranar Lahadi. Ta kuma ce cikin saonnin
da ta samu har da na barazana da aka yi musu da an cikin da ko
haifarsa ba a yi ba. Havertz mai shekara 25, ya barar da damar
makin da ya kamata ya ci wallayen da zai kai Arsenal zagayen
gaba a FA Cup, amma ya yi ta barar da wallaye. Bayan da suka
tashi 1-1 har da arin lokacin, sai aka je bugun fenariti, inda mai
tsare ragar United, Altay Bayindir ya tare wadda Havertz ya buga...

Labarin matan nan guda biyu da ake zargin wani farar fata da
kashe su a gonarsa sannan ya mia wa alade gawarsu ya cinye na ci
gaba da tayar da hankali a asar Afirka ta Kudu. Matan guda biyu
da suka haa da Maria Makgato mai shekaru 45 da Lucia Ndlovu
mai shekaru 34 dai an yi zargin cewa farar fatar ya harbe su ne
a lokacin da suka shiga gonarsa domin neman abinci a kusa da

Polokwane da ke arewacin lardin Limpopo na Afirka ta Kudun.

An zargi farar fatar da jefa wa alade gawar matan a wani mataki
na oarin oye shaidar abin da ya faru....

Yan Algeria 26 da za su koma gida daga Birtaniya sun makale a
filin jirgin saman Charles de Gaulle da ke birnin Paris makonni
uku da suka gabata. Fasinjojin wadanda suka hada da yara mata
biyu da wata tsohuwa mai shekara 75 sun shigo Faransa ne a ranar
26 ga watan Fabareru daga filin jirgin sama na Heathrow...

Nan da sa’0’i kaan ne, nahiyar Afrika za ta au harama ta ko’ina
inda za a ria jin sowar magoya baya sakamakon Gasar cin Kofin

nahiyar ta 2023, da za a fara karo na 34 a asar Cote d’Ivoire.

Fitattun "yan wasan nahiyar Afrika da suka yi fice a duniya za
su baje-koli, daga ranar 13 ga watan Janairu zuwa 11 ga watan
Fabrairu...

NUHU RIBADU Mai bai wa shugaban Najeriya shawara kan
harkokin tsaro Malam Nuhu Ribau, ya nuna takaicinsa kan wasu
zarge-zarge da shugaban mulkin sojin Nijar, Janar Abdulrahman

Tchiani, ya yi yayin hirarsa da kafar talabijin in asar ranar Laraba.

Shi dai Janar Tchiani ya zargi Najeriya da ba asar Faransa hadin
kai wajen ba ‘yan bindiga mafaka da kuma oarin kafa sansani a
arewacin Najeriya, don shirya yadda za su far wa asarsa...

Manchester City na gab da kammala sayen an wasan baya mai
suna Reis daga ungiyar Benfica. Rahotanni sun bayyana cewa,
tattaunawa ta yi nisa sosai kuma ana sa ran za a cimma yarjejeniya
a cikin "yan kwanaki masu zuwa. Reis, wanda ya taka rawar gani
a gasar Portugal, ya burge koci Pep Guardiola wanda ke neman
arfafa layin tsaron ungiyarsa...

Matar an wasan wallon afa na asar Jamus, Kai Havertz, wato
Sophia Weber ta fuskanci zazzafan cin zarafi a shafukan sada
zumunta bayan wasan da ungiyar wallon afa ta Arsenal ta buga da
Bayern Munich a gasar zakarun Turai. Masu amfani da shafukan
sada zumunta sun yi wa Sophia ruwan zagi da maganganu masu
ata rai, inda suka danganta rashin nasarar ungiyar Arsenal da
arancin arfin mijinta a filin wasa. Wasu daga cikin saonnin sun
yi nuni da cewa Sophia ce sanadiyyar rashin taka rawar gani na
Havertz, yayin da wasu suka yi amfani da kalmomi masu zafi da
cin mutunci...

A wani lamari mai ban tsoro da takaici, wani farar fata ya aikata
wani mugun aiki a kasar Afirka ta Kudu, inda ya kashe wasu mata
biyu sannan ya bai wa alade gawarsu. Wannan lamari ya girgiza
al’ummar kasar, ya kuma haifar da fushin jama’a, musamman a
tsakanin bakaken fata. Rahotanni sun bayyana cewa, wanda ake
zargin, wanda ba a bayyana sunansa ba tukuna, ya yi amfani da
wani makami ne wajen kashe matan biyu a wani gida da ke wani
yanki na kasar. Bayan ya aikata wannan aika-aika, sai ya dauki
gawarwakin matan ya kai su wani gona da ake kiwon alade, inda
ya jefa su a cikin kejin aladun...

A ranar Laraba, daruruwan fasinjojin jirgin sama ’yan kasar Al-
jeriya sun shiga halin kaka-nika-yi a filin jirgin sama na Charles de
Gaulle da ke birnin Paris. Fasinjojin, wadanda suka yi niyyar ko-
mawa gida bayan ziyara ko tafiye-tafiye daban-daban, sun makale
ne sakamakon soke jirage da kamfanonin jiragen sama suka yi ba
zato ba tsammani...

Gasar cin kofin nahiyar Afirka ta 2023 (AFCON) na gabatowa,
kuma a wannan shekara ma, kamar yadda aka saba, akwai "yan
wasan da za su ja hankalin masoya kwallon kafa a fadin nahiyar
da ma duniya baki daya. Daga cikin dubban ’yan wasan da za su
fafata a wannan gasa, akwai wasu da ake ganin za su yi fice fiye
da sauran saboda irin bajintar da suke nunawa a kungiyoyinsu da
kuma kasashensu...

Mai ba shugaban kasa shawara kan harkokin tsaro, Nuhu Ribadu,
ya yi watsi da zargin da shugaban sojin Nijar ya yi wa Najeriya,
yana mai cewa babu gaskiya a cikin zargin. Ribadu ya bayyana
haka ne a wata tattaunawa da manema labarai a Abuja, inda ya
yi karin haske kan batun da ya jawo cece-kuce a ’yan kwanakin
nan...

Table 1: Sample entries from our Human and Machine-Generated Hausa dataset

Statistic

Count

Subdomain

Proportion (%)

Total Sentences

Total Words

Unique Words

6,737
3,376,976
49,883

Table 2: Statistics of the dataset used in Hausa Machine-

generated text detection.

of le-5, a batch size of 8, and a maximum sequence

Politics
Health

Sports
Business
Entertainment
Religion
Technology

53.50
10.38
9.72
8.79
7.94
5.19
4.49

Table 3: Distribution of the news articles across differ-

length of 512, with evaluation performed after each
epoch. Table Table 4 shows the combinations of

hyperparameters used to train the four models. The

experiments were performed using PyTorch and

Hugging Face Transformers. Upon completion,
each fine-tuned model and tokenizer was saved and

ent subdomains.

5 Results and Discussion

5.1 Results

Table 5 shows the performance of the fine-tuned
models. The models’ good performances indicate
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pushed to the Hugging Face Hub.



Hyperparameter Value
optimizer AdamW
epochs 3
batch size 8
learning rate le-5

Table 4: Hyperparameters used for training the pre-
trained language models.

their capabilities to distinguish between machine-
and human-generated news texts written in Hausa
language. Consistent in many downstream tasks,
AfroXLLMR performed the best, with an accuracy
of 0.9923 and an F1 score of 0.9921. This is fol-
lowed by AfriTeVa and AfriBERTa with an ac-
curacy of 0.9884 and 0.9807 and an F1 score of
0.9881 and 0.9805, respectively, while AfroXLMR-
76L had the lowest performance with an accuracy
of 0.9672 and an F1 score of 0.9674. However, the
overall performance indicates that all the developed
models are very capable of detecting texts that are
automatically generated from human-written news
articles.

5.2 Discussion

The results of our experiments reveal the effi-
cacy of pre-trained language models in detect-
ing between human-generated text (HGTs) and
machine-generated text (MGTSs) in the Hausa lan-
guage. AfroXLMR, was the best-performing
model, achieved an accuracy of 99.23% on the
test set and an F1 score of 99.21%, indicating its
efficacy in identifying text origins with minimal
misclassification. This suggests that multilingual
pre-trained language models optimized for African
languages can be fine-tuned effectively for low-
resource language tasks such as MGT detection.
Relative to the other three models, AfriTeVa, AfriB-
ERTa, and AfroXLMR-76L showed different levels
of performance. AfriTeVa achieved an accuracy of
98.84% on the test set, followed by AfriBERTa
with 98.07% accuracy on the test set and lastly
the AfroXLMR-76L achieved the lowest accuracy
of 96.72% on the test set. This difference can be
due to model architecture, pretraining data, and
optimization methods.

6 Conclusion and Future Work

In this paper, we introduced the first large-scale
effort to develop a detector capable of distinguish-
ing between human-generated text (HGT) and
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Model Accuracy F1 Score
AfriTeVa 0.9884 0.9881
AfriBERTa 0.9807 0.9805
AfroXLMR 0.9923 0.9921
AfroXLMR-76L.  0.9672 0.9674

Table 5: Results and performance of the fine-tuned
models. The best-performing model is highlighted in
bold.

machine-generated text (MGT) in the Hausa lan-
guage. The study consists of two main parts.
Firstly, we created a dataset consisting of both
human-generated and machine-generated. Next,
we developed and evaluated the detectors by fine-
tuning four Afri-centric pre-trained language mod-
els on the dataset. The models are AfriTeVa,
AfriBERTa, AfroXLMR, and AfroXLMR-76L. We
trained the models multiple times to optimize hy-
perparameters and enhance performance. The ex-
perimental results revealed the efficacy of the pro-
posed models, with AfroXLMR outperforming the
other models, achieving an accuracy of 99.23% and
an F1 score of 99.21%.

This study not only advances the detection of
human-generated text and machine-generated text
in a low-resource language such as Hausa but
also shows that multilingual models optimized for
African languages can be effectively adapted for
detecting machine-generated text in low-resource
languages. Support for low-resource languages is
continuously improving across various large lan-
guage models (LLMs). As a result, effective de-
tection is important to prevent the spread of mis-
information and disinformation, which are often
facilitated by these models. We anticipate that this
study will offer a comprehensive assessment of
detection capabilities and enhance the ongoing aca-
demic discourse on identifying content generated
by language models especially in underserved lan-
guages.

For future research, we aim to extend the dataset
to cover diverse domains beyond news articles such
as social media posts, academic writing, and books,
as well as increasing the dataset size for better
model generalization. Secondly, we aim to create
real-time detection frameworks for use on digital
platforms to help mitigate the propagation of Al-
driven misinformation. Thirdly, exploring the use
of the GPTs and other large language models in
identifying machine-generated Hausa text. Using



these models, with their high-level knowledge of
language and context, detection accuracy could be
enhanced. Lastly, to expand detection capabilities
to other low-resource African languages, future re-
search might explore cross-language transfer learn-
ing.

7 Limitations

Our study also has some limitations. First, we
focused only on one domain when creating our
dataset, which is news articles. The training was
limited to three epochs, and a small batch size of
8 across all the models, which may impact the
models’ performance. Another limitation is that
machine-generated texts were created using only
the Gemini-2.0-flash model. While this model is
high-performing, relying solely on a single source
may limit the stylistic diversity of generated texts.
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Abstract

Automatic Speech Recognition (ASR) tech-
nologies have transformed human-computer
interaction; however, low-resource languages
in Africa remain significantly underrepre-
sented in both research and practical appli-
cations. This study investigates the major
challenges hindering the development of ASR
systems for these languages, which include
data scarcity, linguistic complexity, limited
computational resources, acoustic variability,
and ethical concerns surrounding bias and pri-
vacy. The primary goal is to critically ana-
lyze these barriers and identify practical, in-
clusive strategies to advance ASR technolo-
gies within the African context. Recent ad-
vances and case studies emphasize promis-
ing strategies such as community-driven data
collection, self-supervised and multilingual
learning, lightweight model architectures, and
techniques that prioritize privacy. Evidence
from pilot projects involving various African
languages showcases the feasibility and im-
pact of customized solutions, which encom-
pass morpheme-based modeling and domain-
specific ASR applications in sectors like health-
care and education. The findings highlight the
importance of interdisciplinary collaboration
and sustained investment to tackle the distinct
linguistic and infrastructural challenges faced
by the continent. This study offers a progres-
sive roadmap for creating ethical, efficient, and
inclusive ASR systems that not only safeguard
linguistic diversity but also improve digital ac-
cessibility and promote socioeconomic partici-
pation for speakers of African languages.

1 Introduction

ASR has emerged as an innovative technology, en-
abling natural interactions between humans and
computers in various applications, including vir-
tual assistants, transcription services, language
learning, and accessibility tools. However, the de-
velopment of ASR systems has primarily concen-
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trated on high-resource languages like English and
Mandarin, thereby sidelining African languages,
which are spoken by hundreds of millions across
the continent. This digital exclusion not only re-
stricts access to vital technologies but also put at
risk the preservation of linguistic and cultural her-
itage. (Abate et al., 2020a; Alabi et al., 2024).

African languages are complex, described by
rich morphology, tonal variation, and substantial
dialectal diversity. These features, combined with
a severe lack of annotated speech data, limited com-
putational infrastructure, and underdeveloped lin-
guistic tools, constitute significant challenges for
ASR development. In addition, ethical concerns,
such as algorithmic bias, under-representation of
certain dialects, and insufficient privacy protec-
tions, further disrupt the progress. The underdevel-
opment of ASR for African languages represents
both a technological gap and a socio-linguistic
bias that must be addressed with urgency and care
(Nzeyimana, 2023; Tachbelie and Abate, 2023;
Martin and Wright, 2023; Jacobs et al., 2023;
Gutkin et al., 2020; Sirora and Mutandavari, 2024).

The aim of this paper is to critically examine
the primary challenges which hinder the advance-
ment of ASR for African low-resource languages
while also identifying emerging strategies that pro-
vide viable paths forward. The specific objec-
tives include (i) analyzing the linguistic, technical,
and ethical barriers to ASR development, (ii) ex-
ploring current solutions including self-supervised
learning, community-driven data initiatives, and
lightweight modeling, and (iii) proposing future di-
rections that promote the creation of inclusive, effi-
cient, and context-aware ASR systems suitable for
deployment across diverse African low-resource
languages.

The remainder of this paper is structured as fol-
lows: Section 2 provides background information
and reviews the relevant literature. Section 3 ex-
plores the significant challenges facing the devel-
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opment of automatic speech recognition (ASR)
for African languages, while Section 4 highlights
promising future directions. The paper concludes
in Section 5 with final reflections and considera-
tions regarding the broader implications of inclu-
sive ASR development.

2 Background and Literature Analysis

Automatic Speech Recognition technologies have
experienced significant advances in recent years.
The field has progressed from traditional tech-
niques, such as Hidden Markov Models (HMMs),
to more innovative methodologies that employ
deep learning and transformer-based architectures.
This transformation marks a pivotal shift in the
landscape of speech recognition. Although HMMs
established the fundamental principles by using sta-
tistical methods to interpret spoken language, they
are insufficient to address the complexities inher-
ent in contemporary speech patterns (El Ouahabi
et al., 2023; Badji et al., 2020).

African languages exhibit remarkable diversity,
characterized by intricate morphological structures,
sophisticated tonal variations, and a wide variety
of dialects. For example, Yoruba and Wolaitta are
two prominent tonal languages that employ varia-
tions in pitch; even a slight alteration in tone can
entirely change the meaning of a phrase (Caubriére
and Gauthier, 2024; Abdou Mohamed et al., 2024).
Ambharic and Tigrinya exemplify the rich cultural
heritage of their speakers, characterized by their
morphological complexity. These languages fea-
ture intricate systems of conjugation and inflection,
which contribute to their vibrancy and expressive-
ness (Koffi, 2020; Tachbelie et al., 2020; Ibrahim
et al., 2022).

In order to improve the performance of ASR
systems for African languages, recent research
has explored modern techniques such as self-
supervised learning (SSL), multilingual training,
and dynamic data enhancement (Ejigu and Asfaw,
2024; Caubriere and Gauthier, 2024). Despite the
substantial advancements in this field, progress is
frequently limited by the scarcity of high-quality
datasets and the limited availability of computa-
tional resources. These factors present signifi-
cant challenges for research in this area of study
(Shamore et al., 2023; Nzeyimana, 2023).

On another hand, there are numerous ethical
concerns towards the current ASR research. For
example, speakers of underrepresented dialects of-
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ten encounter bias against their languages, which
compromises the reliability and accuracy of these
systems. Furthermore, concerns regarding privacy
invasion remain a problem, particularly when ASR
technology is utilized for sensitive applications,
such as in legal or medical environments (Martin
and Wright, 2023; Jimerson et al., 2023).

3 Challenges in ASR for African
low-resource Languages

Despite the increasing interest in ASR for African
low-resource languages, several ongoing chal-
lenges disrupt the development of effective and
inclusive systems. These disruptions are both tech-
nical and socio-linguistic contexts and must be sys-
tematically addressed to ensure equitable access to
speech technologies throughout the continent.

3.1 Data Scarcity

A significant challenge in developing ASR sys-
tems for African languages is the scarcity of high-
quality, annotated speech datasets. While ini-
tiatives like Mozilla Common Voice offer valu-
able resources, the variability in recording con-
ditions, speaker representation, and audio quality
can undermine the usability and overall represen-
tativeness of the data. Moreover, the absence of
domain-specific and balanced datasets limits the
ability of models to effectively generalize across
various speech contexts and user demographics.
(Abubakar et al., 2024; Azunre and Ibrahim, 2023).

3.2 Linguistic Complexity

African languages possess a rich linguistic di-
versity, characterized by complex morphological
structures and tonal features that causes significant
challenges for ASR systems. In tonal languages
such as Yoruba and Wolaitta, even small variations
in pitch can completely change the meaning of a
word and this will cause complication in accuracy.
Similarly, languages like Amharic and Tigrinya dis-
play extensive inflection and derivation, resulting
in high rates of out-of-vocabulary (OOV) words
and making it challenging for ASR systems to pro-
cess word forms that were not encountered during
training.(Koffi, 2020; Abate et al., 2020b).

3.3 Limited Computational Resources

Most of the African research institutions and
developers encounter infrastructural challenges,
particularly when it comes to accessing high-
performance computing resources. Training and



fine-tuning modern ASR models, especially those
utilizing large transformer architectures, often de-
mand powerful GPUs and sufficient memory. In
areas with limited technological infrastructure, this
causes a considerable obstacle to local innovation
and experimentation with State-of-the-art meth-
ods. (Abubakar et al., 2024; Zellou and Lahrouchi,
2024; Kivaisi et al., 2023).

3.4 Environmental Noise and Dialectal
Variation

Real-world deployment of ASR systems in African
low-resource languages commonly involves highly
variable acoustic conditions. Background noise,
overlapping speech, and informal speaking styles,
mostly in public spaces such as markets, schools,
and clinics, can significantly reduce recognition
accuracy. Furthermore, the wide range of dialects,
accents, and speech patterns across regions adds
another layer of complexity. Many existing ASR
systems struggle to adapt to this diversity due to
limited training data that captures intra-language
variation (Ramanantsoa, 2023; Babatunde et al.,
2023).

3.5 Ethical and Social Considerations

ASR technologies continuously reflect biases con-
tained in the datasets they are trained on. For
African low-resource languages, this can result
in unbalanced performance across dialects, social
groups, and gender identities which may lead to
systematic exclusion or misrepresentation of cer-
tain users. Moreover, when deployed in sensi-
tive fields like healthcare, ASR systems raise sig-
nificant privacy concerns, especially in situations
where data protection policies are either weak or
not enforced. If we don’t pay careful attention to
ethics, inclusivity, and user trust, these technolo-
gies may end up reinforcing existing inequalities
instead of helping to resolve them. (Martin and
Wright, 2023; Afonja et al., 2024).

In summary, the advancement of ASR systems
for African low-resource languages faces several
challenges, including data scarcity, linguistic com-
plexity, computational constraints, acoustic vari-
ability, and ethical considerations. Addressing
these issues demands innovative, context-sensitive
approaches that extend beyond traditional ASR de-
sign. The following section delves into emerging
research directions and practical strategies aimed
at overcoming these barriers and promoting the de-
velopment of inclusive, efficient, and ethical ASR
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systems, specifically in the diverse linguistic land-
scape of Africa.

4 Future Direction

To address the challenges in developing ASR
systems for African low-resource languages, re-
searchers must adopt innovative and inclusive
strategies. The following directions outline key
areas for future work:

4.1 Expanding and Diversifying Datasets

Enhancing speech datasets through community en-
gagement is a fundamental initial step towards
improved ASR systems. Local contributors have
effectively collected diverse voice data that rep-
resents a variety of accents, dialects, and envi-
ronments on platforms such as Mozilla Common
Voice. (Abubakar et al., 2024; Alabi et al., 2024,
Ogunremi et al., 2023). Furthermore, techniques
for generating synthetic data, including noise injec-
tion, speed variation, and voice cloning, can signif-
icantly enhance both the quality of the dataset and
the model’s ability to generalize effectively. (Ejigu
and Asfaw, 2024).

4.2 Addressing Linguistic Complexity

The morphological complexity and tonal diversity
in most African languages present considerable
obstacles in the model generalization, therefore,
Future models should adopt subword-level repre-
sentations, such as morpheme-based modelling, to
effectively handle vast inflection and derivation pat-
terns. Additionally, advancements in grapheme-to-
phoneme (G2P) conversion techniques are crucial
for precisely correlating written representations
with their respective pronunciations, especially in
tonal languages. (Emiru et al., 2021; Abubakar
et al., 2024; Ogunremi et al., 2023).

4.3 Improving Computational Efficiency

Resource constraints in various regions of Africa
necessitate the design of lightweight ASR models.
By optimizing model architecture and reducing
the number of parameters, it is possible to pre-
serve performance while lowering computational
demands. Additionally, techniques like transfer
learning and fine-tuning of pre-trained models can
further decrease training time and energy consump-
tion, making ASR development feasible even in
low-resource environments (Olatunji et al., 2023;
Afonja et al., 2024; Nzeyimana, 2023).



4.4 Ethical and Inclusive ASR Systems

To promote fairness, future automatic speech recog-
nition (ASR) systems should be trained on diverse
and representative datasets. This inclusivity is cru-
cial for mitigating biases, particularly for speak-
ers of dialects and accents that have traditionally
been under-represented. Furthermore, incorporat-
ing privacy-preserving techniques, such as feder-
ated learning, enables models to learn from decen-
tralized data while safeguarding user confidential-
ity. These strategies are particularly significant in
sensitive areas like healthcare. (Martin and Wright,
2023; Afonja et al., 2024)

4.5 Applications in Real-World Contexts

Improving noise robustness is a crucial require-
ment for the successful implementation of ASR
systems in real-world, acoustically diverse envi-
ronments. By using advanced signal processing
techniques and noise-cancellation algorithms, ASR
models can sustain high performance even in chal-
lenging settings such as crowded healthcare facili-
ties and dynamic educational spaces (El Ouahabi
et al., 2023). Empirical evidence affirms this po-
tential; for instance, in rural Ghana, a Twi-based
ASR system used in clinical settings achieved 85%
clinician satisfaction, despite a modest reduction in
accuracy in high-noise wards. Similarly, a Shona-
based educational application in Zimbabwe led to
a 30% reduction in mispronunciation rates and dou-
bled student engagement. These results highlight
the tangible effectiveness and contextual relevance
of domain-specific, noise-resilient ASR technolo-
gies in meeting the unique needs of African com-
munities. (Doumbouya et al., 2021; El Ouahabi
et al., 2023; Sirora and Mutandavari, 2024).

4.6 Field Trials and Performance Metrics

Community-driven data initiatives have shown
great potential in enhancing ASR for African lan-
guages. A project for Yoruba using Mozilla Com-
mon Voice collected over 120 hours of speech data
from a diverse group of 250 speakers. A two-
stage quality control process achieved a 92% clip-
acceptance rate. Fine-tuning a Wav2Vec2 model on
this data reduced the word error rate significantly,
from 28% to 17%, underlining the effectiveness of
foundational data collection for tonal languages.
A highly efficient ASR model for edge devices
was developed by (Nzeyimana, 2023), which uti-
lized quantization and pruning on a transformer-
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based architecture to reduce its size from 300 MB
to 50 MB. This optimization allowed real-time in-
ference on a Raspberry Pi 4 with a real-time factor
of 0.8x%, introducing a slight increase in WER from
22% to 25%, while still maintaining acceptable
latency and CPU usage. The results demonstrate
the potential for deploying advanced ASR systems
in resource-constrained environments.

(Olatunji et al., 2023) emphasizes the impor-
tance of diversity by collecting speech (Pan-Africa
dataset) from 200 speakers in both clinical and
general domains. A self-supervised Wav2Vec2
model was fine-tuned, leading to over a 10% rela-
tive reduction in word error rate (WER) for clinical
transcription tasks, showcasing how application-
specific datasets can improve ASR robustness.

The “Iroyinspeech” corpus, developed by (Ogun-
remi et al., 2023), includes a vast number of
Yorub4 utterances from both urban and rural di-
alects. When used in a multilingual fine-tuning
framework, this expanded dataset decreased word
error rates (WER) on rural-accented speech by
about 15%, highlighting the significance of dialec-
tal diversity and community involvement in ASR
development.

(Ramanantsoa, 2023) highlights the potential of
using existing audio archives to improve transcrip-
tion accuracy. Researchers achieved over 80% ac-
curacy in transcribing real-world radio broadcasts
through targeted harvesting and dynamic noise
augmentation. This demonstrates that even under-
resourced languages can benefit from strategic use
of publicly available audio to develop effective
ASR models.

Table 1 presents a summary of the challenges
that disrupt the development of ASR and outlines
potential future directions.

5 Conclusion

ASR technologies gave significant promise for im-
proving digital accessibility, preserving linguis-
tic heritage, and promoting socio-economic inclu-
sion for low-resource languages in Africa. How-
ever, challenges such as limited annotated datasets,
complex linguistic structures, and ethical consid-
erations disrupt advancement. To improve ASR
performance, solutions like self-supervised learn-
ing, multilingual modeling, and synthetic data
generation have been suggested. Future research
should emphasise the development of high-quality
datasets through community-driven initiatives and



Challenges

Future Directions

Authors

Data Scarcity: Lack of annotated
datasets for training ASR models.
Linguistic Complexity: Tonal variations
and morphological richness.

Computational Constraints: Limited ac-
cess to computational resources.

Noise and Variability: Background
noise and dialectal diversity.

Ethical and Social Issues: Bias against
underrepresented dialects.

Privacy Concerns: Use of ASR in sensi-
tive applications like healthcare.

Lack of Standardized Linguistic Tools:
Absence of pronunciation dictionaries.
High Out-of-Vocabulary (OOV) Rates:
Due to morphological richness.
Difficulty in Data Collection: Limited
availability of native speakers.

Dialectal Diversity: Variability in ac-
cents and speaking styles.

Expanding Datasets: Leveraging community-driven
platforms like Mozilla Common Voice.

Advanced Modeling: Using self-supervised learning
(SSL) and multilingual training.

Lightweight Architectures: Developing efficient
models for low-resource settings.

Robustness to Noise: Enhancing ASR systems to
handle noisy environments.

Reducing Bias: Training on diverse datasets to im-
prove inclusivity.

Privacy Protection: Implementing federated learning
to protect user data.

Grapheme-to-Phoneme (G2P) Conversion: Improv-
ing G2P for tonal languages.

Morpheme-Based Models: Focusing on subword
units for better recognition.

Synthetic Data Generation: Using data augmentation
techniques like speed perturbation.

Domain-Specific ASR: Tailoring systems for specific
domains like healthcare, education, etc.

(Abubakar et al., 2024; Azunre and
Ibrahim, 2023; Alabi et al., 2024; ?)

(Koffi, 2020; Caubriere and Gauthier,
2024)

(Abubakar et al., 2024; Nzeyimana,
2023)

(Ramanantsoa, 2023; El Ouahabi et al.,
2023)

(Martin and Wright, 2023; Afonja et al.,
2024)

(Martin and Wright, 2023; Afonja et al.,
2024)

(Abate et al., 2020b; Emiru et al., 2021)

(Tachbelie and Abate, 2023; Abate
et al., 2020a)

(Fantaye et al., 2020; Ejigu and Asfaw,
2024)

(Babatunde et al., 2023; Doumbouya
etal., 2021)

Table 1:

Challenges and Future Directions in ASR Research

the development of models capable of address-
ing tonal variations and morphological complexi-
ties in African languages. It is very important to
use privacy-preserving methods for ethical deploy-
ment, especially in sensitive contexts. Lightweight
ASR architectures will facilitate use in resource-
constrained environments. Achieving meaning-
ful progress necessitates collaboration among lin-
guists, technologists, policymakers, and local com-
munities to ensure that African languages are sup-
ported and preserved in the digital age.
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Abstract

The rapid advancement of large language mod-
els (LLMs) has revolutionized natural language
processing, yet a significant challenge persists:
the under representation of low-resource lan-
guages. This paper introduces SABIYARN, a
novel 125M parameter decoder-only language
model specifically designed to address this gap
for Nigerian languages. Our research demon-
strates that a relatively small language model
can achieve remarkable performance across
multiple languages even in a low-resource set-
ting when trained on carefully curated task-
specific datasets. We introduce a multitask
learning framework designed for computational
efficiency, leveraging techniques such as se-
quence packing to maximize token throughput
per batch. This allows SABIYARN to make the
most of a limited compute budget while achiev-
ing strong performance across multiple NLP
tasks.

This paper not only highlights the effectiveness
of our approach but also challenges the notion
that only massive models can achieve high per-
formance in diverse linguistic contexts, outper-
forming models over 100 times its parameter
size on specific tasks such as translation (in
both directions), Named Entity Recognition,
Text Diacritization, and Sentiment Analysis in
the low-resource languages it was trained on.
SabiYarn-125M represents a significant step
towards democratizing NLP technologies for
low-resource languages, offering a blueprint for
developing efficient, high-performing models
tailored to specific linguistic regions. Our work
paves the way for more inclusive and cultur-
ally sensitive Al systems, potentially transform-
ing how language technologies are developed
and deployed in linguistically diverse areas like
Nigeria and beyond.

1 Introduction

The field of natural language processing (NLP)
has witnessed remarkable advancements in recent
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years, driven by the development of large-scale,
pre-trained language models. These powerful mod-
els have demonstrated impressive capabilities in
handling a variety of language-related tasks, from
text generation to language understanding, and
emergent reasoning abilities as they scale to ever-
increasing model sizes (Wei et al., 2022). Despite
the remarkable progress in NLP, the performance
of large language models (LLM) in African lan-
guages remains suboptimal. Recent studies, such
as the analysis by (Ojo et al., 2023), highlight the
significant performance gap between African lan-
guages and high-resource languages such as En-
glish in the state-of-the-art large language models,
including LLLaMa 2 (Touvron et al., 2023), and
GPT-4 (Achiam et al., 2023). Their findings reveal
that while GPT-4 achieves average or impressive
results on classification tasks, it performs poorly
on generative tasks like machine translation, while
LLaMa 2 recorded the worst performance due to
its English-centric pretraining and limited multi-
lingual capabilities. These results underscore the
urgent need to address the under representation
of African languages in LLMs, ensuring they are
not left behind as these technologies continue to
evolve.

To address this gap, we present SABIYARN-
125M, a decoder-only foundational (pre-trained)
language model specifically designed to support
the major languages spoken in Nigeria. Our model
tackles two main challenges in developing NLP
solutions for Nigerian languages: limited computa-
tional resources and a scarcity of high-quality data
sources. Using a diverse training dataset and a mul-
titask learning approach, this model aims to provide
versatile and inclusive language technology that
can empower Nigerian communities and contribute
to the global NLP landscape. Our model is pre-
trained on a diverse dataset covering nine Nigerian
languages: Yoruba, Igbo, Hausa, Pidgin English,
Fulani, Fulah, Fulfulde, Uhrobo, and Efik. Previ-
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ous models have predominantly focused on the four
major Nigerian Languages, Yoruba, Igbo, Pidgin,
and Hausa. Our work builds on this foundation by
extending further language coverage beyond the
four major Nigerian Languages, to include several
underrepresented languages, increasing language
diversity and enabling our model SABIYARN to
perform various NLP tasks while preserving cul-
tural and linguistic nuances.

We adopt a mixture of training strategies, includ-
ing a technique called Sequence Packing (Krell
et al., 2022)) for the efficient processing of se-
quences to speed up pretraining and minimize
wasted attention computation, task-conditioning
prompts inspired by (Raffel et al., 2020), a multi-
task learning objective (Zhang and Yang, 2021)
and a custom loss computation strategy that lever-
ages sequence packing, ensuring the model learns
precisely from the task-relevant information. This
hybrid approach allows us to maximize the poten-
tial of each parameter given the limited resources,
achieving impressive results across a range of NLP
tasks, including Named Entity Recognition, Topic
classification, Translation, Diacritization, and Sen-
timent Analysis, even in zero-shot settings.

In the following sections, we detail our method-
ology, present our results, and discuss the impli-
cations of our findings for the future of NLP in
Nigeria and potentially other linguistically diverse
regions. Our work contributes to the democratiza-
tion of NLP technologies but also paves the way
for more inclusive Al solutions that respect and
preserve linguistic diversity.

2 Related Work

The rapid advancement of large language models
(LLMs) has revolutionized natural language pro-
cessing (NLP), with models like GPT (Radford
and Narasimhan, 2018) demonstrating the power
of scaling decoder-only architectures. These mod-
els, pre-trained with multi-task instructions, have
achieved human-level performance in zero-shot
and few-shot settings (Brown et al., 2020), set-
ting a new standard for NLP. However, a critical
limitation persists: the underrepresentation of low-
resource languages, particularly African languages,
in these advancements. This gap has motivated
research into developing specialized models that
address the unique challenges of low-resource lin-
guistic contexts.

Early efforts to address this gap, such as AFRIB-
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ERTA (Ogueji et al., 2021), marked a signifi-
cant step forward. AfriBERTa, a 126M-parameter
encoder-only model, was pre-trained on 11 African
languages and outperformed larger multilingual
models like XLLM-R (Conneau et al., 2020) and
MBert (Devlin et al., 2019) on African language
benchmarks. This success highlighted the potential
of smaller, high-quality models tailored to low-
resource languages, challenging the assumption
that larger models are always superior. However,
AfriBERTa’s encoder-only architecture limited its
applicability to generative tasks, leaving a gap
for decoder-based models that could better handle
tasks like text generation and diacritization.

Further advancements by (Hedderich et al.,
2020) and (Alabi et al., 2022) explored fine-tuning
and adaptation techniques for African languages.
While (Hedderich et al., 2020) focused on single-
language adaptation, (Alabi et al., 2022) intro-
duced Multi-Language Adaptation Fine-Tuning
(MAFT), which extended adaptation to multiple
languages. Their work resulted in Afro-XLM-R!,
a model that outperformed AfriBERTa by lever-
aging techniques like non-African language token
removal. Despite these improvements, these mod-
els remained encoder-based and relied on large-
scale multilingual pretraining, which often dilutes
the representation of low-resource languages. Re-
cent successes in Large Language Models (LLMs)
have highlighted the superiority of decoder-only
architectures in various NLP tasks, necessitating
re-evaluating approaches to modeling Nigerian lan-
guages. Efforts such as (Buzaaba* et al., 2024) and
(Mwongela et al., 2024) have explored the decoder-
only architectures for low-resourced African lan-
guages. However these models were fine-tuned
or adapted from pretrained base models. Our ap-
proach considers pretraining the model entirely
from scratch.

We argue that decoder-only models offer unique
advantages, such as multi-task learning and emer-
gent abilities that arise with scaling, (Wei et al.,
2022). These capabilities are reflected in our model,
SABIYARN, which excels at tasks it was not neces-
sarily pre-trained on, such as inter-language transla-
tion between Nigerian languages. This underscores
the potential of decoder-only architectures to better
capture the linguistic intricacies and practical util-
ity of these languages. The trend of scaling LLMs

1https://huggingface.co/Davlan/
afro-x1lmr-large
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to larger parameter sizes has dominated NLP re-
search, with larger models demonstrating improved
reasoning and zero-shot capabilities. However,
(Hoffmann et al., 2022) revealed that many models
are under-trained relative to their compute budgets,
emphasizing the need for efficient training strate-
gies. This finding is particularly relevant for low-
resource languages, where data scarcity and com-
putational constraints make large-scale training im-
practical. Recent work has also shown that smaller
models, when trained on carefully curated datasets,
can achieve competitive performance (Abdin et al.,
2024), challenging the necessity of massive models
for low-resource settings. Notable data collection
efforts like WURA (Oladipo et al., 2023), a pub-
licly available high-quality dataset for African lan-
guages, that builds on mC4? and amounts to 19GB
of African texts on various tasks, aim to tackle the
problem of high-quality African data.

Despite these advancements, Nigerian languages
remain severely underrepresented in NLP research.
Existing models often fail to capture the linguistic
and cultural nuances of these languages, limiting
their practical applicability. This gap underscores
the need for a targeted, resource-efficient approach
that prioritizes high-quality data curation and ef-
ficient parameter utilization. Our work, SABI-
YARN, addresses this need by introducing a 125M-
parameter decoder-only model specifically trained
for Nigerian languages. By leveraging a multi-task
learning framework (Zhang and Yang, 2021) and
adhering to Chinchilla scaling laws, SABTYARN
demonstrates that smaller, meticulously trained
models can achieve remarkable performance in
low-resource settings, offering a viable alternative
to the prevailing trend of massive, indiscriminate
scaling.

3 Methodology

This section details the development of SABIYARN-
125M, including the dataset collation, processing,
model architecture, and training.

3.1 Dataset Curation and Cleaning

The preparation of our datasets involved a metic-
ulous process of collation, deduplication, task-
specific tagging, and tokenization. This section
outlines our methodology for ensuring the datasets
were optimally structured for our multi-task learn-
ing approach.

Zurlhttps://paperswithcode.com/dataset/mc4
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The training dataset for SabiYarn was curated
through a comprehensive effort that involved man-
ually aggregating relevant data sets from sources
such as Hugging face and the BBC Africa news
website. The resulting dataset comprised approx-
imately 114.7 million samples, representing 10.1
billion tokens (see Table 7 and Table 8 for data
distribution), encompassing a diverse range of text
data in various Nigerian languages, including the
bible, news articles, social media posts, literary
works, and educational resources for different NLP
tasks. These tasks include: text generation, trans-
lation, sentiment and topic classification, text sum-
marization, headline generation, text diacritization,
text cleaning, instruction following and reasoning.

The text diacritization and cleaning datasets
were generated by introducing random noise into a
portion of the already collated data. For each char-
acter in the original data, there was a 15% prob-
ability of applying a random modification. This
modification involved either inserting a random
character or deleting the original character.

To ensure dataset quality and relevance, a rigor-
ous cleaning and filtering process was applied to
all collected datasets. This involved the following
techniques:

* Manual Scrutiny: Duplicates, unwanted sam-
ples, and unreadable characters were manually
identified and removed.

Normalization: Text formats were standard-
ized for consistency, including the conversion
of Unicode characters to their language equiv-
alents.

Quality Refinement: Data integrity issues
were addressed. This included removing data
exhibiting social, gender, and sexual biases
(identified during manual selection), filtering
out repeated nonsensical characters using reg-
ular expressions, and excluding poor-quality
samples. All sentence lengths and single-word
translations were considered, while empty
strings were discarded. This was a time-
intensive but crucial step.

The resulting dataset is a rich and diverse corpus
that captures linguistic nuances and incorporates
cultural contexts specific to the target (9) Nige-
rian languages including English. However, the
complete dataset has not yet been made publicly
available.



3.2 Dataset Task Assignment

For each dataset described in the previous section,
we undertook a manual review process to deter-
mine its suitability for specific NLP tasks. This
critical step ensured that each dataset was appro-
priately matched to tasks such as translation, senti-
ment classification, named entity recognition, topic
classification, instruction-following and so on.

3.2.1 Task-Specific Tagging

Upon establishing the task relevance of each
dataset, we implemented a unique tagging system.
This system involves the use of task-specific tag
pairs, designed to clearly demarcate the input and
output segments of each data sample. The tagging
process follows this structure:

* A unique start tag is prepended to the input
text segment.

* A corresponding end tag is appended after the
input text, followed by the output text.

For instance, in a sentiment classification task:
<classify>I love rice!<sentiment> positive

Here, <classify> and <sentiment> are the
task-specific tags, "I love rice!" is the input text,
and "positive" is the output text. Other tags can be
seen in Table 9

3.2.2 Rationale for Tagging

This tagging approach serves several crucial pur-
poses.

1. Task Identification: It allows the model to
identify the specific NLP task associated with
each input during training and inference.

2. Input-Output Demarcation: It clearly sep-
arates the input text from the expected out-
put, facilitating more effective learning of the
input-output relationship through focused loss
computation.

3. Multi-Task Learning: Using consistent tag-
ging for different tasks, we enable the model
to learn multiple tasks within a unified frame-
work.

3.3 Tokenization

SabiYarn-125M utilizes the Bloom tokenizer, a
BPE tokenizer pretrained on a curated dataset to
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effectively handle the linguistic nuances and dia-
critics of 9 Nigerian languages. Informed by the vo-
cabulary sizes of GPT-2 and Mistral v3 tokenizers,
and considering the training corpus’s linguistic di-
versity, we established a vocabulary size of 52,050
tokens. A vocabulary size of 52k was chosen to
achieve a compromise between adequate coverage
across 9 languages and practical compute/mem-
ory limitations. This decision is supported by the
findings of (Dagan et al., 2024), who suggest that
increasing vocabulary size, and consequently de-
creasing sequence length, may lead to diminished
performance as a result of reduced FLOPS effi-
ciency during training. Task-specific tags were in-
corporated as special tokens during tokenizer train-
ing.

The trained tokenizer was subsequently used to
tokenize the cleaned training data into a stream of
token ID sequences, which were stored in a binary
file in uint8 format. During this process, a valida-
tion set comprising approximately 6 million tokens
was generated by random sampling and stored in a
separate binary file.

3.4 Model Architecture

SabiYarn-125M is a 125-million-parameter lan-
guage model based on the Generative Pre-trained
Transformer J (GPT-J) architecture. To enhance
generalization, particularly in low-resource set-
tings, we extend the attention module’s output vec-
tors with additional information via a feedforward
network in each transformer block following the
design used in GPT-J? (see comparison in Fig 1).
However, we employed a trainable positional em-
bedding layer unlike the rotary embedding layer
seen in GPT-I’s architecture. This choice was
motivated by the hypothesis that trainable embed-
dings could offer greater flexibility in learning po-
sitional relationships within a smaller parameter
space, potentially leading to faster convergence
and improved performance compared to fixed ro-
tary embeddings at this scale. We believe that this
design enables the model to handle a wide range
of NLP tasks with limited data. See Table 1 for
specific details.

The model features 12 layers, 12 attention heads,
an embedding size of 768, and a context length of
1024, and employs learned positional embeddings,
optimizing its learning capacity. These specifica-
tions align with the GPT-2 medium model.

Shttps://www.eleuther.ai/artifacts/gpt-j
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Model Name

Tparams  Tlayers dmodel

Theads

dnead  Context Length Learning Rate

SabiYarn-125M  125M 12 768

12

64 1024 6.0 x 107°

Table 1: SabiYarn Model Specifications

GPT
architecture

uuuuu

((((((((
embedding X
embedding

embedding

Figure 1: GPT-J architecture

3.5 Pretraining

SabiYarn-125M was pre-trained using causal lan-
guage modeling with a multitask objective on a
diverse, multilingual Nigerian corpus. This joint
training enriches shared linguistic representations,
improving next-word prediction and generalizing
across tasks and languages. By increasing ef-
fective training data size and diversity (crucial
for underrepresented languages), the model devel-
ops stronger token representations, enhancing lan-
guage understanding and prediction. This multitask
framework yields transferable and effective repre-
sentations for various NLP applications, boosting
performance and versatility. Table 8 presents the
token distribution per language and task.

During model pretraining, we implemented a
comprehensive masking strategy to prevent infor-
mation leakage and ensure robust learning. Our
approach consisted of two key components:

1. Task dependent, token-level masking: Dur-
ing training, when processing packed token
sequences, a custom mask is applied for next-
token prediction. If a sequence includes task-
specific tags (e.g., for translation or NER, de-
tailed in table 9), all tokens between these
paired tags (representing the typical input)
are masked out when calculating the cross-
entropy loss on the shifted target sequence.
This strategy trains the model to predict not
only subsequent tokens generally but also to
generate the correct output sequence condi-
tioned on the presence of a downstream task
and its corresponding input. This masking

99

mechanism is illustrated in Fig 2).

. Sequence Packing: We isolated attention cal-
culations to prevent information leakage be-
tween different data samples in a batch, ensur-
ing that each sample’s processing remained
independent.

As visualized in Figure 2, this dual masking
approach created a more challenging learning en-
vironment that encourages the model to develop a
genuine understanding of linguistic patterns rather
than relying on shortcuts or memorization. Us-
ing this technique, we significantly improved the
model’s ability to learn task-specific features and
generalize to unseen data.

<translate> I love rice <yor> Mo féraniresi |end_of_text| <classify> This ..

| -
0.48

Figure 2: Masking during loss computation

The model was trained on a single 24GB GPU,
token ID sequences of length 1,024 (block size)
were randomly sampled from the binary file to form
batches of size 12. A gradient accumulation step of
40 was used, resulting in an effective token batch
size of 406000 tokens, in conjunction with a cosine
learning rate scheduler with a maximum learning
rate of 6 x 104 and a minimum learning rate of
6 x 10~°. Training was carried out with precision
bfloat16 to optimize memory usage and accelerate
training without compromising quality.

4 Evaluation and Results

4.1 Evaluation Methodology

The performance of SabiYarn-125M was evaluated
across a spectrum of NLP tasks relevant to the
Nigerian linguistic landscape. To ensure a compre-
hensive and reproducible assessment, we adopted
the benchmark datasets and tasks used by (Ojo
et al., 2023), including Translation, News Classi-
fication, Named Entity Recognition (NER), Senti-
ment Analysis, Text Diacritization, and Text Clean-
ing. These datasets, MASAKHANEWS (Adelani
et al., 2023) for news classification, AFRISENTI
(Muhammad et al., 2023) for sentiment analysis,



and MASAKHANER(Adelani et al., 2021) for
named entity recognition, provide a robust frame-
work for assessing the model’s capabilities across
diverse African languages. By adhering to these
established benchmarks, we facilitate a fair and
meaningful comparison between SabiYarn-125M
and existing state-of-the-art language models.

4.2 Fine-tuning

In addition to evaluating the base pre-trained model,
we fine-tuned SabiYarn-125M on the training sets
of the benchmark datasets mentioned above. This
process yielded several specialized models, each
designed to excel in specific NLP tasks:

* SabiYarn-finetune: Fine-tuned on the aggre-
gated training sets of all benchmark datasets,
encompassing all four Nigerian languages
(Yoruba, Igbo, Hausa, and Pidgin) and includ-
ing back-translation data.

* SabiYarn-translate: Optimized for transla-
tion tasks, fine-tuned on the benchmark trans-
lation dataset and its corresponding back-
translations across all languages.

* SabiYarn-topic: Optimized for topic classi-
fication, fine-tuned on the combined multilin-
gual topic classification dataset.

* SabiYarn-sentiment: Optimized for senti-
ment analysis, fine-tuned on the aggregated
sentiment classification dataset across all lan-
guages.

* SabiYarn-NER: Optimized for Named Entity
Recognition, fine-tuned on the combined NER
dataset spanning all languages.

» SabiYarn-diacritics-cleaner: Optimized for
text diacritization and cleaning across all lan-
guages.

It should be noted that our approach diverges
from that of M2M-100, which employed separate
fine-tuning processes for each language and trans-
lation direction. We adopted a unified fine-tuning
strategy across languages, a method employed in
various multilingual models. To create the dataset
for text diacritization and cleaning fine tuning tasks,
we utilized pre-existing datasets and applied cus-
tom transformations. For diacritization, we selec-
tively removed diacritical marks with a 50% - 100%

probability, creating pairs of original and diacritic-
free text. For text cleaning, we introduced con-
trolled noise to the text, simulating common errors
and inconsistencies found in real-world data. The
resulting datasets were split into train, validation,
and test sets, with 15,000, 1,000, and 5,000 samples
respectively for each language and task.

5 Results and Discussion

The subsequent sections provide a detailed analysis
of the performance of SabiYarn-125M across the
evaluated tasks. We present comparative results
against existing models and discuss the implica-
tions of our findings for low-resource language
processing in the African context.

5.1 Task-specific Performance

Translation: SabiYarn, despite its significantly
smaller size (125M parameters), demonstrates
competitive performance in machine translation
tasks, particularly excelling in forward translation
for Igbo and pidgin and backward translation for
Yoruba. While larger models like mTO-MT (13B)
and M2M-100 (418M) achieve higher scores in
several categories, SabiYarn’s performance is re-
markable considering its parameter efficiency. The
model’s strong performance in Nigerian Pidgin
(Pcm) translation, outperforming many larger mod-
els, highlights its effectiveness in handling this
unique linguistic context. However, the reliability
of the evaluation is somewhat constrained by the
benchmark dataset’s use of only a single reference
translation per source sentence. This is particularly
limiting for Nigerian languages such as Yoruba,
where multiple valid translations are often possi-
ble, potentially underestimating the models’ true
capabilities. Additionally, SabiYarn’s tendency to
avoid verbosity and its occasional struggle with co-
herence during translation present areas for future
improvement, suggesting that refining the model’s
ability to balance conciseness with contextual un-
derstanding could further enhance its performance.

Sentiment Analysis: SabiYarn, with only 125M
parameters, demonstrates impressive performance
in sentiment analysis across Nigerian languages,
achieving average accuracies of 66.0% (SabiYarn-
Sentiment) and 65.3% (SabiYarn-Finetune). While
AfroXLMR-Large (550M parameters) leads in
most categories as seen in Table 4, SabiYarn con-
sistently outperforms larger models like GPT4 and
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Task avg

Yor

Hau Ibo Pcm

Text Diacritization 96.9 100.0
713 7783 5467 81.54 71.17

Text Cleaning

93.7

Table 2: Text Diacritization and Cleaning Results. We show the BLEU score of SabiYarn-diacritics-cleaner.

Model Name Size avg Yor Hau Ibo Pcm
XX-en

SabiYarn-Translate 125M 409 31.2 323 464 549
SabiYarn-Finetune 125M 41.1 29.1 344 46.0 549
M2M-100 418M 383 35.1 351 46.1 367
mTO 13B 360 357 32.0 312 449
mTO-MT 13B 457 40.8 38.1 46.8 569
GPT4 - 272 13.6 147 21.8 58.8
Llama2 13B 29.0 20.8 174 23.1 5438
en-xx

SabiYarn-Translate 125M 413 34.8 31.6 433 554
SabiYarn-Finetune 125M 41.4 344 30.72 423 58.0
M2M-100 418M 483 359 433 50.0 64.0
mTO 13B 199 63 154 235 342
mTO-MT 13B 313 152 23.11 385 483
GPT4 - 358 18.1 36.1 357 534
Llama2 13B 157 104 147 163 214

Table 3: Machine Translation Results: Comparison
of ChrF score of SABIYARN and results obtained from
Jessica et al. (2023)

Llama2 (13B parameters) across all languages. No-
tably, SabiYarn-Finetune surpasses AfroXLMR-
Large in Nigerian Pidgin (Pcm), highlighting its
effectiveness in low-resource languages. The con-
sistent performance of the model in various Nige-
rian languages (63.6% to 66.8%) emphasizes its
robustness and efficiency in handling multilingual
sentiment analysis tasks with significantly fewer
parameters.

News Classification: In news classification (Ta-
ble 5), SabiYarn-Topic showcases remarkable per-
formance with an average F1 score of 87. 03%.
This is particularly impressive when compared to
much larger models like mTO (41.6%) and GPT4
(55.45%). SabiYarn even outperforms the larger
AfroXLMR-Large model in Nigerian Pidgin (pcm)
with a score of 96.3%. This demonstrates Sabi-
Yarn’s strong capability in understanding and cat-
egorizing news content in Nigerian languages, de-
spite its smaller size.

Named Entity Recognition: SabiYarn-Finetune
achieves the highest F1 score of 93.4, outper-
forming all other models, including the larger
AfroXLMR-Large (550M) and prompting-based
LLMs like GPT-4 and Llama2 (Table 6). In con-
trast, larger models like mTO and mTO-MT fail to
perform well in this task, scoring 0.0, while GPT-
4 and Llama?2 achieve modest results of 55.6 and
17.8, respectively. This may underscore the limita-
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tions of prompting-based methods for NER tasks
compared to specialized fine-tuned models such as
SabiYarn.

Text Diacritization: The results for text dia-
critization, as shown in Table 2, demonstrate the
model’s strong performance in this task. SabiYarn-
diacritics-cleaner model achieved a perfect BLEU
score of 100.0 for Yoruba and a high score of 93.7
for Igbo. These results indicate the model’s ex-
ceptional ability to accurately restore diacritical
marks, particularly in Yoruba text, and its strong
performance in Igbo, suggesting its potential for
improving text processing in these languages.

Text Cleaning: As seen in Table 2, The model
achieves the highest BLEU score of 77.83 for
Yoruba, indicating strong performance in this lan-
guage. However, performance varies significantly
between languages, with Hausa scoring the lowest
at 54.67, probably due to the lack of diacritics in
this language, suggesting room for improvement in
handling linguistic diversity and complexity.

6 Conclusion

Although originally trained in Nigerian languages,
SabiYarn-125M represents a significant advance-
ment in the field of natural language processing
(NLP) for languages with limited data. By encom-
passing a diverse range of languages and offering
a comprehensive suite of NLP functionalities, this
model establishes a robust foundation for the po-
tential transformation of language technology not
only in Nigeria but across the African continent,
thus making a substantial contribution to the global
NLP community.

The development of SabiYarn-125M is driven
by several key objectives:

1. Empowering Researchers: This model
serves as a versatile foundation for future re-
search and development, facilitating the cre-
ation of more culturally relevant and impactful
language technologies.

2. Addressing Linguistic Diversity: By
supporting multiple Nigerian languages,
SabiYarn-125M tackles the unique challenges
posed by Africa’s rich linguistic landscape.



Model Name Size avg Yor Hau Ibo Pcm
SabiYarn-Sentiment 125M  66.0 650 66.1 66.0 66.0
SabiYarn-Finetune  125M 653 64.8 66.0 63.6 66.8
AfroXLMR-Large  550M 75.0 74.1 80.7 79.5 68.7
Prompting of LLMs

mTO0 13B 41.6 35.6 405 267 63.6
mTO0-MT 13B 344 237 361 272 50.7
GPT4 - 550 556 418 66.7 577
Llama2 13B 27.8 24.0 255 351 243

Table 4: Sentiment Analysis Results: Comparison of Accuracy score of SABIYARN and results obtained from
(Ojo et al., 2023)

Model Name Size avg Yor Hau 1Ibo Pcm
SabiYarn-Topic 125M 909 89.0 90.2 87.7 96.7
SabiYarn-Finetune 125M 87.03 84.4 82.1 853 67.8
AfroXLMR-Large 550M 9295 94.0 922 934 92.1
AfriTeVa-V2 428M 912 923 894 86.1 96.8
Prompting of LLMs

mTO 13B 41.6 356 405 267 63.6
mTO-MT 13B 344 237 36.1 272 507
GPT4 - 5545 556 418 667 577
Llama2 13B 2722 240 255 351 243

Table 5: News Classification Results We compare the F1-score of SabiYarn with that of the current SOTA models.

Model Name Size avg
SabiYarn-NER 125M  93.2
SabiYarn-Finetune 125M 93.4
AfroXLMR-Large 550M 84.6
Prompting of LLMs

mTO 13B 0.0
mTO-MT 13B 0.0
GPT4 - 55.6
Llama?2 13B 17.8

Table 6: Named Entity Recognition Results: We com-
pare the F1 score of SABIYARN with results obtained
from (Ojo et al., 2023).

3. Enhancing NLP Capabilities: The model’s
wide array of functionalities paves the way for
advanced applications in machine translation,
sentiment analysis, named entity recognition,
and beyond.

Looking ahead, SabiYarn-125M opens up nu-
merous avenues for future research:

* Expansion to Additional Languages: Fu-
ture iterations could incorporate more African
languages, further enhancing the model’s ver-
satility and impact.

* Domain-Specific Adaptations: Researchers
could fine-tune newer versions of the model

for specific domains such as healthcare, ed-
ucation, or legal applications, tailoring it to
address sector-specific challenges.

* Cross-Lingual Transfer Learning: Investi-
gating the model’s capacity for cross-language
fine-tuning across related African languages
could yield valuable insights for low-resource
language processing.

In conclusion, SabiYarn-125M represents a sig-
nificant step towards bridging the gap in NLP re-
search and technology for underrepresented lan-
guages. By showcasing the model’s capabilities
and potential applications, we hope to inspire and
encourage further advancements in this field, ul-
timately contributing to the preservation and em-
powerment of Africa’s rich linguistic heritage in
this digital age and a more inclusive and equitable
global language technology ecosystem.

Limitations

The scope of our evaluation was necessarily limited
to the aforementioned Nigerian languages due to
two critical constraints: the acute scarcity of high-
quality, diverse datasets for African languages, and
the limited availability of substantial computational
resources. These limitations not only underscore
the challenges inherent in low-resource language
research but also highlight a systemic issue in the
field of artificial intelligence as it pertains to lin-
guistically diverse regions. The paucity of com-
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prehensive datasets and the computational divide
present significant barriers to advancing NLP ca-
pabilities across the African continent. This situ-
ation urgently calls for a multi-faceted approach:
increased investment in data collection and cura-
tion for African languages, enhanced allocation of
computational resources for research in these areas,
and a concerted effort to build local Al research
capacity. Addressing these challenges is crucial
not only for advancing NLP technologies in the
region but also for ensuring that the benefits of Al
are equitably distributed across diverse linguistic
communities. Future research must prioritize these
areas to foster a more inclusive and representative
landscape in global NLP development.
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Table 7: Detailed breakdown of number of samples per language per task

Language Trans Class Sum Headline Instruct Monolingual Diac Clean Total
English 0 32,536 0 53 2,243,235 11,097,016 0 6,869,858 20,242,698
Yoruba 729,878 21,572 15,572 56,564 5,016,319 11,673,886 3,602,690 381,418 21,497,899
Hausa 2,619,081 29,171 17,721 320,945 3,435,696 11,797,952 0 2,579,220 20,799,786
Igbo 6,377,666 30,265 41,303 162,148 4,967,183 14,376,298 3,393,839 4,056,681 33,405,383
Pidgin 8,988,159 12,087 145,815 289,865 512,816 4,564,139 0 3,650,887 18,163,768
Urhobo 129,668 0 162,970 0 198 32,711 0 0 325,547
Fulfulde 0 0 0 0 0 126,000 0 0 126,000
Fulah 4,018 0 751 0 2,526 134,968 0 0 142,263
Efik 0 0 0 0 0 9,567 0 0 9,567
Total 18,848,470 125,631 384,132 829,575 16,177,973 53,812,537 6,996,529 17,538,064 114,712,911
Table 8: Detailed breakdown of number of tokens per language per task

Language Trans Class Sum Headline Instruct  Monolingual Diac Clean Total
English - 295542 - 100,612 290,387,169 493,068,409 - 650222243 1434073975
Yoruba 115,188,816 603945 9,030,269 14,666,102  646467,834 834,162,538 242229.137 135,178,107  1,997,526,748
Hausa 250,989,822 617,583 8761900 63429798 386,761,152 1,186,571,221 - 483250,638  2,380,382,114
Igbo 609,811,051 530,117 18,338,768 24977727 646,811,000 751,549,672 161485201 533371421  2,746,874,957
Pidgin 298,282,535 276,284  95768,701 52,113,111 112,421,167 308,031,286 - 580,618,346 1,447,511,430
Urhobo 6,451,518 - 97,198,864 - 56,358 893,162 - - 104,599,902
Fulfulde - - - - - 3,677,103 - - 3,677,103
Fulah 286,795 - 436,133 - 1,069,200 9,953,441 - - 11,745,569
Efik - - - - - 139,740 - - 139,740
Total 1,281,010,537 2323471 229,534,635 155,287,350 2,083,973,880 3,588,046,572 403,714,338 2,382,640,755 10,126,531,538
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Table 9: Task-specific tags used for multi-task training

Task Start Tag End Tag
Translation <translate> <lang>:
Sentiment Classification <classify> <sentiment>:
Topic Classification <classify> <topic>:
Instruction Following <prompt> <response>:
Headline Generation <title> <headline>:
Text Diacritization <diacritize> <lang>:
Question Generation <prompt> <response>:
Question-Answering <prompt> <response>:
Text Summarization <summarize>  <summary>:
Text Cleaning <clean> <lang>:

Table 10: Language tags used for multi-lingual training

Language Tag

Yoruba <yor>
Hausa <hau>
Igbo <ibo>
English <eng>
Urhobo <urh>
Fulah <ful>
Efik <efi>
Nigerian Pidgin  <pcm>
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Abstract

Medication errors are among the leading causes
of avoidable harm in healthcare systems across
the world. A large portion of these errors stem
from inefficient information retrieval processes
and lack of comprehension of drug informa-
tion. In low-resource settings, these issues are
exacerbated by limited access to updated and
reliable sources, technological constraints, and
linguistic barriers. Innovations to improve the
retrieval and comprehension of drug-related in-
formation are therefore poised to reduce med-
ication errors and improve patient outcomes.
This research employed open-source Retrieval-
Augmented Generation (RAG) integrated with
multilingual translation and Text-to-Speech
(TTS) systems. Using open-source tools, a
corpus was created from prominent sources
of medical information in Nigeria and stored
as high-level text embeddings in a Chroma
database. Upon user query, relevant drug in-
formation is retrieved and synthesized using
a large language model. This can be trans-
lated into Yoruba, Igbo, and Hausa languages,
and converted into speech through the TTS sys-
tem, addressing the linguistic accessibility gap.
Evaluation of the system by domain experts in-
dicated impressive overall performance in trans-
lation, achieving an average accuracy of 73%,
and the best performance observed in Hausa
and Yoruba. TTS results were moderately effec-
tive (mean = 57%), with Igbo scoring highest in
speech clarity (68%). However, tonal complex-
ity, especially in Yoruba, posed challenges for
accurate pronunciation, highlighting the need
for language-specific model fine-tuning. Ad-
dressing these linguistic nuances is essential to
optimize comprehension and practical utility in
diverse healthcare settings .The results demon-
strates system’s the potential to improve access
to drug information, enhance comprehension,
and reduce linguistic barriers. These technolo-
gies could substantially mitigate medication
errors and improve patient safety. This study
offers valuable insights and practical guidelines

for future implementations aimed at strength-
ening global medication safety practices.

1 Introduction

The traditional medication information retrieval
and communication has always been plagued with
a myriad of issues broadly and rightly categorised
as “medication errors”. Medication errors are the
leading cause of avoidable harm in healthcare sys-
tems around the world, together with unsafe med-
ication practices. A medication error is defined
by the United States National Coordinating Coun-
cil for Medication Error Reporting and Prevention
as any avoidable incident that could result in the
improper use of medication or harm to a patient
while the medication is in the hands of a healthcare
professional, patient, or consumer (National Coor-
dinating Council for Medication Error Reporting
and Prevention).

The World Health Organization recognises that
medication error occurs in prescribing, transcribing,
dispensing, and administering (World Health Or-
ganization, 2023). Therefore, medical information
retrieval and communication must be optimised for
efficiency, effectiveness and precision.

Drug information is usually retrieved manually
from multiple sources, especially in low-resource
settings. A study by (Ogbonna and Okoye, 2021)
found that Nigeria’s most common sources of drug
information are the Nigerian Essential Medicines
Index (EMDEX), the British National Formulary,
Pharmacopoeias and product information leaflets
(PILs) included in drug packages by manufactur-
ers.

While all this information is usually readily avail-
able for healthcare professionals, studies suggest
professionals in developed climes more frequently
access the best-quality information, with the only
barrier reported being time (Seidel et al., 2023).
However, available drug information sources in
low-resource settings are usually of lower quality
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and mostly outdated. The retrieval process is also
slow and ineffective due to factors like drug avail-
ability, slow internet access, and a large population
of patients (Abdel-Latif et al., 2022).

Patients, caregivers and consumers of medications
are also involved in creating medication errors.
Many information sources are accessible to con-
sumers, caregivers and patients, including physi-
cians and pharmacists, digital platforms and re-
sources, printed materials like PILs and Drug in-
formation centers (DICs). While people world-
wide have access to these various drug information
sources, the quality, availability, and effectiveness
of these sources differ widely, similar to the afore-
mentioned trend among healthcare providers. Stud-
ies show that people from around the world read
PILs, less than half understand the intended infor-
mation while some even reported anxiety and con-
fusion after consulting drug information sources
(Raskovi¢ et al., 2024; Al Jeraisy et al., 2023;
Owusu et al., 2020).

The most prominent recommendation from all
the studies cited above is to explore ways to im-
prove communication in the different drug informa-
tion sources and optimise the information retrieval
process. This aligns with (Okoye and Ogbonna,
2022)’s stress of the need to include and prioritise
local languages in health service delivery.
Retrieval-Augmented Generation (RAG) is an ad-
vanced technique in natural language processing
that enhances the capabilities of large language
models (LLMs) by integrating them with external
information retrieval systems, allowing them to ac-
cess and incorporate up-to-date, domain-specific
knowledge during the generation process, thereby
improving the accuracy and reliability of their re-
sponses. This technique has attained wide adoption
as it solves the most pervasive problem of LLM
hallucination. (Lewis et al.).

This research leverages RAG to allow LLMs and
translation models access and work with correct
and up-to-date medical information from structured
and unstructured formats to produce an application
that aims to improve the retrieval and enhance the
comprehension of drug information by healthcare
providers, patients and caregivers to reduce medi-
cation errors. This research leverages open-source
models and libraries to allow interested parties to
freely tweak, modify and use the source code avail-
able on the GitHub repository to progress the aim
of this research.

2 Literature Review

2.1 Retrieval-Augmented Generation in
Healthcare

Large Language Models (LLMs) have demon-
strated remarkable capabilities in medical language
tasks, even answering medical exam questions with
high accuracy in the United States (Sohn et al.,
2024). However, their adoption in healthcare has
been limited due to their potentials to hallucinate
(generate confident but incorrect outputs) and lim-
ited access to up-to-date knowledge . In the medi-
cal field, precision is essential; an incorrect fact or
dosage can carry serious risks. To mitigate these
issues, RAG has emerged as a key strategy. RAG
systems integrate external knowledge retrieval into
the LLLM’s generation process, providing relevant
context from trusted data sources to enhance accu-
racy (Miao et al., 2024).

The integration of RAG with medical NLP has
shown clear benefits in improving the factual ac-
curacy of Al outputs. A 2025 systematic review
and meta-analysis of RAG in biomedicine found
that augmenting LLMs with retrieval significantly
improved performance, yielding a pooled 1.35x
increase in accuracy over base LLMs (95% CI
1.19-1.53, p = 0.001). The review which analyzed
20 studies from 2023-2024 and identified common
trends in how RAG is implemented (e.g. types of
knowledge sources and evaluation methods), found
that many of these studies demonstrate that RAG
can markedly reduce LLM hallucinations and bias,
making the outputs more trustworthy for medical
use. The study ultimately proposing guidelines for
safe clinical deployment of RAG-powered applica-
tions (Liu et al., 2025).

A team of researchers developed Almanac, a
retrieval-augmented LLM for clinical decision sup-
port, which was evaluated on 130 realistic clinical
scenarios. The RAG-augmented model showed an
18% improvement in factual accuracy of its rec-
ommendations (evaluated by physicians) compared
to the base model, along with gains in complete-
ness and safety (Zakka et al., 2023). Similarly, an-
other team introduced the Rationale-Guided RAG
(RAG2), achieving up to 6.1% higher accuracy by
refining retrieval queries through model-generated
rationales, further reducing the risk of misinfor-
mation in medical contexts (Sohn et al., 2024).
MEDIC, an LLM-driven system augmented with
domain-specific guidelines was developed with
the aim of substantially reducing medication er-
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rors in online pharmacies. It was able to effec-
tively standardize prescription directions and trans-
late complex medical jargon into clear, patient-
understandable instructions. This system achieved
33% reduction in medication errors as a direct re-
sult of improved patient comprehension of drug-
related communications, and medication adherence
(Pais et al., 2024).

In a low-resource context, a study showcased the
potential of RAG to improve drug insight gener-
ation from local medical databases by creating a
chatbot called "Drug Insights". This chatbot, tai-
lored to the needs of frontline healthcare workers
in Nigeria was able to effectively bridge the gap
in drug information access (Owoyemi et al., 2025).
RAG serves as an “open-book” exam mode for
LLMs, ensuring their answers are supported by
real sources rather than just the model’s internal
training data.

2.2 Cross-Lingual Applications in Healthcare

Most advanced medical NLP solutions, including
RAG-augmented systems, have been developed in
a handful of high-resource languages, primarily
English. This poses a barrier in multilingual so-
cieties and low-resource settings, where patients
and health workers often speak and read in local
languages. Bridging the language gap is crucial for
equitable healthcare information access.

Recent efforts in multilingual and cross-lingual
NLP aim to enable medical Al systems that can
operate across diverse languages, either by build-
ing multilingual models or by coupling transla-
tion modules with information retrieval. One early
demonstration of such an approach developed a
multilingual question-answering system for rural
healthcare information access. Their prototype was
a full NLP pipeline that incorporated named entity
recognition (NER) on user queries, translated the
queries into English (the language of the medical
knowledge base), retrieved relevant information,
and then generated answers which could be trans-
lated back into the user’s local language (Vinod
et al., 2021). Their model was designed to be low-
resource and language-agnostic, targeting “indige-
nous languages” spoken in rural areas of develop-
ing countries. It enabled users to ask health ques-
tions in their native language and receive answers
based on global medical knowledge. Their results
demonstrated that such systems could be employed
in healthcare systems to provide advice on com-
mon health issues and even produce preliminary

summaries of patient health records for clinician
review.

Subsequent projects have continued this line of
work. The AwezaMed initiative in South Africa
created a speech-to-speech translator for maternal
healthcare during COVID-19 pandemic, enabling
communication between English-speaking doctors
and patients speaking indigenous languages to dis-
seminate timely knowledge about prevention and
treatment (Hu et al., 2025).

2.3 Applications in Low- and Middle-Income
Countries

The confluence of RAG and multilingual NLP
opens up especially exciting opportunities for low-
and middle-income countries. Many LMICs face
severe shortages of healthcare professionals, and
those in practice often serve multilingual popu-
lations with limited resources. Al systems that
provide decision support and information in local
languages could help bridge gaps in healthcare de-
livery (Okoye and Ogbonna, 2022).

Open access RAG tools are particularly valuable
in LMICs, where cost and proprietary systems are
barriers, an open framework allows local innova-
tion and continuous improvement by the commu-
nity. The inclusion of regional experts in building
these tools ensures that the solutions are culturally
and linguistically appropriate.

3 Methodology

3.1 Data Collection and Extraction

This research utilises data from Nigeria’s most
prominent medical information sources. This infor-
mation was extracted into text format using Python
libraries' like PyMuPDF for PDF files, requests
and beautifulsoup for data sourced from the web.
These libraries are standard in NLP and offer the
best to extract data while maintaining inherent se-
mantic relationships. They also allowed us to store
and access the metadata of the source documents
to create a large corpus, an important process for
our pipeline during the synthesis stage, as it allows
the LLM in our work to make the best decisions.

'"PyMuPDF is a lightweight PDF and XPS parsing library
https://pymupdf.readthedocs.io/, Requests is a simple
and elegant HTTP libraryhttps://docs.python-requests.
org/, and BeautifulSoup is a Python library for parsing
and scraping HTML and XML https://beautiful-soup-4.
readthedocs.io/.
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3.2 Data Preprocessing

The handy regex library was used in this research
to clean data. This process involved removing ex-
cessive blank lines, fixing hyphenated words at
line breaks (e.g., "exam- nple" to "example"), nor-
malising spacing around punctuations, removing
extra spaces before new lines, matching and remov-
ing unnecessary patterns like those seen in indexes
and appendixes, and reconstructing broken para-
graphs. The RecursiveCharacterTextSplitter class
from the LangChain framework? was used to divide
the clean text into manageable chunks. It works
by splitting texts using a predefined sequence of
characters, proceeding recursively through the list
until the resulting segment meets the desired length
criteria (chunk_size=1024). Setting the parame-
ter ‘chunk_overlap=100" allows characters to over-
lap between consecutive chunks, ensuring context
continuity across segments. This also enables the
definition and access of a structured data schema,
where essential drug information, e.g., name, class,
indication, interactions, contraindication, etc., de-
fined in the source materials are maintained.

3.3 Vectorization and Vector Storage

multilingual-e5-large®, an open-source, state-of-
the-art, high-performance, multilingual text em-
bedding model developed by Microsoft and avail-
able on Huggingface* was used to convert the text
chunks into vector embeddings. These embeddings
were then stored in Chroma®, an open-source vec-
tor database designed to store and retrieve vector
embeddings efficiently. Integrating the Chroma
vector store with metadata support enables efficient
management and retrieval of embeddings, facili-
tating accurate nearest-neighbor searches based on
the default Euclidean distance metric.

3.4 Drug Information Generation

With the knowledge base in the Chroma database,
the system employs a retrieval-augmented genera-
tion (RAG) approach to synthesising and generat-
ing drug-related information. When a query is sub-
mitted, a similarity search is performed within the
database to retrieve the most relevant drug-related

2https://www.langchain.com/

3https://huggingface.co/intfloat/
multilingual-e5-large

*Hugging Face is an Al platform that hosts open-source
platform that machine learning models, datasets, and tools.
http://https://huggingface.co/

5https://docs.trychroma.com/docs/overview/
introduction

Figure 1: System flowchart

information from the indexed knowledge sources.
The retrieved texts containing structured pharma-
ceutical details are then passed as contextual in-
put to a large language model (OpenAI’s GPT 3.5
turbo®), which analyses the retrieved context, ex-
tracts essential details, and synthesises a concise,
coherent, and medically relevant response.

3.5 Translation

To achieve the aim of this research, the output syn-
thesised by the LLM must be available to the end
user in local languages. To facilitate this, the re-
search employed Meta’s NLLB’, a multilingual ma-
chine translation model capable of translating be-
tween 200 languages, including many low-resource
languages.

3.6 Text to Speech (TTS)

Spi-tch® Text-to-Speech (TTS) system was utilized
to convert textual drug information into spoken
output across the Yoruba, Igbo, and Hausa lan-
guages. Along with support for these languages,
Spi-tch offers a selection of eight unique voices,
each with distinct attributes, to enhance specific
features of the synthesised speech. To ensure ac-
curate pronunciation, especially in tonal languages
like Yoruba, we applied Spitch’s tone-marking fea-
ture before speech generation, allowing the model
to pronounce words properly during synthesis. The
audio outputs generated were in "wav’ format, fa-
cilitating seamless integration into our application.

4 Result

The output of this research is a RAG-powered chat
application (built on streamlit) that leverages a cor-

6https://openai.com

"https://huggingface.co/docs/transformers/
model_doc/nllb

8https://docs.spi—tch.com/getting—started/
welcome
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pus of leading drug information data in the region.
The system is built on various open-source tools
to facilitate reproducibility and wrapped around a
user friendly UI (see Appendix 6) using Streamlit.

The notebooks and codes used are available on
GitHub

4.1 Evaluation Strategy

The system was evaluated by three independent
groups of licensed pharmacists, who assessed the
text and voice translation components based on
a structured evaluation framework. Each group
was given 20 prompts, with Group 2 generating
additional domain-specific questions based on their
clinical expertise. The evaluation criteria focused
on three key aspects:

1. Drug Information Accuracy — The accuracy and
completeness of drug-related information retained
in the translated output.

2. Language Output Accuracy — The correctness of
translations in the target languages (Yoruba, Igbo,
and Hausa).

3. Structure of Output/Completion — The final out-
put’s coherence, grammatical structure, and com-
pleteness.

4.2 Drug Information in Local Languages

For text translation, results were recorded sepa-
rately for each of the three languages (Yoruba, Igbo,
and Hausa) and aggregated across the three evalua-
tors. The overall average score for text translation
was (73%), indicating high accuracy and complete-
ness in the system’s ability to translate drug-related
information.

Yoruba Language had the highest scores (80%),
showing strong accuracy in language fluency and
drug information retention. Hausa followed closely,
while Igbo had slightly lower performance, par-
ticularly in Drug Information Accuracy, where it
recorded the lowest score of 60% in one evaluation.

Criteria Yoruba Igbo Hausa
Language Output 8 7 7
Drug Information 7 6 9
Output Structure 7 6 9
Total Score (%) 23(77) 20 (67) 24 (80)
Average Score (%) 22(73) 20.3(68) 22.3(74)

Table 1: Evaluation Summary for language translation
output.

4.3 Drug Information Voice Output (TTS)

For speech generation, the average score across all
languages was 57%, indicating a moderate level
of accuracy and output structure compared to text
translation. Igbo (70%) was the highest-performing
language, showing strong audio output accuracy.
Yoruba performed the lowest, with one evaluator
scoring it 40% due to pronunciation clarity and
structure issues.

Evaluation Criteria Yoruba Igbo Hausa
Language Output 4 7 7
Drug Information 5 6 5
Output Structure 5 6 5

Total Score (%)
Average Score (%)

1136) 21(70) 190
14.3 (48) 20.3(68) 18.0(60)

Table 2: Evaluation Summary for TTS output.

5 Discussions

This study aimed to address the critical issue of
medication error from different barriers from the
healthcare practitioners, patients, and caregivers by
emphasising the importance of accurate, accessible
and comprehensible drug information, particularly
in low resource settings. It leveraged a Retrieval-
Augmented Generation (RAG) system integrated
with open-source language, translation and voice
models. It demonstrated significant potential to
enhance drug information retrieval and compre-
hension, thus contributing to reduced medication
errors. The system can serve as an intelligent as-
sistant for healthcare professionals, enabling them
to counsel patients who speak only their local lan-
guage and thereby strengthen understanding, com-
pliance, and adherence to prescribed medications.
The findings showed the robust performance of the
retrieval process and the text translation compo-
nent. The highest accuracy was achieved for the
Yoruba language, with a better average recorded
for the Hausa language, indicating effective lin-
guistic adaptability of the multilingual model. The
moderate performance of Igbo text translations,
particularly in Drug Information Accuracy, under-
scores the need for further training or fine-tuning
of the language model on domain-specific data.
Conversely, the Text-to-Speech (TTS) component
exhibited more varied performance. The Igbo lan-
guage audio translations showed the highest accu-
racy, indicating effective phonetic adaptation and
clarity. In contrast, Yoruba audio outputs exhibited
lower performance, primarily due to pronunciation
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issues inherent in the tonal complexities of the lan-
guage. This highlights the critical need for improv-
ing TTS models, especially for tonal languages, to
enhance user comprehension and ensure accurate
drug information delivery.

6 Conclusion

This research shows that implementing RAG into
multilingual translation and TTS systems could
enhance drug information knowledge availability,
accessibility and comprehension, especially in low
resource settings. This encouraging result in the ac-
curacy of the text translation, findings from domain
experts still show the need for improvement in the
TTS system. However, this research has proven
that an RAG-powered system is a viable tool for
future efforts to improve medication information
comprehension and reduce medication error.
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Appendix
Appendix A: Streamlit Screenshot

& Al Drug Info Translator & TTS

Get medical drug information, translate it, and listen to it in your preferred language.

5 Enter Your Medical Query ®: Choose TTS Language &
Voice

How many tablets of 500mg paracetamol should an

adult take? yoruba .
%
@ select Language for Sade (Yoruba) v
Translation
Yoruba w

Translation Complete!

) Translated Text (Yoruba)

Fun agbalagba kan, iwon lilo paracetamol (acetaminophen) je 500mg si 1000mg ni gbogbo wakati 4 si 6 bi o ti nilo, pelu
0 poju 4000mg ni akoko 24 wakati. Nitorina, agbalagba kan le mu awon tabuleti 1 si 2 ti 500mg paracetamol fun iwon
lilo kan, ti ko koja awon tabuleti 8 (4000mg) ni ojo kan. O se pataki lati tele iwon lilo ti a se iseduro ki o si kan si olutoju
ilera ti o ba ni awon ifiyesi eyikeyi tabi ti o ba ni irora tesiwaju.

& Convert to Speech

Figure 2: An image of the system running on Streamlit
with sample query and output.

Appendix B: GitHub Repository

The full source code for this project is available at:
https://bit.ly/RAGDRUGINFOLANGUAGE
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Abstract

The development of Large Language Models
(LLMs) for African languages has been hin-
dered by the lack of large-scale textual data.
Previous research has shown that relatively
small language models, when trained on syn-
thetic data generated by larger models, can pro-
duce fluent, short English stories, providing a
data-efficient alternative to large-scale pretrain-
ing. In this paper, we apply a similar approach
to develop and evaluate small language mod-
els for generating children’s stories in isiZulu
and Yoruba, using synthetic datasets created
through translation and multilingual prompting.
We train six language-specific models varying
in dataset size and source, and based on the
GPT-2 architecture. Our results show that mod-
els trained on synthetic low-resource data are
capable of producing coherent and fluent short
stories in isiZulu and Yoruba. Models trained
on larger synthetic datasets generally perform
better in terms of coherence and grammar, and
also tend to generalize better, as seen by their
lower evaluation perplexities. Models trained
on datasets generated through prompting in-
stead of translation generate similar or more
coherent stories and display more creativity,
but perform worse in terms of generalization
to unseen data. In addition to the potential ed-
ucational applications of the automated story
generation, our approach has the potential to be
used as the foundation for more data-efficient
low-resource language models.

1 Introduction

In recent years, pretrained transformer language
models have been used as the foundation of NLP
systems for text generation, understanding and
summarizing, and information extraction (Razu-
movskaia et al., 2024). However, most of the
advancements have been concentrated on high-
resource languages (HRLs) such as English and
French, leaving low-resource languages (LRLs)

Jan Buys
University of Cape Town
jan.buys@uct.ac.za

and African languages in particular underrep-
resented in advancements in Language Models
(LMs). Some of these languages, despite having
millions of speakers, lack sufficient data online to
train robust LMs or develop and deploy systems
that can cater for their speakers. While many ef-
forts have been made to create LMs, the lack of
suitable datasets remains a significant challenge.
In response, recent research has focused on creat-
ing datasets for African languages, either through
manual annotations or through synthetic data gen-
eration (Adelani et al., 2023; Tonja et al., 2024;
Adelani et al., 2025).

The use of synthetic data has proven to be essen-
tial for training LMs in low-resource settings. Liu
et al. (2024) argues that synthetic data addresses
data scarcity, allowing models to generalize better
while high-quality synthetic data helps to avoid bi-
ases. Gunasekar et al. (2023) also demonstrates that
synthetic generated datasets with high quality can
enhance model learning. Our work is motivated
by TinyStories (Eldan and Li, 2023) which uses
curated synthetic data consisting of short stories
using simple language to train small language mod-
els. That work shows that high-quality synthetic
data can enable small models to match the perfor-
mance of larger models by focusing on coherent
and diverse content.

The aim of this paper is to investigate whether a
similar approach can be applied to generate high-
quality synthetic stories in low-resource languages,
which can then be used to train small but capable
language models. We train six models based on
the GPT-2 architecture from scratch for isiZulu and
Yoruba, using synthetic datasets of different sizes
and approaches to generate children’s stories. We
evaluate the performance of these models using
both qualitative and quantitative analysis in order
to investigate whether LMs trained on synthetic
LRL data can produce coherent and fluent stories.
We compare the performance of models trained on
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the translated stories to that of models trained on
stories generated by prompting from a multilingual
model.

2 Related Work

Generating stories with LLMs has proven to be
a promising approach to generating texts that are
coherent and appealing. TinyStories (Eldan and
Li, 2023) showed that even small-scale models can
generate fluent short stories, offering a promising
approach to train effective story generation mod-
els with less computational resources. This result
offers a promising path to develop models for low-
resource languages (LRLs) in settings that also
frequently lack the infrastructure required for large-
scale pretraining.

Razumovskaia et al. (2024) investigated cross-
lingual story generation by generating stories in
multiple languages from a single plan in English.
This work complements the findings of Eldan
and Li (2023), drawing attention to the versatil-
ity of LLMs across languages, which is critical for
African languages lacking considerable data. The
two studies stress the importance of building LLMs
that are capable of generating coherent stories in re-
source constrained environments, which is a major
challenge for African languages. In a different ap-
proach, the GROVE framework (Wen et al., 2023)
uses Retrieval-Augmented Generation (RAGs) to
enhance the coherence and complexity of stories.
This approach further underscores the importance
of extra information (whether through cross-lingual
plans or the retrieval of evidence) to improve the
quality of stories. Both methods show that mak-
ing use of external information can improve the
capability of LLMs generations.

In our research, we build upon these ideas by
using two methods for synthetic data generation:
translation of existing stories into isiZulu and
Yoruba using a multilingual translation model, and
directly prompting a multilingual model to gen-
erate stories in both target languages, in order to
create LMs which can generate stories in isiZulu
and Yoruba.

3 Methodology

3.1 Dataset Generation

We follow two approaches to generate synthetic
datasets: machine translation of English stories to
the target languages, and prompting a multilingual

language model to generate stories in the target
languages.

We use the TinyStories! (Eldan and Li, 2023)
dataset as the source of English stories to be trans-
lated. This dataset consists of stories generated by
prompting GPT-3.5 and GPT-4. The prompts se-
lected random keywords from a set of 3,000 nouns,
verbs, and adjectives to generate stories aimed at
children aged 3 to 5 years. The dataset contains
approximately 2 million unique stories, but for the
purpose of this study, an eighth (250,000), of these
stories were used. The stories were translated from
English into both isiZulu and Yoruba using the
state-of-the-art Seamless Massively Multilingual
and Multimodal Machine Translation (Seamless
M4T-V2) model version 2 (Communication et al.,
2023).

For the second data generation approach we uti-
lized AfroLlama®, a multilingual text generation
model developed by Jacaranda Health, which was
fine-tuned from Meta Al’s Llama 3, to generate
synthetic stories directly in the isiZulu and Yoruba.
To generate the stories, we created prompts vary-
ing in content but with a consistent structure in
the target languages aimed at guiding the model
to produce children stories. Example prompts are
shown in Table 1. We generated 10,000 unique
short stories about different characters, with a clear
beginning, middle and end.

All together we created six synthetic datasets:

* isiZulu and Yoruba Large: 250,000 stories
from the TinyStories dataset, translated into
isiZulu and Yoruba.

* isiZulu and Yoruba Mini: 10,000 stories
sampled from the initial set of 250,000 TinyS-
tories, translated into isiZulu and Yoruba.

* isiZulu and Yoruba Prompt: 10,000 stories
generated by prompting Afro Llama to gener-
ate stories in isiZulu and Yoruba.

We split each of the datasets into training (70%),
validation (20%) and evaluation (10%) sets.

3.2 Model Initialization & Pretraining

For the models trained in this study, we initialized
the weights randomly, meaning that no pretrained
model weights were used during the training pro-
cess. We trained the models entirely on the syn-
thetic datasets generated from our corpus, with no

'https://huggingface.co/datasets/roneneldan/TinyStories
Zhttps://huggingface.co/Jacaranda/AfroLlama_V 1

116



Prompt

1 Ko itan awon omode ni Yoruba nipa Lily ati Max ti o gba ebun airotele, o ni ipari ti o dara.

2 So itan awon omode ni Yoruba nibiti Emma nilo lati gafara fun ore re Thabo, o ni opin irora.

3 Bhala indaba emfushane yezingane ngesiZulu lapho uZandile no-Oliver behlangana nesil-
wane esikhulumayo, inesiphetho esihle kakhulu.

4 Xoxa izindaba zezingane ngesiZulu ngoNomsa owafunda izifundo ezibalulekile ngokuh-

langanyela.

Table 1: Prompts for story generation in Yobura (1 & 2) and Zulu (3 & 4)

use of external corpora or multilingual pretraining.
While this approach allows for an investigation of
model performance based purely on the synthetic
data, the lack of real-world language exposure may
limit the models’ ability to generalize effectively
to unseen data. Training from scratch on synthetic
data could result in biases that differ from those
seen in models pre-trained on real-world data. Our
motivation was to isolate the effects of our syn-
thetic dataset and avoid potential transfer effects
from external corpora.

3.3 Pre-processing & Model Training

We trained six language-specific models, one for
each of the generated synthetic datasets. The text
was tokenized with Byte-Level Byte-Pair Encoding
(BPE) (Wang et al., 2020) for isiZulu and Sen-
tencePiece BPE (Kudo and Richardson, 2018) for
Yoruba. Table 2 shows the number of tokens in
each of the datasets.

We train story generation models using the GPT-
2 (Generative Pre-trained Transformer 2) architec-
ture, which is a transformer-based autoregressive
language model (Radford et al., 2019). At its core
lies the transformer decoder block introduced by
(Vaswani et al., 2017), which uses self-attention
mechanisms to process sequential data. Our imple-
mentation is based on Andrej Kaparthy’s nanoGPT
model ®. Our models are smaller than the “small”
variant of GPT-2, with the specifications given in
Table 3. The model size is 30.59M parameters for
the isiZulu models and 29.20M parameters for the
Yoruba models. The model sizes were chosen in
proportion to the size of the available training data,
while allowing for computational feasibility in a
low-resource setting. The aim is to show that with
an even smaller model, fluent, coherent stories can
still be generated in a low-resource language.

3hitps://github.com/karpathy/nanoGPT

3.4 Generating Stories from the Trained
Models

We use the models trained on our isiZulu and
Yoruba datasets to generate new stories. We evalu-
ate the models by evaluating the quality of the gen-
erated stories. Some evaluations also use the held-
out evaluation datasets from the original datasets
generated by translation or prompting. We gener-
ate 1,000 stories from each of the models to ensure
there is enough data to evaluate the performance
of the models based on the chosen evaluation met-
rics. To generate a story we prompt the model with
the start token and sample stories using the hyper-
parameter values given in Table 4. We set these
hyperparameters to ensure a balance between di-
versity and coherence in the generated stories. The
maximum number of tokens of 512 is equal to the
model context length during training. A tempera-
ture of 0.7 is used to ensure diversity in the model
generations, while top-k sampling with k=50 limits
the number of possible next words from which the
model can sample to maintain coherence.

3.5 Evaluation Metrics

In order to assess the quality of our generated sam-
ple stories and the performance of our models, we
employ a number of evaluation metrics:

1. Perplexity is a normalized measure of the
probability of text scored by the model:

1 vwWN
PPL = efﬁznzllOgP(wnleva“' 7wn—1), (D

which exponentiates the average Negative Log
Likelihood, where N is the number of tokens
in the evaluation set and w1y, ws, - - - , wy are
the tokens.

2. Diversity We consider two metrics. Lexical
Diversity, also known as Type-Token Ratio
(TTR), measures the variety of vocabulary
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Dataset ZuluLarge Yorubalarge ZuluMini YorubaMini ZuluPrompt YorubaPrompt
Train 28,809,839 41,056,131 1,193,167 1,694,424 1,035,290 1,208,521
Validation 7,200,689 10,264,075 297,977 424,016 259,003 302,424
Evaluation 3,928,142 5,658,137 161,736 235,508 141,535 164,736
Table 2: Dataset sizes (number of tokens) for the generated synthetic datasets
Hyperparameter Value Prompt
Grade these isiZulu and Yoruba stories out of 40 based on:

LayerS. 6 1. Grammar (10)

Attention Heads 6 2. Coherence (10)

Embedding Dimension 384 3. Plot (10)

Dropout Rate 0.2 4. Creativity (10)

Table 3: Transformer architecture hyperparameters

Hyperparameter Value
Maximum new Tokens 512
Temperature 0.7
Top-k Sampling 50

Table 4: Story Generation Hyperparameters

used in the generated stories:

Number of Unique Words

TTR = Total Number of Words

2

Semantic Similarity measures how different
the generated stories are from each other in
terms of meaning, which helps us to under-
stand if our model is creative in generating
unique stories:

A-B

- 3
A< B ©

Cosine Similarity =
where A and B are the sentence embeddings
of two different stories, and || A || and ||B|| are
their respective magnitudes. We compute the
semantic similarity score by performing pair-
wise comparisons between all stories within
each generated set and evaluation set, averag-
ing the cosine similarity scores.

Quality evaluation using Gemini We fol-
low the methodology of Eldan and Li (2023),
which prompted GPT-4 to score the gener-
ated stories. We prompt Gemini 1.5 Pro, an
LLM developed by Google, to score the gener-
ated and reference evaluation set stories from
each of the six models based on Grammar,
Coherence, Plot, and Creativity. Each of the
categories are scored out of 10 and an overall
score is also given. The prompt used for this
evaluation is shown in Table 5.

Provide short comments (1-2 sentences) for each category
in the format:

- Grammar: [score], [comment]

- Coherence: [score], [comment]

- Plot: [score], [comment]

- Creativity: [score], [comment]

Overall Score: [score]

Table 5: Prompt for Story Evaluation

Model Train Loss Val Loss
isiZuluPlus 2.566 2.687
YorubaPlus 1.906 1.948
isiZuluLite 0.442 5.424
YorubalLite 1.094 2.547
isiZuluGuide 0.417 4.035
YorubaGuide 0.758 2.660

Table 6: Train and Validation Losses for the Models

4 Results and Discussion
We refer to the six trained models as follows:

* isiZulu and Yoruba Plus Models: This refers
to the models trained on the isiZulu Large and
Yoruba Large datasets.

¢ isiZulu and Yoruba Lite Models: This refers
to the models trained on the isiZulu Mini and
Yoruba Mini datasets.

e isiZulu and Yoruba Guide Models: This
refers to the models trained on the isiZulu
Prompt and Yoruba Prompt datasets.

Table 6 shows the training and validation losses
for each of the six models after training for 20
epochs.

4.1 Model Evaluation

The results for the model evaluation, using Perplex-
ity and the Diversity Scores (Token-Type Ratio and
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Model Perplexity of | Perplexity of | TTR for 1 TTR for 1 Semantic Similarity of T Semantic Similarity of 1
Generated Stories Evaluation Sets Generated Stories Evaluation Sets Generated Stories Evaluation Sets
isiZuluPlus 34.37 15.82 0.0653 0.1210 0.6549 0.7603
YorubaPlus 5.92 7.47 0.0158 0.0284 0.7505 0.7474
isiZuluLite 40.83 14.33 0.0743 0.1202 0.7044 0.7657
YorubalLite 7.43 713 0.0181 0.0273 0.7567 0.7479
isiZuluGuide 15.98 154.05 0.0545 0.0816 0.7453 0.7530
YorubaGuide 14.42 275.62 0.0208 0.0316 0.7451 0.7449

Table 7: Perplexity, Type-Token Ratio, and Semantic Similarity for Generated Stories & Evaluation Datasets

Semantic Similarity) are given in Table 7.

We calculate the perplexity of each set of gen-
erated stories with the model used to generate the
respective set of stories. The comparison reveals
several key insights. YorubaPlus has the lowest
perplexity of 5.92 for generating stories, indicating
that it is more confident and accurate in generat-
ing coherent stories compared to the other mod-
els. This is in contrast to isiZuluPlus, which has
a higher perplexity of 34.37, suggesting isiZulu-
Plus struggles more to generate coherent, accurate
stories.

Additionally we calculate the perplexity of the
Large evaluation sets for each language across each
of the models. This allows comparing these per-
plexity results across models; lower perplexity indi-
cates better generalization. On the evaluation sets,
YorubaPlus still performs well with a perplexity of
7.47, whereas isiZuluPlus has a perplexity of 15.82,
which is better but still higher than YorubaPlus,
showing that the Yoruba model generalizes more
effectively.

Similarly, isiZuluLite has a higher perplexity
of 40.83 for generating stories, indicating that it
is less confident in generating coherent text com-
pared to YorubaLite, which has a perplexity of
7.43. YorubaLite performs significantly better in
both generation and evaluation, with perplexities
of 7.43 and 7.13, respectively, suggesting better
generalization and more accurate generation.

When analyzing models trained with datasets
generated through prompting, isiZuluGuide has a
perplexity of 15.98 for generating stories, which is
lower than that of isiZuluLite but still relatively
high. However, isiZuluGuide displays a much
higher perplexity of 154.05 on the evaluation sets,
indicating that although it generates relatively good
stories consistent with the training data, it struggles
to generalize to unseen data. Note that this mis-
match is due to the different training data source
(which the Lite and Plus models have the same
training data source, just using different data sizes).

For YorubaGuide, the perplexity for generating
stories is 14.42, which is higher than YorubaLite
(7.43) but lower than isiZuluGuide. However, the
evaluation perplexity for YorubaGuide is 275.62,
which is much higher than YorubaL.ite’s 7.13, sug-
gesting that YorubaGuide has significant challenges
in generalization.

This TTR (Type-Token Ratio) is in the range of
zero and one, where a higher TTR value indicates
more diverse vocabulary usage. The comparison
of TTR scores highlights several trends based on
training data size and dataset type. isiZuluLite has
a higher TTR of 0.0743 compared to isiZuluPlus’
0.0653, suggesting that models trained on smaller
datasets may exhibit more lexical diversity, with
this effect being more noticeable in isiZulu than in
Yoruba.

When comparing models trained on prompted
versus translated datasets, isiZuluGuide shows
a lower TTR of 0.0545, indicating less vocab-
ulary diversity than isiZuluLite (0.0743) and
isiZuluPlus (0.0653). Conversely, models trained
on Yoruba datasets generated through prompt-
ing (YorubaGuide: 0.0208) show more lexical
diversity than the models trained on translated
datasets (YorubaLite: 0.0181, YorubaPlus: 0.0158).
Furthermore, evaluation sets consistently exhibit
higher TTR scores than generated stories, indicat-
ing that evaluation datasets have richer vocabulary.
For example, the TTR of the isiZuluLite evaluation
set is 0.1202 compared to the generated stories’
TTR of 0.0743. This suggests that while the mod-
els capture some token variety, the generated stories
still lack the vocabulary richness seen in the eval-
uation sets, highlighting limitations in vocabulary
diversity during story generation.

The semantic similarity scores are in the range
of zero to one, with a score close to zero indicating
no similarity between stories, and a score close to
one indicating high similarity. The comparison of
semantic similarity scores highlights the impact of
training data size and dataset type. Models trained
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on larger datasets (250,000 stories) tend to have
lower semantic similarity scores compared to those
trained on smaller datasets (10,000 stories) for gen-
erated stories. For example, isiZuluPlus scores
0.6549, while isiZuluLite scores 0.7044, suggest-
ing that larger datasets lead to slightly less similar
stories in i1siZulu. However, this trend is not as
pronounced in Yoruba models, where YorubaL.ite
scores 0.7567 and YorubaPlus 0.7505, indicating
that dataset size has less impact on generated story
similarity for Yoruba.

Models trained on prompt-generated datasets
(isiZuluGuide: 0.7453, YorubaGuide: 0.7451)
show more consistent semantic similarity scores
compared to those trained on translated datasets,
like isiZuluLite (0.7044), suggesting that models
trained on datasets generated through prompting
leads to more stable story generation. When com-
paring the generated stories to the evaluation sets,
the evaluation datasets consistently show higher
similarity scores. For example, isiZuluPlus’ gener-
ated stories score 0.6549, while the evaluation set
score 0.7603. This pattern is seen across all mod-
els, with the isiZulu models showing larger gaps
between generated stories and the evaluation set,
indicating more diversity in the generated stories
compared to the evaluation dataset. Note that here
we use the evaluation sets corresponding to each of
the models, which explains why the Plus and Lite
model results are very close to each other, with the
Guide results diverging.

For the Quality Evaluation, we score a subset
of 200 stories generated from each of the models
and 200 stories from our evaluation datasets (which
were generated through translation or prompting).
Gemini 1.5 Pro is prompted to give a score of out
10 for each of the following categories: Grammar,
Coherence, Plot and Creativity. Table 8 presents
the average scores for each of the categories.

When comparing models trained on 250,000 sto-
ries (isiZuluPlus and YorubaPlus) to those trained
on 10,000 stories (isiZuluLite and YorubaLite), the
impact of dataset size is evident. Larger datasets
result in better performance in grammar and co-
herence, as seen with YorubaPlus scoring 7.196
in grammar compared to YorubaLite’s 6.865, and
isiZuluPlus scoring 5.120 in coherence compared
to isiZuluLite’s 3.475. However, no significant dif-
ferences are observed in creativity and plot scores,
suggesting that these aspects depend more on the
nature of the story than the dataset size. Models
trained on datasets generated through prompting,

such as isiZuluGuide and YorubaGuide, outper-
form their translation-based counterparts (isiZul-
uLite and YorubaL.ite) in grammar and creativity,
with isiZuluGuide scoring 6.830 in grammar and
5.490 in creativity compared to isiZuluLite’s 4.615
and 3.955. Similarly, YorubaGuide improves cre-
ativity with a score of 5.890 compared to 4.910
for YorubaL.ite, indicating that prompting can en-
hance diversity in training data. When comparing
the generated stories to the evaluation datasets, the
evaluation sets consistently score higher across all
categories, demonstrating that while the models
capture certain quality aspects, they fall short in
fully replicating the complexities of the original
stories generated through translation and prompt-
ing. For example, the isiZuluPlus evaluation set
scores 8.650 in grammar, higher than the generated
story score of 6.440, and YorubaLite’s evaluation
set scores 5.775 for creativity compared to 3.955
for the generated stories.

4.2 Example Generations

Figure 1 shows two examples of generated stories,
one from the YorubaPlus model and one from the
isiZuluGuide model, along with their English trans-
lations.

4.3 Discussion

Overall, across the six models, we see differences
in model performance between the isiZulu and
Yoruba models, as well as between models trained
on datasets generated through prompting versus
translation.

YorubaPlus consistently shows the lowest per-
plexity scores, indicating better coherence and
generalization, both for generating stories and
for the evaluation sets. In contrast, isiZuluPlus
and models trained with prompting (isiZuluGuide,
YorubaGuide) show higher perplexities, especially
during evaluation, indicating they struggle with
generalization to unseen data. This demonstrates
that while datasets generated through prompting
may help with generating more coherent stories
during training, it does not necessarily improve the
model’s ability to generalize across unseen data.
However, the smaller size of the prompt-generated
training sets is a possible confounding factor here.
Models trained on larger datasets (YorubaPlus and
isiZuluPlus), tend to generalize better, as seen by
their lower evaluation perplexities.

Models trained on smaller datasets tend to have a
higher lexical diversity than those trained on larger
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Generated Story - YorubaPlus

Igba kan wa ti eye kékeré kan wa ti oriko
re 11 jé Tweety. Tweety féran 14ti mda fo lo
soke 16ju orun, ké si maa ba awon oré ré
seré. L6j6 kan, nigba ti Tweety 1i 0 lo, 6 ri
addgtin omi kan t6 1éwa ni odikeji addgin
nda. O fé stin m¢ on, am¢é 6 ga ju fuin un.
Tweety so pé: "Mo ¢ ran élowé". Tweety
ati Tweety jo gbé eye kékeré nda kuiro nind
adagin nda. Léyin ti eye kékeré nda ti fo
lo, Tweety so pé: "O seun fun iranldwo re,
Tweety kékeré. Ind mi dun pé o ran mi
16wo". Lati 0j6 yen ni Tweety ati Tweety
ti di oré timétimd, ti won si mda i jo mda
seré 16joojumg.

Generated Story - isiZuluGuide

Kwesinye isikhathi, kwakukhona umfana
ogama lakhe lingu Liam owayehlala edolob-
haneni elincane. Wayenobungani obukhulu
nomndeni wakhe nabangane bakhe, kodwa
wayezizwa eyedwa kancane. Ngelinye
ilanga, uLiam wahlangana nentombazane
egama layo lingu Zinhle. Njengoba bengazi
omunye nomunye, baqala ukuba ngaban-
gane bokuphila okujabulisayo ndawonye.
Bahamba baya ohambweni ndawonye, ba-
belana ngamabali nezindaba, futhi benza
izinkumbulo eziningi ezimnandi. Ekugci-
neni, ubungani babo babuthuthukiswa
ngaphezu kokuba ngabangani, futhi bob-
abili babazi ukuthi bazohlale bekhona ko-
munye nomunye.

English Translation - YorubaPlus

There was a little bird that was called
Tweety. Tweety liked to fly in the sky, and
one day when he was flying, he found a
beautiful pond on the other side of the lake.
He wanted to get closer, but it was too high
for him. Tweety said, "I can help you."
Tweety and the little bird together helped
the little bird out of the pond. After the
little bird flew away, Tweety said, "Thank
you for your help, little Tweety. I’'m happy
you helped me." From that day on, Tweety
and the little bird became close friends and
played together every day.

English Translation - isiZuluGuide

Once upon a time, there was a boy named
Liam who lived in a small town. He had a
great friendship with his family and friends,
but he felt a little lonely. One day, Liam met
a girl named Zinhle. As they got to know
each other, they began to be friends and
share exciting adventures together. They
went on journeys, shared stories, and cre-
ated many wonderful memories. Eventu-
ally, their friendship grew beyond just be-
ing friends, and they both knew they would
always be there for each other.

Figure 1: Example generated stories and their English translations from YorubaPlus and isiZuluGuide

121



Model Grammar Coherence Plot Creativity
Gen Eval Gen Eval Gen Eval Gen Eval
isiZuluPlus 6.440 8.650 5.120 8.650 3.860 5.725 4475 5.735
YorubaPlus 7.196 8.205 5412 8.8805 4.185 5.675 5.155 5.620
isiZuluLite 4.615 8.635 3475 8.885 2495 5815 3955 5.775
YorubalLite 6.865 8340 5.195 8.655 4.070 5.675 4910 5.545
isiZuluGuide 6.830 8.545 4.925 8295 4.020 5.365 5.490 5.780
YorubaGuide 7.475 8270 5.340 8.065 4.170 5.160 5.890 5.535

Table 8: Average Scores for isiZulu and Yoruba Models and Evaluation Datasets

datasets, as is shown by the high TTR and semantic
similarity scores. Models trained on small datasets
may produce stories with more varied vocabulary,
but will lead to generated stories with high similar-
ity among them. We see this more in the isiZulu
models as compared to that of the Yoruba models,
which suggests that the size of the dataset has an
impact on features across these languages.

Models trained on datasets generated through
prompting tend to produce semantic similarity
and TTR scores that are comparable to those
trained on datasets generated through translations.
The isiZulu models produce stable outputs from
the prompting-based datasets as compared to the
translation-based datasets.

In terms of quality evaluation, the results sug-
gest that models trained on datasets generated
through prompting generally perform better in cre-
ativity compared to the models trained on translated
datasets. This reinforces the idea that models which
are trained on stories generated through prompting
may be better at capturing imaginative elements in
the story generation procedure.

Models trained on large datasets tend to perform
better in terms of grammar and coherence of the
generated stories. This implies models may need
to be trained on larger datasets to be able to capture
the linguistic features of African languages. How-
ever, scores in the creativity and plot categories
are not highly sensitive to the data size, indicating
that training on a large synthetic dataset may not
be enough to enhance creativity and plot of the
generation process. The Gemini quality evaluation
confirms that while our models can generate stories
that perform well grammatically and with coher-
ence, they struggle in producing creative stories
with a consistent plot.

Histograms of the distribution of the Gemini
scores per category over each of the model’s gen-

erated stories and the evaluation dataset stories are
given in Appendix A.

5 Conclusion

This paper investigated the feasibility of train-
ing models for story generation in low-resource
African languages using synthetic data. The results
show that it is possible to train models that can
generate grammatical and coherent stories, which
is promising in particular considering the relatively
small training data sizes. Models trained on sto-
ries generated through prompting an existing large
multilingual model showed particular strength in
terms of the quality of the generated outputs, but
displayed less generalization than models trained
on translated stories, which exhibit more diversity.
Overall, in addition to providing new datasets of
children stories in isiZulu and Yoruba, which might
be of practical usage, e.g. in reading tutoring ap-
plications, our results suggest that pretraining on
controlled synthetic datasets might be a promis-
ing avenue for future investigation of pretraining
general-purpose low-resource language models.

Limitations

Our approach relies on the availability of suffi-
ciently high-quality translation models or multi-
lingual LLMs for the target languages, which are
not always available for low-resource African lan-
guages. However, translation models generally re-
quire less training data than general-purpose mul-
tilingual language modeling training. Adding gen-
eration constraints or quality filters could help to
improve synthetic data quality in lower-resource
settings. Larger synthetic training datasets would
likely have led to higher-quality models, however
the study was performed within limited available
computational resources. Pretraining models on
a combination of real and synthetic data is likely
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to lead to better models. Fine-tuning and evaluat-
ing the models on instruction tuning datasets will
enable better evaluation of the potential of this ap-
proach to scale beyond story generation.
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Abstract

Building high-quality large language models
(LLMs) for enterprise Arabic applications re-
mains challenging due to the limited availabil-
ity of digitized Arabic data. In this work, we
present a data synthesis and refinement strategy
to help address this problem, namely, by lever-
aging synthetic data generation and human-in-
the-loop annotation to expand our Arabic train-
ing corpus. We further present our iterative
post training recipe that is essential to achiev-
ing state-of-the-art performance in aligning the
model with human preferences, a critical aspect
to enterprise use cases. The culmination of this
effort is the release of a small, 7B, open-weight
model that outperforms similarly sized peers
in head-to-head comparisons and on Arabic-
focused benchmarks covering cultural knowl-
edge, instruction following, RAG, and contex-
tual faithfulness.

1 Introduction

Multilingual language models are evolving rapidly
(Huang et al., 2024b), yet specific languages and
capabilities remain underdeveloped, particularly
in enterprise applications. While state-of-the-art
models continue to improve, they often struggle to
adapt to linguistic and professional needs in lan-
guages like Arabic (Gabriel Nicholas, 2023), the
most spoken language in Africa (Zucchet, 2024).
This challenge becomes even more pronounced
when additional constraints are introduced: the
need to keep the model small to ensure accessibil-
ity even with limited resources, overcoming data
scarcity, and accounting for linguistic nuances that
do not translate well from English, all the while
prioritizing rapid iteration to stay aligned with the
fast-moving market. To address these issues, we
developed a post-training approach that efficiently
tailors cutting-edge models to specialized capabil-
ities. This report outlines our methodology and

“Equal contribution. Authors appear in alphabetical order
by second name.

findings, offering insights into adapting LLMs for
language-specific and professional domains.

2 Related Work

With the recent rapid development in LLMs (Zhao
et al., 2024), some focus was placed on improving
model multilingualism through second language ac-
quisition techniques (Huang et al., 2024b). These
techniques aim to circumvent data scarcity in lan-
guages other than English by adding other language
capabilities to English models, which is more data
efficient. For instance, the Llama 3 family of
models adds a final pretraining stage by adding
multilingual pretraining data mixed with English
(Grattafiori et al., 2024). These techniques have
been applied to Arabic-centric models, such as AL-
LaM (Bari et al., 2025), Jais (Sengupta et al., 2023;
Inception, 2024), AceGPT (Huang et al., 2024a;
Zhu et al., 2024; Liang et al., 2024), and Fanar
(Fanar Team et al., 2025). These projects primar-
ily focused on pretraining data mixture, staging,
and tokenizer innovations, including vocabulary
expansion (ALLaM), iterative vocabulary expan-
sion (AceGPT), and morphology-based tokeniza-
tion (Fanar). While they contribute strong founda-
tional models for the community, they do not offer
computationally efficient post-training methods.

Post-training has become essential for building
robust models (Wei et al., 2022; Kumar et al., 2025;
Ouyang et al., 2022). Many research labs have con-
tributed to the open-source community by docu-
menting modern post-training techniques. Notable
examples include Tiilu 3 (Lambert et al., 2025),
which provides a comprehensive overview of gen-
eral post-training methods, and Aya Expanse (Dang
et al., 2024), which focuses on multilingual adapta-
tion.

Our work builds on these efforts by developing a
systematic, iterative, and comprehensive approach
to efficiently adapt LLMs for languages. Specifi-
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Figure 1: Evaluations on enterprise usability factors (mArenaHard, described in Section 4). Auto win-rates on
Arabic version of LMSYS Arena "Hard" human preference tasks (Dang et al., 2024). Command R7B Arabic

outperforms all listed similarly-sized models.

cally, we leverage iterative tuning (Grattafiori et al.,
2024) methods that rely on best-of-N sampling to
generate instruction and preference data via auto-
mated reward models or human preference (Yuan
et al., 2024). We also further reduce compute re-
quirements by incorporating model merging tech-
niques (Goddard et al., 2024; Yang et al., 2024).

3 Methods

Our training procedure is illustrated in Figure 2.
We start by selecting a strong starting model (Sec-
tion 3.1), on which we perform three distinct train-
ing phases: (i) supervised fine-tuning (SFT) (Wei
et al., 2022), for which we employ iterative dataset
refinement techniques (Sections 3.2 and 3.3), (ii)
oft-policy (offline) preference tuning, and (iii) itera-
tive preference tuning. The latter two are described
in Section 3.4. After each training phase, we merge
expert models into a single general model (Sec-
tion 3.5).

3.1 Base Model Selection

As a starting checkpoint, we chose Command R7B
(Cohere, 2024; Cohere et al., 2025) - a strong,
general purpose, and open-weight model already
trained on a large corpus of multilingual data, in-
cluding Arabic, and specialized to enterprise use-
cases. Additionally, Robinson et al. (2025) showed
that Cohere models excel in dialectal Arabic com-
pared to other open-weight models. Our primary
objective was to reach state-of-the-art performance
in Arabic enterprise use cases while preserving
the model’s performance on other core capabili-

ties. Starting from an already polished checkpoint
meant we could spend more effort on our data and
training efforts that refined Arabic-specific tasks.

3.2 Multilingual Arbitrage for Capability
Enhancement

Previous work by Aya (Odumakinde et al., 2024)
has demonstrated that synthetic data generation is
crucial for achieving state-of-the-art performance,
and this is especially true for domains with lim-
ited data availability such as Arabic. However, a
key challenge when training Arabic LLMs is the
distinctive difference between Arabic and English.
Not only do these languages differ in syntax and
morphology, but there are also variations in cultural
and contextual nuances that make literal translation
challenging. For example, lexical control tasks
such as length adherence and structured genera-
tion are awkward or nonsensical when translated
to Arabic.

To address this, we implemented a human-in-
the-loop approach:

* We collaborated with expert annotators to
translate IFEval (Zhou et al., 2023) instruc-
tions into Arabic. Additionally, we augmented
the set with two instructions specific to the
Arabic language: “add V diacritics to the re-
sponse” and “use a specific grammatical verb
to start sentences”. This ensured better align-
ment with Arabic linguistic and cultural nu-
ances.

e These instructions were used as seeds to
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Figure 2: Outline of Command R7B Arabic’s training processes with three training stages, each training multiple
experts that are merged into a single general model. For instance, in the SFT stage, multiple SFT expert models are
trained to excel in specific domains, such as mathematics or instruction following. These experts are subsequently
merged to create a generalist SFT model via parameter-wise linear interpolation of the experts’ weights.

synthetically generate instruction following
prompts in Arabic and subsequently the corre-
sponding completions.

* In accordance with the work done in Aya’s
Multilingual Arbitrage (Odumakinde et al.,
2024), we scored and filtered completions us-
ing a reward model, a panel of LLM judges
for Arabic natural language quality, and max
reward difference for preference pair dataset
creation.

This targeted approach ensured that the model
learned to follow instructions naturally in Arabic,
which is apparent in arena style win-rates where our
model is consistently favored over other competitor
models, as shown in Figure 1.

3.3 Dataset Curation and Iterative Supervised
Refinement

Supervls_edFme-H Evaluation }
Tuning

Multilingual
Arbitrage

Figure 3: Flowchart for our iterative supervised refine-
ment approach. It ensures that all datasets used improve
targeted model performance by mixing a base data mix-
ture with a targeted dataset that is iteratively improved
via multilingual arbitrage.

The availability of high-quality Arabic datasets
is a well-documented challenge (Gabriel Nicholas,
2023). We aimed to incorporate both publicly avail-
able datasets, including ArMATH (Alghamdi et al.,
2022), ArabicaQA (Abdallah et al., 2024), and
synthetically generated datasets, while enforcing a
high-quality data standard. With this in mind, we
defined the Iterative Supervised Refinement during
Supervised Fine-Tuning (SFT) training phase as a
process to optimize our dataset composition. The
steps are illustrated in Figure 3 and are as follows:

1. Define a base data mix consisting of high-
quality instruction-tuning data.

2. For each new dataset in consideration, add
it to the base data mixture and fine-tune the
model.

3. Evaluate the resulting model using a bench-
mark evaluation harness to measure the im-
pact of the new dataset.

4. If the dataset improves performance in any
critical capability, retain it for the next itera-
tion.

5. If no improvement was observed, apply Multi-
lingual Arbitrage, refining the prompts before
re-running the process.

This approach enabled us to design an opti-
mal dataset mixture that maximized the model’s
instruction-following capabilities while maintain-
ing a high standard for data quality.

3.4 Preference Tuning for Final Model
Optimization

Since we initialized from a strong Command R7B
model, it was essential to ensure that enhancements
in Arabic did not degrade performance on other
benchmarks. Similar to the methodology described
by Aya (Ustiin et al., 2024), we used two stages
of preference tuning as final polishing steps to im-
prove model performance and align it with human
preferences. In the first phase, we performed offline
preference training on general preference datasets
to refine the model’s conversational fluency. In
the second phase, we ran iterative preference train-
ing, incorporating an Arabic-translated reasoning
and math-focused dataset (Alghamdi et al., 2022),
which proved particularly beneficial for maintain-
ing high performance across diverse enterprise use
cases. Both preference tuning stages utilize the di-
rect preference optimization (DPO) (Rafailov et al.,
2024) algorithm.
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Benchmark R7B Arabic R7B Gemma 9B Llagu_l 3.18B Qwen 2.57B Ml_mstral 8B
(Cohere et al., 2025)  (Gemma Team et al., 2024)  (Grattafiori et al., 2024)  (Yang et al., 2025) (Mistral, 2024)
AlGhafa-Native 82.2 81.5 81.3 80.1 80.2 76.6
ArabicMMLU 60.9 59.7 62.4 56.6 61.2 53.6
IFEval AR 69.0 57.8 67.8 48.4 62.4 49.3
TyDIQA-GoldP Arabic 83.0 79.9 76.4 65.9 60.9 57.7
FaithEval Arabic 51.6 49.9 47.0 40.9 499 25.5
Average 69.3 65.8 67.0 58.4 62.9 52.5

Table 1: Full performance comparison against competitor models on Arabic-specific benchmarks. The highest score
in each row is in bold. Command R7B Arabic is best-in-class compared to similarly sized models on all Arabic

benchmarks, with the exception of ArabicMMLU.

3.5 Expert Model Merging

After completing the iterative supervised refine-
ment procedure described in Section 3.3 to create
multiple expert models from various datasets, one
path forward is to retrain a new generalist model
by combining appropriate datasets based on the
insights obtained from these experiments. How-
ever, we can eliminate computational redundancy
by merging various expert models. This is a com-
mon practice with mature frameworks (Goddard
et al., 2024). The literature lacks conclusive theo-
retical foundations for the effectiveness of model
merging, but extensive experimentation has shown
it is a successful strategy in practice (Yang et al.,
2024).

To reduce the expert merge search space, we
only considered linear merges (Utans, 1996) of
the expert models. We tested several weighting
schemes based on the importance of each capability
and the size of each expert’s training data. In the
end, our best model was obtained by assigning
equal weight to each expert.

In practice, model merging reduces computa-
tional cost. However, it complicates replication
and adds an additional source of potential errors.

4 Experiments and Results

4.1 Arabic Language

To measure the performance of various models
in general Arabic language generation and under-
standing, as well as enterprise use-cases, such
as grounding model generation with enterprise-
specific data via RAG and precise instruction fol-
lowing, we utilized the following evaluation suite:

e IFEval AR: An internal Arabic translation
of the original English dataset (Zhou et al.,
2023) with 541 test samples. It measures a
model’s precise instruction following ability,

with instructions such as “use at least 300
words” or “do not use commas.”

 AlGhafa-Native: The subset' of AlGhafa (Al-
mazrouel et al., 2023) tasks which were cu-
rated by native Arabic speakers, which encap-
sulates the following:

- MCQ Exams AR (562
(Hardalov et al., 2020).

— Belebele AR Dialects (5,400 samples)
and Belebele AR MSA (900 samples)
(Bandarkar et al., 2024).

— AraFacts balanced (80
(Sheikh Ali et al., 2021).

— SOQAL (155 samples) (Mozannar et al.,
2019).

— XGLUE (155 samples) (Liang et al.,
2020).

— Rating sentiment no neutral (8,000 sam-
ples) and rating sentiment (6,000 sam-
ples) from the HARD-Arabic-Dataset
(Elnagar et al., 2018).

— Sentiment (1,725 samples) (Abu Farha
etal., 2021).

samples)

samples)

We report the unweighted average percentage
performance across all tasks.

* TyDiQA-GoldP Arabic: The 921 samples in
Arabic from the original TyDiQA (Clark et al.,
2020) golden passage (GoldP) secondary task,
in which models are provided with a question
and a single passage that contains the ques-
tion’s answer. Models are prompted to deter-
mine the substring in the passage that answers
the question.

"https://huggingface.co/datasets/OALL/AlGhafa- Arabic-
LLM-Benchmark-Native
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https://huggingface.co/datasets/OALL/AlGhafa-Arabic-LLM-Benchmark-Native
https://huggingface.co/datasets/OALL/AlGhafa-Arabic-LLM-Benchmark-Native

. R7B Gemma 9B Llama 3.1 8B Qwen 2.57B  Ministral 8B
Benchmark R7B Arabic ) .
(Cohere et al., 2025)  (Gemma Team et al., 2024)  (Grattafiori et al., 2024)  (Yang et al., 2025)  (Mistral, 2024)
BBH (Suzgun et al., 2022) 36.2 36.0 42.1 29.9 34.9 25.8
MuSR (Sprague et al., 2024) 119 10.2 9.7 8.4 8.5 8.4
GPQA (Rein et al., 2023) 7.9 7.8 14.8 2.4 5.5 4.5
MMLU Pro (Wang et al., 2024) 29.4 28.6 32.0 30.7 36.5 30.7
IfEval (Zhou et al., 2023) 83.3 77.1 74.4 78.6 75.9 59.0
MATH?* (Hendrycks et al., 2021b) 19.6 29.9 19.1 19.3 50.0 19.6
Average 314 31.6 32.1 28.2 35.2 22.0

* The MATH benchmark used in this leaderboard changed in early January due to a DMCA takedown notice for the original benchmark.

Table 2: Performance comparison of R7B Arabic against similarly sized models on multiple benchmarks. The
highest score in each row is in bold. Command R7B Arabic retains most of the general and English capabilities of
its base model, Command R7B, as indicated by the similar average scores.

* ArabicMMLU (Koto et al., 2024): Inspired
by the original MMLU (Hendrycks et al.,
2021a) in English, ArabicMMLU is a collec-
tion of 14,575 native Arabic multiple choice
questions focusing on knowledge and reason-
ing. It covers 40 tasks at various education lev-
els (elementary to college) and regions (North
Africa, Levant, and Gulf).

¢ FaithEval Arabic: An internal Arabic trans-
lation of a 500 sample subset of the original
English dataset (Ming et al., 2024). It mea-
sures the model’s RAG performance when
provided with unanswerable, inconsistent, or
counterfactual contexts.

e Multilingual ArenaHard (Dang et al., 2024):
A machine translation of 500 questions from
the original English LM Arena (formerly LM-
SYS) Arena-Hard-Auto (Li et al., 2024)
prompts into various other languages. We
limit our evaluation to the Arabic subset. The
evaluation uses GPT-40 as a judge to compare
completions from two different models.

Table 1 shows results compared to other models
in the same size category. The Command R7B Ara-
bic model outperforms all baselines across key Ara-
bic benchmarks, achieving an average score of 69.3,
surpassing Command R7B (65.8) and Gemma 9B
(67.0). It performs at the top of its size class in
the following benchmarks: Cultural Knowledge
(AlGhafa-Native), Instruction Following (IFEval
AR) validating our human-in-the-loop data strat-
egy, RAG Question Answering (TyDiQA-GoldP
Arabic), and RAG Faithfulness (FaithEval Arabic).
In General Knowledge (ArabicMMLU), Command
R7B Arabic scores third, while staying competitive
with Gemma 9B and Qwen 2.7.

4.2 General Capabilities

Retaining general capabilities is essential for the
model to be helpful in enterprise settings. We thor-
oughly measured our model’s performance and
present the results of the standardized Hugging
Face Open LLM Leaderboard benchmarks (Four-
rier et al., 2024; Gao et al., 2021). Table 2 shows
that our model excels in IfEval and MuSR, achiev-
ing the highest scores among similarly sized mod-
els. Notably, it outperforms the initial checkpoint
on all benchmarks except for MATH, possibly due
to the change in methodology.

These benchmark results (Table 1 and Table 2),
coupled with auto win-rate data (Figure 1), vali-
date that our approach effectively enhances Arabic
language capabilities while maintaining robust per-
formance in enterprise applications.

5 Conclusion

In this work, we rapidly iterated to develop Com-
mand R7B Arabic, a small, yet competent Ara-
bic LLM optimized for enterprise applications.
By leveraging synthetic data generation, multilin-
gual arbitrage, and human-in-the-loop interven-
tions, we significantly improved instruction follow-
ing, retrieval-augmented generation (RAG), and
question answering capabilities in Arabic. How-
ever, transferring knowledge from English-centric
datasets to Arabic remains an open challenge. Fu-
ture work should explore more effective adaptation
strategies, ensuring higher linguistic and factual
alignment across languages.

Limitations

Our work focuses on Modern Standard Arabic
(MSA), which is widely used in formal and profes-
sional settings but differs significantly from spoken
dialects across the Arabic-speaking world. While
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MSA provides a strong foundation for enterprise
applications, real world use cases often involve
dialectal Arabic, which varies by region and con-
text. Future work should explore dialect adaptation
strategies to improve robustness across diverse Ara-
bic varieties.

We adapted Faithfulness (FaithEval Arabic),
Question Answering (TyDi QA Arabic), and
Instruction Following (IFEval AR) to measure
enterprise-relevant capabilities. Still, these bench-
marks remain proxies rather than direct tests of
real-world deployment challenges. The effective-
ness of our model in enterprise workflows can only
be fully validated through real-world deployment
and user feedback.
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Abstract

Low-resource languages face significant chal-
lenges in natural language processing due to the
scarcity of annotated data, linguistic resources,
and the lack of language standardization, which
leads to variations in grammar, vocabulary, and
writing systems. This issue is particularly ob-
served in many African languages, which sig-
nificantly reduces their usability. To bridge this
barrier, this paper investigates the challenges
and limitations of collecting datasets for the
Medumba language, a Grassfields Bantu lan-
guage spoken in Cameroon, in the context of
extremely low-resource natural language pro-
cessing. We mainly focus on the specificity of
this language, including its grammatical and
lexical structure. Our findings highlight key
barriers, including (1) the challenges in typ-
ing and encoding Latin scripts, (2) the absence
of standardized translations for technical and
scientific terms, and (3) the challenge of lim-
ited digital resources and financial constraints,
highlighting the need to improve data strategies
and collaboration to advance computational re-
search on African languages. We hope that
our study informs the development of better
tools and policies to make knowledge platforms
more accessible to extremely low-resource lan-
guage speakers. We further discuss the repre-
sentation of the language, data collection, par-
allel corpus development.

1 Introduction

The field of natural language processing (NLP)
has made tremendous progress in improving low-
resource languages in recent years. However, many
languages remain underrepresented in computa-
tional linguistics. This is the case of Medumba, a
Cameroonian language spoken by approximately
200.000 people in the western part of the country.
Studies have been conducted on this particular lan-
guage but these studies date back to the 90s, and
focus primarily on its grammatical, structural, and

Figure 1: Representation of Medumba language

phonological aspects(Nganmou, 1991, Tchiegang,
1978, Kachin, 1990) . In addition, NLP researchers
have developed benchmark datasets and parallel
corpus covering specific language families, such
as MasakhaNER (Adelani et al., 2021) the Sawa
corpus (De Pauw et al., 2009), MasakhaNEWS
(Adelani et al., 2023), WebCrawl African (Vegi
et al., 2022) but, without including some extremely
low-resource languages such as Medumba.

A language is considered as low-resource lan-
guage by its limited linguistic resources and data,
posing challenges in NLP in learning robust lan-
guage patterns (Magueresse et al., 2020). On the
other hand, Joshi et al. (2021) categorizes lan-
guages in six classes based on the availability of
labeled and unlabeled data: (The Left-Behinds (0),
(The Scraping-Bys (1), The Hopefuls (2), The Ris-
ing Stars (3), The Underdogs (4), and The Winners
(5). In a simplified form, class 0 languages have nei-
ther labeled nor unlabeled data; class 1-4 languages
have unlabeled data, but their labeled data quantity
varies from virtually non-existent to high and, class
5 languages have both high volumes of labeled and
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unlabeled data. However, the Medumba language
might belong to either class O or 1 as it is very hard
to find available resources, thus highlighting the
need of more investigations into this particular lan-
guage.

This study explores methods for building NLP re-
sources for the Medumba language, contributing
to the broader goal of enhancing language tech-
nology for African languages. We designed our
analysis to mainly answer the research question:
What are the challenges and limitations of gather-
ing and annotating an extremely low-resource lan-
guage?. To answer this question, we created a par-
allel French-Medumba corpus consisting of 2050
sentences translated by a professional linguist.
"Our study reveals a significant gap in categoriza-
tion between the source language (French) and the
target language (Medumba), making it difficult to
find adequate equivalents due to the language’s
complexity. We summarize the main contributions
of this paper as follows:

* We collected French sentences from open-
source repositories related to African contexts
from the web and asked a professional linguist
to translate them

* We present the language background and the
methodologies used to translate the sentences

* We present some baseline model results and
discuss their performance

* We highlight the challenges and limitations
encountered during data collection and pro-
pose solutions to overcome them

2 Related works

In this section, we provide an overview of re-
lated studies on extremely low-resource languages,
specifically Medumba.

Research on Cameroonian languages has recently
seen an evolution in the field of NLP. Echu (2004)
investigate into the multilingualism and language
policy since the colonial period of Cameroon
while Olson and Meynadier (2015) assess the
articulation and phonology of bilabial trills and
vowels in Medumba. Moreover, a syntax of
A<dependencies in Bamileke Medumba have been
study (Keupdjio, 2020), and more recently, Zim-
mermann and Kouankem (2024) discuss the struc-
tural realization of contrastive focus in the Grass-
fields Bantu language Bamileke Medumba, and

Phylum Niger-kordofan

Bénoué-congo

Sous- phylum:

Famille

m
Bantu
Branche

‘ Grassfields grassfield- Ouest

Sous -famille

Sous -branche

‘ Grassfield-Est

Nord ‘ ‘ Noun | ‘

v

Ngemba |

Figure 2: Family tree of the Medumba language.

Kouankem (2022) analyses the interaction between
the syntactic structure and the semantic outcome of
serial verb constructions in Medumba. Althought
these studies investigates the Medumba language,
the are more focused on the structural syntax and se-
mantical aspect of the language, without highlight-
ing the challenges of translating text into Medumba.
In this study, we investigate the challenges of gath-
ering resources in the medumba by highlighting the
methodology, the challenges and some techniques
used to translate sentences from a source language
to the Medumba language.

3 Medumba language
3.1 Background

The Medumba (medurnba) language is a Bamileke
language primarily spoken in Cameroon in the Ndé
department, West region, with the main settlements
being Bangangté, Bangoulap, Bakong, Bahouoc,
Bagnoun, Bawouok, Tonga, Bamaha, Bagnoun. It
is also spoken in the North-West by the Bahouoc in
the Bali district (futher details can be found in Fig-
ure 2). According to the Ethnology !, this language
belongs to Niger-Congo language family, the East-
ern Grassfields group, and the Central Bamileke
subgroup with over 210.000 speakers (htt, 2018).
Medumba belongs to zone 9 of the Southern Grass-
field languages, with Alcam code [997] (BIKOI,
2018). The Medumba language has a dialectal vari-
ant called nsi ntuf spoken in Tonga, Bandounga,
Bassamba and in part of Bazou. The standard ref-
erence variant is known as bangangte.

"https://www.ethnologue.com/language/byv/
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Medumba language is governed by a set of rules. In
terms of morphology, Medumba is monosyllabic,
i.e the morphemes of this language are initially
formed of one syllable. We can have examples like
t“a/father, m o/mother, nkun/the news, f a/work,
nvon/the chief, etc. We also find disyllable and
trisyllable words such as: ngaién/paternal uncles
or aunts, mehntun/someone, ngazito/the learner,
etc. The morphemes of the Medumba language
always begin with consonants and the tones are
essentially marked on the vowels and on the conso-
nant 7. Vowels, on the other hand, always occupy
the medial and final position in a word. The gram-
matical classes of this language are nouns, preposi-
tions, adverbs, adjectives, conjunctions, verbs and
pronouns. There are 5 noun classes, including 3
singular classes (classes 1, 3 and 5) and two plural
classes (classes 4 and 6). The formation of the plu-
ral is done according to the noun class concerned.
In general, the word (ba) is used as a plural marker.
Compound nouns are written as a single word.

Syntactically, the sentence in Medumba generally
follows the SVO (Subject-Verb-Object) structure.
A set of orthographic principles governs this lan-
guage. The following principles serve as examples:

* Do not write the same consonant twice in a
word. This would simply mean that if at the
time of pronunciation, we perceive a sound
twice, we replace the first one with a sound
that is close to the first, unless the first sound
is separated from the second by the glottal
stop. Example: betto will be written bedto , s2”

* The vowel /9/ is never placed before /g/ and /7/
even if it is heard when pronouncing a word.
Example: 1on will be written lo7 in this word;
the grapheme o is not read /ou/ as its alphabet
requires, but it is read as /o/

The phonology of Medumba is made up of 32
letters including ten 10 vowels, 22 consonants and
five (5 tones. The different vowels of the Medumba
language are/ a, e, 9, €, 1, u, 0, c, 0, O /. Depending
on the points of articulation, Table 1 and Table 2
summarize the classification of its different vowels.

The vowels of the Medumba language can be
closed, half-closed, half-open or open. Among
these vowels, we have two pairs of vowels that
are represented differently in spelling, but are read
the same way. These are (i/e and u and o). The
concept of aspiration is crucial in distinguishing

Anterior Central Posterior
Closed i e! u
Half-closed e - 0
Half-open € 0 2
Open - o a

Table 1: Medumba vowels

writing from reading. The consonants are b, d, c,
k,f,s,g,j,h,sh,gh, 1, m,n, v,z y,n ny ‘, wand
ts. Moreover, Kouankem (2012) summarizes these
letters according to their place of articulation as
follows, the punctual tones found in the Medumba
language are the high tone, the low tone and the
mid tone. The modulated tones are: the falling tone
and the rising tone. In the writing of this language,
the high tone and the low tone are not marked.

3.2 Data collection

We mainly worked on the translation of 2050 sen-
tences from French to Medumba collected on the
web. The sentences come from various categories
and are based on African contexts (e.g. Un seul
projet est réalisé au Cameroun ou dans le cadre
de la CEMAC un vaste programme de production
d’engrais a la mesure des besoins de notre agri-
culture); More examples can be found in Figure 3.
This study made it possible to identify the specific
obstacles linked to the absence of lexical equiva-
lents and the differences in linguistic categorization
between French and Medumba. To overcome these
challenges, we adopted a methodical approach in-
cluding:

* Consulting native speakers and existing docu-
ments on the Medumba lexicon

* Using translation techniques such as explana-
tion and adaptation

* Lexical creation or neologism while respect-
ing the grammatical principles of the target
language

* Validation of translations with the Medumba
language development committee

4 Methodology

We conducted a qualitative study based on the anal-
ysis of discussions from online forums and African
content creators. We applied analysis to identify
recurring problems and concerns encountered by
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Bilabial Labio-dental Alveolaire dental Palatal Velaire Glottal

Plosives b - td - k -
Nasals m - n - n -
Fricatives - fv sshzts - gh h
Glides - - - y w -
Laterals - - 1 - - -

Table 2: Medumba consonants

French Medumba showed in 4

Un seul réalisée au Cameroun ou dans le | T&' nsag nkazin nandb mica bo ghé
cadre de la CEMAC un vaste programme | Kamar(n ka ntém CEMAC mbd & kd'ni niim
de production d'engrais & la mesure des | nzi zaba ngdimna la

besoins de notre agriculture.

D'autres suivront avec 'aménagement du | Tsamo' &' sa' bé nandib ntsa Sanaga
cours de la Sanaga.

Notre pays ne fait pas exception en Afrique. | Zaba |a' ka' tag Aflika

La lutte contre le VIH/SIDA est une | Zwd' VIH/SIDA ba d ta' nu tanjon a cwid
préoccupation  importante  pour les | ngadni tamta ghafa’ Aflika
Synergies Africaines.

M Samuel MVONDO AYOLO Directeur du | Toi Samuel MVONDO AYOLO, ngacagta
Cabinet Civil de la Présidence de la | Cabinet Civil ndangd b bin nkamngd
République avec rang et prérogatives de
Ministre.

Pour d'autres il n'est pas toujours aisé de | A ba nta tsamo' banntén na kamta njon 3
réunir toutes les piéces que l'administration | nwa'ni ngacagta cwed mbédta I
exige.

Le jeune garcon est le fils d'une cousine a | MEn mdnddm [1 ba nsham bamé 1. A na’
elle et n'avait alors que 10 ans a cette | ngé o ngl' gham ngalan bo n&' ndé'11d
époque.

Des campagnes de sensibilisation sont | Bo cwid ndb nkdzin netdm nzi'ts bantén
aussi organisées sur les dangers de la | nim ckabwd fukabwd
drogue.

Absente du domicile conjugal depuis | Mbd mfog ménnzwi 1T na' tam ndd nda 1
vendredi dernier, la veuve du défunt n'est | mfénntehndeb, nt&' bEnnjam o mvadnje
revenue que ce mardi dans Ja soirée. mfEnntdnnka’'a

Je crois que ce monument est une belle | Ma kwa mba san lonla' I ba o bw fa
réalisation.

Figure 3: Samples translated sentences.

contributors. To improve the translation, we in-
quired whenever we were faced with a complex
term whose translation was not immediately appar-
ent. We thus verified the non-existence of the term
itself before moving on to adopting a specific trans-
lation technique. For some terms, we drew inspira-
tion from their explanations in French to translate
them. In addition, we drew inspiration from the
principle of forming the grammatical category to
be translated in the target language to create a new
word designating the term in the source language.

4.1 Medumba Dataset

The Medumba dataset is a translated version of
French sentences collected from open-source repos-
itories such as GitHub 2, covering multiple top-
ics. After preprocessing, we use 31,679 tokens to
train our baseline models. The dataset statistics are
shown in Table 3. Furthermore, we split the dataset
into train and test to train our baselines models as

Zhttps://github.com/

4.2 Baselines Performance

To conduct our experiments, we chose to fine-tune
custom pre-trained machine translation models, as
our parallel corpus includes Medumba, a language
not supported by most existing models. This ap-
proach enables the model to learn translation pat-
terns specific to Medumba. For instance, we fine-
tuned models such as 0pus—mt—fr—en3, mbart50%,
and t5-small’. The results are reported in Table 5.

As metrics, we use:

* BLEU (Bilingual Evaluation Understudy): A
metric that calculates n-gram precision for var-
ious n-gram lengths (typically 1 to 4) and com-
bines these scores using a geometric mean. It
also incorporates a brevity penalty to address
the issue of overly short translations.

* COMET (Cross-lingual Optimized Metric for
Evaluation of Translation): A metric that em-
ploys machine learning models to evaluate
translations. Unlike traditional metrics, it does
not rely solely on surface-level text compar-
isons. It assesses translations based on fluency,
adequacy, and the preservation of meaning.

* TER (Translation Edit Rate): A metric that
calculates the minimum number of edits re-
quired to transform a machine translation into
one of the reference translations. The score
is normalized by the total number of words in
the reference translation.

The results reveal that only the T5-small model
achieves a high BLEU score, while the other two
models exhibit higher COMET scores. Since
COMET is effective in scenarios requiring a deeper

3https://huggingface.co/Helsinki-NLP/
opus-mt-fr-en

*https://huggingface.co/sarubi/mbart-50

Shttps://huggingface.co/google/flan-t5-small
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Tokens Nbr documents Vocab size
fr 33304 2052 6786
byv | 31679 2052 4542

Table 3: Datasets tokens count

Test
206

Train
1846

Table 4: Datasets split

understanding of translation quality, it is particu-
larly useful for evaluating translations where con-
textual and semantic accuracy are more important
than literal word-for-word correspondence—an
evaluation criterion well aligned with the charac-
teristics of our Medumba dataset. The other results
were expected, given the limited size of our dataset.

5 Challenges and Limitations

The translation of the 2.050 sentences from French
to Medumba was mainly hampered by the lack of
adequate equivalent terms in the target language
and differences in categorization between the two
languages.

5.1 Challenges related to platform interfaces
and language support

The Medumba language uses the Latin alphabet,
which requires complex diacritical characters, mak-
ing typing cumbersome. Platform updates some-
times disrupt existing input methods, causing frus-
tration among contributors. In addition, we have
faced some challenges in translating scientific and
technological terms due to lack of consensus on
local language equivalents. For example, terms like
spammer robots or word processing had to be trans-
lated using periphrases in Medumba, while others,
such as JavaScript and thermal power station re-
main untranslatable due to a lack of corresponding
concepts. It was also impossible to translate scien-
tific concepts from physics, such as thermal power

Models BLEU COMET TER
opus-mt-fr-en | 15.82 0.80 82.51
mbart50 20.36 0.80 77.15
T5-small 83.20 0.42 94.97

Table 5: Baselines results. Values in bold represent high
scores.

station and hydroelectric dam, because there are
no equivalents or realities that could provide inspi-
ration for a satisfactory adaptation of these words.
Some legal terms or expressions, such as decree,
democracy, order, Commander of the National Or-
der of Value and State of the General Staff, etc.,
have no equivalents in the Medumba language and
have been maintained as borrowings in the target
language. All in all, the absence of direct equiva-
lents in the Medumba language has led to the use of
periphrases and borrowings. On the other hand, the
lack of spelling uniformity complicates access to
information. Medumba has a great deal of variabil-
ity in the writing of words and many homophones,
which hinders the performance of search engines
and automatic correctors. Furthermore, the differ-
ence in categorization between the Medumba lan-
guage and the French language has also hampered
the translation of certain specific concepts such
as ambassador and charge of mission in two very
different contexts, but the Medumba language clas-
sifies both under the generic term ngantum/envoye.

5.2 Financial and material barriers

The lack of access to reliable internet, digital li-
braries and reference materials has greatly ham-
pered work and generated significant costs. Fur-
thermore, there is a shortage of online media, there
are many African platforms © 7 8 created, but very
few promote Medumba. The Medumba language
has a radio called Radio Medumba, however it is
only accessible in the Ndé department. This me-
dia serves as a channel for broadcasting Medumba
language learning programs through games, stories
and the popularization of new words created by
the Medumba language development committee
mainly in the Medumba area. This implies that
accessibility to this radio is limited. Given this re-
ality, we therefore rely heavily on our own internal
research work.

6 Conclusion

In this study, we investigate the challenges and
limitations of gathering resources for an extremely
low-resource language: Medumba. We present the
language’s background, the methodology used to
translate sentences from French to Medumba, and
particularly highlight the challenges encountered

6https: //www.languagesafrica.com
"https://github.com/masakhane-io/lafand-mt
8https://github.com/masakhane-io/masakhane-mt
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during the translation process. Our findings re-
veal that discrepancies in categorization between
the source and target languages contribute to trans-
lation complexity. To address these limitations
and advance the state of the art in low-resource
languages, future research should explore addi-
tional techniques for resource gathering and en-
hance translation capabilities for extremely low-
resource languages.
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Abstract

Most of the 40+ languages spoken in Togo
are severely under-represented in Natural Lan-
guage Processing (NLP) resources. We
present YodiV3, a comprehensive approach to
developing NLP for ten Togolese languages
(plus two major lingua francas) covering ma-
chine translation, speech recognition, text-to-
speech, and language identification. We in-
troduce Eyaa-Tom, a new multi-domain par-
allel corpus (religious, healthcare, financial,
etc.) for these languages. We also pro-
pose the Lom metric, a scoring framework to
quantify the Al-readiness of each language in
terms of available resources. Our experiments
demonstrate that leveraging large pretrained
models (e.g.NLLB for translation, MMS for
speech) along with YodiV3 leads to signifi-
cant improvements in low-resource translation
and speech tasks. This work highlights the
impact of integrating diverse data sources and
pretrained models to bootstrap NLP for under-
served languages, and outlines future steps for
expanding coverage and capability.

1 Introduction

Togo is home to dozens of languages, includ-
ing Ewe, Kabye, Tem (Kotokoli), and many
others spoken by millions collectively. How-
ever, most of these languages lack the data and
tools needed for modern NLP applications. The
scarcity of machine translation (MT) systems,
speech technologies, and even basic linguistic re-
sources (e.g.digital dictionaries) hinders informa-
tion access and technology inclusion for the re-
lated communities. Recent advances in multilin-
gual NLP have started to include a few Togolese
languages—for instance, Facebook AIl’s No Lan-
guage Left Behind (NLLB) project released MT
models for Ewe and Kabye [Team et al., 2022],
and their Massively Multilingual Speech (MMS)
initiative produced speech recognition and syn-
thesis models covering those languages [Pratap

et al., 2023]. Yet, these models often struggle on
domain-specific content and other local languages
not covered in training.

In this work, we address the above gaps by de-
veloping an end-to-end NLP pipeline for 10 key
Togolese languages. First, we assembled a new
dataset called Eyaa-tom' comprising parallel text
(and audio) in multiple domains such as religious
texts, healthcare, financial operations. Using this
data, we train YodiV3, a multilingual model which
supports translation, as well as speech recognition
(ASR) and text-to-speech (TTS) components for
selected languages.

Additionally, we introduce the Lom metric
("lom” meaning ’score” in Nawdm) to quantify
the state of language technology readiness for each
language. The Lom metric aggregates the avail-
ability of core resources like a Bible or liturgical
text, a dictionary, MT, ASR, TTS, language iden-
tification, and OCR models. This provides a quick
overview of which languages are more digitally
equipped and which need more attention.

We report experiments showing that YodiV3
improves translation quality and speech in low-
resource settings by leveraging domain-specific
data and as well as large fine-tunned models. We
also present the Lom scores for the ten languages,
revealing significant disparities: e.g., Ewe and
Kabye lead with much higher scores, whereas lan-
guages like Mina need more resources. Our results
underscore the importance of targeted data collec-
tion and the integration of existing models to sup-
port “the last mile” languages. We conclude with
our plans to incorporate more datasets and extend
coverage to additional Togolese languages, further
bridging the NLP divide.

* We present the first multi-domain NLP
dataset for 10 Togolese languages, including

233

'Eyaa-tom means “People words’” in Kabyz.

143

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 143—-149
July 31, 2025 ©2025 Association for Computational Linguistics



20k+ parallel audio-text segments and addi-
tional annotated resources.

* We develop and evaluate baseline models for
ASR, TTS, NMT, and language identification
(LID) on these languages, demonstrating the
feasibility of NLP with minimal resources.

¢ We introduce the Lom metric, which consoli-
dates various resource indicators into a single
score for each language, revealing disparities
and guiding future work.

2 Related Work

Research on NLP for low-resource languages
has gained momentum in recent years. Projects
like Masakhane have leveraged participatory ap-
proaches to create translation datasets and mod-
els for numerous African languages [Nekoto et al.,
2020]. For speech, the Mozilla Common Voice
project released crowdsourced speech corpora for
languages such as Swahili, Luganda, and Kabyle
[Ardila et al., 2020], providing a foundation for
ASR in some African languages. However, many
languages of West Africa remain underrepresented
in these initiatives.

Closer to our focus, Tonja et al. surveyed
NLP for Ethiopian languages, highlighting the
challenges of limited data and orthographic com-
plexities. Our work is similar in spirit, but tar-
gets languages of Togo, which have distinct lin-
guistic characteristics (many are Niger-Congo lan-
guages with tonal systems) and even fewer ex-
isting resources. To our knowledge, no compre-
hensive NLP dataset or benchmarks existed for
the Togolese languages prior to this work. Also,
a comprehensive examination of the current state
of Natural Language Processing (NLP) in Kenya
is presented in the paper titled “’State of NLP in
Kenya: A Survey” by Cynthia Jayne Amol et al.
This survey delves into ongoing efforts in dataset
creation, machine translation, sentiment analysis,
and speech recognition for Kenyan languages such
as Kiswahili, Dholuo, Kikuyu, and Luhya. De-
spite these advancements, the authors highlight
that the development of NLP in Kenya remains
constrained by limited resources and tools, leading
to the under-representation of most Kenyan lan-
guages in digital spaces. The paper critically eval-
uates available datasets and existing NLP mod-
els, emphasizing the need for large-scale lan-
guage models and better digital representation of
Kenyan languages. Additionally, it analyzes key

NLP applications tailored to local linguistic needs
and explores the governance, policies, and regula-
tions shaping the future of Al and NLP in Kenya,
proposing a strategic roadmap to guide future re-
search and development efforts.

In the speech domain, recent advances in self-
supervised learning have shown promise for low-
resource ASR; for example, wav2vec 2.0 pretrain-
ing [Baevski et al., 2020] can drastically reduce
the data needed to train speech recognizers. We
capitalize on such advances in our ASR models.
For TTS, while classic autoregressive architec-
tures like Tacotron 2 [Shen et al., 2018] produce
high-quality speech, they can be impractical with
limited data and compute. Non-autoregressive
models such as Glow-TTS [Kim et al., 2020] offer
faster and more data-efficient synthesis, which we
explore in our setting. Our work ties these threads
together by building a full pipeline (ASR — NMT
— TTS, with LID) for multiple truly low-resource
languages.

African Language Identification and Models.
One foundational effort for African NLP is lan-
guage identification (LID). Adebara et al. intro-
duced AfroLID, a neural LID toolkit covering
517 African languages, which significantly out-
performs previous LID tools on many African
languages. Building on such resources, [Ade-
bara et al., 2023] developed SERENGETI, a
massively multilingual language model for 517
African languages. These works, led by the UBC
NLP group, demonstrate the feasibility of broad-
coverage models for African languages, includ-
ing those of Togo. However, LID and language
models alone do not directly provide translation
or speech technology, which are our focus.

Masakhane and African NLP Initiatives. The
Masakhane research community has spearheaded
collaborative NLP projects for African languages.
For example, the Masakhane MT project mo-
bilized researchers to create machine transla-
tion datasets and baselines for numerous African
languages [Orife et al., 2020]. Similarly,
MasakhaNER provided high-quality named en-
tity recognition data for ten African languages
[Adelani et al., 2021] including Ewe. Our work
is inspired by these community-driven efforts, and
we extend the spirit of Masakhane to Togo by fo-
cusing on local languages and tasks (MT, ASR,
TTS) that have immediate real-world application
(e.g. healthcare information delivery).
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Multilingual Translation and Speech by Big
Tech. NLLB (No Language Left Behind) by
Meta Al released MT models for 200+ languages,
including Ewe¢ and Kabye, achieving unprece-
dented coverage [Team et al., 2022]. This demon-
strated that low-resource languages can be han-
dled within a single massive model given sufficient
training data and compute. Meanwhile, Meta’s
MMS project (Massively Multilingual Speech)
scaled speech technology (ASR, TTS, and spoken
LID) to over 1,000 languages [Pratap et al., 2023]
including the majority of the languages mentioned
in this work. MMS included ASR/TTS models
for Ewe and Kabye, which we leverage as starting
points. Our work differs in that, we build a new
architecture based on the transformer architecture
and incorporate some new neural quantization lay-
ers (to reduce costs) and adapt these large models
on our curated Togolese datasets, focusing on spe-
cific domains (like religious or financial speech)
where out-of-the-box NLLB/MMS performance
may be suboptimal. We also address languages not
covered by NLLB/MMS (e.g. Adja), using a com-
bination of data augmentation and smaller neural
models.

3 Dataset Creation: Eyaa-Tom

To enable training and evaluation of NLP mod-
els for Togolese languages, we built the Eyaa-
Tom dataset. Eyaa-Tom consists of parallel text
(and audio) in 10 local languages of Togo, with
translations to French and English. The languages
covered are: Ewe, Kabye, Adja,Tem (Kotokoli),
Moba, Lamba(Togo), Konkomba, Mina (Gen),
Bassar, Nawdm. While some of them seem to
be related, some dialects have evolved and tend
to be now considered as languages, (i.e. Mina
has its own alphabet and syntax despite the strong
relationships with Ewe). The dataset present a
clear separation between the dialects and lan-
guages with the intent of improving quality of ser-
vice and further achieve research.

An overview of the dataset contents for each
language can be seen in Table 1.

As shown in Table 1, each language has at least
2,000 parallel language pair sentences from reli-
gious texts with another language. These were ob-
tained from publicly available translations. Many
of these languages also had audio recordings col-
lected (via the community contributions platform
for specific and service phrases).We manually

aligned a portion of this audio with the text to
use for ASR, Speech translation, and TTS train-
ing namely. In addition to the religious domain,
we collected parallel corpora in other domains for
a subset of languages. For example, we are work-
ing with the community to translate financial and
healthcare services sentences. Furthermore, we
constructed a named entity list of over 1,500 To-
golese personal names and locations, across sev-
eral languages to support NER tasks.

The dataset was created through a combination
of methods:

Community Contributions : A significant por-
tion of the data was gathered via the Um-
baji Community Contribution Platform—an on-
line platform developed by the Umbaji commu-
nity specifically to collect datasets for African lan-
guages. This platform enabled volunteers and na-
tive speakers to contribute text and audio in their
local languages, ensuring a wide and authentic
representation of linguistic data.

Field Research : Another major component of
the dataset is collecting through fieldwork con-
ducted by our linguists. They visit rural areas and
work closely with local communities, including
traditional chieftaincies, to gather texts, oral histo-
ries, poems, and other culturally significant mate-
rials in local languages. This approach ensures the
inclusion of diverse linguistic features and con-
texts that might not be available in written form.

Collaboration with Mozilla Common Voice
We collaborated with Mozilla Common Voice,
contributing over 2,000 validated voice samples
for at least four of the languages in our dataset.
This collaboration helped in expanding the spoken
data component and aligning it with global stan-
dards for open-source language datasets.[Mozilla,
2025a][Mozilla, 2025d][Mozilla, 2025b][Mozilla,
2025c¢]

In this process, community contributors were
actively engaged, with informed consent obtained
prior to participation, and incentives provided to
encourage contributions. Additionally, linguists
were fairly compensated for their expertise, ensur-
ing high-quality linguistic data. To foster inclusiv-
ity, we prioritized gender representation by inten-
tionally recruiting a significant number of women,
reinforcing our commitment to equitable data col-
lection practices.

Overall, Eyaa-Tom provides a unique blend of
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Language Min. Religious Min. Other Min Total
(sentences or utterances) (utterances) (utterances)
Ewe 2,000 2,961 4,961
Kabye 2,000 2,316 4,316
Tem 2,000 2,316 4,316
Moba 2,000 2,483 2,483
Lamba(Togo) 2,000 2,316 4,316
Adja 2,000 2,316 4,316
Mina (Gen) 2,000 2,316 4,316
Bassar 2,000 2,316 4,316
Nawdm 2,000 3,410 5410
Konkomba 2,000 2,316 4,316

Table 1: Eyaa-Tom dataset statistics: number of parallel sentence pairs by domain for each Togolese language.
“Religious” denotes primarily scripture and liturgical texts (often with corresponding audio). ”Other” includes
secular domains (healthcare, finance, public service) and additional named-entity lists.

domain-specific data tailored to real-world use
cases in Togo. While modest in size compared
to high-resource benchmarks, it is the first to of-
fer such comprehensive parallel and spoken data
across numerous Togolese languages. Data qual-
ity is ensured through community review and con-
sistent orthography.

Integration with Hugging Face : Portions of
the dataset are also hosted on Hugging Face, mak-
ing it easily accessible to the broader machine
learning and NLP research community.[Umbaji,
2025]

4 Model: YodiV3

We developed YodiV3, a multi-faceted model ar-
chitecture that addresses both text and speech
tasks for the ten languages. YodiV3 consists of
several components:

Machine Translation (MT). YodiV3 includes
an encoder-decoder neural translation model that

can translate between each Togolese language and
French/English.

Automatic Speech Recognition (ASR). We ex-
plore two approaches: (1) a standard auto-
regressive Transformer model that generates trans-
lations one token at a time, and (2) a non-auto-
regressive (NAR) model aimed at faster inference
and which is less compute intensive. YodiV3’s
ASR component is currently capable of recog-
nizing speech in at least the two main languages
(Ewe, Kabye) with reasonable accuracy (as shown

in Section 6), and provides baseline models for the
others that can be improved with more data.

Text-to-Speech (TTS). Similarly we built a
TTS system namely for Ewe (since Ewe has more
data for training). Additionally, we developed a
voice cloning approach for ‘“Togolese-accented”
French and English: essentially, we fine-tuned
an English/French TTS model on a small set of
recordings from Togolese speakers, so that the
synthesized French/English maintains the accent
characteristics. This is useful for public service
announcements where code-switching occurs. Yo-
diV3’s TTS module can thus speak in Ewe, Kabye,
and Togolese accented French/English. Extending
TTS to the other languages is future work, likely
requiring significantly more recording efforts.

Deployment The TTS and ASR models are con-
stantly deployed and maintained through the com-
munity’s Whatsapp Al chatbot and community
contributions interface.

5 The Lom Metric

To quantify the state of NLP support for each lan-
guage, we propose the Lom metric. This met-
ric aggregates the presence of various foundational
resources and technologies for a given language.
We consider eight factors: (1) availability of a ma-
jor WOG corpus (Word of God, i.e., a significant
religious text such as the Bible), (2) a digital Dic-
tionary/lexicon, (3) an NMT system (Neural Ma-
chine Translation), (4) an ASR system, (5) a TTS
system, (6) a Speech LID model (SLID), (7) a
Text LID model (TLID), and (8) an OCR system
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for printed text. For each language, we assign 1
point if the resource is available (even in proto-
type form), or O if not. The Lom score (0-8) is the
sum of points. Table 2 presents the status for the
ten languages in our study.

From Table 2, we can see Ewe and Kabye have
the maximum Lom score (7/8), reflecting that they
have a Bible, a published dictionary, and we have
developed or leveraged MT, ASR, TTS, and LID,
for it.

The Lom metric is a purely qualitative met-
ric useful for guiding resource allocation: lan-
guages with very low scores need basic resource
creation (data collection, orthography standardiza-
tion), while those with mid-level scores might ben-
efit from targeted projects (e.g., developing a TTS
for Mina, or an ASR for Adja). It also provides an
easy way to communicate to stakeholders or fun-
ders on how a language is positioned in terms of
digital readiness.

6 Experiments and Preliminary Results

We conducted experiments to evaluate the perfor-
mance of YodiV3 on translation and speech tasks,
using the Eyaa-Tom data. Rather than exhaus-
tively tuning the models, we focus on highlight-
ing key results that demonstrate the effectiveness
of our approach.

Machine Translation Quality. Improved per-
formance on tasks such as NER for Togolese
names as compared to all the models tested.

Speech-to-Text & Text-to-Speech Evaluation.
Auto-regressive model show increased accuracy
on many more tokens inputs, but overall, mod-
els incorporating neural non-auto-regressive quan-
tization needs less compute but tend to be less pre-
cise for the initial tests.

Finally, our experiments reaffirm insights from
prior work: multi-domain data is vital for
performance.  For instance, when evaluating
Ewe—French translation specifically on health-
related sentences, the model trained with our
health subset achieved 30+ BLEU score, whereas
a model trained only on religious text fell below
15 BLEU score on the same health test, demon-
strating the importance of in-domain data. This
aligns with observations by Team et al. [2022] that
low-resource MT models benefit greatly from any
domain-specific data available. Similarly, our use
of pretrained models mirrors the success of Pratap

et al. [2023] in showing that massive multilingual
pretraining can jump-start speech technology for
languages that lack sufficient data.

7 Conclusion and Future Work

We presented YodiV3 and the Eyaa-Tom dataset
as steps toward inclusive NLP for Togo’s lan-
guages. Our experiments show that combining
carefully curated data with large pretrained models
can yield workable translation and speech systems
even for extremely low-resource languages. We
also introduced the Lom metric, which revealed
how unevenly resources are distributed across lan-
guages, providing a road-map for future resource
development.

In the future, we plan to integrate additional ex-
isting datasets and models to further improve and
expand YodiV3. This includes incorporating new
releases from projects like Masakhane (e.g., any
Togo-specific NLP datasets) or updates from the
NLLB/MMS teams. We aim to extend the Eyaa-
Tom corpus to more languages of Togo (such as
Akebu, Ikposso, and others) to eventually cover
all major language groups in the country.

Additionally, we will explore semi-supervised
and active learning techniques to make the most of
limited data, and continue to refine the Lom metric
(possibly weighting the categories by importance
or difficulty).

The AR model is based on a Transformers ar-
chitecture similar to mBART. The NAR model
uses a conditional masked language model (e.g.,
Levenshtein Transformer) which we train from
scratch on our data. Both models are trained on
the Eyaa-Tom parallel text. We found that fine-
tuning the pretrained NLLB model greatly stabi-
lizes training for the low-resource languages and
yields higher translation quality.

These would allow us to publish our final work
and compare it to exiting models and work.

Another important future direction is deploy-
ment: we intend to provide an API to work with
local organizations to deploy YodiV3’s translation
and TTS capabilities in real-world settings (e.g.,
rural clinics or community radio). Such deploy-
ment will provide feedback to guide further re-
search (for instance, identifying which errors are
most critical to fix). We also foresee expanding
our evaluation to include human evaluation with
native speakers for translation quality and user ac-
ceptance of TTS and ASR. Future work would
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Lang WOG Dict. NMT ASR TTS SLID TLID OCR Lom
Ewe Y Y Y Y Y Y Y N 7
Kabye Y Y Y Y Y Y Y N 7
Tem Y Y Y Y Y Y Y N 7
Adja Y Y N N N N Y N 3
Moba Y Y Y Y Y Y Y N 7
Lamba(Togo) Y - N N N N Y N -
Konkomba Y Y Y Y Y Y Y N 7
Mina Y Y N N N N Y N 3
Bassar Y Y Y Y Y Y Y N 7
Nawdm Y Y Y Y Y Y Y N 7
Ife Y Y Y Y Y Y Y N 7

Table 2: Lom metric evaluation for Togolese languages as of 2024. “Y” indicates the resource/technology is
available (at least in experimental form), ”N” indicates not yet available. WOG = presence of a significant religious
text corpus; Dict. = digital dictionary or word list; NMT = machine translation; ASR = speech recognition; TTS
= speech synthesis; SLID = spoken language identification; TLID = text language identification; OCR = optical

character recognition. The final Lom score is out of 1.

Model Translation SNR/Classification ~ Speech Synthesis
Ewe Kabye Ewe Kabye Ewe Kabye
V1,zindi — — 0.97 — .
V2, B2 — — 0.1 0.33 — —
V3, T 0.90 0.88 — — — _
V3,ASR — 0.50 0.5 —
V3,TTS — — — — 0.88 0.87

Table 3: Performance of multiple models across tasks

and languages on the Eyaa-Tom dataset. This table is the

history of Yodi and its performance. For each task it features accuracy. Translation is measured from and to french.
It also features improvements done since the last publication. SNER stands for Spoken Name Entity Recognition.
YodiV1,zindi is the final V1 version, not train on Eyaa-Tom however, developed owing to a competition on zindi

and presents the best performances

also include a scientific comparison between cog-
nate languages in Togo and similarities between
them. By iteratively improving data, models, and
evaluation metrics, we hope to steadily raise the
Lom scores for all Togolese languages, ensuring
none are left behind in the NLP revolution.
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Abstract

Despite rapid advancements in multimodal
large language models (MLLMs), their abil-
ity to process low-resource African languages
in document-based visual question answering
(VQA) tasks remains limited. This paper evalu-
ates three state-of-the-art MLLMs—GPT-4o,
Claude-3.5 Haiku, and Gemini-1.5 Pro—on
WAEC/NECO standardized exam questions in
Yoruba, Igbo, and Hausa. We curate a dataset
of multiple-choice questions from exam im-
ages and compare model accuracies across
two prompting strategies: (1) using English
prompts for African language questions, and (2)
using native-language prompts. While GPT-40
achieves over 90% accuracy for English, perfor-
mance drops below 40% for African languages,
highlighting severe data imbalance in model
training. Notably, native-language prompting
improves accuracy for most models, yet no
system approaches human-level performance,
which reaches over 50% in Yoruba, Igbo, and
Hausa. These findings emphasize the need for
diverse training data, fine-tuning, and dedicated
benchmarks that address the linguistic intrica-
cies of African languages in multimodal tasks,
paving the way for more equitable and effective
Al systems in education.

1 Introduction

The rapid advancements in artificial intelligence
(AI) have led to the emergence of multimodal
large language models (MLLMs) capable of pro-
cessing and understanding both textual and vi-
sual information (Peng et al., 2023; Ahuja et al.,
2024). Notable examples include OpenAI’s GPT,
Anthropic’s Claude and Google’s Gemini. These
models exhibit impressive capabilities in interpret-
ing combined visual-textual inputs, allowing them
to extract text from images and answer questions
about that content. However, their ability to ac-
curately process text from images in low-resource
languages remains an open question (Adelani et al.,

2025). Despite the progress in multilingual NLP,
most state-of-the-art models are primarily trained
on high-resource languages, resulting in subop-
timal performance for many African languages.
Low-resource languages are severely underrepre-
sented in the datasets used to train and evaluate
MLLMs (Joshi et al., 2020; Adelani et al., 2025),
and African languages such as Yoruba, Igbo, and
Hausa present unique linguistic and orthographic
challenges that differ significantly from dominant
languages on which these models are typically
trained. (Orife et al., 2020). The scarcity of high-
quality training data for these languages exacer-
bates the performance disparity between high- and
low-resource languages (Nayak et al., 2024). Re-
cent benchmarks confirm that multimodal models
perform very well on English but struggle on many
African languages due to data limitations (Ahuja
et al., 2024)

1.1 WAEC and NECO: Importance in West
African Education

The West African Examinations Council (WAEC)
and the National Examinations Council (NECO)
play a crucial role in standardized education across
West Africa. These organizations administer high-
stakes secondary school examinations that assess
students’ proficiency in core subjects, including lan-
guage proficiency in English as well as indigenous
languages like Yoruba, Igbo, and Hausa. WAEC
and NECO exams serve as key determinants of
academic progression, influencing university ad-
missions and career opportunities. Standardized
exams such as WAEC and NECO provide an objec-
tive measure of students’ knowledge, making them
an appealing testbed for evaluating Al models’ nat-
ural language understanding abilities in structured
educational contexts. By leveraging real-world
examination content, this study assesses whether
state-of-the-art MLLMs can process structured ed-
ucational material effectively in African languages.
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1.2 Research Objectives

This study aims to systematically evaluate the
performance of GPT-40, Claude-3.5 Haiku and
Gemini-1.5 Pro in natural language comprehension
for African languages by addressing the following
objectives:

* Objective 1: Assess the ability of multimodal
LLMs to accurately extract and process text
from WAEC/NECO examination images.

* Objective 2: Compare performance under dif-
ferent prompt languages, analyzing whether
using English vs. native-language prompts
affects answer accuracy.

2 Related Works

2.1 Multimodal Large Language Models and
Their Capabilities

Multimodal large language models integrate mul-
tiple data modalities, such as text and images, to
enhance comprehension and reasoning (Peng et al.,
2023; Ahuja et al., 2024). These models build on
advances in vision-language pre-training that com-
bine visual encoders with language models (Rad-
ford et al., 2021; Li et al., 2023). State-of-the-art
MLLMs have achieved impressive performance on
many text-based visual tasks, including image cap-
tioning, document understanding, and visual ques-
tion answering. In general, these models perform
well on tasks in high-resource languages. However,
studies have shown that their effectiveness dimin-
ishes significantly in low-resource languages such
as Yoruba, Igbo, and Hausa (Adelani et al., 2025;
Schneider and Sitaram, 2024)). For instance, the
IrokoBench evaluation found a substantial drop in
GPT-40’s performance on African language under-
standing compared to English. Similarly, a cultur-
ally diverse VQA benchmark (Romero et al., 2024)
demonstrated that even powerful vision-language
models fail to generalize across linguistically di-
verse or culturally unfamiliar inputs. (Zhang et al.,
2023) introduced M3Exam, a multilingual, multi-
modal exam benchmark, and reported major per-
formance discrepancies between high-resource and
low-resource languages. While current MLLMs
can process Latin-script inputs with high accuracy,
they struggle with the complex morphology and
orthographic variations present in many African
languages (Liu et al., 2023). This gap underscores
that simply scaling to multimodal inputs is not suf-
ficient for broad multilingual competency.

2.2 Challenges in Multilingual NLP for
Low-Resource African Languages

The lack of training data remains a fundamental
challenge in multilingual NLP research, particu-
larly for African languages (Adelani et al., 2025).
Unlike English or other widely spoken languages,
Yoruba, Igbo, and Hausa have relatively limited
corpora and annotated datasets available for train-
ing or fine-tuning large models. This data scarcity
negatively impacts model performance on both text-
only and multimodal tasks (Schneider and Sitaram,
2024)). Even large multilingual language models
like XLLM-R (Conneau et al., 2020) or BLOOM
struggle on African languages that were underrep-
resented in their training data. In addition, many
African languages have unique linguistic properties
— for example, tonal phonology and extensive use
of diacritics in Yoruba, or complex noun classes in
some Bantu languages — which prove difficult for
pre-trained LLMs to handle. These orthographic
and grammatical nuances are often lost or mis-
interpreted by models not specifically adapted to
them (Orife et al., 2020). Recent studies such as
(Nayak et al., 2024) highlight that vision-language
models exhibit poor understanding of culturally
or linguistically specific content, reinforcing the
importance of developing benchmarks that reflect
real-world linguistic diversity. There have been
efforts to bolster NLP for African languages — for
example, the Masakhane project’s participatory ap-
proach to machine translation (Nekoto et al., 2020)
and the creation of language-specific models like
AfriBERTa (Ogueji et al., 2021), but these are text-
only initiatives. Until similar resources and bench-
marks are created on the multimodal front, Al mod-
els will continue to exhibit biases favoring high-
resource languages over under-represented ones
(Ahuja et al., 2024; Lu et al., 2024). Our work
addresses this gap by providing a focused evalua-
tion on Yoruba, Igbo, and Hausa, thereby pushing
towards more inclusive multimodal model develop-
ment.

2.3 Optical Character Recognition and Text
Processing in Multimodal Al

Optical Character Recognition (OCR) plays a cru-
cial role in multimodal AI by enabling models to
extract text from images. However, existing OCR-
focused evaluations — for example, the comprehen-
sive OCRBench suite (Li et al., 2023) — indicate
that current MLLMs often struggle with non-Latin
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scripts, accented characters, and handwritten text.
Even models like GPT-4 and Claude that are adept
at English OCR can falter when faced with, say,
a scanned Hausa document or Yoruba text with
tone marks. Kosmos-2, a recent grounded multi-
modal model (Peng et al., 2023), introduced new
capabilities for aligning text with visual regions,
but its effectiveness on low-resource African lan-
guages remains unclear, as it was primarily evalu-
ated on mainstream languages and object-centric
tasks. In our study, we do not explicitly re-evaluate
OCR accuracy at the character level; instead, we as-
sess how well multimodal LL.Ms handle the output
of OCR in a downstream task — specifically, an-
swering multiple-choice questions based on exam
images. By leveraging real WAEC/NECO exam
questions, our evaluation extends prior research
and provides new insights into OCR performance
within an African educational context. In particular,
our results can reveal whether state-of-the-art mod-
els accurately interpret the extracted text (including
any diacritics or uncommon characters) and use it
correctly to select answers. This complements ex-
isting OCR benchmarks by focusing on end-to-end
comprehension: from image to extracted text to
answer selection.

2.4 Standardized Exam Benchmarks in Al
Research

Standardized exams have become a widely adopted
benchmark for evaluating AI models. The struc-
tured format of exam questions—where each item
follows a consistent style and has a known cor-
rect answer offers a controlled environment for as-
sessing an AI’s reading comprehension, reasoning,
and problem-solving abilities. Several recent stud-
ies have used exam-based benchmarks to evaluate
large language models. For example, M3Exam
(Zhang et al., 2023) compiles real multilingual
exam questions and shows that GPT-40 and similar
models perform well on high-resource languages
but struggle on under-represented languages. Simi-
larly, the MEGAVERSE benchmark (Ahuja et al.,
2024) evaluated LLMs across 83 languages and
highlighted substantial performance gaps in low-
resource linguistic settings. Our study follows a
similar methodology of exam-driven evaluation but
narrows the focus specifically to structured educa-
tional content in popular Nigerian languages. By
concentrating on WAEC/NECO multiple-choice
questions in Yoruba, Igbo, and Hausa, we provide
an in-depth look at model capabilities in a context

that had not been examined in prior multilingual
benchmarks. This approach also complements ef-
forts like Hendrycks et al.(2021)’s MMLU, which
included a broad range of subjects and some lan-
guages: we add the dimension of image-based text
understanding in an educational assessment sce-
nario.

3 Methodology

3.1 Dataset Curation

The dataset for this study was curated from
past WAEC and NECO examination questions in
Yoruba, Igbo, Hausa, and English. We targeted
multiple-choice questions (MCQs) from recent
years to ensure a representative sample of mod-
ern usage. The curation process involved several
steps:

3.1.1 Data Collection

We obtained past examination papers from stu-
dents and bookshops that sell educational mate-
rials. However, acquiring exam questions for
language subjects (Hausa, Igbo, Yoruba) online
proved extremely challenging, if not nearly impos-
sible, due to their limited availability compared to
more widely documented subjects. To ensure a
sizable dataset in each target language, we focused
on examination papers from the years 2008-2024.

3.1.2 Question Segmentation

Each question‘ was manually cropped from
scanned examination sheets to isolate it as an indi-
vidual image. This ensured that each image con-
tained exactly one question for the model to answer,
standardizing the input format. Only multiple-
choice questions were included to maintain a uni-
form evaluation style.

3.1.3 Answer Key Verification

Many exams came with official answer keys, which
we treated as gold-standard answers. For questions
lacking official keys (or in cases where only the
exam paper was available), we consulted linguistic
and subject matter experts fluent in Yoruba, Igbo,
or Hausa to determine the correct answer. These
expert-verified answers were cross-checked to en-
sure accuracy.

3.1.4 Categorization

Each question was labeled by language (Yoruba,
Igbo, Hausa, or English) and by exam year. This
allows us to perform year-wise or language-wise
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analysis of the results. We ensured a roughly bal-
anced number of questions per language where pos-
sible, though English had a naturally larger pool.
This dataset of exam questions forms the basis for
our evaluation. By using real educational content,
we ensure that the evaluation is grounded in tasks
that have practical importance and linguistic rich-
ness. Table 1 below summarizes the provisional
composition of the dataset:

Year English Yoruba Igbo Hausa
2008 0 20 0 0
2009 0 16 0 0
2010 0 19 0 0
2011 0 20 0 0
2012 0 17 0 0
2013 0 20 0 0
2014 0 20 0 0
2015 0 19 0 0
2016 0 20 0 0
2017 0 0 0 0
2018 29 19 0 0
2019 30 19 0 0
2020 30 19 0 0
2021 60 38 24 0
2022 60 40 45 20
2023 60 36 45 20
2024 0 36 0 36
Total 269 378 114 76

Table 1: Dataset composition by year and language.
WAEC and NECO Combined

3.2 Model Selection and Evaluation Criteria

We selected three state-of-the-art multimodal
LLMs for benchmarking: GPT-40 (OpenAl),
Claude-3.5 Haiku (Anthropic), and Gemini-1.5 pro
(Google DeepMind). These models although un-
even in sizes were chosen due to their cutting-edge
performance and diverse origins (industry leaders
in Al). We accessed GPT-40, Claude-3.5 Haiku,
and Gemini-1.5 Pro via their official API endpoints,
While other emerging models (such as Mistral)
could be considered, we limited our testing to these
three due to time and resource constraints. Our
evaluation was based on two primary criteria:

* Answer Accuracy: The percentage of ques-
tions for which the model’s answer matched
the expert-verified correct answer. This is a di-

rect measure of performance on the multiple-
choice questions.

* Language-wise Performance: We compare
accuracy across the four languages (English,
Yoruba, Igbo, Hausa) to identify any perfor-
mance disparities.

3.3 Experimental Setup

We designed a uniform evaluation pipeline and
prompting strategy to ensure a fair comparison be-
tween models. Key aspects of the experimental
setup are outlined below:

3.3.1 Prompting Strategy

We employed two query strategies for each ques-
tion image:

1. An English-prompted query.
2. A native-language-prompted query.

In the English prompt condition, the model was
instructed in English (e.g., “Analyze the image and
answer the question”) while being given an image
containing a Yoruba/Igbo/Hausa question. In the
native prompt condition, we translated the instruc-
tion into the question’s language (Yoruba, Igbo, or
Hausa) so that the model received the prompt in
the same language as the question. This allows
us to test whether prompting in the local language
improves understanding or not. Each model thus
answers every question twice: once with an English
prompt and once with a native-language prompt.

3.3.2 Temperature Setting

While most API parameters were left at their de-
faults, we explicitly set the temperature to 0.1 to
ensure minimal randomness and greater response
consistency across model runs. This controlled
setting ensures that each model selects the most
probable answer rather than generating diverse out-
puts.

3.3.3 Multiple-Choice Answering Format

To reduce variability in how models produce an-
swers and to minimize open-ended generation is-
sues (e.g., hallucinations), we prompted the models
to choose one of the options A, B, C, D, E for each
question. We adopted a best-practice format in-
spired by prior VQA benchmarks (e.g., CVQA):
the model is instructed to assign a probability score
to each option and then select the option with the
highest probability. In practice, we implemented
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this by instructing the model to output a JSON ob-
ject with scores, which forces the model to make a
single choice.

3.3.4 Human Evaluation via Independent
NLP Community

A crucial component of our methodology involved
human evaluation using participants from an inde-
pendent NLP community. They have a network of
linguistics enthusiasts, including students with a
keen interest in language processing. We engaged
a subset of students from this community to answer
the same multiple-choice exam questions that were
presented to the Al models. The students were se-
lected based on their fluency in Yoruba, Igbo, or
Hausa, but they were not necessarily language ex-
perts. Their responses provide a useful baseline to
compare human vs. model performance on these
questions. (This human study was conducted with
appropriate consent and is intended for qualitative
comparison, not as a rigorous benchmark.)

3.3.5 Prompt Template

We crafted a consistent system message for all mod-
els, emphasizing the task and format. Below is
a simplified example of the prompt content used
(shown here in English for brevity):

System Prompt:

“You are a knowledgeable assistant for
answering exam questions. Carefully
read the question in the image and evalu-
ate each of the four choices. Provide the
answer by indicating the option (A, B,
C, D, or E) with the highest probability
of being correct, along with probability
scores for each option in JSON format.”

User Prompt:

“Analyze the following question image
and determine the correct answer (A, B,
C, D, or E). Respond in JSON with your
probabilities for each option.”

For native-language trials, the prompts were
translated appropriately (e.g., to Yoruba). All mod-
els were thus given a very similar cue and format
requirement, to the extent their API allowed system
instructions.

3.4 Evaluation Metric

We used a strict accuracy metric for each model’s
responses. A model receives a score of 1 for a ques-
tion if its highest-probability choice matches the

correct answer, and O otherwise. We then compute
overall accuracy as well as per-language accuracy.

The above methodology enables a controlled and
fair evaluation of each model’s ability to interpret
exam images and answer questions in multiple lan-
guages. All model outputs and metadata are logged
for analysis.

4 Results

The evaluation results provide insights into the per-
formance of GPT-40, Gemini-1.5 Pro, and Claude-
3.5 Haiku on multiple-choice exam questions in
Yoruba, Hausa, Igbo, and English. We analyze
accuracy under two prompting conditions:

1. Prompting in English.
2. Prompting in the respective African language.

We also compare the models’ performance to
human baseline scores.

4.1 Model Performance Across Languages

The Table 2 below presents the accuracy scores for
each model across different languages and prompt
conditions:

Prompt ‘ GPT-40 Accuracy ‘ Gemini-1.5 Pro Accuracy ‘ Claude-3.5 Haiku Accuracy

Yoruba Exam Questions
32.80% (124/378) 29.63% (112/378)
31.74% (121/378) 33.86% (128/378) ‘
Hausa Exam Questions
36.84% (28/76)
44.74% (34176) ‘
English Exam Questions
English Prompt | 90.33% (243/269) 73.61% (198/269)
Yoruba Prompt | 79.55% (214/269) 72.49% (195/269)
80.30% (216/269) 72.86% (196/269)
81.04% (218/269) 72.12% (194/269)
Igbo Exam Questions
31.58% (36/114)
35.96% (41/114)

Yoruba Prompt 26.72% (101/378)

25.92% (98/378)

English Prompt

English Prompt | 39.47% (30/76)

43.42% (33/76)

28.95% (22/76)
23.68% (18/76)

Hausa Prompt

55.39% (149/269)
39.03% (105/269)
40.89% (110/269)
36.43% (98/269)

Hausa Prompt
Igbo Prompt

English Prompt | 27.19% (31/114)

28.95% (33/114)

18.42% (21/114)

Igbo Prompt 23.68% (27/114)

Table 2: Accuracy scores for GPT-40, Gemini, and
Claude across different languages and prompt condi-
tions.

4.2 Key Observations

* Higher Accuracy in English: As expected,
models performed significantly better on
English-only questions, with GPT-40 achiev-
ing the highest accuracy (90.33%), followed
by Gemini-1.5 Pro (73.61%) and Claude -3.5
Haiku (55.39%). This confirms that the mod-
els handle high-resource languages much bet-
ter than low-resource ones.

* Effect of Prompting English Questions in
African Languages: Interestingly, when En-
glish questions were prompted in Yoruba,
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Hausa, and Igbo, accuracy dropped compared
to using English prompts. GPT-40’s accu-
racy dropped from 90.33% (English prompt)
to 79.55% (Yoruba prompt), 80.30% (Hausa
prompt), and 81.04% (Igbo prompt). Gemini-
1.5 Pro and Claude-3.5 Haiku showed similar
trends, highlighting how translation and lin-
guistic context impact comprehension.

¢ Native Language Prompts Improve Accu-
racy: For Yoruba, Hausa, and Igbo, prompt-
ing the model in the native language gener-
ally resulted in higher accuracy than when the
prompt was in English. The effect was par-
ticularly noticeable in Hausa (e.g., GPT-4o:
43.42% Hausa-prompted vs. 39.47% English-
prompted).

4.3 Comparison with Human Performance

We also compared model results with human per-
formance, where participants from an independent
NLP community answered the same exam ques-
tions. The results are presented in Table 3 below:

Language | Human Accuracy
Hausa 68.0%
Igbo 52.3%
Yoruba 56.0%

Table 3: Comparison of human accuracy on multiple-
choice exam questions across three African languages.

Human accuracy was significantly higher than
all model performances across the three African
languages, reinforcing that even non-expert hu-
mans outperform state-of-the-art AI models on
structured educational tasks in Yoruba, Igbo, and
Hausa.

These results provide strong evidence of the
performance gap between Al models and human
linguistic abilities, particularly in low-resource
African languages.

5 Discussion

The results indicate several key trends regarding
multimodal LLLMs’ performance in African lan-
guages. Below, we discuss the implications of these
findings and analyze potential causes and areas for
improvement.

5.1 Performance Disparities Across
Languages

Our findings confirm that Al models struggle signif-
icantly with low-resource languages, particularly in
the context of document VQA for standardized ex-
ams. The sharp decline in accuracy from 90.33% in
English (GPT-40) to below 40% for Yoruba, Hausa,
and Igbo underscores the severe data imbalance
in model training. Despite advancements in multi-
lingual Al, African languages remain underrepre-
sented in training datasets, leading to weaker com-
prehension and reasoning abilities when processing
structured educational assessments. This highlights
the critical need for more inclusive AI models ca-
pable of handling the complexities of standardized
exam content in low-resource languages.

5.2 Effect of Native vs. English Prompting

A critical takeaway from the study is that models
perform better when prompted in the same lan-
guage as the question. This trend was particularly
consistent for GPT-40 and partially observed in
Gemini and Claude. The improvement suggests
that prompting in the target language helps mod-
els better interpret syntactic and semantic nuances,
likely because it reduces the additional complexity
of cross-language interpretation.

However, this trend was not uniform across all
languages and models. For example, Gemini per-
formed slightly better when prompted in English
for Yoruba questions, suggesting that some mod-
els may rely on English as an anchor for reasoning.
This discrepancy warrants further investigation into
the internal translation and tokenization processes
of multimodal LLMs.

5.3 Human vs. Al Performance Gap

Human participants vastly outperformed all mod-
els, with an average accuracy of 56.0% (Yoruba),
52.3% (Igbo), and 68% (Hausa). This performance
gap is expected, but its magnitude is striking, espe-
cially considering that the human evaluators were
not expert linguists, but student enthusiasts from an
independent NLP community. The disparity sug-
gests that Al models lack fundamental linguistic
and contextual understanding needed for structured
educational tasks in African languages.

This reinforces the need for more diverse and
representative training datasets to improve multi-
modal Al comprehension of African languages. It
also suggests the potential for fine-tuning or adapta-
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tion strategies to boost model performance in these
languages.

6 Conclusion

This study evaluated the performance of state-of-
the-art multimodal large language models—GPT-
40, Gemini, and Claude—on structured educational
tasks in Yoruba, Igbo, and Hausa. Our findings
reveal several key takeaways:

* Performance disparities exist across lan-
guages, with models performing significantly
better in English than in African languages for
VQA in standardized exams.

* Prompting in native languages improves
model accuracy, particularly for GPT-4o, sug-
gesting a need for further multilingual opti-
mization.

¢ Al models still lag behind human perfor-
mance, with human participants from an in-
dependent NLP community achieving much
higher accuracy than all models.

These results highlight the challenges of multi-
modal NLP for African languages and emphasize
the need for greater linguistic inclusivity in Al train-
ing data and model design.

7 Future Work

Future research can build upon this study by
expanding and improving multimodal datasets
for African languages, ensuring high-quality re-
sources that help bridge performance gaps. Fine-
tuning large language models (LLMs) with domain-
specific data could further enhance their compre-
hension and reasoning capabilities in these lan-
guages. Additionally, the development of standard-
ized evaluation benchmarks for African multimodal
NLP would enable systematic model comparisons.
Investigating OCR accuracy for African scripts
is another crucial area, as many languages have
unique orthographic systems that present distinct
challenges. Finally, broadening the scope beyond
Yoruba, Igbo, and Hausa to include a wider range
of African languages would provide a more com-
prehensive understanding of NLP challenges on the
continent.
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Abstract

Despite the increasing prevalence of smishing
attacks targeting Mobile Money Transfer sys-
tems, there is a notable lack of publicly avail-
able SMS phishing datasets in this domain.
This study seeks to address this gap by creating
a specialized dataset designed to detect smish-
ing attacks aimed at Mobile Money Transfer
users. The data set consists of crowd-sourced
text messages from Mozambican mobile users,
meticulously annotated into two categories: le-
gitimate messages and smishing attempts. The
messages are written in Portuguese, often in-
corporating microtext styles and linguistic nu-
ances unique to the Mozambican context. We
also investigate the effectiveness of LLMs in
detecting smishing. Using in-context learn-
ing approaches, we evaluate the models’ abil-
ity to identify smishing attempts without re-
quiring extensive task-specific training. The
data set is released under an open license
at the following link: https://huggingface.
co/datasets/MOZNLP/MOZ-Smishing

1 Introduction

Mobile Money Transfer (MMT) systems have
emerged as a transformative financial technology,
particularly in developing countries where tradi-
tional banking infrastructure is often inadequate or
inaccessible. These systems have revolutionized fi-
nancial inclusion by providing essential services to
underserved populations, enabling users to deposit,
withdraw, transfer money, pay for goods and ser-
vices, and access credit and savings—all through
the convenience of a mobile device. In regions such
as Sub-Saharan Africa, where traditional banking
adoption remains low, MMT systems have become
a cornerstone of economic activity and financial
empowerment.

According to GSMA (2024b), the global adop-
tion of MMT systems has reached unprecedented
levels, with over 1.75 billion registered accounts
worldwide as of 2024. These systems process an

estimated $1.4 trillion annually, equivalent to ap-
proximately $2.7 million per minute. Sub-Saharan
Africa has emerged as the most active region for
MMT adoption, driven by the widespread use of
platforms such as M-Pesa, Airtel Money, and MTN
Mobile Money. However, this rapid growth has
also attracted the attention of cybercriminals, mak-
ing MMT users increasingly vulnerable to fraud
(INTERPOL, 2020).

Mobile money fraud has become a significant
concern across Africa, with the number of victims
rising sharply in recent years. This alarming trend
underscores the urgent need for fraud detection
and mitigation strategies. Therefore, various so-
lutions have been proposed to address this chal-
lenge (GSMA, 2024a), with a growing emphasis on
leveraging advanced technologies such as Artificial
Intelligence and Machine Learning to detect and
prevent fraudulent activities (Delvia Arifin et al.,
2016; Balim and Gunal, 2019; Ghourabi et al.,
2020; Ghourabi, 2021; Jain and Gupta, 2018, 2019;
Jain et al., 2020; Mishra and Soni, 2020, 2021; Roy
et al., 2020; Sonowal and Kuppusamy, 2018). How-
ever, the scarcity of high-quality, domain-specific
datasets hinders the development of effective Al-
based fraud detection systems. These solutions are
inherently data-hungry, requiring a large amount
of labeled data to train deployable models. Unfor-
tunately, few publicly available datasets exist for
smishing identification and other types of mobile
money fraud, limiting the progress of research in
this critical area.

In this study, we aim to bridge this gap by con-
tributing a benchmark dataset specifically designed
for smishing identification in the context of MMT.
This dataset is constructed to reflect real-world sce-
narios and includes a set of smishing attempts tar-
geting real mobile money users. Additionally, we
evaluate the performance of existing LLMs using
in-context learning techniques to assess their ef-
fectiveness in detecting smishing attempts. Our
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findings provide valuable insights into the potential
of LLMs for fraud detection and highlight areas for
future research and development.

2 Literature Review

One of the most widely used datasets for smish-
ing detection is the one proposed by Almeida et al.
(2013). This dataset contains 5,574 text messages,
divided into 4,827 legitimate messages and 747
fraudulent messages. While this dataset has been
influential in advancing research in smishing detec-
tion, it has notable limitations. First, the dataset
contains a relatively small number of smishing
examples, which may limit the generalizability
of models trained on it. Second, the dataset is
exclusively composed of English-language text
messages, which restricts its applicability to non-
English-speaking regions where smishing fraud is
also prevalent.

Other publicly available datasets, such as those
proposed by Timko and Rahman (2024) and Chen
and Kan (2012), also focus primarily on English-
language content and general smishing or spam
messages, rather than targeting the specific context
of mobile money fraud. While these datasets have
contributed to the development of spam and fraud
detection systems, they do not adequately address
the unique linguistic and contextual nuances of
MMT-related fraud, particularly in regions where
English is not the primary language.

To address the language gap, some researchers
have proposed datasets that include other non-
English languages. For example, Yadav et al.
(2011), Ghourabi (2021) and Mambina et al.
(2022), have developed datasets that besides En-
glish also included Hindi, Arabic and Swahili re-
spectively.

In general, all existing data sets often lack a spe-
cific focus on mobile money fraud, instead address-
ing more general forms of SMS spam or smishing.
Our work seeks to address these gaps by introduc-
ing a novel dataset focused on Portuguese-language
text messages, with a particular emphasis on smish-
ing attempts targeting MMT users. Similar to Mam-
bina et al. (2022); Timko and Rahman (2024), this
data set was constructed using community-based
approaches, where we crowd-sourced both smish-
ing and legitimate messages.

3 Dataset Collection

We gathered data from users of MMT services in
Mozambique, a country currently experiencing a
wave in the adoption of such services. The MMT
landscape in Mozambique is dominated by several
prominent platforms, including M-PESA, E-Mola,
and mKesh, which are operated by the country’s
major telecom providers: Vodacom, Movitel, and
Tmcel, respectively. However, the rapid growth
of these services has also led to an increase in
fraudulent activities targeting users. For instance,
Vodacom, the operator of M-Pesa, reported that
approximately 80 people fall victim to fraudulent
mobile money transactions daily in Mozambique.
This alarming trend underscored the necessity to
study and understand these scams. To address this,
we crowd-sourced fraudulent messages from users,
including those who had already been victimized
by such schemes.

The data collection methodology comprised the
following steps:

Crowdsourcing Smishing Messages: We
launched a campaign inviting people to join a
dedicated WhatsApp group. Participants were
encouraged to share suspicious or fraudulent text
messages they had received, particularly those
from unknown sources that appeared to target their
mobile money accounts. Clear instructions were
provided to guide participants in identifying these
messages, emphasizing the importance of sharing
only those texts that they believed were attempts to
defraud them or cause financial loss. Participants
could share these messages either by submitting
screenshots or forwarding the text directly to the

group.

Boa_tarde, valor manda
para este nr 851373490
nome da confirmacdo
M_pesa vem ALCY
FENISTENCIA JHUGNU
SIQUICE.

Vod..MZ 1819

Figure 1: A Sample of a smishing text message.

Crowdsourcing Legitimate Messaging: Simi-
larly, we invited participants to share messages that
they considered legitimate. We encouraged them
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to submit messages related to MMT topics, as well
as other non-fraudulent messages. This helped us
build a balanced data set for comparative analysis.

Data Preprocessing: We preprocessed the col-
lected data by performing the following steps. First,
all message screenshots were transcribed in plain
text format. Next, we identified and removed du-
plicate messages. Finally, all personal identifiers
within the legitimate messages were anonymized
to ensure user privacy.

The final dataset contains 552 instances of smish-
ing messages and 2,009 legitimate text messages.
Figure 2 illustrates the embedding space of both
categories using UMAP (Uniform Manifold Ap-
proximation and Projection for Dimension Reduc-
tion) clustering (Mclnnes et al., 2020), highlighting
their distribution. Furthermore, Table 1 presents a
sample of 8 data points, which showcases exam-
ples of legitimate and smishing messages from our
dataset.

® Legitimate
® Smishing

UMAP: metrfc:hellinger, n_neighbors=15, min_dist=0.1

Figure 2: UMAP clustering, where blue points represent
legitimate messages, whereas red points are smishing
messages

4 Exploratory Data Analysis

4.1 Smishing Tactics

To further our analysis of the tactics used by scam-
mers, we conducted a content analysis on the col-
lected smishing messages. Our analysis identified
several recurring patterns and social engineering
tactics used by scammers. These tactics primar-
ily aim to deceive users into transferring monetary

funds directly or inadvertently, ultimately result-
ing in financial loss. We identified the following
tactics:

Bulk SMS: We collected a total of 692 text mes-
sages from our dataset. After preprocessing, we
identified that 140 messages were duplicates. In-
terestingly, the persistence of duplicate messages
provided valuable information on the operational
strategies of scammers. Since identical messages
appear to be disseminated to a large number of re-
cipients via multiple phone numbers, it suggests
that scammers target various random recipients si-
multaneously, thereby increasing the chances that
at least some victims will fall into their trap. Fur-
thermore, we observed that scammers frequently
used different accounts or contact numbers in vari-
ous messages. This deliberate strategy presumably
serves as a mechanism to avoid detection and track-
ing.

Pretending an Existing Transaction was Previ-
ously Arranged: Scammers create a psycholog-
ical trap that a transaction was previously agreed
upon by vaguely referencing prior interactions
or conversations, as exemplified by ambiguous
phrases like:

* "aquele valor” ("that amount of money").

Creating Urgency and Pressure: Scammers at-
tempt to induce panic or urgency, prompting im-
mediate action from their victims. Typical tactics
used by scammers manipulate victims into quick,
and often irrational, include using the following
phases:

* "manda agora” ("send now");

* "tem problema a minha conta M-pesa" ("my
M-pesa account has a problem");

* "meu telefone caiu em dgua" ("my phone fell
into water");

* "jd podes mandar" ("you can send it now").

Impersonation of Trusted Parties or Familiar
Contacts: Scammers use impersonation tech-
niques that involve pretending to be trusted persons
such as family members or friends. They frequently
use informal language and familiar salutations such
as "amigo/a” ("friend"), "man", or typical greetings
such as:

"

e "0i," "boa tarde," "bom dia" (informal saluta-
tions).
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Text Message ‘ Target Label
Bom dia pai sou eu sua filha estou a espera desse valor quero pagar matricula Legitimate
Bom dia bro, podes mandar aquele valor para o meu niimero aguardo teu sinal Legitimate
Bom dia Rosinha peco para me mandar 500 Mts no M-Pesa pago no final do més Legitimate
Kmk brow, tudo bem? Peco que me envies aquele valor para minha conta m-pesa, estou a precisar. | Legitimate
Manda o valor neste niimero,858773567.M-pesa vem em nome de Manuel Vasco R.Ok Smishing
bom dia, este valor enviame nesta conta: 857491433 vem em nome de ROSA MILIONE FERRO Smishing
Esta bem.O valor podes mandar para este Nr 841898297 vem em nome e Castro Jos Fabio! Smishing
Man Esse Valor Manda Neste Numero 857170842 M,pesa Vem Abel Vasco Smishing

Table 1: Sample messages from the dataset. Phone numbers used to receive fraudulent payments are shown in blue,
the MMT platforms exploited by scammers are marked in red, and the names under which fraudsters registered their

MMT accounts are highlighted in green.

Impersonating Common Names: Scammers in-
crease the authenticity and credibility of scam mes-
sages by carefully selecting common local names.
The names identified in the messages include:

* Top 5 frequent First Names: "Maria”,

"Luisa", "Alberto", "Ana".

e Top 5 frequent Surnames: "Jodo", "José",
"Mdrio", "Joaquim", "Manuel"

* Mozambican family names: "Siguice",
"Chacuanda”,  "Nhampossa", "Pdisse",
"Mustafa', "Mapisse", "Nhalungo",
"Cuamba”, "Mutucua", "Machava",

"Malangisse", etc.

Fake Technical or Emergency Problems: Many
messages exploit scenarios involving fictitious tech-
nical difficulties or emergencies to justify the use
of an unfamiliar phone number. Frequent examples
found in messages are:

* "minha conta tem problema” ("my account
has an issue"),

* "meu niimero ndo td receber dinheiro"” ("my
number can’t receive money anymore"),

"o

* "telefone desligado," "telefone caiu na dgua"
("phone is off," "phone fell in water").

Politeness and False Courtesy: Scammers
strategically incorporate polite and courteous ex-
pressions into their messages, lowering the victims’
guard and diminishing suspicion. Instances include
phrases such as:

* "desculpe pelo incomodo" ("sorry for the in-
convenience"),

* "por favor" ("please"),

* "bom dia," "boa tarde" ("good morning,"
"good afternoon").
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Small Mistakes, Microtext, and Typographical
Errors: Finally, deliberate typographical errors
or microtext were frequently observed in smishing
messages, making them resemble authentic infor-
mal texts. We noticed many intentionally casual
errors or informal grammar, thus giving messages
a natural, rushed appearance. Scammers may also
use these errors to avoid automated filtering or
spam detection systems. Examples include abbrevi-
ations, improper capitalization, simplified spelling,
or grammatically inconsistent phrases, making the
messages appear realistic and spontaneous, and
reducing skepticism.

4.2 Mobile Money Platforms used by
Scammers

Our analysis revealed that scammers frequently
exploit various MMT platforms to receive illicit
funds. Among the most commonly used platforms
are M-Pesa, E-mola, and Ponto-24. We observed
a strong preference for the use of M-Pesa. This
preference may be attributed to M-Pesa’s status as
one of the oldest and largest MMT platforms in
the market, with a widespread user base and high
transaction volumes. However, this trend also high-
lights a critical vulnerability within these platforms,
as they appear to be susceptible to exploitation by
criminals for this type of illicit activity. The lack
of robust mechanisms to track and flag suspicious
transactions on these platforms further exacerbates
the problem.

Furthermore, our analysis revealed that the
phone numbers used to receive fraudulent funds
are typically unique and not reused in different
smishing messages (see Figure 3). This suggests
that scammers use a "one-time use" strategy for
these numbers, likely to avoid detection and com-
plicate efforts to trace the transactions. Interest-
ingly, we identified a recurring pattern in the phone



numbers used by these criminals. Specifically, the
numbers often featured consecutive prefixes (see
Figure 4), indicating that attackers may have ac-
cess to a sequence of SIM cards purchased in bulk.
This pattern implies a level of organization and re-
sourcefulness among the scammers, as they appear
to systematically acquire and deploy multiple SIM
cards to facilitate their schemes.

Fraud contact frequency

Figure 3: Phone number frequency on smishing mes-
sages

85 88X XXX XX
85 87X XXX XX
85 85X XXX XX
85 84X XXX XX
85 80X XXX XX
85 79X XXX XX
85 78X XXX XX
85 77X XXX XX
85 76X XXX XX
85 75X XXX XX
85 74X XXX XX
85 73X XXX XX
85 71X XXX XX
85 64X XXX XX
85 60X XXX XX
85 33X XXX XX
85 18X XXX XX
85 17X XXX XX
85 15X XXX XX
85 14X XXX XX
85 10X XXX XX

Prefix

0 2 4 6 8 10 12 14 16 18 20
Frequency

Figure 4: Top frequent four digits prefix

5 Experiments and Results

This section describes our experimental setup,
presents the results from benchmarking various
LLMs for smishing detection, and discusses the
implications of these results in the context of mo-
bile money transfer fraud detection. Specifically,
we explore in-context learning capabilities across
multiple LLMs using various few-shot prompting
scenarios.

5.1 Experimental Setup

Using our newly constructed dataset, we con-
ducted experiments to evaluate the effectiveness
of state-of-the-art LLMs in detecting smishing

messages. The selected models for our evalua-
tion included Dolly-v2-12B (Conover et al., 2023),
an open-source conversational model developed
by Databricks; Mistral-Small-24B (Jiang et al.,
2024), developed by Mistral Al; Qwen2.5-14B,
a multilingual language model introduced by Al-
ibaba (Yang et al., 2024); and EuroLLM-9B, an
LLM specially optimized for multilingual Euro-
pean language tasks (Martins et al., 2025).

Each model was assessed using an in-context
learning approach, in which carefully designed
prompts incorporated balanced examples of legiti-
mate and smishing messages. Furthermore, model
performance was evaluated under multiple learning
scenarios, including 0-shot and few-shot settings.
To ensure consistency and reproducibility, all mod-
els received a standardized prompt (see Figure 5
and Figure 7), outlining the task and providing ex-
amples labeled as "Legitimate" or "Smishing".

Prompt Template

Below are examples of messages classified as
Positive (indicating intent of smishing or phishing)
or Negative (indicating no intent of smishing or
phishing):

Input: "Bom dia, o valor melhor mandar para este
nr 858798603 Mpesa nome Israel Robate Charimba,
o meu atingiu limite."

Output: Positive

Input: "Irmd peco pra me mandar mil mt."
Output: Negative

Input: "Ok Aquele Valor Manda Para Este Nr D
M-pesa 846861650 E Nome D Essinate Jofres"
Output:

Figure 5: Example of the few-shot prompt template

We measured the performance of each model us-
ing commonly adopted evaluation metrics in binary
classification tasks, including the F1-score for each
class (Smishing and Legitimate), and the Macro-F1
average across the classes to account for potential
imbalances in class distribution.

All experiments were executed on 4 NVIDIA
A10 GPU cards.

5.2 [Experimental Results

The results of our experiments are presented in
Table 2. Qwen2.5-14B notably achieved the high-
est overall performance among the evaluated mod-
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EuroLLM-9B | dolly-v2-12b | Qwen2.5-14B | Mistral-Small-24B
#shot F1 pt en pt en pt en pt en
B Legitimate | 0.69 0.59 045 048 | 0.69 0.63 | 0.51 0.51
‘Fln Smishing | 0.43 0.41 0.3 028 | 0.49 048 | 045 0.45
e Macro | 0.56 0.5 038 038 | 059 055 | 048 0.48
8 Legitimate | 0.0 0.54 0.2 0.51 063 056 | 0.54 0.63
‘Ff Smishing | 0.33 0.42 0.33 032 0.5 047 | 046 0.5
- Macro | 0.17 0.48 026 041 056 0.51 0.5 0.56
8 Legitimate | 0.4 0.34 0.15 0.59 0.62 0.6 0.58 0.65
Z Smishing | 0.4 0.41 0.37  0.39 0.5 049 | 048 0.52
N Macro | 0.4 0.38 026 049 | 056 0.55 | 0.53 0.58
Yol Legitimate | 0.22 0.52 0.08  0.65 0.7 0.72 | 0.62 0.69
z Smishing | 0.36 0.46 036 042 | 0.54  0.56 0.5 0.54
= Macro | 0.29 0.49 022 053 | 0.62 0.64 | 0.56 0.62
8 Legitimate | 0.32 0.56 0.05 064 | 0.75 0.77 | 0.68 0.74
"5{) Smishing | 0.38 0.47 036 042 | 0.58 0.6 0.53 0.57
© Macro | 0.35 0.51 021 053 | 0.67 0.68 | 0.61 0.65
8 Legitimate | 0.32 0.62 0.03 0.71 0.79 0.8 0.72 0.78
'% Smishing | 0.38 0.5 036 046 | 0.61 0.62 | 0.55 0.6
* Macro | 0.35 0.56 0.19  0.59 0.7 0.71 | 0.63 0.69
g Legitimate | 0.67 0.8 0.08 087 | 0.87 0.86 | 0.78 0.83
7 Smishing | 0.5 0.62 036 053 | 0.71 0.69 0.6 0.65
= Macro | 0.58 0.71 0.22 0.7 079 0.78 | 0.69 0.74

Table 2: Performance of the models different few-shot settings with Portuguese and English prompts, with the

highest values shown in bold.

els, with F1-scores consistently higher in most sce-
narios, reaching a Macro F1-score of 0.79 in the
16-shot learning setting. Mistral-Small-24B and
EuroLLM-9B also demonstrated improvements
as the number of few-shot examples increased,
though their absolute performance remained some-
what lower than Qwen2.5-14B across the scenarios
tested.

The experimental results consistently show that
adding task-specific examples boosts the model’s
detection performance. As the number of few-shot
examples increased from O-shot to 16-shot, most
models improved their classification performance
(see Figure 6), highlighting the crucial role that ap-
propriate in-context learning can fill when applying
general-purpose LLMs to specialized tasks.

Nevertheless, it was observed that models at-
tained higher performance in classifying legitimate
messages compared to smishing messages. This
difference highlights an ongoing difficulty in using
general-purpose LLMs to detect smishing. The
models’ weaker performance on smishing mes-
sages indicates they may have trouble picking up
on the subtle hints, microtexts, or spelling that of-
ten characterize smishing messages. This finding
opens the door to further exploration and refine-
ment, possibly through focused fine-tuning and

collection of more examples.

English versus Portuguese prompting As
shown in Table 6, LLMs generally performed bet-
ter when prompted in English, which is expected
given their predominantly English training data.
Nonetheless, some models, such as Qwen2.5 and
Mistral, achieved results in Portuguese whose qual-
ity competes with those in English, reflecting the in-
creasing multilingual capabilities of modern LLMs.
English prompts also resulted in more stable and
consistent improvements as the number of shots
increased. In contrast, Portuguese prompts led to
a decline in performance for models like Dolly,
which exhibited notable fluctuations as the num-
ber of Portuguese shots increased. This contrast
highlights Dolly’s stronger alignment with English
inputs.

6 Conclusion

In our study, we address an existing research gap
in combating smishing attacks aimed at users of
mobile money transfer platforms, specifically in a
non-English context. To this end, we introduced a
public, domain-specific, crowdsourced Portuguese
language dataset designed explicitly for the task of
detecting, and understanding smishing messages
targeting mobile money users. Our exploratory data
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Figure 6: Macro F1 Scores for different models across few-Shot Settings

analysis revealed critical tactics and strategies em-
ployed by attackers, offering valuable insights that
could facilitate the enhancement of user awareness
campaigns and security tools.

Finally, our comprehensive experiments pro-
vided essential benchmarks evaluating how large
language models perform through an in-context
learning approach on this specific domain task.
Our findings showed that models such as the multi-
lingual Qwen2.5-14B demonstrated strong perfor-
mance, particularly as more contextual examples
were provided in the prompt scenarios.

Our research clearly underscores the potential
of large language models to detect mobile money
transfer fraud using careful task-oriented prompt-
ing strategies. However, the continued vulnerabil-
ity of these platforms emphasizes a critical need for
further training, fine-tuning domain-specific mod-
els, and improving general language Al capabilities
to achieve greater sensitivity to linguistic nuances
of text related to smudges.

Limitations

Despite the promising findings of this study, several
critical limitations and constraints must be recog-
nized:

Limited Computational Resources: The most
significant limitation was the constrained compu-
tational capacity available through our hardware
(4 NVIDIA A10 GPUs), which prevented us from
experimenting with larger, state-of-the-art LLMs
such as Llama-3.3-70B, Deepseek-R1-70B or Fal-
con. The inclusion of larger models may yield
higher performances, but verifying this premise

would require substantially larger computing re-
sources than the ones at our disposal.

Lack of Temporal Dimension: Our dataset rep-
resents smishing messages collected within a spe-
cific time period and in the context of Mozambique.
Thus, only static snapshot features of scams, which
continually evolve, are captured. Further studies
should capture longitudinal samples to track evolv-
ing fraud approaches and maintain effective detec-
tion.
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Portuguese Prompt

A seguir estdo exemplos de mensagens classificadas como Positivas (indicando intengdo de smishing ou phishing) ou
Negativas (indicando auséncia de inten¢do de smishing ou phishing):

Input: "Bom dia, o valor melhor mandar para este nr 858798603 Mpesa nome Israel Robate Charimba, o meu atingiu
limite."
Output: Positiva

Input: "Irma pego pra me mandar mil mt."

Output: Negativa

Input: "Ok Aquele Valor Manda Para Este Nr D M-pesa 846861650 E Nome D Essinate Jofres"
Output:

Figure 7: Portuguese prompt template
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Abstract

Neural Machine Translation (NMT) systems
face significant challenges when working with
low-resource languages, particularly in domain
adaptation tasks. These difficulties arise due
to limited training data and suboptimal model
generalization, As a result, selecting an opti-
mal model for translation is crucial for achiev-
ing strong performance on in-domain data, par-
ticularly in scenarios where fine-tuning is not
feasible or practical. In this paper, we investi-
gate strategies for selecting the most suitable
NMT model for a given domain using bandit-
based algorithms, including Upper Confidence
Bound, Linear UCB, Neural Linear Bandit, and
Thompson Sampling. Our method effectively
addresses the resource constraints by facilitat-
ing optimal model selection with high confi-
dence. We evaluate the approach across three
African languages and domains, demonstrating
its robustness and effectiveness in both scenar-
ios where target data is available and where it
is absent.

1 Introduction

Advancements in multilingual machine translation
models have significantly expanded language cov-
erage, enabling translations even for low-resource
languages. These models have also demonstrated
strong performance in general domains, such as
News, Movies, and more (Barrault et al., 2020)
(Saunders, 2022a). Additionally, with the rise
of large language models, methods like few-shot
learning and in-context learning have shown no-
table improvements in domain adaptation tasks
(Garcia et al., 2023) (Aycock and Bawden, 2024).
Despite these advancements, the performance of
these models remains highly dependent on the qual-
ity and scope of pre-training data as well as the
model size, particularly for low-resource languages.
It is common for a model to perform well in one
domain but struggle in another, which presents a
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Few Exploration dataset
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Ny
— | ™
source (x)

%O) (b) Bleu High variance J
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Figure 1: Motivation for Reinforcement Learning for
model selection in machine translation: (a) Using a
large dataset for training may be inefficient or imprac-
tical for low-resource settings, (b) BLEU scores vary
significantly across domains, making model selection
unreliable, (c) Reinforcement learning enables efficient
model selection with fewer data and statistical signifi-
cance.

significant challenge in the selection of the most
suitable NMT system for a given task.

A commonly used approach for domain adapta-
tion in Neural Machine Translation (NMT) tasks
is fine-tuning NMT models on in-domain data us-
ing various strategies (Chu and Wang, 2018). As
shown in Figure 1 (a), this approach faces signif-
icant challenges, particularly in low-resource set-
tings where in-domain data is scarce. Moreover,
fine-tuning often leads to a degradation in perfor-
mance on general-domain data due to the issue of
catastrophic forgetting (Thompson et al., 2019),
further complicating the task of maintaining robust
model performance across different domains.

Selection-based approaches have gained signifi-
cant attention in recent Neural Machine Translation
(NMT) systems, where the task is to identify the
best possible model from a given set. A widely
adopted method for this is the use of a Selection
Block (SB) (Salazar et al., 2020) (Liu and Liu,
2021), which reranks models based on the spe-
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cific task at hand. In recent years, reinforcement
learning (RL)-based approaches have emerged as
promising techniques for optimizing the selection
of these models (Prasad et al., 2025). However,
a limitation of many of these approaches is their
reliance on large amounts of data to demonstrate
performance gains over individual NMT systems.

One potential approach is to select the best
model, which is trained on a general-domain
dataset, and assume it will perform well on the
in-domain dataset without the need for fine-tuning.
Typically, one would evaluate models on the test
dataset using common machine translation metrics,
such as BLEU, to determine the best-performing
model. However, in resource-constrained settings,
these metrics can exhibit high variance, and there
is often limited control over the statistical signif-
icance of the observed differences. This issue is
illustrated in Figure 1 (b), where the mean of these
metrics might provide a misleading impression of
the best NMT system. In such cases, a few out-
lier examples could skew the BLEU score, leading
to the wrong selection of the model. Moreover,
a single evaluation does not capture the full vari-
ability in system performance, particularly when
working with a small validation set. This under-
scores the need for model selection methods that
not only choose the best NMT systems but also
provide a statistical basis for the selection process,
thereby mitigating the risks of misleading conclu-
sions based on limited data.

To address the above challenges of model selec-
tion for Domain adaptation in resource-constrained
settings, one possible approach could be to esti-
mate the most optimal NMT system using fewer
data samples, thereby reducing the reliance on large
datasets. This can be achieved through the use of
bandit-based algorithms (Zhou, 2016) (Bouneffouf
et al., 2020), which allow for efficient exploration
and exploitation of model performance, facilitating
the identification of the best-performing system for
the given domain with minimal data. As shown in
Figure 1 (c), by leveraging these techniques, it is
possible to make more informed decisions about
model selection, even when In-domain data avail-
ability is limited, ensuring effective performance
in low-resource scenarios. Our key contributions
are summarized as follows:

* We propose a bandit-based approach to es-
timate optimal systems for a domain in a
resource-constraint setting.

* We evaluate our approach on English to multi-
ple African languages in multiple domains
and report the performance of the popular
bandit algorithms when applied to domain-
specific model selection task.

2 Related works and Motivation

Domain Adaptation in Neural Machine Trans-
lation (NMT) refers to methods aimed at adjust-
ing translation models trained on general-domain
data to perform effectively in specific target do-
mains with distinctive characteristics (Saunders,
2022b). Effective domain adaptation typically ad-
dresses data scarcity and domain mismatch (Pang
et al., 2024) issues through data-centric and model-
centric approaches. Data-centric strategies include
back-translation using monolingual target data
(Poncelas et al., 2019; Jin et al., 2020), forward-
translation and self-learning (Chinea-Rios et al.,
2017), and synthetic data generation via noise intro-
duction or lexicon-based methods (Vaibhav et al.,
2019; Hu et al., 2019; Peng et al., 2020; Zhang
et al., 2022). Model-centric approaches introduce
domain-specific parameters or modules like do-
main tagging, embedding manipulation, adapter-
based methods, and pointer-generators leveraging
dictionaries (Kobus et al., 2017; Stergiadis et al.,
2021; Pham et al., 2019; Bapna and Firat, 2019;
Chen et al., 2021).

In low-resource scenarios, approaches such as
data augmentation through bilingual lexicon-based
replacements, transfer learning, and pretrained
multilingual models have been employed (Nag
et al., 2020; Liu et al., 2021). However, despite
significant progress in both DA and low-resource
NMT, domain adaptation techniques remain
underexplored and challenging specifically for
low-resource languages, where often the only
available parallel data are very limited (Siddhant
et al., 2022; Ranathunga et al., 2023).

Selection-Based Approach Recently, various
selection methods have been introduced prior to
the fusion step in multi-agent candidate selection.
Significant research has focused on summarization
tasks, including training reranking models based
on evaluation metrics (Ravaut et al., 2023), em-
ploying contrastive learning for effective candidate
ranking (Liu and Liu, 2021), and utilizing pairwise
ranking methods to directly compare candidate
summaries (Jiang et al., 2023). In the field of
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Figure 2: Block diagram of the proposed bandit-based
model selection strategy.

neural machine translation (NMT), recent studies
by (Prasad et al., 2025) have explored model
selection strategies using a DQN-based approach.
However, all these selection methods require
substantial amounts of parallel data for effective
training. Notably, limited research has investigated
contextual bandit (Lu et al., 2010) approaches,
which require significantly less data, to generalize
agent selection based on provided context in
low-resource machine translation scenarios.

Motivation for Bandit based approach A ma-
jor challenge in Low-Resource Machine Transla-
tion (LRMT) is the scarcity of high-quality train-
ing datasets. This issue is further compounded
in domain-specific translation, where the data be-
comes even more limited. While general-domain
NMT systems exhibit reasonable performance
across a broad range of tasks, their efficacy sig-
nificantly fluctuates across different domains and
languages. To mitigate this variability and iden-
tify the most effective NMT model for a given task
with limited data, an optimal selection strategy is
essential. This strategy must not only consider the
available training data but also provide statistically-
backed confidence in the model’s selection.
Bandit-based approaches have been widely ex-
plored in recommendation systems, where recom-
mendations are generated based on past interac-
tions with users (Silva et al., 2022). This methodol-
ogy is well-suited for selecting optimal NMT sys-
tems in scenarios where only a small in-domain
dataset is available, utilizing an appropriate re-
ward function for NMT performance (Boursier and
Perchet, 2024) (Nguyen et al., 2017). Furthermore,
reference-less reward mechanisms offer a promis-
ing avenue for applying these bandit-based meth-
ods in target-free domain-specific machine transla-

tion tasks, as demonstrated by recent works (Obu-
chowski et al., 2024).

3 Methodology

As previously discussed, selecting the best model
from a pool by evaluating a subset of data and then
applying it to the entire test set is both computa-
tionally expensive and unreliable. Determining the
necessary sample size to ensure the optimality of
the chosen model becomes extremely important
in such cases. Hence we take a more principled
way to dynamically choose the machine translation
model on-the-fly by treating the model selection
process as a multi-armed bandit problem. We ex-
plore popular bandit algorithms designed for regret
minimization, which, under mild theoretical as-
sumptions, are proven to achieve (near-)optimal
cumulative rewards over time. Below, we provide
a brief overview of our methodology, as illustrated
in Figure 2.

Each source sentence x is passed through
a Language-agnostic BERT Sentence Encoder
(LaBSE) to obtain a feature vector which we denote
by overloading 2 € R?. This vector x acts as the
context vector in the contextual bandit algorithms
considered in this work. The MT system pool act
as the arms { M1, M, ..., M, } in our multi-armed
bandit setup. Once the arm is chosen by the MAB
algorithm, the corresponding MT system is chosen
to translate the source sentence x to obtain y in
the target language. Next, a reward is generated
depending on x, y and whether a reference gold
translation is available (see the next section for
detail on ‘reward’) to obtain a scalar r.

Next, we provide a brief explanation of the arm
selection strategy and update rules for each of the
bandit algorithms we explore.

Upper Confidence Bound (UCB): UCB (Auer
et al., 2002) relies on the principle of Optimism in
the Face of Uncertainty (OFU). It selects the arm
that maximizes an ‘upper confidence bound’ of its
estimated reward.

Select arm:
logt
a; :=  argmax fia(t) + o8
a€{Mi,Ma,...,Mpn} Na(t)

Update empirical means of all arms.

where [i,(t) is the empirical reward obtained from
pulling arm a till round ¢, N, (t) is the number
of times arm a is pulled till round ¢, and « is a
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confidence parameter.

Thompson Sampling (TS): Thompson Sampling
(Thompson, 1933) is a Bayesian approach where
we maintain a posterior distribution over each arm’s
expected reward and sample from it. In particular,
in our case we maintain a Beta distribution over
each arm’s reward which has two parameters «, 3
which are initially set to 0. The arm selection and
parameter update rules are as follows:

Select arm:

a; = arg max 0o ~ P(-|ag, Ba)
ac{M,Ma,...,Mpn}

Update:

Qg g +7,Bg ¢ Bat+1—7

Linear UCB (LinUCB): LinUCB (Li et al.,
2010; Abbasi-yadkori et al., 2011) extends UCB
to contextual bandits, assuming that rewards fol-
low a linear function of the context/feature vector
z; € R? as explained before . In particular, we
make the following assumption on the reward func-
tion that V¢t > 1, r := 276, + noise for all arms
a.

Select arm:
a; 1= arg max <:UtT9a + ay/ mtTAala:t>
a€{My,M>,...,.M,}

¢
where, A, = Y 1{as == a}zszl, b, =
s=1
t .
S 1{as == a}rsxs and 0, = A;'b, is the

s=1
Least Squares estimate of the true parameter 6,

of arm a.

Neural LinUCB (NL): Neural LinUCB (Xu

et al., 2020) is a deep-learning extension of Lin-
UCB, replacing the linear model with a neural net-
work that maps features to a latent representation
before applying LinUCB. In particular we replace
the context vector x by a neural network f(x : w)
parameterized by w. The arm selection strategy
and the update rule remain the same as in LinUCB
with x replaced with f(x; w).
Rewards: The rewards serve as the primary sig-
nal in bandit-based settings, guiding both the
learning process and decision-making of the al-
gorithms. The main objective in a Multi-Armed
Bandit (MAB) problem is to maximize rewards by
balancing exploration and exploitation.

In Neural Machine Translation (NMT), model
performance is typically evaluated using standard

metrics such as BLEU and COMET. These met-
rics are particularly crucial for assessing how
well a model translates within a specific domain.
BLEU measures how accurately the model trans-
lates domain-specific vocabulary, while COMET
evaluates the semantic similarity of the model’s
output to the reference translation within the given
domain. Using these metrics, we consider two
types of reward signals as follows:

* When parallel data is present: When we
have source along with the reference (gold)
translation, we consider a combination of
BLEU (Post, 2018) and a reference-based
comet as shown below. Note that both
the BLEU and comet scores have been
normalized to lie between [0,1].

Reward = A - BLEU + (1 — \) - COMET.

Here ) is a hyperparameter in [0,1]. In our
experiments, we find that A = 0.4 achieves
the best results in our case.

* Target-free scenario: When only the source
sentence is present, and the target is absent,
which is typically the case in low-resource
languages, especially in domain translation
task, we use a reference-less MT metric like
CometKiwi (Rei, 2022) (normalized between
[0,1]), as the reward signal.

The A is a controllability parameter that enables us
to control the influence of metrics on reward, and
reward_norm is the normalization value to normal-
ize the metrics.

4 Experimental Setup

Datasets and Evaluation metrics: For our ex-
periments, we utilize parallel datasets for English-
to-African language translation, focusing on three
African languages: English-to-Yoruba (en-yo),
English-to-Swahili (en-sw) and English-to-Igbo
(en-ig). We sample 1,000 parallel samples for vali-
dation (seed data for model convergence) and test-
ing each. The datasets span three domains: News,
Movies, and Religious texts.

* News Domain: We use the Lafand-MT dataset
(Adelani et al., 2022), which contains paral-
lel data for English-to-16 African languages,
gathered from various news corpora.
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Datasets News Igbo | News Yoruba | News Swahili | Movies Igbo | Movies Yoruba | Movies Swahili | Religious Igbo | Religious Yoruba | Religious Swahili
AyalOl 12.98 520 2353 748 3.847 2398 19.03 11.53 504
Gemma2 9B 8.17 3.55 24.24 5.21 1.97 25.07 9.48 2.12 39
Llama3.18B | 459 328 17.24 2.85 1.09 10.90 6.79 343 225
Madlad 691 L1 8.92 7.087 1.19 24.47 3.19 136 3236
NLLB 19.73 9.67 27.57 9.60 12.90 30.78 34.72 14.96 28.01
UCB 19.83 9539 28275 9.6 12.90 30.78 3472 14.96 3236
TS 19.48 9.74 26.95 9.36 12.88 2729 3434 14.34 3254
LinUCB 19.73 9.54 27.80 9.80 12.90 29.9 34.8 13.7 32.45
NL 19.74 9.67 2757 924 13.12 2437 3472 15.67 3239
Table 1: Performance on BLEU metrics when Parallel data is present.
Datasets News Igbo | News Yoruba | News Swahili | Movies Igbo | Movies Yoruba | Movies Swahili | Religious Igbo | Religious Yoruba | Religious Swahili
AyalOl 12.98 5.20 2353 7.48 3.847 2398 19.03 1153 504
Gemma2 9B 8.17 3.55 24.24 5.21 1.97 25.07 9.48 2.12 39
Llama3.18B | 459 328 17.24 2.85 1.09 10.90 6.79 343 225
Madlad 6.91 111 8.92 7.087 1.19 24.47 3.19 1.36 3236
NLLB 19.73 9.67 27.57 9.60 12.90 30.78 34.72 14.96 28.01
UCB 19.83 953 2827 748 12.90 30.78 3472 14.96 28.01
TS 19.48 9.74 26.95 933 12.89 27.95 3434 14.34 3254
LinUCB 18.5 9.67 27.5 8.9 12.90 29.7 34.54 11.51 32.67
NL 19.73 9.67 2757 748 12.90 2398 3472 11.53 3236
Table 2: Performance on BLEU metrics in Target-Free scenario
* Movies Domain: We leverage the OpenSub- nghm imme“’r ?gai‘“‘(’) 5
titles dataset (LISOH and Tiedemann, 2016)’ Thompson Sampling | Prior Distribution Beta(0,0)
which includes parallel translations of dia- LinUCB o L5
: : A 0.4
logues from various movies and TV shows.
. T : T Neural LinUCB A del | 2 layer MLP
This domain is essential for capturing infor- eural Lin m model Network | .. sy o irons each

mal language usage and conversational nu-
ances in translations.

* Religious Texts Domain: We compile a
dataset from various sources, including
CCAligned (El-Kishky et al., 2020) and Tanzil
(available at https://tanzil.net/), which
contains Quran translations in multiple lan-
guages. This domain is particularly valuable
for translating formal, religious content.

To assess the performance of the models, we rely
on BLEU (Papineni et al., 2002), a widely accepted
metric in machine translation. BLEU effectively
measures the degree of overlap between the model-
generated translations and reference translations,
capturing the adequacy of domain-specific vocabu-
lary translation, which is specifically effective for
In-Domain Translations

Models: We test the effectiveness of our approach
by using baselines, which also act as arms for ban-
dits. The models used are a Mixture of LLMs
and Foundational models like Ayal01 (Ustiin et al.,
2024), NLLB200 3.3B (NLLB) (Team, 2022),
Madlad400 10B (Madlad) (Kudugunta et al., 2023),
Gemma?2 9B (et al., 2024b) and Llama3.1 8B (et
al., 2024a) all the model used for experiments are
in its based or pre-trained state.

Choice of Hyper-parameters: For evaluation of
our proposed bandit-based strategies, we use four

Table 3: Values of hyper-parameters used in our experi-
ments.

popular arm-selection bandit algorithms that are
UCB, LinUCB, Neural Bandit, Thompson Sam-
pling as discussed in detail in Sec. 3. The values of
the hyper-parameters specific to each bandit strat-
egy are given in Table 3. The selection of Hyper-
parameters was done based on hit and trail method,
where initial few sentences of validations were used
for convergence of algorithm and the algorithm was
tested on rest of the remaining sentences.

5 Results

When parallel data is present: The hyper-
parameters are tuned on the validation set and
freezed for all the algorithms. The Bandit-based
models explored the reward that is a weighted
summation of BLEU and reference-based Comet
on the exploration set (Section 3 Rewards), the
performance is evaluated using 1000 test samples
per domain and language. As shown in Table
1, most of the Bandit-based approaches, when
selecting the optimal arm, either perform on par
with or surpass the best possible NMT model,
demonstrating the effectiveness of our proposed
method. On average, UCB (Upper Confidence
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Bound) achieves superior performance across all
languages and domains, outperforming the best
model, NLLB, by an average improvement of
2.68% in BLEU score. Additionally, in specific
cases—such as Neural Linear Bandit (NL) in the
Movies domain for Yoruba, UCB in the News
domain for Igbo and Swahili, and Thompson
Sampling (TS) in the News domain for Yoruba,
Religious, and Swahili the Bandit-based algorithms
surpass the performance of the best possible NMT
model. This suggests that these algorithms can
occasionally select alternative NMT systems,
resulting in slight but notable improvements in
translation quality. In summary, the results indicate
that Bandit-based approaches can effectively
identify the best-performing NMT models, even
with very small training sets, highlighting the
robustness and utility of our proposed training
strategy.

Results on Target-free Scenario: In this experi-
ment, we explore the scenario where target trans-
lations for the in-domain dataset are unavailable, a
common challenge in low-resource language set-
tings. Such cases can be addressed using reference-
less rewards (Section 3 Rewards), specifically lever-
aging CometKiwi-based metrics for NMT evalua-
tion. The exploration of the Bandit-based models
follows the same setup as discussed previously,
with testing performed on 1000 samples. As shown
in Table 2, the Bandit-based approaches success-
fully identify the best arms for translations even in
the absence of target translations for reward gener-
ation. Among the various Bandit algorithms, UCB
performs the best, followed by LinUCB and NL.
Notably, in some instances, the Bandit-based selec-
tion slightly outperforms the individual best mod-
els, underscoring the flexibility of our approach.
This demonstrates that our method can effectively
be applied to model selection in target-free domain
translation task where reference translations are not
available.

6 Conclusion

In this paper, we presented a bandit-based approach
for selecting the most suitable NMT model for do-
main adaptation, particularly in low-resource set-
tings. Our method effectively balances exploration
and exploitation by leveraging strategies such as
Upper Confidence Bound, Linear UCB, Neural Lin-
ear Bandit, and Thompson Sampling, enabling op-

timal model selection with high confidence. Exper-
imental results across multiple African languages
and domains confirm the robustness of our ap-
proach, demonstrating its effectiveness both in the
presence and absence of target domain data. Our
findings highlight the potential of bandit-based
methods to improve NMT performance in resource-
constrained environments, paving the way for a
more efficient and adaptive model selection pro-
cess.
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Abstract

Hausa Natural Language Processing (NLP) has
gained increasing attention in recent years, yet
remains understudied as a low-resource lan-
guage despite having over 120 million first-
language (L1) and 80 million second-language
(L2) speakers worldwide. While significant
advances have been made in high-resource lan-
guages, Hausa NLP faces persistent challenges
including limited open-source datasets and in-
adequate model representation. This paper
presents an overview of the current state of
Hausa NLP, systematically examining exist-
ing resources, research contributions, and gaps
across fundamental NLP tasks: text classifica-
tion, machine translation, named entity recogni-
tion, speech recognition, and question answer-
ing. We introduce HAUSANLP!, a curated cata-
log that aggregates datasets, tools, and research
works to enhance accessibility and drive further
development. Furthermore, we discuss chal-
lenges in integrating Hausa into large language
models (LLMs), addressing issues of subopti-
mal tokenization, and dialectal variation. Fi-
nally, we propose strategic research directions
emphasizing dataset expansion, improved lan-
guage modeling approaches, and strengthened
community collaboration to advance Hausa
NLP. Our work provides both a foundation for
accelerating Hausa NLP progress and valuable
insights for broader multilingual NLP research.

1 Introduction

The limits of my language mean the lim-
its of my world. — (Wittgenstein, 1994)

Natural Language Processing (NLP) has made
significant progress and revolutionized the way lan-
guage technology is used in our daily lives. From
voice assistants and chatbots to machine transla-
tions, text classification, information extraction,
and question-answering, NLP enables us to inter-
act with machines in a more natural way (Cambria

lhttps ://catalog.hausanlp.org
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Figure 1: HausaNLP Catalogue: A repository of
datasets, tools, and research papers on Hausa NLP, de-
veloped to improve access to and discovery of Hausa
language resources

and White, 2014). One of the recent advances
in NLP is emergence of large language models
(LLMs) such as ChatGPT, which demonstrated im-
pressive performance in various NLP tasks, such as
dialogue generation and arithmetic reasoning (Qin
et al., 2023). However, much of this progress has
been concentrated on a limited set of high-resource
languages (e.g., English and Chinese), where large-
scale pre-training corpora are readily available (van
Esch et al., 2022). As a result, many languages re-
main underrepresented in NLP research, including
Hausa.

Hausa is a major Chadic language with rich lin-
guistic and cultural significance within the Afroasi-
atic family. Originally written in Arabic script
(Ajami) during the pre-colonial era, the language
has been romanized and now uses the Latin script
as its primary writing system. Yet, Arabic influ-
ence remains evident in Hausa through loanwords
from Arabic (El-Shazly, 1987; Newman, 2022).
Most Hausa speakers are found in northern Nige-
ria and southern Niger. However, its influence has
expanded through trade and migration, reaching
countries such as Cameroon, Ghana, Benin, Togo,
Chad, and Sudan (Inuwa-Dutse, 2023). Hausa has a
global presence and is broadcast by several interna-
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tional media outlets such as BBC, Deutsche Welle,
Voice of America, Voice of Russia, China Radio
International, and Radio France Internationale in
Hausa —the most predominant language broadcast
internationally in West Africa.

Despite its importance, diversity, and cultural
heritage, Hausa has received relatively little atten-
tion in NLP research (Zakari et al., 2021; Muham-
mad et al., 2025¢; Parida et al., 2023). This slows
progress in language technology research and de-
velopment in Hausa and further widens the gap.
Recent work on HausaNLP is mostly community-
driven efforts such as machine translation (Adelani
et al., 2022a; Abdulmumin et al., 2022b), sentiment
analysis (Muhammad et al., 2022, 2023), emotion
detection (Muhammad et al., 2025¢), hate speech
detection (Muhammad et al., 2025a), and named
entity recognition (Adelani et al., 2022c). However,
numerous NLP tasks for Hausa remain understud-
ied, primarily due to the lack of available corpora.

Open-source corpora are key drivers of advance-
ments in NLP. However, Hausa, a well-documented
language, lacks open-source corpora that can be
used for many NLP tasks. Further, the few avail-
able Hausa corpora are dispersed and difficult to
access. Therefore, creating and aggregating open-
source corpora for Hausa is crucial for the progress
of HausaNLP. To address these challenges, this
paper makes the following contributions:

* HausaNLP Catalogue: We introduce Hau-
saNLP Catalogue, a centralized repository
of datasets, tools, and research papers de-
signed to improve accessibility and accelerate
progress in Hausa NLP research.

* Comprehensive Review: We present a re-
view of Hausa NLP research, analyzing cur-
rent progress and identifying key challenges
in the field.

e Future Directions: We explore promising
research opportunities and outline recommen-
dations to advance Hausa NLP technologies.

We release the HausaNLP Catalogue as an open,
community-driven platform to centralize and accel-
erate Hausa NLP research. The catalogue serves
as a living resource for discovering and sharing
datasets, tools, and papers, with ongoing contribu-
tions from researchers and practitioners worldwide.

2 Hausa Language

Hausa is the language of the Hausa people (Hau-
sawa), primarily spoken in West Africa’s sub-
Saharan region, with the largest populations in
northern Nigeria and southern Niger. Significant
Hausa-speaking communities exist across North-
ern Ghana, Togo, Cameroon, and parts of Sudan,
Chad, Mali, Ivory Coast, Libya, Saudi Arabia, and
the Central African Republic (Bello, 2015). With
approximately 120 million first-language (L1) and
80 million second-language (L2) speakers, Hausa
ranks among Africa’s most widely spoken lan-
guages, second only to Swahili in total speaker
count (Hegazy et al.).

While some argue that Hausa may surpass
Swahili in total speakers (Newman, 2022), Swahili
maintains broader institutional recognition as an
official language in four East African nations: Tan-
zania, Kenya, Uganda, and Rwanda. In contrast,
Hausa had limited official recognition until recently,
when Niger declared it an official language (EI-
Shazly, 1987).

Linguistically, Hausa belongs to the Chadic
branch of the Afroasiatic language family and
is spoken by over 200 million people either as
a first language or as a second language, mak-
ing it a prominent lingua franca in the region
(Yakasai, 2025). Hausa has several dialect varia-
tions, which are broadly categorized into two major
groups: western and eastern dialects. Furthermore,
Hausa has regional variations influenced by contact
with non-Hausa languages, leading to phonological,
morphological, syntactic, and lexical differences
(Bello, 2015).

Phonologically, Hausa is a tonal language with
three pitch contrasts that distinguish word mean-
ings and grammatical categories. It has 48
phonemes and 36 standard alphabets (Caron, 2012).
Morphologically, Hausa uses root-and-pattern tem-
plates and affixation to support complex morpho-
logical processes including inflection, derivation,
modification, reduplication, clipping, blending, and
compounding. It also has numerous loanwords
from contact language such as Arabic (Ahmed and
B., 1970). Syntactically, Hausa follows a subject-
verb-object (SVO) word order and uses diverse
typological constructions. The language has devel-
oped two writing systems: Ajami (Arabic-based
script) and Boko (Latin-based script), both actively
used in print, broadcasting, and digital media.

Despite its linguistic richness, Hausa remains a
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low-resource language in NLP due to limited anno-
tated corpora and tools, hindering the development
of language technologies.

3 Current State of Hausa NLP

Several existing works have explored various NLP
tasks in Hausa, including text classification, ma-
chine translation, named entity recognition, and au-
tomatic speech recognition, as shown in Figure 2.
This section reviews prior work on Hausa NLP,
discusses available datasets, and identifies future
research directions.

3.1 Text Classification

Text classification is a method for automatically cat-
egorizing texts into distinct, predetermined classes.
It is a supervised learning approach, as the classes
must be known beforehand to train the model. Text
classification can take various forms; however, in
the context of Hausa texts, prior studies have pri-
marily focused on sentiment analysis, toxicity de-
tection, or topic classification

Sentiment Analysis Sentiment analysis is a text
classification method of categorizing based on the
sentiment contained in the text. The method is
usually a binary classification, into positive and
negative classes, or three classes, into positive, neg-
ative, and neutral classes.

Several studies have explored sentiment analy-
sis in Hausa. Abubakar et al. (2021) introduced
a sentiment analysis model for Hausa texts, lever-
aging a corpus of political tweets. Their approach
incorporated Hausa lexical features and sentiment
intensifiers, achieving an accuracy of 0.71 when
employing the SVM classifier. Nevertheless, the
dataset size of merely around 200 tweets in the
study is grossly inadequate for training supervised
learning models.

Muhammad et al. (2022) proposed the first large-
scale sentiment dataset for the Hausa language
among other Nigerian languages. The paper col-
lected and annotated around 30,000 tweets in the
Hausa language. The authors proposed novel meth-
ods for tweet collection, filtering, processing, and
labeling methods. Additionally, contrary to the
other study, they leverage fine-tuning LL.Ms, attain-
ing a weighted F1-score of 0.81.

Further, Sani et al. (2022) combined machine
learning and lexicon-based approaches, achieving
86% accuracy with TF-IDF but struggling with syn-
tactic and semantic nuances. Shehu et al. (2024)
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Tasks and Associated Publications
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integrated CNN, RNN, and HAN with a lexicon
dictionary, but the approach yielded a lower ac-
curacy of 68.48%, highlighting the limitations of
the bag-of-words model. Mohammed and Prasad
(2024) introduced a manually annotated lexicon
dataset for social media and product reviews, useful
for lexicon-based models but unsuitable for data-
driven approaches. To address language-specific
challenges, Abdullahi et al. (2024) implemented
a normalization process for handling Hausa ab-
breviations and acronyms, improving the perfor-
mance of MNB and Logistic Regression. Mean-
while, Ibrahim et al. (2024) proposed a Deep
CNN model for aspect and polarity classification in
Hausa movie reviews, achieving 92% accuracy but
struggling with multi-aspect classification. These
studies highlight progress in Hausa sentiment anal-
ysis while emphasizing the need for better feature
representation, richer datasets, and advanced tech-
niques to handle linguistic complexities.

Future research in Hausa sentiment analysis
should focus on high-quality annotated datasets
to improve benchmarking (Liu et al., 2024), and
domain adaptation to enhance model generaliza-
tion across different contexts (Hays et al., 2023;
Singhal et al., 2023), Cross-lingual sentiment clas-
sification offers potential for transferring knowl-
edge from high-resource languages while address-
ing cultural nuances (Chan et al., 2023; Rakhmanov
and Schlippe, 2022b; Yusuf et al., 2024). Further,
aspect-based sentiment analysis (ABSA) is cru-
cial for entity-level sentiment detection (Ibrahim
et al., 2024; Obiedat et al., 2021), while multimodal
approaches integrating text, audio, and visuals re-
main underexplored (Zhu et al., 2023; Gandhi et al.,
2023; Parida et al., 2023). Sentiment analysis using
code-mixed remains underexplored in HausaNLP
(Shakith and Arockiam, 2024; Yusuf et al., 2023).
Finally, explainable sentiment analysis should be
explored to improve model transparency (Diwali
et al., 2023). Advancing these areas will signifi-
cantly strengthen Hausa NLP research and applica-
tions.

Emotion analysis in text Unlike sentiment anal-
ysis, which aims to interpret text and assign po-
larities (positive, negative, or neutral), emotion
analysis focuses on extracting and analyzing fine-
grained emotions, known as affects (e.g., happi-
ness, sadness, fear, anger, surprise, and disgust).
Muhammad et al. (2025b) is the first work on emo-
tion detection in Hausa. The authors developed

a text-based emotion dataset in 29 languages, in-
cluding Hausa. The dataset is annotated into six
emotion classes (anger, fear, joy, sadness, surprise,
and disgust) and further categorized into intensity
levels: O (indicating no emotion), 1 (low emo-
tion), 2 (medium emotion), and 3 (high emotion).
This dataset was used in the SemEval shared task
(Muhammad et al., 2025b).

Toxicity detection Toxicity detection is a text
classification task of detecting toxicity in text. The
toxicity could be in the form of hate speech, ha-
rassment, and threats. The only work on toxicity
detection in Hausa texts is by (Zandam et al., 2023).
In the work, the authors developed an online threat
detection dataset using both Facebook and Twitter
posts. The developed dataset is quite limited with
around 801 instances. The Hausa threat detection
models are based on machine learning algorithms,
achieving the best performance of 0.85 with a ran-
dom forest algorithm.

Fake news detection The advancement of the
internet and social media has accelerated news
dissemination, offering both benefits and draw-
backs. While crucial information reaches the public
swiftly, the downside includes the widespread cir-
culation of fake news. It is increasingly become
difficult to distinguish actual news and fake news
in the cyberspace. As a result, fake news detection
has become an important area of research.

The work of Imam et al. (2022) focused on the
creation of fake news detection corpus for Hausa
news articles. They developed a corpus of 2600
news articles comprising of real and fake news
selected from key topics like: Business, health,
entertainment, sports, politics and religion.

Topic Classification News topic classification
is a text classification task in NLP that involves
categorizing news articles into different categories
like sports, business, entertainment, and politics.
For Hausa news articles, Adelani et al. (2023) fo-
cused on topic classification for African langauges’
news articles including Hausa articles. They used
both classical machine learning algorithms, and
pre-trained LLMs. The best performing model is
AfroXLMR-large attaining a weighted F1-score of
0.92.
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3.2 Machine Translation
3.2.1 Text Translation

Adelani et al. (2022a) leveraged pre-trained models
for African news translation, focusing on 16 under-
represented African languages including the Hausa
language. For the Hausa language, The Hausa
Khamenei 2 corpus contained 5,898 sentences, was
used. The study demonstrated the effectiveness of
fine-tuning pre-trained models on a few thousand
high-quality bitext for adding new languages like
Hausa to the models.

Nowakowski and Dwojak (2021) and Chen et al.
(2021) participated in the WMT 2021 News Trans-
lation Task (Akhbardeh et al., 2021). This involves
building a machine translation system for English
and Hausa language pairs. The Nowakowski and
Dwojak (2021) focused on thorough data clean-
ing, transfer learning, iterative training, and back-
translation. The work experimented with NMT and
PB-SMT, using the base Transformer architecture
for the NMT models. On the other hand, (Chen
et al., 2021) used an iterative back-translation ap-
proach on top of pre-trained English-German mod-
els and investigated vocabulary embedding map-
ping.

Akinfaderin (2020) explored English-Hausa
machine translation by training LSTM and
transformer-based model using the JW300 (Agi¢
and Vuli¢, 2019) corpus. Abdulmumin et al.
(2022a) participated in WMT 2022 Large-Scale
Machine Translation Evaluation for the African
Languages Shared Task (Adelani et al., 2022b).
The work made an attempt to improve Hausa-
English (along with other language pairs) machine
translation using data filtering techniques. The idea
relies on filtering out the noisy or invalid parts of
a large corpus, keeping only a high-quality subset
thereof. The results show that the performance of
the models improved with increased data filtering,
indicating the removal of noisy sentences enhanced
translation quality.

3.2.2 Multi-Modal Machine Translation

Multimodal machine translation (MMT) focuses
on translating languages using multiple modali-
ties of information, not just text. This typically
involves combining text with other data sources,
such as images, speech, and video. MMT aims
to enhance translation quality by incorporating in-

2https://www.statmt.org/wmt21/
translation-task.html

formation from other modalities. The goal is to
leverage these additional modalities to improve the
overall translation process.

Abdulmumin et al. (2022b) presents the Hausa
Visual Genome (HaVG), a multi-modal dataset
that contains the description of an image or a sec-
tion within the image in Hausa and its equivalent
in English. HaVG was formed by translating the
English description of the images in the Hindi Vi-
sual Genome (HVG) into Hausa automatically. Af-
terward, the synthetic Hausa data was carefully
post-edited considering the respective images. The
dataset comprises 32,923 images and their descrip-
tions.

3.2.3 Sentence Alignment

Automatic sentence alignment is the process of
identifying which sentences in a source text cor-
respond to which sentences in a target text. This
task is crucial for creating parallel corpora, where
each sentence in one language is aligned with its
equivalent translation in another language. Various
approaches, including length-based, lexicon-based,
and translation-based methods, are employed for
sentence alignment. Evaluating alignment qual-
ity involves assessing accuracy and effectiveness,
considering factors like language pairs and genre.
Abdulmumin et al. (2023) addresses the chal-
lenge of limited qualitative datasets for English-
Hausa machine translation by automatic sentence
alignment. The work presented a qualitative paral-
lel sentence aligner that leverages the closed-access
Cohere multilingual embedding 3. For evaluation,
the work used the MAFAND-MT (Adelani et al.,
2022a), FLORES (Goyal et al., 2022), a new cor-
pus of 1000 Hausa and English news articles each.
The proposed method showed promising results.

3.3 POS

Part-of-speech tagging (POS) is one of the first
steps in NLP that involves the tagging (or labeling)
of each word in a sentence with the correct part of
speech to indicate their grammatical behaviours for
computational tasks (Martinez, 2012). POS tagging
is very crucial in many NLP tasks like sentiment
analysis and information extraction.

While considerable amount of work has been
done on POS tagging, only a couple of studies
are on Hausa POS tagging. Tukur et al. (2020)
proposed a technique for POS tagging of Hausa

3https://docs. cohere. com/docs/
multilingual-language-models
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sentences using the Hidden Markov Model. They
evaluated the model using a manually collected and
annotated Hausa corpus sourced from from radio
stations. While the study is worthwhile, both the
dataset and model are not publicly available.

Awwalu et al. (2021) presents a study on Cor-
pus Based Transformation-Based Learning for
Hausa language POS tagging. The research in-
volves corpus development for Hausa language
POS tagset. Various models and techniques such
as Transformation-Based Learning (TBL), Hidden
Markov Model (HMM), and N-Gram models are
employed for POS tagging. The main findings in-
dicate that the TBL tagger outperforms HMM and
N-Gram taggers in terms of accuracy levels, show-
casing the effectiveness of hybrid generative and
discriminative taggers.

Dione et al. (2023) created MasakhaPOS, a large
POS dataset for 20 diverse African languages. They
address the challenges of using universal depen-
dencies (UD) guidelines for these languages, and
compare different POS taggers based Conditional
Random Field (CRF) and several multilingual Pre-
trained Language Models (PLMs). For the Hausa
part of the project, the data was sourced from Kano
Focus and Freedom Radio to a total of 1504 sen-
tences (train: 753, test:150, and dev: 601).

3.4 Text Summarization

Text summarization is the process of automatically
generating a concise and coherent summary of a
longer text while retaining its key information and
main points (El-Kassas et al., 2021).

Text summarization plays a crucial role in var-
ious applications such as information retrieval,
document summarization, news aggregation, and
content recommendation systems, helping users
quickly grasp the main points of lengthy documents
or articles.

(Bashir et al., 2017) perhaps conducted one the
the earliest works on text summarization for Hausa
langauge. The work focused on text summariza-
tion based on feature extraction using Naive Bayes
model. However, the validity of the work is limited
by the small data size of 10 documents from news
articles, with each document containing over 600
words. The work of (Bichi et al., 2023) focus on
graph-based extractive text summarization method
for Hausa text. The study focus on graph-based
extractive single-document summarization method
for Hausa text by modifying the PageRank algo-
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rithm using the normalized common bigrams count
between adjacent sentences as the initial vertex
score. They evaluated the proposed approach using
a manually annotated dataset that comprises of 113
Hausa news articles on various genres. Each news
article had two manually generated gold standard
summaries, with the length of summaries being
20% of the original article length.

3.5 Question and Answering

Question and Answering (QA) is a branch of nat-
ural language processing (NLP) that deals with
building systems that can automatically answer
questions posed by humans in natural language.
QA systems can be useful for various applications,
such as virtual assistants, customer support, search
engines, and education (Rogers et al., 2023).

Parida et al. (2023) developed a Hausa Visual
Question Answering (VQA) dataset called HaVQA.
The dataset is a multi-modal dataset for visual
question-answering (VQA) tasks in the Hausa lan-
guage. The dataset was created by manually trans-
lating 6,022 English question-answer pairs, which
are associated with 1,555 unique images from the
Visual Genome dataset. The paper employed state-
of-the-art language and vision models for Visual
Question Answering and achieved the best perfor-
mance with the Data-Efficient Image Transformers
model proposed by Facebook with a WuPalmer
score of 30.85.

(Ogundepo et al., 2023) developed AfriQA, a
dataset for cross-lingual open-retrieval question an-
swering for 10 African languages, including the
Hausa language. The dataset was developed from
Wikipedia articles and manually elicited questions.
For Hausa language, the final corpus consist of
1171 instances split into 435 training, 436 devel-
opment and 300 test sets. The findings of the ex-
periments proves how challenging multilingual re-
trieval is even for state-of-the-art QA models.

3.6 Named Entity Recognition

Named entity recognition (NER) is a technique of
NLP that identifies and classifies named entities in
a text, such as person names, organizations, loca-
tions, and dates. NER can be useful for various
tasks, such as information extraction, search en-
gines, chatbots, and machine translation. There
are different methods and tools for NER, such
as dictionary-based, rule-based, machine learning-
based, and hybrid systems (Li et al., 2022).



Adelani et al. (2021) and Adelani et al. (2022c)
created the largest NER corpus for African lan-
guages titled MasakhaNER 1.0 and MasakhaNER
2.0. MasakhaNER 1.0 covers 10 African languages,
while MasakhaNER 2.0 expanded the corpus to
include 10 South African languages, making a to-
tal of 20 languages. MasakhaNER 1.0 consists of
2,720 sources from VOA news while MasakhaNER
2.0 consists of 8,165 sourced from Kano Focus
and Freedom Radio news channels. Both studies
explored various experiments using pretrained lan-
guage models and other techniques like transfer
learning and zero-shot learning.

The work of Hedderich et al. (2020) investigates
transfer learning and distant supervision with mul-
tilingual transformer models on NER and topic
classification in Hausa, isiXhosa and Yoruba lan-
guages. The study show that transfer learning from
a high-resource language and distant supervision
are effective techniques for improving performance
in low-resource settings for African languages.

3.7 Automatic Speech Recognition (ASR)

Automatic speech recognition (ASR) is a technol-
ogy that allows computers to convert spoken lan-
guage into text. ASR can be used for various pur-
poses, such as voice control, transcription, transla-
tion, and accessibility (Yu and Deng, 2016).

Schlippe et al. (2012) focused on developing
a Hausa Large Vocabulary Continuous Speech
Recognition (LVCSR) system by collecting a cor-
pus of Hausa speech data from native speakers in
Cameroon and text data from prominent Hausa
websites. The data collected for the study in-
cluded approximately 8 hours and 44 minutes of
speech data from 102 native speakers of Hausa
in Cameroon. Additionally, the text corpus con-
sists of roughly 8 million words. The study found
that modeling tones and vowel lengths significantly
improved recognition performance, leading to a
reduction in word error rates.

(Abubakar et al., 2024) focuses on develop-
ing a diacritic-aware automatic speech recognition
model for the Hausa language. The model uses
a large corpus of speech data from the Mozilla
Common Voice dataset, which includes a variety of
diacritical words and sentences. The Whisper-large
model outperforms existing models, achieving a
word error rate of 4.23% and a diacritic coverage
of 92%. It also has a precision of 98.87%, with a
2.1% diacritic error rate, demonstrating its effec-

tiveness in accurately transcribing Hausa speech.
However, Due to the absence of prior ASR sys-
tems specifically focused on diacritization in the
Hausa language, the authors were unable to make
direct comparisons with their results. This lack of
benchmarks may limit the ability to fully assess
the effectiveness of their proposed model against
existing technologies

Future efforts should prioritize developing real-
time ASR systems for continuous Hausa speech
recognition, enhancing usability across everyday
communication and diverse industries. Optimizing
computational resources and designing efficient
algorithms will enable high-performance ASR sys-
tems with reduced power requirements. Further,
exploring ASR techniques less reliant on diacritics
can broaden usability for varied contexts and users.
Finally, integrating ASR with NLP and machine
translation can pave the way for comprehensive
tools to better serve Hausa-speaking communities.

4 Hausa Representation in Large
Language Models (LLMs)

Large language models (LLMs) have made sig-
nificant strides in supporting multilingual tasks,
including those involving low-resource languages
like Hausa. Multilingual models such as AfrIB-
ERTa (Ogueji et al., 2021) mBERT (Devlin et al.,
2019), InkubalLM (Tonja et al., 2024) XLM-R
(Conneau et al., 2020), and BLOOM (Workshop
et al., 2023) have incorporated Hausa into their
training data, albeit to varying degrees. These
models leverage cross-lingual transfer learning to
improve performance on languages with limited
resources. However, the extent of Hausa represen-
tation in these models is often constrained by the
scarcity of high-quality, diverse datasets.

The availability and quality of training data are
critical factors influencing the performance of large
language models (LLMs) on Hausa language tasks.
Like many low-resource languages, Hausa faces
challenges such as data scarcity, representational
bias, and inadequate dataset construction. Exist-
ing datasets are often limited in scale and diversity,
particularly in capturing dialectal variations and in-
formal text (e.g., social media content). Sani et al.
(2025b) highlight these challenges, emphasizing
the impact of dialectal variation and tokenization
on Hausa sentiment analysis. Their findings under-
score the need for more diverse and high-quality
datasets to enhance model performance. Without
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sufficient data, LLMs struggle to achieve robust
performance in handling Hausa text, as highlighted
by Zhao et al. (2024) and Acikgoz et al. (2024).

In addition to data scarcity, Hausa’s linguistic
features pose significant challenges for tokeniza-
tion and language modeling. The language’s rich
morphology, tonal variations, and complex noun
pluralization systems complicate the process of ac-
curately representing it in LLMs. Diacritics and
tonal markers, which are critical for meaning, of-
ten lead to suboptimal tokenization, resulting in
poor representations of the language (Abubakar
et al., 2024; Jaggar, 2006). Furthermore, the di-
alectal diversity within Hausa adds another layer of
complexity. Models trained on formal Hausa text
frequently struggle to process informal or dialectal
variations, as noted by Sani et al. (2025b). This lim-
its their applicability in real-world scenarios where
such variations are common.

Another critical issue is bias and representation
in existing LLMs. Studies comparing LLM outputs
with native speaker responses have revealed dis-
crepancies in how cultural nuances and emotional
tones are captured (Ahmad et al., 2024). These bi-
ases can lead to outputs that are misaligned with the
cultural and linguistic expectations of Hausa speak-
ers, further reducing the utility of LLMs for this
language. Addressing these challenges requires in-
novative approaches, including improved tokeniza-
tion strategies, dialectal adaptation techniques, and
data augmentation methods. By tackling these is-
sues, researchers can develop more robust and in-
clusive models that better serve Hausa speakers and
other low-resource language communities

A promising direction is the development of spe-
cialized, lightweight models tailored specifically
to Hausa. These custom models could provide
more accurate and efficient solutions for Hausa-
specific applications (Yang et al., 2024). Addi-
tionally, federated prompt tuning offers a pathway
to enhance data efficiency and facilitate mutual
improvements across languages, benefiting low-
resource languages like Hausa (Zhao et al., 2024).
Synthetic data generation also presents a valuable
opportunity to address data scarcity. By creat-
ing high-quality synthetic datasets, researchers can
overcome the limitations of limited real-world data
and improve the performance of the model (Mah-
goub et al., 2024). Together, these approaches,
ranging from architectural innovations and special-
ized models to federated learning and synthetic

data, have the potential to significantly advance
Hausa representation in LLMs, making them more
robust, efficient, and culturally relevant for Hausa
speakers.

5 Conclusion

Advancing Hausa NLP requires a multifaceted
approach that addresses both technical and
community-driven challenges. Below, we outline
key areas for future research and development.

Future research should investigate the interplay
between tokenization strategies and model initial-
ization to optimize the learning efficiency of Hausa
LLMs. Techniques inspired by the BabyLM Chal-
lenge (Hu et al., 2024) could be adapted to Hausa,
focusing on sample-efficient pretraining and de-
velopmentally plausible corpora. Such approaches
could mitigate data scarcity while improving model
performance, particularly in low-resource settings.

Innovative architectures that support dynamic re-
tokenization based on context could significantly
enhance the representation of Hausa’s linguistic
features. These models would adapt tokenization to
better capture dialectal variations and morpholog-
ical complexity, improving generalization across
diverse Hausa texts. This is especially important
given the language’s rich morphology and tonal
variations, which are often underrepresented in cur-
rent models.

Building on the work of Wolf et al. (2023), future
studies could explore encoding prosodic features
into embeddings to improve the contextual under-
standing of Hausa. Although prosody carries infor-
mation beyond text, its integration could enhance
model performance, particularly in low-resource
settings. This approach could also facilitate better
handling of tonal variations in Hausa, which are
critical for accurate language representation.

Creating richer and more diverse datasets for
Hausa is essential for advancing NLP applications.
Future efforts should focus on curating datasets that
capture both formal and informal text, as well as di-
alectal variations. Techniques such as data augmen-
tation, synthetic data generation, and crowdsourc-
ing could help address data scarcity and improve
model robustness. Expanding digital resources
through initiatives like web crawling and commu-
nity contributions (Schlippe et al., 2012; Ibrahim
et al., 2022) will also play a crucial role.
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Engaging the Hausa-speaking community in
dataset creation and model evaluation is vital for en-
suring that LLMs reflect the linguistic and cultural
nuances of Hausa. Collaborative efforts between
researchers, linguists, and native speakers could
lead to more representative and inclusive models.
Community-driven approaches can also help ad-
dress biases and improve the cultural and emotional
representation of Hausa in NLP systems (Ahmad
et al., 2024).

Multilingual and cross-lingual transfer learn-
ing offers promising opportunities to leverage re-
sources from related languages to enhance Hausa
NLP. For instance, the work of Erasmo Ndomba
et al. (2025) demonstrates that language-specific
tokenizers outperform multilingual tokenizers in
tasks like sentiment and news classification for
African languages. Interestingly, their findings
reveal that a tokenizer trained on Swahili outper-
formed one trained on Hausa for Hausa-specific
tasks, highlighting strong cross-linguistic connec-
tions between these languages. This suggests that
shared linguistic structures and features among
African languages can be harnessed to improve
model performance. Future research should ex-
plore these cross-linguistic bonds further, leverag-
ing multilingual capabilities and federated learning
techniques to enhance Hausa NLP (Zhao et al.,
2024).

Adapting and fine-tuning existing LL.Ms to bet-
ter handle the unique linguistic features of Hausa
is another critical area for future work (Acikgoz
et al., 2024; Abubakar et al., 2024). Additionally,
addressing biases and ensuring culturally aware
models will be essential for creating systems that
accurately represent the emotions and nuances of
the Hausa language (Ahmad et al., 2024).
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Table 1: Publicly available Hausa datasets

SN Source Domain Task Size Repository
1 (Muhammad Tweets Sentiment 30k https://github.com/hausanlp/
etal., 2022) Analysis NaijaSenti/blob/main/README.md
2 Rakhmanov Teachers’ Sentiment 40k https://github.com/MrLachin/
and Schlippe evaluation Analysis HESAC
(2022a)
3 (Aliyu et al., Tweets Hate speech 6k https://github.com/hausanlp/
2022) detection HERDPhobia
3  Adelanietal. News Topic classi- 3k https://github.com/
(2023) fication masakhane-io/masakhane-news
4 (Inuwa- Tweets/News Machine https://github.com/ijdutse/
Dutse, 2023) translation, hausa-corpus/tree/master
raw texts
5 (Dione et al., News POS tagging 1,504 sents. https://github.com/
2023) masakhane-io/masakhane-pos/
tree/main/data/hau
6  (Bichi et al., News Summarization 113 articles https://journals.plos.org/
2023) plosone/article/file?type=
supplementary&id=10.1371/
journal.pone.0285376.s001
7  (Ogundepo Wikipedia Question An- 1171 https://github.com/
etal., 2023) swering masakhane-io/afriqga
8  (Adelani NER News 2,720 & 8,165 https://github.com/
et al., 2021, masakhane-io/masakhane-ner/
2022c¢)
9  Adelani et al. Machine News https://github.com/
(2022a) Translation masakhane-io/lafand-mt/tree/
main
10 (Akhbardeh = Machine News & Reli- Numerous https://data.statmt.org/wmt21/
etal., 2021)  Translation gious translation-task/
11 (Goyal et al., Machine Wikimedia ~2000 https://github.com/
2022) Translation openlanguagedata/flores
12 (Vegi et al., Machine Web Crawl https://github.com/pavanpankaj/
2022) Translation Web-Crawl-African?tab=
readme-ov-file
13 (Sani et al., News Text Classifi- 5172 https://github.com/TheBangis/
2025a) cation hausa_corpus
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Abstract

Machine translation (MT) has advanced signifi-
cantly for high-resource languages, yet special-
ized domain translation remains a challenge
for low-resource languages. This study evalu-
ates the ability of state-of-the-art multilingual
models to translate animal health reports from
English to Yorub4, a crucial task for veterinary
communication in underserved regions.We cu-
rated a dataset of 1,468 parallel sentences and
compared multiple MT models in zero shot and
fine-tuned settings. Our findings indicate sub-
stantial limitations in their ability to generalize
to domain-specific translation, with common
errors arising from vocabulary mismatch, train-
ing data scarcity, and morphological complex-
ity. Fine-tuning improves performance, particu-
larly for the NLLB 3.3B model, but challenges
remain in preserving technical accuracy. These
results underscore the need for more targeted
approaches to multilingual and culturally aware
LLMs for African languages.

1 Introduction

Machine translation (MT) has the potential to im-
prove communication in African languages, but
most state-of-the-art models underperform in spe-
cialized domains. Yoruba-speaking communities
rely on accurate veterinary translations for disease
surveillance and livestock health. However, generic
MT models struggle with technical terms and tonal
complexities. This study evaluates MT models
for domain-specific translation, highlighting chal-
lenges and improvements through fine-tuning.

2 Related Work

Recent advances in machine translation (MT)
have significantly improved low-resource language
translation through transfer learning and unsuper-
vised MT techniques. For African languages, par-
ticularly Yorub4, pre-trained multilingual models
like mT5 and mBART (Lee et al., 2022)have shown

promising results when fine-tuned on Yoruba data
(Adelani et al., 2022). However, challenges per-
sist in domain-specific applications, especially in
specialized fields such as animal health, where stan-
dardized terminologies are often absent or under-
developed (Abenet). Existing MT systems such as
NLLB and Google Translate frequently produce
erroneous translations of technical terms, high-
lighting the need for domain-specific fine-tuning
(Adebara and Abdul-Mageed, 2022).To address
data scarcity in low-resource MT systems, re-
searchers have explored various augmentation tech-
niques. Back-translation has shown promise by
creating synthetic parallel data from monolingual
target-language content(Jauregi Unanue and Pic-
cardi, 2020), though its effectiveness in preserving
technical accuracy remains uncertain for domain-
specific translations(Baruah and Singh, 2022).Syn-
thetic data generation techniques have been inves-
tigated for neural MT (Tonja et al., 2023), while
human-in-the-loop strategies incorporating domain
experts (Nunes Vieira, 2019) have emerged as cru-
cial approaches for improving translation quality,
particularly in specialized domains (Yang et al.,
2023). Evaluation of MT systems in specialized
domains requires comprehensive assessment ap-
proaches that go beyond traditional metrics. While
metrics such as BLEU, AfriComet and chrF pro-
vide insights into different aspects of translation
quality, (Zappatore and Ruggieri, 2023) argue that
specialized domains like biomedical MT require
tailored evaluation strategies emphasizing terminol-
ogy accuracy and practical usability. For Yoruba
animal health translation, these metrics collec-
tively offer a multi-faceted assessment framework:
BLEU measures n-gram overlap, AfriComet ac-
counts for semantic accuracy in African languages,
and chrF captures character-level precision, partic-
ularly valuable for morphologically rich languages
like Yoruba.
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3 Dataset and Methodology

We introduce VetYorubd, a curated corpus of 1,468
English-Yoruba parallel sentences, sourced from
veterinary health reports. Data preprocessing in-
cluded normalization to handle Yoruba’s tonal or-
thography. We evaluated multiple MT models, in-
cluding NLLB 3.3B (Team et al., 2022), AfriTeVa
(Jude Ogundepo et al., 2022), and mTO, under zero-
shot and fine-tuned conditions. Metrics such as
BLEU, chrF, and AfriComet were used to assess
translation quality. We collected our data from three
primary sources: the World Organisation for An-
imal Health (WOAH) reports focusing on seven
epidemiologically significant diseases in the re-
gion: Rabies, Avian Influenza, Newcastle Disease,
Foot-and-Mouth Disease (FMD), African Swine
Fever (ASF), Bovine Tuberculosis, and Peste des
Petits Ruminants (PPR). Food and Agriculture Or-
ganization (FAO) documentation covering animal
health practices, preventive measures, and outbreak
management protocols, selected to enhance the cor-
pus’s terminological breadth. Real-time epidemi-
ological data extracted using PADI-Web (Valentin
et al., 2020), an event-based surveillance tool that
aggregates information from both structured (offi-
cial reports) and unstructured sources (news arti-
cles, social media)(Oladipo et al., 2023). We fo-
cused on maintaining a balanced representation
across different disease contexts and livestock cate-
gories. Veterinarians facilitated data curation, while
native speakers of Yorub4 translated the sentences.
The translations were then validated by veterinari-
ans fluent in Yoruba.

Split | Size | TTR (English) | TTR (Yoruba)
Train | 1172 0.2243 0.1672
Dev 147 0.4706 0.3629
Test 147 0.4592 0.3485

Table 1: Dataset split and Type-Token Ratio(TTR) for
English and Yoruba sentences

4 Results and Discussion

Zero-shot translation yielded poor results in all
models, with NLLB 3.3B achieving a BLEU score
of 2.9. Fine-tuning improved performance signifi-
cantly, raising BLEU to 45.89 for NLLB 3.3B and
enhancing chrF and AfriComet scores. However,
translation errors persisted, particularly in complex
veterinary terms and tonal variations. These find-
ings highlight the limitations of general-purpose
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Figure 1: MT Model performance on Yoruba Animal
Health Translation

LLMs in handling domain-specific, low-resource
languages.

The performance of the machine translation mod-
els evaluated was quantified using BLEU (Pap-
ineni et al., 2002), chrF (Popovi¢, 2015), and
AfriComet (Wang et al., 2024) metrics under both
zero-shot and fine-tuned conditions. Overall, fine-
tuning on our domain-specific dataset of 1,468 En-
glish—Yoruba sentence pairs resulted in marked
improvements across all metrics. In the zero-
shot setting, the models generally exhibited low
performance, with many struggling to produce
coherent translations in the specialized domain
of animal health. mTO achieved a BLEU score
of 11.57, while other models such as Afri-mT5
and AfriTeVa_v2 recorded near-zero BLEU scores
(0.0003 and 0.005, respectively).Fine-tuning of the
models on the curated veterinary dataset signifi-
cantly improved translation quality. The BLEU
score of the mTO model improved to 15.9, while
NLLB 3.3B exhibited the most dramatic gain, ris-
ing from 2.9 to 45.89. This improvement was
consistently reflected in the chrF scores, with
NLLB 3.3B increasing from 19.47 to 66.85. The
AfriComet metric further supported these improve-
ments, particularly for the NLLB 3.3B and the
AfriTeVa base, whose fine-tuned scores of 62 and
35, respectively, signified better semantic align-
ment and contextual accuracy in translations.The
substantial improvements observed in key models,
particularly NLLB 3.3B, confirm that fine-tuning
can mitigate the limitations of zero-shot translation
(Alabi et al., 2022) and lead to more accurate and
reliable translations of technical content in Yorub4.

5 Conclusion and Future Work

This study underscores the challenges of apply-
ing multilingual LLMs to specialized translation
tasks in African languages. Although fine-tuning
improves performance, key limitations remain, em-
phasizing the need for tailored approaches integrat-
ing linguistic features such as tone and morphology.
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Future research would focus on expanding domain-
specific corpora and developing African-centric
models for technical translation tasks in animal
health.

References

T. A. Abenet. Bridging the gap: Legal and medical
translation in African indigenous languages. In Pro-
ceedings of ...

I. Adebara and M. Abdul-Mageed. 2022. Towards afro-
centric nlp for african languages: Where we are and
where we can go. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3814-3841,
Dublin, Ireland. Association for Computational Lin-
guistics.

D. I. Adelani, J. O. Alabi, A. Fan, J. Kreutzer, X. Shen,
M. Reid, D. Ruiter, D. Klakow, P. Nabende, E. Chang,
et al. 2022. A few thousand translations go a long
way! Leveraging pre-trained models for African
news translation. In Proceedings of the North Amer-
ican Chapter of the Association for Computational
Linguistics.

Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius
Mosbach, and Dietrich Klakow. 2022. Adapting pre-
trained language models to African languages via
multilingual adaptive fine-tuning. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4336-4349, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Rupjyoti Baruah and Anil Kumar Singh. 2022. A Clin-
ical Practice by Machine Translation on Low Re-
source Languages. CRC Press eBooks.

I. Jauregi Unanue and M. Piccardi. 2020. Pretrained
language models and backtranslation for English-
Basque biomedical neural machine translation. In
Proceedings of the Fifth Conference on Machine
Translation, pages 826-832, Online. Association for
Computational Linguistics.

Odunayo Jude Ogundepo, Akintunde Oladipo, Mofe-
toluwa Adeyemi, Kelechi Ogueji, and Jimmy Lin.
2022. AfriTeVA: Extending ?small data? pretrain-
ing approaches to sequence-to-sequence models. In
Proceedings of the Third Workshop on Deep Learn-
ing for Low-Resource Natural Language Processing,
pages 126—-135, Hybrid. Association for Computa-
tional Linguistics.

En-Shiun Annie Lee, Sarubi Thillainathan, Shravan
Nayak, Surangika Ranathunga, David Ifeoluwa Ade-
lani, Ruisi Su, and Arya D. McCarthy. 2022. Pre-
trained multilingual sequence-to-sequence models:
A hope for low-resource language translation? In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 58—67, Dublin, Ireland.
Association for Computational Linguistics.

Lucas Nunes Vieira. 2019. Post-Editing of Machine
Translation, pages 319-335.

Akintunde Oladipo, Mofetoluwa Adeyemi, Ore-
vaoghene Ahia, Abraham Owodunni, Odunayo Ogun-
depo, David Adelani, and Jimmy Lin. 2023. Better
quality pre-training data and t5 models for African
languages. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 158-168, Singapore. Association for Compu-
tational Linguistics.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
BLEU: A method for automatic evaluation of ma-
chine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Lin-
guistics, pages 311-318. Association for Computa-
tional Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, John
Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan,
Dirk Rowe, Shannon Spruit, Chau Tran, Pierre An-
drews, Necip Fazil Ayan, Shruti Bhosale, Sergey
Edunov, and Angela Fan. 2022. No language left
behind: Scaling human-centered machine translation.
Preprint, arXiv:2207.04672.

A. L. Tonja, O. Kolesnikova, A. Gelbukh, and
G. Sidorov. 2023. Low-resource neural machine
translation improvement using source-side monolin-
gual data. Applied Sciences, 13(1201).

Sarah Valentin, Elena Arsevska, Sylvain Falala, Jocelyn
de Goér, Renaud Lancelot, Alizé Mercier, Julien Ra-
batel, and Mathieu Roche. 2020. Padi-web: A mul-
tilingual event-based surveillance system for mon-
itoring animal infectious diseases. Computers and
Electronics in Agriculture, 169:105163.

Jiayi Wang, David Ifeoluwa Adelani, and Agrawal.
2024. Afrimte and africomet: Enhancing comet
to embrace under-resourced african languages.
Preprint, arXiv:2311.09828.

Xinyi Yang, Runzhe Zhan, Derek F. Wong, Junchao
Wu, and Lidia S. Chao. 2023. Human-in-the-loop
machine translation with large language model. In
Proceedings of Machine Translation Summit XIX, Vol.
2: Users Track, pages 88-98, Macau SAR, China.
Asia-Pacific Association for Machine Translation.

M. Zappatore and G. Ruggieri. 2023. Adopting machine
translation in the healthcare sector: A methodological
multi-criteria review. Computer Speech & Language,
page 101582.

194


https://aclanthology.org/2022.coling-1.382/
https://aclanthology.org/2022.coling-1.382/
https://aclanthology.org/2022.coling-1.382/
https://doi.org/10.18653/v1/2022.deeplo-1.14
https://doi.org/10.18653/v1/2022.deeplo-1.14
https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.18653/v1/2022.findings-acl.6
https://aclanthology.org/2023.emnlp-main.11
https://aclanthology.org/2023.emnlp-main.11
https://aclanthology.org/2023.emnlp-main.11
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://doi.org/10.3390/app13021201
https://doi.org/10.3390/app13021201
https://doi.org/10.3390/app13021201
https://doi.org/10.1016/j.compag.2019.105163
https://doi.org/10.1016/j.compag.2019.105163
https://doi.org/10.1016/j.compag.2019.105163
https://arxiv.org/abs/2311.09828
https://arxiv.org/abs/2311.09828
https://aclanthology.org/2023.mtsummit-users.8/
https://aclanthology.org/2023.mtsummit-users.8/

Evaluating Robustness of LLMs to Typographical Noise in Yoruba QA

Paul Okewunmi!-?*

Favour James'

Oluwadunsin Fajemila'?

ML Collective
2Obafemi Awolowo University
{ptokewunmi, fujames, oefajemila}@student.oauife.edu.ng

Abstract

Generative Al models are primarily accessed
through chat interfaces, where user queries of-
ten contain typographical errors. While these
models perform well in English, their robust-
ness to noisy inputs in low-resource languages
like Yoruba remains underexplored. This work
investigates a Yorubd question-answering (QA)
task by introducing synthetic typographical
noise into clean inputs. We design a proba-
bilistic noise injection strategy that simulates
realistic human typos. In our experiments, each
character in a clean sentence is independently
altered, with noise levels ranging from 10% to
40%. We evaluate performance across three
strong multilingual models using two comple-
mentary metrics: (1) a multilingual BERTScore
to assess semantic similarity between outputs
on clean and noisy inputs, and (2) an LLM-as-
judge approach, where the best Yorubé-capable
model rates fluency, comprehension, and accu-
racy on a 1-5 scale. Results show that while
English QA performance degrades gradually,
Yoruba QA suffers a sharper decline. At 40%
noise, GPT-40 experiences over a 50% drop
in comprehension ability, with similar declines
for Gemini 2.0 Flash and Claude 3.7 Sonnet.
We conclude with recommendations for noise-
aware training and dedicated noisy Yoruba
benchmarks to enhance LLM robustness in low-
resource settings.

1 Introduction

Large Language Models (LLMs) have transformed
the landscape of Natural Language Processing
(NLP), enabling advanced reasoning and question-
answering (QA) capabilities. These models per-
form exceptionally well in high-resource languages
like English, where extensive training data and
noise-handling mechanisms enhance robustness.
However, their effectiveness in low-resource lan-

*Corresponding author.

Kini itumo iwa omoluabi?

Iwa omoldabi timo si awon iwa rere ti
omo Yorubd ni lati ni. O kan owd fin

awon agbalagba, otitd, iwa tutu ati

iteriba fun agba.

Kini itump iws gmilaubi

Mi o e faseyinwd pelu ibéere yi nitori
pé ibéeré nda ko yé mi ddadaa. oro
"itump" ati "omilaubi" ko dabi eka ede
Yoruba ti mo mo.

\ J

Figure 1: The top conversation represents a correct re-
sponse, while the bottom conversation illustrates errors
due to typographical noise. The question in the bottom
example contains multiple error types, which includes
replacement and transposition. As a result, the model
fails to understand the query and responds with confu-
sion.

guages like Yorubd remains underexplored (Inuwa-
Dutse, 2025).

A key challenge affecting LLM robustness is
sensitivity to input variations. Minor typographical
errors, such as omitted letters or misplaced diacrit-
ics, can significantly degrade model performance.
Prior research (Moradi and Samwald, 2021; Vaib-
hav et al., 2019) has analyzed this phenomenon in
English QA tasks, revealing how slight distortions
mislead models. However, little is known about its
effects in Yorub4, a tonal language heavily reliant
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on diacritics to convey meaning. Misplaced or omit-
ted diacritics can alter words entirely—e.g., “Ogtin”
(a deity) vs. “ogun” (war) vs. “ogin” (twenty), pre-
senting an even greater risk of misinterpretation
(Jimoh et al., 2025).

Despite the linguistic importance of diacritics,
Yorubad text is often written without them in elec-
tronic media, most often due to keyboard limita-
tions or user habits, resulting in significant infor-
mation loss (Jimoh et al., 2025). As illustrated
in Figure 1, typographical distortions can lead to
misinterpretations that affect model performance
in QA tasks. LLMs trained predominantly on high-
resource languages may struggle with these nu-
ances, raising a critical question: How well do
LLMs handle typographical errors in Yoruba
question answering?

Handling noisy text is crucial for real-world
applications, particularly in multilingual settings.
While typographical perturbations and adversar-
ial attacks have been studied extensively in En-
glish, systematic evaluations for Yorub4 are lack-
ing—despite the language being spoken by over
40 million people. Understanding how well LLMs
handle noisy Yorubd input is essential for improv-
ing their reliability across diverse linguistic con-
texts.

To address this gap, we construct a controlled
Yorubd QA dataset with synthetic typographical
noise using a probabilistic noise modeling ap-
proach. Characters in clean sentences are inde-
pendently altered at noise levels ranging from 10%
to 40%, introducing errors such as insertions, re-
placements, and transpositions (swapping) based
on keyboard adjacency. We also explore a variant
where error types are randomly selected, incorpo-
rating leet replacements (e.g., '¢’ — ’3’,’0’ — ’0’,
’s’ — ’$’)(Zhang et al., 2022). Model responses
to noisy inputs are evaluated against clean text us-
ing semantic similarity metrics such as BERTScore
(Zhang et al., 2020) and an LL.M-as-judge evalua-
tion framework (Zheng et al., 2023).

Our contributions are as follows:

1. We propose a probabilistic noise generation
method that simulates human typographical
errors in Yorubd.

2. We systematically evaluate the impact of ty-
pographical noise on Yoruba QA performance
using GPT-40, Gemini 2.0 Flash and Claude
3.7 Sonnet.

3. We provide insights to inform noise-aware
training, develop evaluation datasets, and es-
tablish benchmarks for assessing typographi-
cal robustness in Yoruba NLP.

2 Related Work

Given the increasing prevalence of chat-based lan-
guage models facilitating text-based interaction be-
tween users and language models, several stud-
ies have explored how user-generated typograph-
ical errors influence model performance. Pre-
vious research has utilized artificially generated
noisy datasets created through various simulation
methodologies (Kumar et al., 2020; Cai et al.,
2022). Specifically, these studies introduced noise
by randomly altering a percentage of characters
based on proximity within the QWERTY keyboard
layout, effectively simulating typical typing errors
encountered in real-world interactions.

However, much of this research has primarily
concentrated on monolingual settings, predomi-
nantly English, neglecting the assessment of mul-
tilingual language models with diverse multilin-
gual test scenarios (Moradi and Samwald, 2021;
Wang et al., 2023). Consequently, investigations
into textual noise have largely been restricted to
English-language contexts. Despite impressive per-
formances by large multilingual models across var-
ious tasks and languages, their effectiveness tends
to diminish significantly when applied to languages
other than English, particularly low-resource lan-
guages (Etxaniz et al., 2023).

Additionally, existing literature has mainly evalu-
ated transformer-based models such as BERT, sug-
gesting a research gap regarding larger, recently
popularized language models (Cooper Stickland
et al., 2023). Previous studies demonstrated the
robustness of models like BERT, XILM-Roberta,
and XLNet against textual noise, noting their com-
mendable performance despite their relatively mod-
est sizes, typically under 0.3 billion parameters.
This highlights a clear distinction from contempo-
rary LLMs, which frequently possess parameter
counts in the billions, underscoring the necessity
for further investigations into their resilience to
noisy inputs.

This study addresses the gap between contempo-
rary chat-based LLMs and authentic typographical
errors observed in practical usage. It examines the
robustness of large language models with multi-
lingual capabilities, specifically using noisy, real-
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Error Example Sentence

None Ki 16 mu ki ero kompiita fi se
pataki puipo ni ayé ode oni?

Replacement i 16 mu ji ¢fo kompita fi se
pataki pupo ni ayé ode onk?

Insertion Ki 16 mu kiu ¢ero kompiita fi se
patagki puipo ni ayé ode ooni?

Transposition Ki 16 mu ki gor kmoputa fi se
pataki pupo ni ayé ode 0in?

Random Ki 10 mu k1 ero okmputa fi $e

pataki pupo ni ayé pde Oni

Table 1: Yorub4 text with different error types.

world Yoruba datasets.

3 Methodology

3.1 Typographical Error Types

To effectively replicate real-world user interactions,
we focus on modifying words in ways that reflect
common typing errors made during chatbot con-
versations with LLMs. To assess their impact, we
introduce four primary categories of typographical
errors using a probabilistic modeling approach:

¢ Insertion Errors: An extra character, either
the same as the intended one (double typing)
or an adjacent key from a QWERTY keyboard,
is inserted immediately after the original char-
acter. This simulates accidental keystrokes
common in rapid typing.

* Replacement Errors: The intended character
is replaced with a neighboring key based on
the QWERTY layout, mimicking mistyped
characters.

 Transposition (Swap) Errors: Two adjacent
characters swap positions, replicating com-
mon finger-slips where typists accidentally in-
vert the order of two neighboring characters.

e Random Errors: A combination of insertion,
replacement, transposition, and character-to-
symbol substitutions (leetspeak errors, e.g.,
replacing ’e’ with ’3’, ’0’ with ’0’) is applied.
This mixed-error category closely reflects real-
world, unstructured typing mistakes.

These error types collectively represent realistic
erros that can substantially affect the performance
of language models, especially in a linguistically
sensitive context such as Yoruba question and an-
swering tasks. Table 1 shows examples of these
errors in a sentence.

3.2 Noise Injection Strategy

To precisely evaluate the impact of typographical
errors, we employ a probabilistic noise injection
approach. Given a clean text sequence of length [V,
we introduce errors at a predefined rate p, modify-
ing a fraction of characters to simulate real-world
typing mistakes.

The number of modified characters, V., is deter-
mined as:

Ne=|px N|

where p is the error rate (e.g., 10%, 20%, 40%).

For each selected character position, one of the
previously described error types is applied. The
error type is either predetermined (for controlled
experiments) or chosen randomly for greater vari-
ability.

The noise injection process follows these steps:

1. Text Tokenization: The input text is split into
individual characters while preserving spaces.

2. Error Injection: A random subset of char-
acters, determined by N, is selected, and an
error type is applied.

3. Text Reconstruction: The modified sequence
is reconstructed, ensuring that spacing and
word boundaries remain intact.

Since the selection of characters to be modified is
performed uniformly at random, each character in
the text has an equal probability of being selected
for modification. The probability that a specific
character z; is selected for modification is:

. . N,
P(x; is modified) = We =p
This implies that every character has an indepen-
dent probability p of being altered, regardless of
its position in the sequence. The overall process is
further illustrated in Algorithm 1.
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Algorithm 1 Probabilistic Typo Injection

Require: Clean text sequence X = {z1, 2, ..., Zn}, error
rate p, predefined error mapping 7', noise function N
Ensure: Noisy text sequence X' = {z}, 5, ..., 2}, }
1: Compute number of typo errors:

Ne = |pxn|
2: Randomly select N character positions:
P = RandomSample({1,2,...,n}, N.)

3: fori € Pdo

4: Retrieve predefined error type 7; from mapping 7'
5: Apply noise function A based on T}:

6: if T; = Insertion then

7: Insert an adjacent or duplicate character

8 else if 7; = Replacement then

9: Replace character with a neighboring key
10: else if T; = Transposition then
11: Swap adjacent characters
12: else if T; = Random then
13: Apply a mix of predefined transformations
14: end if
15: end for

16: Construct noisy text X’ by modifying selected positions
in X
17: return X’

4 Experimentation

4.1 Dataset

The dataset used in this study consists of 50 cu-
rated Yorubd QA pairs, carefully selected to ensure
a balance between culturally specific questions and
general knowledge inquiries. The culturally pe-
culiar questions focus on topics rooted in Yorubd
traditions, language, and history, while the general
knowledge questions cover widely known facts that
are not restricted to any specific cultural context.
The average question length is about 15 words.

Each question in the dataset is structured to en-
courage detailed responses rather than one-word
answers. This design choice ensures that evalua-
tion is not based on exact matches but rather on
the LLM’s ability to understand the question and
generate an accurate and contextually appropriate
response.

4.2 Generating Noisy Variants from Dataset

To evaluate the impact of typographical noise on
Yoruba QA, we introduce controlled noise to cre-
ate variations of the clean questions in the dataset.
For each question, we introduce typographical er-
rors at predefined rates. Every question undergoes
modifications corresponding to the four error types,
with error rates varying from 10% to 40% in incre-
ments of 10%. This range ensures that we capture a

spectrum of real-world errors, from minor typos to
more severe distortions. Increasing noise beyond
this threshold could result in unnatural sentences,
making evaluation less meaningful.

To account for variability, we generate three dis-
tinct variations for each error type at each noise
level, ensuring that different subsets of characters
are affected. This results in a total of:

4 (error types) X 4 (error rates)

x 3 (variations per rate) = 48

noisy versions per sentence. Since we have 50
sentences in our dataset, we end up with a total of:

50 x 48 = 2,400

sentences, allowing for a diverse evaluation of
model robustness.

Having multiple variations per sentence en-
hances evaluation depth and reliability. First, it
provides a comprehensive assessment of how differ-
ent types and levels of noise impact model perfor-
mance. Additionally, by generating multiple varia-
tions at the same noise level, we ensure that evalu-
ation results are not biased by a specific character
selection, reducing variance and improving statis-
tical significance. Finally, this approach closely
reflects real-world typing errors, as users rarely
make the same mistake in a fixed pattern.

4.3 Models

Each noisy variation of the dataset is input into
the models using the same system prompt to en-
sure consistency across evaluations. The prompt
explicitly instructs the models to limit responses to
a maximum of 25 words, balancing computational
efficiency with response relevance.

To enforce deterministic outputs, we set the tem-
perature to 0, ensuring a fixed response pattern for
each input. The generated responses are logged
for further evaluation, enabling direct comparisons
between clean and noisy input variations.

4.4 Evaluation Process

We pass the clean questions to the models, using
their returned output as a gold standard for compar-
ison. Next, we introduce typographical noise and
compare the models’ responses to their clean-input
counterparts to measure performance degradation.
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Model Error Rate LLM as Judge Refusal BertScore
Fluency Comp. Acc.|Rate (%)| P R F1
10 4.9 4.9 4.8 0.7 824 822 823
. . 20 4.8 43 4.3 8.4 79.2 79.0 79.1

Google Gemini

30 4.7 32 3.1 29.4 76.0 753 75.6
40 4.7 2.3 22 59.1 73.4 727 73.0
10 4.8 4.9 4.8 1.0 83.0 80.0 84.0
Claude sonnet 3.7 20 4.7 4.5 4.5 8.0 80.0 78.0 80.0
30 4.5 34 33 19.7 77.0 77.0 76.0
40 4.0 2.1 2.0 35.0 71.0 72.0 73.0
10 4.9 4.8 4.7 0.4 859 85.8 859
GPT-4 Omni 20 4.5 4.2 4.1 2.5 81.2 80.9 8l1.1
30 4.1 3.1 3.0 13.4 77.1 76.7 76.9
40 4.2 2.2 1.9 38.1 73.8 73.1 734

Table 2: Model Performance Across Error Rates: Fluency, Comprehension, Accuracy, Refusal Rate, and BERTScore

4.4.1 Maetrics for Measuring Robustness

BERTScore for Semantic Similarity: To assess
how typographical noise affects responses, we com-
pute BERTScore between the model’s outputs for
clean and noisy inputs. Unlike BLEU (Papineni
et al., 2002), which relies on n-grams, BERTScore
leverages contextual embeddings from pre-trained
models to measure semantic similarity.

However, BERTScore’s effectiveness for Yoruba
is limited by the poor quality of its language em-
beddings in multilingual models, as low-resource
languages often lack sufficient training data for
robust representations. As a result, while it can
measure similarity, it sometimes fails to reflect how
dissimilar two Yorub4 sentences truly are, necessi-
tating additional evaluation methods.
LLM-as-a-Judge Evaluation: Given
BERTScore’s limitations, we use an LLM-
as-a-Judge approach, leveraging Google’s Gemini
2.0 Flash for human-like evaluation. This method
assesses whether the models maintain meaningful
understanding despite noise. The system prompt
provided to the LLM acting as judge is show in
Appendix B.

The evaluation process follows these steps:

1. The clean question and the noisy-response
pair are fed to the model.

2. The model scores the response, based on the
following:

* Fluency: Grammatical correctness and
naturalness.

* Comprehension: Understanding of the
question.

* Accuracy: Correctness of the response.

3. The model also classifies responses as either:

* A valid attempt at answering the ques-
tion.

* A refusal or failure to understand, includ-
ing responses like: "Mo nilo alayé siwdju
si" ("I need more clarification.") or "Emi
ko le ddhun ibéere yii." ("I can’t provide
an answer.").

This helps us to calculate the refusal rate:

Number of refusals

Refusal Rate(RR) =
efusal Rate(RR) Total questions asked

By combining BERTScore with LLM-based
evaluation, we obtain a more comprehensive as-
sessment of model performance, capturing both se-
mantic similarity and human-like judgment across
varying levels of typographical noise.

5 Results and Findings

Table 2 presents the main results on the effect of
varying levels of typographical noise in Yorub4 sen-
tences on LLM, using different evaluation metrics
across the three models.

5.1 Opverall Performance Trend

The findings reveal that typographical noise
severely affects comprehension and accuracy once
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Figure 3: BERTScore (F1) Evaluation Across Error Rates and Error Types

it exceeds 20% - all models show comparable diffi-
culty in extracting meaning from increasingly dis-
torted inputs. Fluency remains relatively stable
across all models, indicating that while the mod-
els can still generate well-formed sentences, they
often misinterpret noisy inputs or in other cases
simply say they cannot answer or need more infor-
mation in a well-written sentence. Similarly, the
refusal rate increases significantly after the 20%
noise level, indicating that the models refuse to
respond as the noise increases. This suggests that,
past a certain threshold, models prioritize avoid-
ing incorrect responses over attempting a response
based on uncertain input.

5.2 Which type of error has the most
significant effect on performance?

Different error types impact performance in dif-
ferent ways, as seen in Figure 3. From the graph,
we note that insertion errors introduce minor noise,
but do not significantly degrade comprehension. In
contrast, replacement errors cause the most sub-
stantial drop, as they alter the core word structures.
Random and swap errors produced mixed results,
but followed a general downward trend.

5.3 Which of the models is more robust?

No one model stands out to be more robust, in-
stead each exhibits some unique trends. For ex-
ample, in Table 2, we note that at higher noise

levels (30-40%) GPT-40 tends to attempt answer-
ing the question even when comprehension is very
low, but Gemini tries to play it safe by declining
to give an answer. From Figure 2, we can see that
claude performs slightly better in comprehension
than GPT-40 at lower noise levels (10-20%) but
deteriorates faster at higher noise rates. Gemini
maintains the highest stability in fluency, but its
accuracy and comprehension decline significantly
at 30% noise and beyond.

5.4 What kind of performance do we see for
English

A similar evaluation was conducted on the English
translations of the Yoruba sentences using the same
error injection strategy, revealing a stark contrast
in model robustness. While Yoruba comprehension
drops rapidly with increasing noise levels, As ex-
pected, English maintains high accuarcy and com-
prehension scores, this is shown in Appendix A.
This further illustrates the fact that LLMs are sig-
nificantly more resilient to typographical noise in
English due to greater training data exposure and fa-
miliarity with noisy text variations in high-resource
languages.

6 Conclusion

This study highlights the critical challenge of main-
taining robustness in LLMs under typographical
noise within low-resource languages, specifically
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focusing on Yorub4, a tonal language highly sensi-
tive to orthographic nuances such as diacritics. Our
experimental results underscore the vulnerability
of state-of-the-art models (GPT-4 Omni, Gemini
2.0 Flash, and Claude 3.7 Sonnet) to typograph-
ical errors in Yorubd QA tasks. These findings
highlight the urgent need for noise-aware training,
emphasizing typographical robustness, particularly
for low-resource languages like Yorubd. We recom-
mend for the creation of dedicated, noisy Yoruba
QA benchmarks and noise-aware training strategies
to improve real-world robustness of multilingual
LLMs.

Limitations

Our research has several limitations that future stud-
ies could address. Firstly, the use of synthetic typo-
graphical errors may not fully capture the complex-
ity and variability of real-world user-generated typ-
ing errors. Collecting genuine noisy Yorubé data
would enhance ecological validity and applicabil-
ity of findings. Additionally, although the dataset
scales up to 2400 samples from an initial set of
50 QA pairs, incorporating more QA pairs would
likely enhance generalizability and robustness as-
sessments. Additionally, better semantic similarity
metrics tailored specifically to Yorubd should be
developed, given the limitations of multilingual
BERTScore. Lastly, periodic re-evaluation using
updated LLMs is necessary to reflect continuous
advancements in model robustness.
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Abstract

In this paper, we propose a comprehensive
framework for the classification of Swahili
news articles using a combination of classical
machine learning techniques, deep neural net-
works, and transformer-based models. By bal-
ancing two diverse datasets sourced from Har-
vard Dataverse and Kaggle, our approach ad-
dresses the inherent challenges of imbalanced
data in low-resource languages. Our experi-
ments demonstrate the effectiveness of the pro-
posed methodology and set the stage for further
advances in Swahili natural language process-
ing.

1 Introduction

The rapid growth of digital news platforms has in-
tensified the need for automated text classification
systems. Although substantial progress has been
made in natural language processing (NLP) for
high-resource languages, low-resource languages
such as Swahili remain significantly underrepre-
sented. Swahili, spoken by millions across East
Africa, is essential for disseminating information;
however, the scarcity of balanced and annotated
datasets poses a major challenge for developing
robust NLP models.

This study addresses these challenges by lever-
aging two prominent Swahili news datasets - one
from Harvard Dataverse and another from Kaggle.
By applying advanced data balancing techniques,
we mitigate class imbalances and enhance the re-
liability of our models. Furthermore, we explore
a diverse set of classification methodologies, rang-
ing from traditional machine learning algorithms
to deep neural networks and transformer-based ar-
chitectures. To promote transparency and trust in
automated decisions, explainability tools such as
LIME and SHAP are suggested as promising av-
enues for future work, to shed light on the inner
workings of these classifiers.

2 Related Work

Text classification has long been a core task in Natu-
ral Language Processing (NLP), with early work re-
lying on classical machine learning techniques such
as Support Vector Machines (SVM), Naive Bayes,
and Random Forests (Joachims, 1998; McCallum
and Nigam, 1998). These methods, despite their
simplicity, have shown considerable success in var-
ious domains. With the advent of deep learning,
models such as Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) net-
works have been increasingly applied to capture
complex sequential dependencies in text data (Kim,
2014; Hochreiter and Schmidhuber, 1997).

In recent years, transformer-based models have
revolutionized NLP by leveraging self-attention
mechanisms to learn contextual representations at
scale (Vaswani et al., 2017; Devlin et al., 2019).
These models have not only improved overall per-
formance on benchmark tasks but have also en-
abled more effective handling of nuanced language
phenomena. However, while substantial progress
has been made for high-resource languages, low-
resource languages like Swabhili continue to receive
limited attention.

Prior research on Swabhili text processing has
predominantly utilized traditional machine learn-
ing techniques for tasks such as sentiment analysis
and named entity recognition (Nyoni et al., 2020).
Only recently have deep learning and transformer-
based approaches been explored for Swahili. The
introduction of models such as AfriBERTa (Ogueji
etal., 2021a) and SwahBERTa (Martin et al., 2022)
marks a significant step forward, as these pretrained
models provide richer contextual embeddings tai-
lored for African languages. Despite these advance-
ments, the application of state-of-the-art transform-
ers to Swahili news classification remains underex-
plored.

Our work builds upon this diverse body of re-
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search by integrating classical machine learning,
deep learning, and transformer-based models for
Swahili news classification. By leveraging multi-
ple model architectures and employing advanced
explainability techniques, we aim to bridge the gap
in low-resource NLP and provide a comprehen-
sive evaluation framework that not only improves
classification performance but also enhances model
transparency.

3 Data

We use two datasets for Swahili news classification:

Swahili News Classification Dataset The
Swahili News Classification Dataset was obtained
from Kaggle (Antudre, 2020). It contains Swahili
news articles categorized into five classes: kitaifa
(national), michezo (sports), burudani (entertain-
ment), uchumi (economy), and kimataifa (interna-
tional). Initially, the dataset consists of 22,409
samples across three features. To mitigate class
imbalance, undersampling was applied by taking
1,906 samples from each remaining category, re-
sulting in a balanced dataset of 9,530 samples. The
data was then split into 7,624 training samples and
1,906 testing samples.

Harvard Swahili News Dataset The Harvard
Swahili News Dataset was obtained from Harvard
Dataverse (Harvard Dataverse, 2020). This dataset
comprises news articles from various Swahili me-
dia sources and includes six categories: kitaifa (na-
tional), michezo (sports), kimataifa (international),
burudani (entertainment), afya (health), and bi-
ashara (business). The original dataset contains
31,044 samples across two features. To address
class imbalance, undersampling was performed by
taking 2,611 samples from each category, yielding
a balanced dataset of 15,666 samples. This dataset
was partitioned into 12,532 training samples and
3,134 testing samples.

Preprocessing

Prior to model training, both datasets underwent
the following preprocessing steps: removal of spe-
cial characters; conversion of text to lowercase to
ensure uniformity; tokenization and stopword re-
moval using Swahili-specific NLP libraries; split-
ting the data into 80% training and 20% testing
sets; and balancing the datasets using undersam-
pling to ensure equal distribution across categories.
Tables 1 and 2 summarize the balanced datasets.

Attribute Swabhili News Classification Dataset
Total Samples 9,530
Training Samples 7,624
Testing Samples 1,906
Categories kitaifa, michezo,
burudani, uchumi, kimataifa

Table 1: Summary of Swahili News Classification
Dataset statistics after preprocessing and balancing.

Attribute Harvard Swahili News Dataset

Total Samples 15,666

Training Samples 12,532

Testing Samples 3,134

Categories kitaifa, michezo, kimataifa,
burudani, afya, biashara

Table 2: Summary of Harvard Swahili News Dataset
statistics after preprocessing and balancing.

4 Methodology

4.1 Data Characteristics

Although our primary focus is on the classifica-
tion of Swahili news, we first analyze important
properties of the data that may influence model per-
formance. In particular, we observe the distribution
of text length across the different categories in both
datasets. Figure 1 present the box-and-whisker
plots, illustrating the minimum, first quartile, me-
dian, third quartile, and maximum text lengths for
each category.

From these plots, a few notable patterns emerge:

Certain categories (e.g., burudani) tend to have
lower median text lengths, potentially impacting
the richness of vocabulary captured and affecting
classification performance.

Outliers reaching beyond 20,000 characters in
categories such as kitaifa may contain in-depth or
repeated text, possibly influencing classifier deci-
sions if not handled properly.

Categories with fewer words or shorter articles
on average (e.g., afya in the Harvard dataset) tend
to exhibit slightly lower performance, likely due to
less contextual information per sample.

In the subsequent sections, we detail the model-
ing approaches used to address these challenges.

4.2 Machine Learning Approach'

We begin our methodology with classical machine
learning algorithms, leveraging scikit-learn
pipelines. The process involves:

'Kindly look at the appendix *A’ for more details about
exact implementation of our models

204



Text Length Distribution by Category - SwahiliNewsClassificationDataset (afya removed)
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Figure 1: Text Length Distribution by Category — SwahiliNewsClassificationDataset (afya removed).

Text Representation: We apply a
TfidfVectorizer to convert text into numerical
feature vectors, setting max_features=5000 to
limit dimensionality.

Model Training: We train four models:
SVM, Logistic Regression, Random Forest,
and XGBoost. Each model is embedded in a
Pipeline to ensure reproducible and streamlined
experimentation.

Evaluation: We track metrics like accuracy,
Fl-score, precision, recall, training time, and
inference time. Additionally, we save each trained
pipeline for later analysis and potential use in
explainability methods.

This approach provides initial baselines to com-
pare against the more complex deep learning archi-
tectures.

4.3 Deep Learning Approach

To capture rich semantic and syntactic features, we
develop PyTorch-based models that utilize embed-
ding layers and sequence-processing components.
Specifically, we examine:

BiLSTM: A bidirectional LSTM that can pro-
cess text from left to right and right to left, captur-
ing long-term dependencies.

CNN: A text-based convolutional neural net-
work that extracts local features via sliding filters.

BiLSTM+CNN: A hybrid model that first uses
BiLSTM to glean temporal context, followed by a
1D convolution to capture local n-gram features.

4.3.1

Figure 2 illustrates two of our core deep learning
architectures side by side. We train all deep models
for a fixed number of epochs (e.g., 5), track training
and validation losses, and then evaluate on held-out

Model Architecture Visualization

test data to assess generalization.

4.4 Transformer-Based Approach’

Transformers leverage self-attention to learn con-
textual embeddings and have shown state-of-the-
art performance in various NLP tasks. We finetune
the following models: AfriBERTa (Ogueji et al.,
2021b) , XLM-RoBERTa (Conneau et al., 2019),
and RoBERTa Swahili (Minixhofer et al., 2022)
on our datasets, enabling them to adapt to domain-
specific Swahili news content.

4.4.1 Transformer Architecture Visualization

Figure 2 shows a schematic of two representative
transformer models used in our experiments. We
tokenize the input text using each model’s recom-
mended tokenizer and then feed it through the pre-
trained layers. Finally, a simple classification head
produces the output probabilities. We finetune for
a small number of epochs (e.g., 3) on our train-
ing sets with an early stopping criterion to avoid
overfitting.

Implementation Details. We employ the
Hugging Face Transformers library for loading
and fine-tuning models. Training arguments
(TrainingArguments) are set with a small batch
size (e.g., 4), a learning rate of 2e—5, and a maxi-
mum sequence length of 256. F

5 Experimental Results and Discussion

Table 3 summarizes the experimental results across
three modeling paradigms: classical machine learn-
ing (ML) models, deep learning (DL) models, and
transformer-based models. For each dataset, the

2See appendix A’ for more details about exact implemen-
tation of our models
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Figure 2: Transformer based and Deep Learning based model Architecture Examples

best performing metric values are highlighted in
bold.

Our experimental evaluation reveals several note-
worthy insights:

Classical Machine Learning Models: For the
SwahiliNews dataset, the SVM model achieved the
highest accuracy, F1-score, precision, and recall, in-
dicating robustness in handling the textual features
extracted via TF-IDF. Logistic Regression offered
faster training and inference times, which may be
advantageous in real-time or resource-constrained
scenarios. On the Harvard Dataset, SVM again out-
performed other ML models in terms of classifica-
tion metrics, while Logistic Regression maintained
computational efficiency.

Deep Learning Models: Among DL models,
the CNN architecture outperformed both the BiL-
STM and the hybrid BILSTM+CNN model on the
SwahiliNews dataset. In the Harvard Dataset, Bil-
STM+CNN and CNN models showed similar ef-
fectiveness. CNNs were especially valuable in dis-
tinguishing closely related news categories by cap-
turing local features.

Transformer-Based Models: Transformer mod-
els, leveraging self-attention, consistently yielded
the highest performance across both datasets. No-
tably, the RoOBERTa Base Wechsel Swahili model
achieved the best accuracy, F1-score, precision,
and recall. While transformers incur longer train-
ing and inference times, their ability to capture
contextual nuances in Swahili news articles leads
to significant performance gains.

Additional Interpretations: Shorter text
lengths in some categories, such as entertainment
and health, correlated with slightly reduced per-
formance. ML models provide computational effi-
ciency but are generally outperformed by DL and
transformer-based models, which offer better pre-
dictive robustness. Variations in dataset size and
composition emphasize the importance of tailored
preprocessing and model fine-tuning; transformer
models in particular demonstrated strong adaptabil-
ity.

Comparison with Prior Work: Compared to
the results reported by (Murindanyi et al., 2023),
where the best SVM achieved 83% and their CNN-
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Dataset Model Accuracy F1-Score Precision Recall Train Inference
Time (s) Time (s)
ML Models
SwahiliNews SVM 0.8898 0.8897 0.8897 0.8898 142.0781 7.6992
SwabhiliNews Logistic Regression 0.8814 0.8816 0.8820  0.8814 3.0558 0.4052
SwahiliNews Random Forest 0.8683 0.8691 0.8718  0.8683  26.3243 0.6207
SwabhiliNews XGBoost 0.8788 0.8791 0.8799  0.8788  80.3573 0.4206
Harvard Dataset | SVM 0.8535 0.8532 0.8536  0.8535 299.9927 17.3810
Harvard Dataset | Logistic Regression 0.8462 0.8461 0.8465  0.8462 4.5977 0.5304
Harvard Dataset | Random Forest 0.8287 0.8285 0.8303 0.8287  47.8084 0.8566
Harvard Dataset | XGBoost 0.8481 0.8480 0.8491 0.8481 127.2364 0.5829
DL Models
SwabhiliNews BiLSTM 0.5315 0.5007 0.5767  0.5315  44.7930 0.7452
SwahiliNews CNN 0.8620 0.8630 0.8662  0.8620 3.7755 0.0899
SwahiliNews BiLSTM_CNN 0.8421 0.8422 0.8515 0.8421  48.2156 0.8496
Harvard Dataset | BiLSTM 0.7128 0.7152 0.7306  0.7128  67.9060 1.2125
Harvard Dataset | CNN 0.8293 0.8292 0.8330  0.8293 5.3939 0.1006
Harvard Dataset | BILSTM_CNN 0.8325 0.8304 0.8316  0.8325  79.5473 1.3700
Transformer Models

SwabhiliNews AfriBERTa 0.9355 0.9354 0.9355 0.9355 709.0182  18.5460
SwahiliNews XLM-RoBERTa 0.9344 0.9342 0.9344 09344 876.8414  22.4779
SwahiliNews RoBERTa Wechsel sw | 0.9391 0.9391 0.9393 09391 779.2871 20.8529
Harvard Dataset | AfriBERTa 0.9148 0.9141 09142 09148 1142.9654 29.2730
Harvard Dataset | XLM-RoBERTa 0.9065 0.9060 0.9064  0.9065 1393.1364  35.0627
Harvard Dataset | ROBERTa Weschel sw | 0.9167 0.9165 0.9166  0.9167 1248.5649  33.3698

Table 3: Experimental Results. In the table, Bold values indicate the best performance per metric per dataset/model

and Highlights indicate best overall.

BiLSTM-+Attention model achieved 84% test accu-
racy (with Bagging ensemble at 90%), our SVM,
CNN-based, and hybrid models meet or exceed
these metrics. Most notably, our transformer-based
models set a new state-of-the-art, achieving over
93% test accuracy and demonstrating significant
advances in Swahili news classification.

Generalizability: While our experiments
are focused on Swahili, many Bantu languages
share similar linguistic structures, morphological
patterns, and semantic features. As a result,
the methodologies and insights presented here
may extend to related languages, providing
cross-transfer learning and adaptation.

Overall, our experiments show that while ML
and DL models offer great baselines and efficiency,
transformer-based architectures, especially those
fine-tuned, achieve superior classification perfor-
mance.

6 Challenges

This study has demonstrated that careful model
selection and preprocessing can yield robust
classification results for Swahili news articles

across classical machine learning, deep learning,
and transformer-based approaches.  Notably,
transformer models, particularly the RoBERTa
Base Wechsel Swahili model, have shown superior
performance in capturing the nuances of Swahili
language data, despite increased computational
cost. However, several challenges remain that
must be addressed to further improve Swahili NLP
applications.

A primary challenge is the limited availability of
high-quality annotated data for Swabhili, which
constrains both model training and generalization.
The high computational demand of transformer
models presents an additional barrier to efficient
deployment, particularly in low-resource environ-
ments.

Models trained specifically on news data may not
transfer well to other domains, such as medical
or legal text, making domain adaptation an
important area for future research. The complex
decision-making processes of transformer models
also highlight the ongoing trade-off between
predictive performance and interpretability.
Furthermore, Swabhili’s rich morphology and
regional variations continue to complicate tok-
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enization, embedding, and model generalization,
necessitating more sophisticated preprocessing
strategies.

7 Future Work

In terms of future scope, enriching available
datasets through new data sources and advanced
data augmentation methods remains essential to
mitigate class imbalances and improve representa-
tion for underrepresented categories.

A key area for future work is the systematic ap-
plication and evaluation of advanced interpretabil-
ity techniques, such as Local Interpretable Model-
Agnostic Explanations (LIME) (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), to
provide transparency and insight into model pre-
dictions. Additional explorations might include
attention-based interpretability in transformers, as
well as resource optimization through model com-
pression strategies like knowledge distillation and
quantization to facilitate real-time deployment. Ex-
tending these models to cross-lingual or multilin-
gual contexts could further enhance their applica-
bility across other low-resource languages.

In future work, we plan to expand the scope of our
dataset by collecting and integrating Swahili lan-
guage data from a wider variety of sources, includ-
ing additional news outlets, social media platforms,
and blogs. By incorporating content from these
diverse domains, we aim to construct a more com-
prehensive and representative corpus that captures
the linguistic richness, topical diversity, and infor-
mal language use prevalent in real-world Swahili
communication.

Such an expanded dataset would not only improve
the generalizability and robustness of our models
but also enable more nuanced investigations into
dialectal variations, code-switching, and emerging
trends within the Swahili-speaking digital ecosys-
tem. This approach is expected to facilitate the
development of more effective and inclusive NLP
systems for Swabhili and other low-resource lan-
guages., integration into real-world systems, such
as live news aggregation platforms requiring real-
time inference and continuous learning, remains a
critical direction for future practical impact.

8 Conclusion:

In summary, our findings highlight the strengths
and trade-offs of different NLP models for Swahili

news classification. While classical machine learn-
ing models provide interpretable baselines and
deep learning models offer balanced performance
and efficiency, transformer-based models achieve
state-of-the-art results through contextual under-
standing. Addressing challenges related to data
availability, computational efficiency, and espe-
cially model interpretability is essential for broader
adoption. By tackling these challenges and pur-
suing the outlined future directions, this research
contributes towards advancing NLP for Swahili
and other low-resource languages, promoting more
inclusive and effective Al applications.
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Appendix
A Implementation Details

This section outlines the implementation details,
including model training and hyperparameter tun-
ing for each category of models considered in our
study.

A.1 Machine Learning Models

Classical ML models were trained using TF-
IDF features with a vocabulary size capped at
5000 terms. For SVM, a linear kernel was em-
ployed with probability estimation enabled, and
the regularization parameter C' was selected from
{0.01,0.1, 1,10} using grid search with five-fold
cross-validation. Logistic Regression was set with
a maximum of 1000 iterations for convergence, and
C was similarly tuned. Random Forest utilized
200 estimators, with maximum depth tuned be-
tween 10, 20, and None, and the random state fixed
at 42 for reproducibility. XGBoost used the multi-
log loss evaluation metric and had its number of
estimators and learning rate tuned via grid search.
All classical models were implemented using the

scikit-learn pipeline, and optimal hyperparam-
eters were chosen based on F1-score performance
on the validation set.

A.2 Deep Learning Models

Deep learning models were implemented with Py-
Torch and TensorFlow. For the BILSTM model,
we used an embedding size of 128, 256 hidden
units, and a bidirectional architecture, trained for
five epochs. The CNN model for text used the same
embedding size, a single 1D convolutional layer
with 256 filters, and also trained for five epochs.
The BiILSTM+CNN hybrid model first extracted
features using BiLSTM and then applied CNN lay-
ers, again training for five epochs. The dataset was
tokenized with a vocabulary size of 10,000 and a
sequence length of 300. All models used a batch
size of 32 and the Adam optimizer with a learning
rate of 0.001. Hyperparameters were determined
through pilot experiments and validation set perfor-
mance, with early stopping applied if the validation
loss did not improve for two consecutive epochs.

A.3 Transformer-Based Models

Three transformer-based models were fine-tuned
using the transformers library. AfriBERTa and
XLM-RoBERTa were trained for three epochs
with a batch size of 4, a learning rate of 2 x 1075,
and weight decay of 0.01. The RoBERTa Base
Wechsel Swahili model was also trained for three
epochs, batch size 4, and fine-tuned using gradi-
ent accumulation steps of 4. The AdamW opti-
mizer was used for all models, and input text was
tokenized to a maximum sequence length of 256
tokens. Hyperparameters were selected through
small grid searches on the validation set, with early
stopping based on the F1-score.

A.4 Computational Resources

All models were trained on a GPU-enabled environ-
ment. Machine learning models were executed
on CPU, while deep learning and transformer
models were trained using an NVIDIA Tesla V100
GPU. Training duration varied, with transformer
models requiring the most time—averaging be-
tween 700 to 1400 seconds per model.
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Abstract

Morphological parsing is the task of decompos-
ing words into morphemes, the smallest units
of meaning in a language, and labelling their
grammatical roles. It is a particularly challeng-
ing task for agglutinative languages, such as
the Nguni languages of South Africa, which
construct words by concatenating multiple mor-
phemes. A morphological parsing system can
be framed as a pipeline with two separate com-
ponents, a segmenter followed by a tagger. This
paper investigates the use of neural methods to
build morphological taggers for the four Nguni
languages. We compare two classes of ap-
proaches: training neural sequence labellers
(LSTMs and neural CRFs) from scratch and
finetuning pretrained language models. We
compare performance across these two cate-
gories, as well as to a traditional rule-based
morphological parser. Neural taggers comfort-
ably outperform the rule-based baseline and
models trained from scratch tend to outperform
pretrained models. We also compare parsing re-
sults across different upstream segmenters and
with varying linguistic input features. Our find-
ings confirm the viability of employing neural
taggers based on pre-existing morphological
segmenters for the Nguni languages.

1 Introduction

The smallest unit of linguistic meaning that a
word can be split into is known as a morpheme
(Matthews, 1991). Morphological parsing is
the task of identifying the grammatical role of
each morpheme within a word (Puttkammer and
Du Toit, 2021). For example, “izinhlobo” (mean-
ing “types” in isiZulu) is split into the morphemes
“i-zin-hlobo”, which is parsed as “i[NPrePrel0] -
zin[BPre10] - hlobo[NStem]” (Gaustad and Put-
tkammer, 2022) (see Figure 1). Each bracketed tag
labels the preceding morpheme with its grammati-
cal function and noun class (if applicable).

"Equal contribution.

izinhlobo

A 4

[ Morphological Segmenter J

]

[ Morphological Tagger ]

v y v
| BPrel0 l l NStem l

l NPrePrel0 l

Figure 1: Morphological parsing as a two-step pipeline.
We focus on tagging, training our taggers on the outputs
of pre-existing morphological segmenters.

Morphological information is especially impor-
tant for the Nguni languages, a group of related lan-
guages (isiNdebele, isiXhosa, isiZulu, and Siswati)
spoken across South Africa by more than 23m
home language speakers (Eberhard et al., 2019).
The Nguni languages are agglutinative, meaning
that many words are created by aggregating multi-
ple morphemes (Taljard and Bosch, 2006). They
are also written conjunctively—morphemes are
concatenated into a single orthographic (space-
delimited) word (Taljard and Bosch, 2006). This
can produce long, complex word forms consisting
of several morphemes, such as the isiXhosa word
“andikambuzi”, which means “I have not yet asked
them”, composed of the morphemes “a”, “ndi”,
“ka”, “m”, “buza”, and “i”.

As a result of this morphological complexity,
morphological parsing is a challenging but impor-
tant task for the Nguni languages. Despite this,
few morphological parsers exist for the Nguni lan-
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guages. Moreover, no existing parsers use neu-
ral methods, despite their established performance
gains for linguistic annotation tasks (Min et al.,
2023). In this paper we explore the viability of neu-
ral morphological parsers for the Nguni languages.

Morphological parsing can be framed as a two-
step pipeline (Tsarfaty et al., 2013; Puttkammer and
Du Toit, 2021), in which raw text is first segmented
into morphemes, which are subsequently tagged
with morphological labels. The first part of this
pipeline is known as morphological segmentation,
while the second part is known as morphological
tagging. We visualise this pipeline for the isiZulu
word “izinhlobo” in Figure 1. In this work we fo-
cus on the second subtask, morphological tagging.
Instead of training models for the entire task, we
make use of pre-existing morphological segmenters
for the Nguni languages (Moeng et al., 2021) and
train neural taggers on top of their output.

We train two classes of neural taggers — neural se-
quence labellers trained from scratch and finetuned
pretrained language models (PLMs). Our models
trained from scratch are bi-LSTMs (Hochreiter and
Schmidhuber, 1997) and conditional random fields
(CRFs) (Lafferty et al., 2001) with bi-LSTM fea-
tures, using either morpheme or character-level in-
put features. For PLMs, we finetune XLM-R-large
(Conneau et al., 2020), Afro-XLMR-large (Alabi
et al., 2022), and Nguni-XLMR-large (Meyer et al.,
2024), which respectively represent different levels
of Nguni-language coverage.

We develop neural taggers based on two types of
morphological segmentations: canonical and sur-
face segmentations (Cotterell et al., 2016). Canoni-
cal segmentation decomposes a word into its con-
stituent morphemes, in their standardised (pre-
composed) form. For example, the isiXhosa word
“zobomi” is canonically segmented into “za-u-(bu)-
bomi”, where some of the morphemes undergo
spelling changes in word composition (Gaustad and
Puttkammer, 2022). Surface segmentation decom-
poses a word into its constituent morphs, which
are the surface forms of morphemes as they ap-
pear in the composed word. For example, “zobomi”
is surface-segmented into “zo-bomi”. As demon-
strated by this example, the canonical and surface-
level segmentation of a word can differ.

We evaluate all our models in two settings. In
the first, we test our taggers on the morpholog-
ical segmentations available in our task dataset
(Gaustad and Puttkammer, 2022). This provides
an idealised setting in which we evaluate our mod-

els on gold-annotated segmentations, which we
know to be correct, isolating tagging performance
from segmentation mistakes. In the second setting,
we test our taggers on the segmentations produced
by the neural segmenters of Moeng et al. (2021).
These are model-predicted segmentations, so some
segmentations will not align with morphological
boundaries. This can lead to error propagation,
in which segmentation errors degrade tagging per-
formance. However, it also provides us with an
estimate of how our taggers fare in a real-world
setting in which the entire morphological parsing
pipeline is predicted by neural models.

Overall, we evaluate four variants of each
model configuration — trained on canonical/surface
segmentations, and respectively tested on gold-
annotated/model-predicted segmentations. Our
study is an extensive investigation into the potential
of neural parsers for all four Nguni languages. Our
main findings can be summarised as follows:

* Neural parsing comfortably outperforms our
rule-based baseline, confirming the benefit of
data-driven segmentation and tagging.

* Neural sequence labellers trained from scratch
outperform finetuned PLMs on the morpho-
logical tagging subtask.

* With no access to gold-annotated morphologi-
cal segmentations, canonical segmentations
consistently leads to better parsing perfor-
mance than surface segmentations.

We are the first to use neural models to train mor-
phological taggers for the Nguni languages. To the
best of our knowledge, our morphological parsing
results represent state-of-the-art performance. Our
models can be used to incorporate morphological
information into downstream NLP models, which
holds the potential to improve performance for the
morphologically complex Nguni languages.

2 Related Work

Morphological parsing has been extensively stud-
ied in NLP (Tsarfaty et al., 2013; Klemen et al.,
2023). Traditionally, it is performed by incorpo-
rating grammatical and morphological rules from
the language into a finite-state transducer. This
is a time-consuming process in which linguists
construct hand-crafted rules (Chapin and Norton,
1968). As in other tasks of linguistic annotation
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(Min et al., 2023), neural models provide an effec-
tive, data-driven solution approach to morphologi-
cal parsing.

Several works have trained a single model for
morphological parsing, jointly modelling morpho-
logical segmentation and tagging (Seker and Tsar-
faty, 2020a; Alecakir, 2020; Abudouwaili et al.,
2023; Yshaayahu Levi and Tsarfaty, 2024). Al-
ternatively, Tsarfaty et al. (2013) propose a two-
step architecture for parsing morphologically rich
languages by first segmenting them into their mor-
phemes and then tagging the morphemes with la-
bels. Because morphological segmenters for Nguni
languages already exist (Moeng et al., 2021), we
choose to adopt this two-step pipeline approach,
visualised in Figure 1. Despite the drawbacks of
error propagation, training neural taggers alone is
simpler than training joint segmentation-tagging
models. The approach is also more modular, allow-
ing for better segmenters to be substituted in as and
when they are developed.

A number of works have developed morpho-
logical segmenters, taggers, and parsers for the
Nguni languages. ZulMorph (Bosch et al., 2008)
is a rule-based canonical segmenter and tagger for
isiZulu based on finite-state transducers. Puttkam-
mer and Du Toit (2021) develop data-driven (non-
neural) canonical segmenters and taggers for all
four Nguni languages. They apply TIMBL (Daele-
mans et al.), a memory-based learning package, to
the segmentation step, and MarMoT (Bjorkelund
et al., 2013; Mueller et al., 2013), a trainable CRF
pipeline, to the tagging step. Moeng et al. (2021)
were the first to apply neural methods to segmen-
tation, using CRFs (Lafferty et al., 2001), LSTMs
(Hochreiter and Schmidhuber, 1997), and Trans-
formers (Vaswani et al., 2023) to train canonical
and surface-level segmenters for all four Nguni lan-
guages. They found that non-neural CRFs were
best for surface segmentation, while Transformers
outperformed the other methods in canonical seg-
mentation. Despite recent developments in neural
models, such as sequence-to-sequence (Akyiirek
et al., 2019) and sequence labeling models (Ma
and Hovy, 2016), no neural morphological taggers
currently exist for the Nguni languages.

3 Tagging Models

We now introduce our neural morphological tag-
gers. Our models are trained on sequences of pre-
segmented morphemes as input, and are tasked

with assigning a morphological label to each mor-
pheme. By focusing on the morphological tagging
component of the morphological parsing pipeline
(Figure 1), we can use established approaches to
neural sequence tagging.

3.1 Neural sequence labellers

We train two types of neural models from scratch:
bidirectional long short-term memory (bi-LSTM)
networks (Hochreiter and Schmidhuber, 1997) and
conditional random fields (CRFs) (Lafferty et al.,
2001) with bi-LSTM features. Bi-LSTMs have pre-
viously been successfully applied to POS tagging
(Pannach et al., 2022) and morphological segmenta-
tion (Moeng et al., 2021) for the Nguni languages.

CRFs are probabilistic models for sequence la-
belling. A CRF estimates the probability of a given
output (label) sequence by modelling the interde-
pendence of labels with each other, as well as their
dependence on the input sequence. We use linear-
chain CRFs because of their lower computational
complexity (compared to higher-order CRFs). Tra-
ditionally, CRFs use a set of hand-crafted features
to assign probabilities (Moeng et al., 2021). How-
ever, instead of designing these features by hand, a
neural network can be used to automatically learn
the features from the data (Moeng et al., 2021; Lam-
ple et al., 2016; Ma and Hovy, 2016). We choose
a bi-LSTM to generate these features, as this has
previously proved successful in POS tagging (Pan-
nach et al., 2022) and morphological segmentation
(Moeng et al., 2021) for the Nguni languages.

We experimented with several design choices for
our neural models trained from scratch, varying the
following factors:

* Feature level. Models were trained on either
morpheme-level or character-level input fea-
tures, represented by learned embeddings in
both cases. For morpheme-level features, we
replaced rare morphemes (<2 examples in the
training data) with a special unknown token
to help the model generalise to unseen data.
For character-level features, we summed char-
acter embeddings to produce morpheme-level
input embeddings. Surface models also have
lowercase variants of these features.

* Context level. Models were trained on single
words in isolation, or on entire sentences. Our
goal was to investigate whether the additional
context available to sentence-level sequence
models would improve performance.
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Word
aligela
kwibhunga
izincomo

Morphological analysis
a[RelConc6]-1i[BPre5]-gela[NStem]
ku[LocPre]-i[NPrePre5]-(1i)[BPre5]-bhunga[NStem]
i[NPrePre10]-zin[BPre10]-como[NStem]

Table 1: Three examples from the isiXhosa part of the
dataset used in our experiments (Gaustad and Puttkam-
mer, 2022). Only the relevant aspects are included.

3.2 Pretrained language models

We finetune the following three PLMs on our task:

1. XLM-R-large (Conneau et al., 2020): a mas-
sively multilingual PLM trained on more than
100 languages, including isiXhosa.

2. Afro-XLMR-large (Alabi et al., 2022): XLM-
R further pretrained on 20 African languages,
including isiXhosa and isiZulu.

3. Nguni-XLMR-large (Meyer et al., 2024):
XLM-R adapted for the four Nguni languages.

The models were selected to represent increas-
ing levels of Nguni language pretraining cover-
age: XLM-R includes minimal Nguni data (only
isiXhosa), Afro-XLMR adds isiZulu, while Nguni-
XLMR specifically targets all four Nguni lan-
guages. We examine the degree to which these
different levels of Nguni language inclusion influ-
ence downstream performance.

4 Experimental Setup
4.1 Dataset

We use the morphologically annotated dataset de-
veloped by Gaustad and Puttkammer (2022). It
contains sentences from South African government
publications, wherein each word is annotated with
its morphological parse (segmentation and tags, as
shown in Table 1), lemma, and part-of-speech. It
contains 1,431 parallel paragraphs with roughly
50k words per language. The data is pre-split
90%/10% into train/test sets. The dataset con-
tains only gold-standard canonical segmentations,
so gold-standard surface segmentations were ob-
tained through a script provided by Moeng et al.
(2021). Predicted segmentations for both canonical
and surface forms were created by applying Moeng
et al.’s (Moeng et al., 2021) to the raw text column
of the dataset.

4.2 Model Configurations

All our models are monolingually trained and eval-
uated on isiNdebele, isiXhosa, isiZulu, or Siswati.

We evaluate four versions of each neural model,
varying morphological input in the following ways.

Segmentation types We train models for both
types of morphological segmentation, allowing us
to evaluate their respective difficulty.

* Canonical segmentation: decompose words
into standardised morphemes (e.g., “zobomi’
— “za-u-(bu)-bomi”).

>

* Surface segmentation: decompose words into
morphs as they appear in composed forms
(e.g., “zobomi” — “zo-bomi”).

Upstream segmentation During testing, we as-
sess performance across both idealised and practi-
cal scenarios.

* Gold-annotated segmentations: apply taggers
directly to the linguistically annotated, gold-
standard morphological segmentations from
the task dataset (Gaustad and Puttkammer,
2022). This provides an idealised setting
in which morphological segmentations are
known to be correct, isolating tagging per-
formance from segmentation errors.

* Model-predicted segmentations: apply tag-
gers to segmentations generated by neural
segmenters (Moeng et al., 2021). We retrain
their feature-based CRFs and Transformers
on our training set to match our data setup.
This simulates a real-world pipeline where
segmentation is predicted, allowing for error
propagation from segmentation to tagging.

4.3 Evaluation

We use F} score to evaluate our models. We only
evaluate morphological tagging performance, as
opposed to full morphological parsing (segmenta-
tion + tagging). However, tagging inherently de-
pends on segmentation in our setup, since models
are trained on the pre-segmented morpheme se-
quences.

In our model-predicted segmentation setting, er-
rors in predicted morphological segmentations can
result in fewer or more predicted morphemes than
morphological tags. As a result, in some instances
we have to compute an F} score for predicted and
target tag sequences of different lengths. We make
use of the aligned multiset F; score proposed by
Seker and Tsarfaty (2020b). This is an adaptation
of the aligned segment F} score used in CoNLL18
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Hyperparameter Search space

Neural sequence labellers

[1076,1071)

Learning rate

Weight decay {0} U[1071°,1079)

Hidden state size {27 :6 <z <11}

Dropout {0,0.1,0.2,0.3}

Gradient clip {0.5,1,2,4,00}
Finetuned PLMs

Learning rate {107°,3 x 107°,5 x 1075}

Epochs {5,10, 15}

Batch size {8, 16, 32}

Table 2: The hyperparameter ranges of our grid search.

(Zeman and Hajic, 2018). The key difference is that
the aligned multiset F score bases token counts on
the multiset intersection between the target and pre-
dicted sequences, so that target-prediction length
mismatches are ameliorated.

We report both macro F; and micro F} in our
results. Micro F} is a calculated by counting the
number of true positives/negatives and false posi-
tives/negatives for all classes. More common tags
therefore have a greater effect on the Micro F}
score. With one tag per item, it is equivalent to ac-
curacy. Macro F1 calculates the per-class F} score
and averages them, weighting all tags equally ir-
respective of frequency. A high macro F) score
indicates good performance across all tags, includ-
ing rare tag types. We focused on macro F} during
hyperparameter tuning and in discussing our re-
sults, as we consider it important for our models to
perform well on rare tags. Our evaluation dataset
(Gaustad and Puttkammer, 2022) is imbalanced
from a tag perspective, so macro Fj is the more
challenging metric to optimise than micro F7.

4.4 Hyperparameters

The morphologically annotated dateset (Gaustad
and Puttkammer, 2022) is split into train and test
sets, but does not include a validation set. To pre-
vent over-fitting hyperparameters to the test set,
we created our own held-out validation set from
10% of the training set. Hyperparameter settings
were tuned to maximise macro F scores on the
validation dataset.

For our models trained from scratch, we per-
formed a grid search over the hyperparameter
ranges shown in Table 2. We tuned our hyperpa-
rameter settings on isiZulu only, because including
other languages would lead to a computationally
infeasible grid search. Once the best parameters

for isiZulu were found, these configurations were
applied to the other languages. For our PLMs, we
also performed a grid search over finetuning hyper-
parameters over the grid shown in Table 2.

After we settled on our final hyperparameter set-
tings based on validation set performance, we re-
trained models on the full, original training set
(including our newly created validation set) and
evaluated them on the test set. For each model
configuration, we train/finetune five models with
different random seeds and report the average eval-
uation metrics.

4.5 Baselines

We compare our neural methods to ZulMorph
(Bosch et al., 2008), a traditional, rule-based parser
for IsiZulu. ZulMorph is based on finite-state trans-
ducers with manually incorporated grammatical
rules, stems, and affixes for isiZulu. We use the Zul-
Morph demo (Pretorius and Bosch, 2018) to evalu-
ate its performance on the test set. Since ZulMorph
both segments and tags the input data, we com-
pare it to our taggers trained on model-predicted
segmentations.

5 Results

The results based on gold-annotated segmentations
are shown in Table 3, while those based on model-
predicted segmentations are shown in Table 4.
Overall, our results demonstrate the effective-
ness of neural models on the challenging task of
morphological tagging for Nguni languages. Our
best-performing models based on gold-annotated
canonical segmentations consistently achieve mi-
cro Fj scores above 90% and macro F} scores
above 60%. Even without access to the gold mor-
phological annotations, with models tested on the
predicted canonical segmentations of Moeng et al.
(2021), our best models consistently achieve micro
F scores above 80% and macro F}j scores above
55%. This confirms the feasibility of basing the full
morphological parsing pipeline on neural models.

Comparison to rule-based parsing The neu-
ral models comfortably outperform our rule-based
baseline, ZulMorph, on isiZulu morphological
tagging. ZulMorph (Pretorius and Bosch, 2018)
achieves a macro F} of 34% and micro Fj of 71.8%
on the test-set. All our isiZulu models surpass this
performance, ranging from macro Fis of 43.1% to

60% and micro Fis of 72.7% to 85.8%.
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Model IsiZulu IsiNdebele IsiXhosa Siswati
Mac F; MicF; MacFy MicF; MacF; MiclFy MackFy MicFy

Canonical segmentations as annotated in Gaustad and Puttkammer (2022)

Trained from scratch

Word-level

bi-LSTM, character-sum 66.9 924 67.2 91.9 72.3 95.2 66.5 91.2

bi-LSTM, morpheme 66.6 92.1 67.7 91.8 71.5 94.9 65.5 91.0

Sentence-level

bi-LSTM, character-sum 64.6 91.6 66.6 91.0 72.1 95.5 64.7 90.8

bi-LSTM, morpheme 66.0 92.1 67.9 91.6 74.7 95.7 67.2 91.3

CREF, character-sum 65.7 92.1 67.3 914 74.7 95.9 66.0 914

CRF, morpheme 66.1 92.3 68.1 91.6 75.3 95.8 67.2 914

Pretrained language models

Word-level

Afro-XLMR 62.5 92.0 62.3 914 67.9 95.1 63.3 91.3

Nguni-XLMR 61.9 92.0 62.8 91.5 68.1 95.1 61.8 90.7

XLM-R-large 61.8 91.8 63.6 91.6 67.4 95.0 62.9 91.2

Surface segmentations extrapolated from Gaustad and Puttkammer (2022) by script from Moeng et al. (2021)

Trained from scratch

Sentence-level

bi-LSTM, character-sum 63.3 90.7 65.2 90.4 73.6 94.7 61.3 89.6
bi-LSTM, character-sum-lower 63.2 90.8 65.4 90.4 73.7 94.7 60.8 89.7
bi-LSTM, morpheme 65.6 91.3 68.4 91.1 76.1 95.1 65.9 90.6
bi-LSTM, morpheme-lower 66.0 91.3 68.7 91.2 76.0 95.3 65.8 90.7
Pretrained language models

Word-level

Afro-XLMR 43.8 72.8 47.7 77.4 52.3 78.5 23.4 55.6
Nguni-XLMR 44.1 73.1 48.1 77.5 52.4 79.0 23.9 56.6
XLM-R-large 43.1 72.6 48.0 717.5 51.7 78.1 22.7 55.4

Table 3: Results for models evaluated on gold-annotated segmentations, given as percentages. This provides
an idealised training setting in which all morphological segmentations are correct, allowing us to isolate the
performance of morphological tagging. The best models for each approach (pretrained or from scratch) is bolded,
while the best for each segmentation type (surface or canonical) is underlined.

Since ZulMorph is rule-based and contains
manually-incorporated stems and affixes, it likely
struggles to generalise to unseen data. For instance,
ZulMorph failed to segment and parse “wezen-
tuthuko”, and instead produced “wezentuthuko +7”.
Conversely, the neural models do not explicitly in-
corporate any information. The models are able
to classify text even when there are unknown mor-
phemes present in the text, based on the surround-
ing context of known morphemes.

Macro vs Micro F; Macro F} is consistently
lower than corresponding micro Fj scores. This
highlights one of the difficulties of morphological
tagging for the Nguni languages. The tag set is
large and unevenly distributed in the dataset, which
make it challenging to accurately model rare tags.
This imbalance would explain the mismatch be-
tween macro and micro F} for neural models, since
they are not adequately exposed to rare tags during

training. However, the mismatch persists for Zul-
Morph (Bosch et al., 2008) (see Table 4), which is
based on gramatically informed rules, as opposed
to being data-driven. This could indicate that some
tags are inherently harder to disambiguate.

5.1 Training neural taggers from scratch

As shown in Tables 3 and 4, sentence-level models
trained from scratch tended to outperform their
word-level counterparts. Sentence-level models are
trained on the entire sentence as context, which
may allow them to use grammatical dependencies
to improve tagging. For example, in the isiXhosa
sentence “ipolisa liyahamba”, the word “ipolisa” is
in noun class 5. The shorted prefix “i”” (“ipolisa”) is
ambiguous and also appears in class 9 nouns, such
as “iteksi”. However, combining it with the subject
concord for class 5 “li”” (“liyahamba”) provides the
information required to correctly disambiguate and
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Model IsiZulu IsiNdebele IsiXhosa Siswati
Mac F; MicF; MacFy MicF; MacF; MiclFy MackFy MicFy
ZulMorph online demo (Pretorius and Bosch, 2018)
ZulMorph 34.0 71.8
Canonical segmentations as predicted by Moeng et al. (2021)
Trained from scratch
Word-level
bi-LSTM, character-sum 60.0 85.8 57.8 84.1 67.9 92.3 57.0 85.0
bi-LSTM, morpheme 58.3 85.5 58.3 84.1 67.0 92.2 55.7 84.7
Sentence-level
bi-LSTM, character-sum 57.5 85.1 57.3 83.4 68.1 92.7 55.5 84.8
bi-LSTM, morpheme 58.4 85.7 58.3 83.8 70.7 93.0 57.3 85.2
CREF, character-sum 58.1 85.5 58.4 83.8 69.8 93.1 57.2 854
CRF, morpheme 58.7 85.7 58.5 83.7 71.1 93.1 57.8 85.3
Pretrained language models
Word-level
Afro-XLMR 55.3 85.5 54.6 84.0 63.4 92.4 53.4 85.1
Nguni-XLMR 54.8 85.5 54.5 83.9 64.4 92.6 52.5 84.6
XLM-R-large 54.4 85.4 554 84.1 63.5 92.5 52.9 85.0
Surface segmentations as predicted by Moeng et al. (2021)
Trained from scratch
Sentence-level
bi-LSTM, character-sum 53.6 79.6 52.8 78.3 65.6 87.7 51.8 80.4
bi-LSTM, character-sum-lower 53.3 79.6 52.9 78.2 65.2 87.5 51.6 80.4
bi-LSTM, morpheme 55.0 79.7 54.7 78.4 68.0 87.4 55.2 81.0
bi-LSTM, morpheme-lower 55.3 79.7 54.6 78.5 68.2 87.6 55.8 81.0
Pretrained language models
Word-level
Afro-XLMR 43.6 72.8 46.9 77.4 51.9 78.5 23.0 55.7
Nguni-XLMR 43.9 73.0 46.9 77.4 51.7 78.8 23.7 56.3
XLM-R-large 43.1 72.7 47.7 77.5 514 78.0 22.1 55.4

Table 4: Results for models evaluated on model-predicted segmentations, given as percentages. This evaluates the
combined use of neural methods for segmentation and tagging, without access to morphological annotations. The
best models for each approach (pretrained or from scratch) is bolded, while the best for each segmentation type

(surface or canonical) is underlined.

tag “ipolisa” as class 5.

Morpheme-level embeddings outperformed
character-summing embeddings. While one might
expect character-level modelling to improve gen-
eralisation across morphemes, this is not neces-
sarily the case. Morphemes representations have
previously been shown to be highly effective for
syntactic tasks (Ustiin et al., 2018). For our task,
morpheme-level embeddings allow the model to
be more sensitive to small changes in morphemes.
For example, the morphemes “ng” and “nga” differ
by a single character, but can have totally differ-
ent meanings (‘“ng” can be a copulative prefix and
“nga” can be an adverb prefix). With character-
summed representations, the two morphemes will
have highly similar embeddings. With morpheme-
level embeddings, each morpheme embedding is

learned separately. For rare or previously unseen
morphemes, the morpheme-level model is forced to
rely on contextual grammatical information (within
the word or surrounding sentence), which provides
a more reliable grammatical signal than the number
of overlapping characters between morphemes.

We do not find substantial performance differ-
ences between bi-LSTMs and bi-LSTM CREFs.
This indicates that explicitly modeling grammar
through tag dependence presents limited advantage.
Bi-LSTMs are able to encode such grammatical
dependencies, based on morpheme co-occurrence
patterns, in their hidden representations.

5.2 Pretrained language models

As shown in Tables 3 and 4, training models from
scratch outperformed finetuning PLMs. This con-

216



trasts with previous work on linguistic annotation
tasks, in which pretrained solutions have outper-
formed models trained from scratch (Min et al.,
2023; Alabi et al., 2022). However, it does align
with related work for the Nguni languages, which
have achieved high performance levels with neural
models trained from scratch (Moeng et al., 2021;
Pannach et al., 2022).

Due to computational constraints, we did not
finetune PLMs on sentence-level input. The pre-
trained contextual representations of PLMs are
well suited to take advantage of sentence-level con-
text, so it is possible that finetuning sentence-level
versions of our PLMs could improve their perfor-
mance. We leave the exploration of sentence-level
PLMs for Nguni-language morphological tagging
to future work.

Another factor which could contribute to PLM
performance degradation is subword tokenisation.
While our models trained from scratch use charac-
ter or morpheme-level representations, our PLMs
are constrained to finetune representations for the
subword tokens produced by their pretrained to-
kenisers. In pretraining, the tokeniser segments
raw words. In finetuning, the tokeniser segments
pre-segmented morphemes. This misalignment
could impede the model’s ability to leverage pre-
trained knowledge during finetuning, since the sub-
word tokens learned in pretraining do not match
those of finetuning. This also leads to irregular,
morphologically unsound subword tokens. For ex-
ample, the XLM-R SentencePiece tokeniser (Con-
neau et al., 2020; Kudo and Richardson, 2018) seg-
ments, which is the tokeniser for all our PLMs,
segments the isiXhosa morpheme “-bandela” into “-
ba”, “#ndel”, “#a”, which is morphologically mean-
ingless. In our pipeline setup for morphological
parsing, it is not obvious how to bridge the mis-
match between pretraining and finetuning subword
tokenisation. It should be viewed as a limitation of
PLMs. With neural models trained from scratch,
we have the freedom to design our own morpholog-
ical input features.

5.3 Models based on surface segmentations

In both Tables 3 and 4, the top half of each ta-
ble reports results for models trained on canoni-
cal segmentations (morphemes), while the bottom
half reports results for surface-level segmentations
(morphs). In general, canonically-based tagging
scores are higher than surface-level tagging. The
performance gap is particularly notable and con-

sistent for models trained on model-predicted seg-
mentations. While canonical and surface-level tag-
ging scores cannot be directly compared (for some
words, the tag sequence will not be the same), our
results clearly show that training taggers on top of
canonical segmenters is more effective than doing
so with surface-level segmenters. We attribute this
to two factors.

Firstly, the surface segmentation of a word pro-
vides less grammatical information to models than
the canonical segmentation. For instance, the word
“kwicandelo” is canonically segmented as “ku-i-(li)-
candelo” and surface segmented as ‘“kw-i-candelo”
(Gaustad and Puttkammer, 2022). Critically, the
“(i)” morpheme is lost, which is part of the noun
prefix for class 5. The only morpheme left for
the noun prefix is thus “i”. However, this on its
own is ambiguous, and could be the noun prefix
for class 5 or class 9. In this case, the canonical
tagger would have more information relevant to the
tagging decision than the surface tagger.

Secondly, there is often a length mismatch be-
tween the surface and canonical morphemes in
a word. For example, “kubomi” is canonically
segmented into ‘“ku-u-(bu)-bomi”, but surface-
segmented into “ku-bomi”. We evaluate our model
on gold-annotated data, which include morphologi-
cal tags for each word. In a case like “kubomi”, this
would limit performance to 50% accuracy in the
best case scenario. In general, this length mismatch
limits the performance of models based surface-
level segmentations.

6 Conclusion

In this paper, we explored the feasibility of neu-
ral morphological taggers for the Nguni languages.
We divide morphological parsing into two subtasks,
segmentation and tagging, focussing on the latter.
We investigate bi-LSTMs and CRFs trained from
scratch, as well as finetuned PLMs. Our neural
models comfortably outperform a rule-based base-
line, while our models trained from scratch outper-
form PLMs. Models based on canonical segmenta-
tions outperform their surface-level counterparts.
We identify several promising directions for fu-
ture research to build on our findings. Firstly, our
PLM taggers could potentially be improved, either
by finetuning on sentence-level input or by explor-
ing ways to align the mismatch between subword
tokenisation in pretraining and finetuning. Fur-
thermore, our parsers can be used to incorporate
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morphological information into downstream task
models (Klemen et al., 2023). This has been shown
to improve performance in tasks such as language
modelling (Nzeyimana and Niyongabo Rubungo,
2022) and machine translation (Nzeyimana, 2024),
but has not been explored for the Nguni languages.

Limitations

Our study is limited to the Nguni languages, so
our findings may not generalise to other language
families or typologies like the Sotho-Tswana lan-
guages whose morphology is disjunctive. Further
experimentation is needed to validate whether train-
ing taggers on model-predicted morphological seg-
mentations is viable for languages with different
morphological structures. That being said, the
promising performance of our models on the Nguni
languages suggests that similar neural approaches
could be beneficial for other low-resource, morpho-
logically complex languages.

Additionally, while our models trained from
scratch consistently outperformed finetuned PLMs,
we do not definitively conclude that PLMs are in-
ferior for this task. As discussed in subsection 5.2,
because of computational constraints we did not
test sentence-level PLMs. Incoporating sentence-
level context could improve PLM performance to
be competitive with models trained from scratch.
We would need to run further experiments with
sentence-level finetuning to evaluate the full poten-
tial of PLMs for this task.
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Multilingual NLP for African Healthcare: Bias, Translation, and
Explainability Challenges

Ugochi Okafor
Data Science Nigeria

Abstract

Language technologies have advanced signifi-
cantly, yet African languages remain underrep-
resented in natural language processing (NLP)
and machine translation (MT) due to data
scarcity, linguistic complexity, and computa-
tional constraints. Large-scale models such as
No Language Left Behind (NLLB-200) and
Flores-200 have made strides in expanding ma-
chine translation for low-resource languages,
yet significant challenges persist in adapting
them for healthcare and domain-specific appli-
cations in African contexts.

This paper explores multilingual NLP and trans-
lation models in African healthcare, evaluating
approaches such as Masakhane-MT for transla-
tion, Masakhane-NER for named entity recog-
nition (NER), and AfromT for domain adap-
tation. Focusing on languages like Swabhili,
Yoruba, and Hausa, the evaluation highlights
bias, linguistic inequity, and performance dis-
parities through a literature review and analysis
of existing models.

Use cases such as Ubenwa’s infant cry analy-
sis for asphyxia diagnosis and translation mod-
els trained on Flores-200 benchmark datasets
demonstrate both potential and limitations in
real-world applications. Our findings under-
score the need for culturally adapted, explain-
able Al systems that integrate linguistic di-
versity, ethical Al principles, and community-
driven data collection. Limitations include
dataset quality concerns, bias in training cor-
pora, and a lack of healthcare-specific bench-
marks for African languages. We propose
strategies for bias mitigation, improved dataset
representation, and culturally aligned NLP
models, with a focus on data accessibility, fair-
ness, and equitable Al deployment in African
healthcare.

1 Introduction

The underrepresentation of African languages in
NLP and MT remains a major barrier to the eq-
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uitable development of Al-driven language tech-
nologies. Despite the rise of large-scale multilin-
gual models, the vast majority of African languages
lack the resources, training data, and computational
infrastructure needed for high-quality NLP appli-
cations. The Masakhane initiative, a community-
driven effort to build NLP resources for African
languages, has demonstrated significant progress
in MT and NER (Orife et al., 2020). However,
challenges such as missing documentation, poor
tokenization, and difficulty adapting models to spe-
cialized areas like healthcare remain barriers to
progress.

The Lanfrica platform has been developed to
help researchers find and use African language
datasets, but more work is needed to ensure these
datasets are widely available and well-annotated
(Emezue and Dossou, 2020). Addressing these is-
sues is crucial for expanding NLP applications to
critical domains such as healthcare, where accurate
translations and context-aware models are essential
for patient safety and effective clinical communica-
tion.

This paper reviews existing multilingual NLP
models, evaluating their effectiveness in African
healthcare applications. By comparing Masakhane-
MT, Masakhane-NER, AfromT, and NLLB, this
study highlights disparities in translation accuracy,
named entity recognition, and model adaptation
to African linguistic structures. Furthermore, the
research identifies critical gaps in Al fairness, trans-
parency, and explainability in medical Al applica-
tions, proposing strategies for bias mitigation and
domain-specific model enhancement.

2 Literature Review

2.1 Multilingual NLP and African Healthcare

Recent advancements in multilingual NLP have
significantly improved language translation and un-
derstanding across diverse linguistic landscapes.
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However, these improvements remain concentrated
in high-resource languages, leaving African lan-
guages underrepresented due to data scarcity, to-
kenization inefficiencies, and bias in Al models
(Joshi et al., 2020; Nekoto et al., 2020).
Large-scale models such as mT5, DeepSeek,
LLaMA 3, and Meta AI's No Language Left
Behind (NLLB) have expanded support for low-
resource languages, yet their performance remains
suboptimal for African languages, particularly in
specialized domains such as healthcare.

2.2 Reviewed NLP Frameworks and Their
Applications

Several NLP research efforts and initiatives have
focused on African languages, contributing to im-
proved translation models and text-processing sys-
tems. However, despite these advancements, key
challenges remain, particularly in the medical do-
main. The following subsections examine signifi-
cant frameworks and their relevance to healthcare.

2.2.1 Masakhane NLP: Community-Driven

Machine Translation

Masakhane NLP is an open-source research ini-
tiative that develops machine translation models
for African languages through collaborative ef-
forts (Nekoto et al., 2020). Using datasets such as
JW300, Masakhane has created translation models
for over 30 African languages (Orife et al., 2020).
Despite its success in fostering research and dataset
creation, challenges persist:

* BLEU scores for African languages remain
below 25, significantly lower than European
counterparts (Orife et al., 2020).

* The models struggle with morphological com-
plexity and dialectal variations, leading to
translation inaccuracies.

* There is a lack of domain-specific datasets,
particularly in medical and scientific fields,
limiting application in healthcare.

For example, a Swahili-language chatbot trained
on Masakhane’s models struggled with medical
terminology, leading to potentially harmful misin-
terpretations of prescriptions (Adelani et al., 2021).

2.2.2 No Language Left Behind (NLLB):
Scaling Low-Resource Translation

Meta AI’'s No Language Left Behind (NLLB)

project aims to enhance translation for low-

resource languages, introducing NLLB-Seed and

the Flores-200 benchmark (Costa-jussa, 2022).
While achieving a 40% improvement in BLEU
scores compared to previous models, NLLB-200
still faces challenges:

¢ In healthcare translations, NLLB-200 exhib-
ited critical failures, such as mistranslating
Swahili medical dosage instructions, which

could lead to unsafe medication use (Iyamu,
2024).

* The model showed poor adaptation to dialec-
tal diversity, leading to misinformation in pub-
lic health messaging.

* Automatic toxicity detection was biased, dis-
proportionately flagging African-language
translations as unsafe (World Health Organi-
zation, 2024).

These findings above highlight the gap between
translation quality metrics and real-world appli-
cability, particularly in medical contexts where
accuracy is critical.

One notable gap is the absence of open-source,
healthcare-specific parallel corpora in African lan-
guages. While Masakhane-NER includes limited
health-related annotations, and AfromT introduces
a medically-aligned translation corpus, these re-
main nascent. The Ubenwa dataset used for in-
fant cry analysis is one of the few clinically val-
idated resources, but it is audio-based and lim-
ited in linguistic diversity. The scarcity of textual
healthcare datasets prevents robust model training,
cross-language benchmarking, and reproducibility
in medical NLP. Public access to culturally rep-
resentative medical corpora remains essential for
advancing this field.

2.2.3 AfromT: Domain-Specific Machine
Translation

AfromT is a domain-specific translation framework
designed to improve scientific and medical transla-
tions for African languages (Iyamu, 2024). Despite
a 19% improvement over Google Translate, it still
performed 25% worse than models trained on high-
resource languages. Key limitations include:

* AfromT struggled with technical medical ter-
minology, leading to a 25% higher error rate in
Swabhili and Hausa medical translations com-
pared to English and French (Bapna and Firat,
2022).
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* The model was ineffective for dialect-rich lan-
guages such as Igbo, where missing linguistic
nuances altered medical meaning.

Across the reviewed works, language representa-
tion remains skewed. Masakhane-MT and NER
primarily cover widely spoken languages such
as Swahili, Hausa, Yoruba, and Ambharic. Less-
resourced languages like Fon, Tigrinya, and Krio
are underrepresented or entirely excluded. NLLB-
200 and Flores-200 improve breadth with over 40
African languages, yet even these datasets have
uneven quality and sparse domain coverage. This
imbalance hampers equitable model performance,
especially for languages spoken by marginalised or
rural populations.

2.3 Bias and Fairness Issues in African NLP

Bias in NLP models trained on Western-centric
datasets poses significant risks when applied to
African languages, especially in healthcare (Bom-
masani et al., 2021). Studies have found:

* Medical chatbots trained on Western medical
corpora misdiagnosed symptoms 30% more
frequently when used in African languages
(Khanuja, 2023).

* Translation models failed to accurately render
diagnostic terms, increasing the likelihood of
medical misinformation (World Health Orga-
nization, 2024).

Efforts to mitigate these biases include dataset re-
sampling, fairness-aware training, and adversarial
debiasing techniques. However, these approaches
require extensive African-language corpora, which
remain scarce.

2.4 Tokenisation Challenges and NLP
Efficiency

Tokenisation inefficiencies significantly impact
NLP applications in African healthcare. African
languages, particularly those with agglutinative
structures, require more tokens per sentence than
English, increasing computational costs and reduc-
ing translation fluency (Gallegos et al., 2024). Key
findings include:

* A Masakhane-MT evaluation found that
Google’s mT5 model mis-segmented Swahili
medical texts, lowering BLEU scores by 18%
(Orife et al., 2020).

* AfromT’s subword tokenisation had a 23%
higher segmentation error rate for African
medical terms compared to high-resource lan-
guages.

* NLLB-Seed’s Yoruba and Igbo translations
exhibited 36% higher word segmentation er-
rors than English and French, reducing their
usability for clinical text processing (Costa-
jussa, 2022).

These errors contribute to AI model inefficien-
cies, ultimately affecting real-world healthcare ap-
plications.

2.5 Language Representation in Existing
Models

Although recent multilingual models have im-
proved support for African languages, there re-
mains an over-reliance on a small subset—mainly
Swahili, Yoruba, Hausa, and Ambharic. This re-
view highlights that even these better-represented
languages suffer from poor medical terminology
coverage, domain adaptation issues, and tokenisa-
tion errors. Meanwhile, dozens of widely spoken
languages, such as Shona, Krio, Tigrinya, and Lu-
ganda, are either absent or poorly served by current
models and corpora. Efforts to increase dataset di-
versity must go beyond language count to include
balanced and domain-specific representation across
regions and communities.

2.6 Use Cases: Al in African Healthcare:

Al-driven NLP applications in African healthcare
hold promise but require adaptation for linguistic
and cultural contexts. Key examples include:

Case Study: Ubenwa AI — Infant Cry Analy-
sis for Birth Asphyxia: Ubenwa Al, a Nigerian
startup, applies machine learning to analyse infant
cries for early diagnosis of birth asphyxia, a leading
cause of neonatal mortality. The Al model, trained
on a dataset of 2,000+ clinically diagnosed cases,
achieved 85% sensitivity and 89% specificity (Onu
et al., 2017). However:

* Performance dropped significantly when
analysing cries in Nigerian Pidgin and Hausa
due to English-centric NLP training.

* Lack of linguistic diversity in training
data limited its effectiveness in multilingual
African populations.
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This underscores the need for culturally adapted
Al models in healthcare.

Machine Translation in Medical Texts Ma-
chine translation plays a crucial role in disseminat-
ing medical knowledge across African linguistic
communities. However:

* BLEU score evaluations revealed a 44% per-
formance gap in medical translations for
African languages compared to European lan-
guages (Costa-jussa, 2022).

* AfromT improved translation accuracy but
still had a 25% higher error rate for complex
medical terminology than high-resource lan-
guages (Iyamu, 2024).

Case Study: Translation Failures in Public
Health Messaging During the Ebola outbreak
(2014-2016) and the COVID-19 pandemic, transla-
tion errors in health advisories led to misinforma-
tion:

* During the Ebola outbreak (2014-2016) and
the COVID-19 pandemic, language barriers
significantly hampered effective communica-
tion. Translators without Borders reported
that over 90 languages were spoken in af-
fected regions, necessitating accurate transla-
tions of health messages into local languages
such as Krio, Hausa, and Themne (without
Borders, 2015). Although machine transla-
tion tools like Google Translate were used,
their limitations with local languages often
caused confusion. To mitigate this, Transla-
tors without Borders and partners translated
over 100 Ebola-related materials into 30 local
languages, improving clarity and cultural rele-
vance in health campaigns (without Borders,
2015).

* mT5-translated COVID-19 health advisories
in Igbo contained 29% lexical inaccuracies,
affecting public understanding of safety mea-
sures (Orife et al., 2020).

These failures highlight the importance of
domain-specific adaptation in NLP models.

2.7 Summary and Future Directions

This literature review highlights both the advance-
ments and persistent challenges in multilingual
NLP for African healthcare. Key findings include:

e African NLP frameworks (Masakhane, NLLB,
AfromT) have improved language translation
but remain insufficient for healthcare applica-
tions due to dataset limitations.

» Tokenization inefficiencies and dataset biases
hinder translation accuracy and Al perfor-
mance in medical contexts.

» Al applications such as Ubenwa and medical
chatbots show promise but require linguistic
and cultural adaptation for effective deploy-
ment.

Future research must prioritise:

* Expanding domain-specific medical datasets
for African languages.

* Developing tokenization techniques adapted
to African linguistic structures.

* Enhancing fairness and explainability frame-
works for healthcare Al

By addressing these limitations, NLP can sup-
port equitable and reliable Al-driven healthcare
solutions across Africa.

3 Methodology
3.1 Research Approach and Scope

This study adopts a systematic literature review
and empirical evaluation to assess the performance,
fairness, and explainability of multilingual NLP
models applied to African healthcare. The primary
focus is on the challenges of language representa-
tion, translation accuracy, and domain adaptation
for low-resource African languages.

To achieve this, we analysed over 30 peer-
reviewed papers, technical reports, and datasets
related to multilingual NLP, bias mitigation, and
domain-specific language modelling in healthcare.
The research investigates three key areas:

* Bias and Fairness in NLP for African Lan-
guages: Examining dataset imbalances, to-
kenisation issues, and linguistic disparities
that impact healthcare Al applications.

* Machine Translation and Named Entity
Recognition (NER): Evaluating the perfor-
mance of Masakhane-MT, Masakhane-NER,
AfromT, and NLLB-Seed in medical text pro-
cessing for African languages.
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¢ Explainability and Trust in Al-driven
Healthcare: Analysing SHAP-based inter-
pretability techniques and their applicability
to healthcare NLP for African contexts.

This research does not introduce new models
or datasets but synthesizes findings from exist-
ing literature and evaluations to provide a com-
prehensive overview of multilingual NLP tools in
African healthcare. By identifying current limita-
tions and potential improvements, it offers practical
insights that inform future research priorities, espe-
cially regarding dataset creation and collaborative
model development tailored to specific healthcare
domains and languages.

3.2 Data Collection and NLP Model Selection

To assess multilingual NLP models for healthcare
applications, we analyze publicly available datasets
and benchmark results from leading Al and NLP re-
search initiatives. The study includes both general-
purpose and domain-specific models.

3.2.1 Multilingual NLP Models Evaluated

The following models were selected based on
their relevance to African language processing and
healthcare applications:

* Meta AI’s No Language Left Behind
(NLLB-Seed and NLLB-MD): Evaluated
using the Flores-200 benchmark, focusing
on translation quality and linguistic fairness
(Costa-jussa, 2022).

* Masakhane-MT: A community-driven
project for improving African machine trans-
lation, assessed for medical text adaptation
(Orife et al., 2020).

* Masakhane-NER: A named entity recogni-
tion (NER) initiative evaluated for extracting
medical terms in Swahili, Yoruba, and Hausa
(Adelani et al., 2021).

* AfromT: A domain-specific translation frame-
work developed to enhance African medical
and scientific translations (Iyamu, 2024).

* mTS5 and DeepSeek: General-purpose mul-
tilingual models examined for their perfor-
mance on African healthcare translations
(Bapna and Firat, 2022).

3.2.2 Datasets Used

The evaluation utilises established NLP datasets
covering African languages, with a focus on medi-
cal and scientific applications:

* Flores-200: A multilingual evaluation
dataset covering 40,000+ translation direc-
tions, including African languages (Costa-
jussa, 2022).

* NLLB-Seed: A dataset designed for training
low-resource MT models, containing human-
translated African medical text (Costa-jussa,
2022).

* Masakhane-NER Corpus: Annotated
datasets for named entity recognition in
Swahili, Hausa, and Yoruba, used for medical
NLP evaluations (Adelani et al., 2021).

* AfromT Parallel Corpus: A medical transla-
tion dataset developed for African healthcare
NLP research (Iyamu, 2024).

* Toxicity-200: A dataset designed to detect
and evaluate toxic translations in 200 lan-
guages, ensuring ethical Al deployment in
African healthcare (Costa-jussa, 2022).

These publicly available datasets enable compar-
ison across multiple models by revealing transla-
tion errors, linguistic biases, and domain adapta-
tion gaps in African medical NLP. The evaluation
primarily focuses on medical and scientific appli-
cations, with Swabhili, Yoruba, and Hausa being the
most tested languages due to the availability of an-
notated corpora. Among these, Swabhili is the most
consistently represented across all benchmarks.

3.3 Evaluation Metrics and Analytical
Framework

This study adopts a comprehensive, three-pronged
analytical framework to evaluate NLP models for
African healthcare applications. The framework
focuses on:

* Translation Quality: Measured using BLEU
scores to assess the accuracy of models such
as NLLB-Seed, AfromT, and Masakhane-MT.

* Bias and Fairness: Evaluated through mis-
classification rates, dataset imbalances, and
toxicity flagging in African languages.
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» Explainability: Assessed by exploring the
potential of SHAP-based methods to improve
transparency and trust in medical NLP.

Detailed findings and comparative analyses
based on this framework are presented in Section 5.

3.4 Limitations of the Study

While this study provides valuable insights into
multilingual NLP applications for African health-
care, several limitations remain:

¢ Dataset Gaps: African medical NLP datasets
are scarce, with less than 1% of publicly avail-
able corpora covering African medical texts
(Nekoto et al., 2020).

* Computational Constraints: Limited access
to GPU clusters restricts LLM training on low-
resource African languages (Khanuja, 2023).

* Ethical and Policy Limitations: Existing Al
governance frameworks do not fully address
linguistic fairness in African medical Al ap-
plications (Birhane, 2021).

Future research should focus on expanding
domain-specific corpora, improving tokenisation
techniques, and integrating explainability frame-
works to enhance trust in Al-driven healthcare ap-
plications.

4 Conclusion

This methodology provides a structured approach
to evaluating multilingual NLP models for African
healthcare. By analysing bias, translation accu-
racy, and explainability across various models and
datasets, the study identifies critical gaps and pro-
poses future directions for improving Al-driven
healthcare solutions for low-resource African lan-
guages.

5 Evaluation and Findings

5.1 Summary of MT and NER Performance

An overview of MT and NER model performance
is presented in Table A1 (see Appendix 5.4). This
summary is based on BLEU scores, misclassifi-
cation rates, and domain-specific limitations, and
covers the Masakhane-MT, NLLB-Seed, AfromT,
and Masakhane-NER models. Detailed interpreta-
tion follows in the subsections below.

5.2 Evaluation Metrics and Analysis

To assess the performance, fairness, and trans-
parency of multilingual NLP models in African
healthcare, we applied a multi-metric framework.
This includes evaluation of translation quality us-
ing BLEU scores, assessment of bias in model out-
puts, and interpretability through SHAP-based ex-
plainability methods. Table Al in Appendix 5.4
provides a comparative overview of model perfor-
mance, focusing on Masakhane-MT, NLLB-Seed,
AfromT, and Masakhane-NER across Swabhili,
Hausa, Yoruba, and Igbo.

Moreover, the lack of regional infrastructure for
training large-scale models continues to limit inno-
vation. Most African research institutions do not
have access to GPU clusters or sufficient compu-
tational power to fine-tune or even evaluate large
language models on healthcare data. Cloud com-
puting remains prohibitively expensive in many
countries. In addition, ethical frameworks for the
development and deployment of NLP in healthcare
remain underdeveloped. The absence of national-
level Al ethics policies that account for linguistic
inclusion and healthcare equity raises risks of in-
appropriate model use. This gap in policy and
enforcement undermines public trust and hinders
large-scale adoption of Al-driven tools in African
clinical settings.

5.2.1 Translation Quality and BLEU Scores

Translation accuracy is critical in medical settings,
where errors can lead to misdiagnoses or inappro-
priate treatment. The evaluated models show con-
siderable variation in performance:

* NLLB-Seed achieved a 44% lower BLEU
score for African medical texts compared to
European language outputs, indicating chal-
lenges in domain adaptation and dialect sensi-
tivity (Costa-jussa, 2022).

* AfromT outperformed Google Translate by
19% in translating medical texts for Swahili,
Hausa, and Igbo, but still underperformed by
25% relative to human references, especially
for complex medical terms (Iyamu, 2024).

* Masakhane-MT recorded BLEU scores be-
low 25, struggling with morphological com-
plexity and specialised vocabulary in health-
care translation tasks (Orife et al., 2020).
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These findings confirm that current models re-
quire domain-specific fine-tuning to improve trans-
lation reliability in African healthcare contexts.

5.2.2 Bias and Fairness Assessments

Bias in NLP models trained on predominantly
Western datasets poses significant risks for African
healthcare applications. Key observations include:

* Masakhane-NER misclassified 42% of medi-
cal entities in Swahili, Yoruba, and Hausa due
to limited annotated corpora and inconsistent
entity labelling (Adelani et al., 2021).

* Diagnostic Al systems trained on English
datasets exhibited a 30% higher misdiagno-
sis rate when interacting in African languages,
highlighting a critical fairness gap (Khanuja,
2023).

* NLLB’s toxicity detection mechanism dispro-
portionately flagged African-language transla-
tions as unsafe, reflecting cultural and linguis-
tic bias in evaluation metrics (World Health
Organization, 2024).

To address these disparities, it is essential to
incorporate fairness-aware training methods, cul-
turally aligned annotation practices, and represen-
tative African datasets in both model training and
evaluation.

5.2.3 Explainability and Trust Metrics

In clinical settings, explainability is vital for build-
ing trust in Al-assisted decisions. However, many
NLP systems operate as black-box models with
limited transparency. Our findings show:

* SHAP-based interpretability frameworks can
increase model trustworthiness, but their ap-
plication to African languages remains under-
tested and poorly localised (Lundberg, 2017).

* Medical chatbots trained on English datasets
failed 50% of trust evaluation criteria when
responding in African languages like Igbo
and Nigerian Pidgin, often unable to clar-
ify how diagnostic conclusions were reached
(Khanuja, 2023).

* Despite achieving 85% sensitivity and 89%
specificity, Ubenwa’s infant cry analysis tool
faced clinician rejection in some Nigerian hos-
pitals due to its opaque decision logic and lack
of contextual explanation (Onu et al., 2017).

The findings reinforce the importance of devel-
oping transparency mechanisms tailored to African
languages, such as linguistically adapted explain-
ability frameworks, to ensure Al-generated medical
recommendations can be trusted by healthcare pro-
fessionals.

5.3 Limitations of the Study

Despite valuable insights from evaluating multilin-
gual NLP models in African healthcare, several key
limitations remain:

* Dataset Gaps: Less than 1% of publicly avail-
able NLP corpora contain African medical
texts, limiting effective model training and
evaluation (Nekoto et al., 2020).

* Computational Constraints: Many African
institutions lack reliable access to high-
performance computing resources necessary
for training and fine-tuning large multilingual
models. Dependence on external cloud ser-
vices raises concerns about cost, data security,
and sovereignty (Khanuja, 2023).

* Ethical and Policy Gaps: Local Al gover-
nance frameworks addressing linguistic fair-
ness, data consent, and accountability in
healthcare NLP are underdeveloped. This reg-
ulatory vacuum complicates the ethical de-
ployment of Al solutions in sensitive medical
contexts (Birhane, 2021).

Overcoming these challenges requires expand-
ing African-language medical datasets, improving
computational infrastructure accessibility, and de-
veloping context-specific ethical and policy frame-
works tailored to the continent’s healthcare and
linguistic diversity.

5.4 Key Findings and Future Research
Directions

This evaluation underscores the opportunities and
challenges in applying multilingual NLP to African
healthcare. The key findings include:

* Current NLP models exhibit significant trans-
lation errors in African medical contexts, re-
quiring domain-specific fine-tuning.

* Bias in training datasets leads to disparities
in diagnostic accuracy and translation reliabil-
ity, necessitating fairness-aware NLP frame-
works.
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» Explainability challenges hinder the adoption
of Al-driven healthcare tools, highlighting the
need for linguistically and culturally adapted
interpretability techniques.

* Broaden evaluation and development to un-
derrepresented African languages like Fon,
Krio, Wolof, and Tigrinya, beyond commonly
studied Swahili and Yoruba, to improve gen-
eralisability and inclusivity of NLP systems.

Future research should focus on:

» Expanding African-language medical datasets
to enhance NLP training.

* Developing bias mitigation strategies that ad-
dress linguistic disparities in Al models.

* Creating culturally adapted Al transparency
frameworks to build trust in medical NLP ap-
plications.

By addressing these challenges, NLP has the
potential to significantly improve healthcare acces-
sibility and equity across Africa’s diverse linguistic
communities.
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Appendix A. Summary of MT and NER Model Performance

Table Al: Comparative performance of MT and NER models on African healthcare datasets.

Model Languages Evaluated BLEU Score / Accuracy Key Limitations
Masakhane-MT Swahili, Hausa, Yoruba < 25 BLEU Struggles with morphology
and medical domain terms
NLLB-Seed 40 African languages 44% lower BLEU vs EU Mistranslations, dialect bias,
and toxicity over-flagging
AfromT Hausa, Swabhili, Igbo 19% > Google, 25% < HR  Inaccurate medical term
handling, dialect confusion
Masakhane-NER Swabhili, Yoruba, Hausa 42% misclassification Limited annotated corpora
and poor entity consistency

Table Al: Comparative performance of MT and NER models on African healthcare datasets.
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Abstract

The deployment of Large Language Models
(LLMs) in real-world applications presents
both opportunities and challenges, particularly
in multilingual and code-mixed communica-
tion settings. This research evaluates the per-
formance of seven leading LLMs in sentiment
analysis on a dataset derived from multilingual
and code-mixed WhatsApp chats, including
Swahili, English and Sheng. Our evaluation
includes both quantitative analysis using met-
rics like F1 score and qualitative assessment
of LLMSs’ explanations for their predictions.
We find that, while Mistral-7b and Mixtral-
8x7b achieved high F1 scores, they and other
LLMs such as GPT-3.5-Turbo, Llama-2-70b,
and Gemma-7b struggled with understanding
linguistic and contextual nuances, as well as
lack of transparency in their decision-making
process as observed from their explanations. In
contrast, GPT-4 and GPT-4-Turbo excelled in
grasping diverse linguistic inputs and managing
various contextual information, demonstrating
high consistency with human alignment and
transparency in their decision-making process.
The LLMs however, encountered difficulties
in incorporating cultural nuance especially in
non-English settings with GPT-4s doing so in-
consistently. The findings emphasize the ne-
cessity of continuous improvement of LLMs to
effectively tackle the challenges of culturally
nuanced, low-resource real-world settings and
the need for developing evaluation benchmarks
for capturing these issues.

1 Introduction

Large Language Models (LLMs) have ushered
in major advancements in language processing,
demonstrating exceptional ability to process every-
day language commands and handle textual tasks
such as Question Answering, Sentiment Analysis,

* Work done while at Microsoft.

Summarization, among others (OpenAl, 2023a;
Brown et al., 2020; Chowdhery et al., 2022; Anil
et al., 2023; Touvron et al., 2023).

Despite LL.Ms advancements, their effective-
ness is predominantly observed in Latin Script lan-
guages with abundant training data, such as En-
glish, which constitutes a significant proportion of
their training corpus (Raffel et al., 2020; Common
Crawl, 2023; Together Computer, 2023; Longpre
et al., 2023). Although English is not the mother
tongue of the majority of the world’s population,
93% of GPT-3’s training data consists of English
content (Brown et al., 2020). Studies reveal that
languages with medium to low amounts of training
data like Swabhili still present challenges for these
models, highlighting they are far from achieving
parity with English (Ahuja et al., 2023a,b; Robin-
son et al., 2023). The picture is further complicated
given that 60% of the world population speaks two
or more languages'. In such settings, code-mixing?
is a prevalent aspect of natural language use. Con-
sequently, the performance of these models in real-
world settings, especially in low-resource code-
mixed and culturally diverse environments, remains
an area of significant interest.

This study investigates the effectiveness of seven
prominent LLMs on a sentiment analysis task on a
dataset derived from WhatsApp chats. The dataset
exhibits extensive code-mixing, encompassing mul-
tilingual conversations in English, Swahili, and
Sheng? in ‘chat speak’ e.g. using emojis, abbrevi-
ations, colloquial chat message spellings and mis-
pellings. With LLMs’ ability to process and pro-
duce human-like text, this task aims to evaluate

"https://ilanguages.org/bilingual.php

“the practice of alternating between two or more languages
or dialects in a conversational turn

%a dynamic urban slang from Nairobi, Kenya, blending
Swabhili, English, and local languages, evolving continually
among the youth.
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their understanding of the nuances present in the
dataset. We supplement the quantitative analysis of
the LL.Ms performance with a systematic qualita-
tive analysis of the explanations the models provide
for their predictions. While studies such as (Narang
et al., 2020; Wiegreffe et al., 2021; Majumder et al.,
2021; Wiegreffe et al., 2022) have demonstrated the
capability of LLMs to generate natural language
explanations alongside predictions, enhancing ex-
plainability and improving the faithfulness of Al
systems, it remains uncertain whether these expla-
nations directly influence the decision-making pro-
cess. However, we expect, and indeed do see, a cor-
relation between models’ predictions and their ex-
planations. We used the explanations as a method
of interrogating, to some extent, the models abil-
ity to process the cultural and linguistic nuances
of the messages. By looking beyond the numbers,
this method enables us to get some sense of how
well the different LLMs handle the complex inter-
actional features present in a real-world multilin-
gual dataset. We demonstrate the value of using
qualitative HCI methods alongside traditional per-
formance metrics. Our contributions are as follows:
(1) we evaluate and compare the performance of
seven advanced LLMs including GPT-4, GPT-4-
Turbo, GPT-3.5-Turbo, Llama-2-70b, Mistral-7b,
Mixtral-8x7b and Gemma-7b on a sentiment analy-
sis task using a novel WhatsApp chat dataset; (2)
we identify differences in the interpretation strate-
gies employed by different LLMs, highlighting the
diversity in their approach to processing complex
linguistic data; (3) we highlight the value of real-
world, multilingual, and code-mixed datasets in
assessing the performance of LLMs; (4) we show
how qualitative HCI methods can be used in NLP to
get a deeper understanding of model performance.
Our findings reveal that, while LLMs like Mistral-
7b and Mixtral-8x7b achieved high F1 scores in
sentiment analysis in the dataset, they and other
LLMs such as GPT-3.5-Turbo, Llama-2-70b, and
Gemma-7b seem to be less robust at handling lin-
guistic, cultural, and contextual nuances. Further,
there was a lack of transparency in their generated
explanations. In contrast, LLMs like GPT-4 and
GPT-4-Turbo deployed diverse linguistic and con-
textual information in their explanations, demon-
strating high consistency with human judgement.
All the LLMs however, struggled to incorporate the
more complex cultural nuances in the WhatsApp
dataset especially in non-English settings - even
GPT-4 and GPT-4-Turbo did so inconsistently.

2 Evaluation Dataset and Task

2.1 Dataset

The WhatsApp Chat Dataset: Our study em-
ployed a distinctive dataset originally collected by
Karusala et al. (2021) further annotated by Mondal
et al. (2021), with all ethical considerations and pri-
vacy measures observed as described below. It fea-
tures multilingual exchanges among young people
living with HIV in informal settlements in Nairobi,
Kenya, captured within two health-focused What-
sApp chat groups moderated by a medical facil-
itator. The total number of messages are 6,556
and the conversations are predominantly in En-
glish, enriched with a considerable use of Swabhili,
Sheng, and code-mixing. The data annotation in-
cluded sentiment and word-level language identifi-
cation for each message. As Karusala et al. (2021)
describe, recruited participants signed a consent
form outlining study procedures, data anonymiza-
tion, and security measures. All messages were
anonymized and translated into English by a native
speaker. Each chat message in the dataset included
an anonymized speaker ID, timestamp, original
message, and English translation. Due to the sensi-
tive nature of the content, the dataset is not publicly
available, but researchers can request access by con-
tacting the authors. We specifically selected this
dataset because it consists of real WhatsApp inter-
actions between participants and a medical facili-
tator occurring as part of a Global Health research
intervention. Additionally, its authentic represen-
tation of real-world, code-mixed communication
aligns with our core research focus.

Pre-Processing: Considering that the data origi-
nates from WhatsApp conversations, it exhibits a
casual, conversational style, often with short inter-
actions. We retained only turns with three or more
words providing more valuable data for sentiment
analysis. Contrary to typical processing methods,
we do not perform punctuation or emoji normaliza-
tion on the data, as these elements are integral to
the communication. The resulting dataset consisted
of 3,719 messages with an average of eleven words
per message.

2.2 Evaluation Task

Sentiment Analysis: The core of our evaluation
focuses on a sentiment detection task because of
its real-world application for such chat groups. We
wished to support the facilitator by for example
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# of Neutral # of Positive # of Negative # of Messages Per Average # of Tokens Per Total # of Tokens Per
Language T T b L M M
essage essage
| Monolingual |
En 1303 54 24 1381 12 16902
Sw 270 - 32 302 4 1264
Sh 2 - 2 3 6
| Multilingual
En-Sw 631 5 19 655 9 5582
Sw-Sh 143 - 12 155 5 705
En-Sh 51 2 1 54 6 301
En-Sw-Sh 190 3 16 209 10 2100
En-CM 10 - 1 11 9 94
Sw-CM 29 - 2 31 4 124
En-Sw-CM 60 - 6 66 12 812
En-Sh-CM 2 - - 2 12 24
Sw-Sh-CM 20 1 1 22 5 106
En-Sw-Sh-CM 36 - 3 39 14 542
Other 96 1 - 98 20 795
En-Other 359 10 4 373 20 7622
Sw-Other 73 - 5 78 4 342
Sh-Other 1 1 4 4
En-Sw-Other 119 2 2 123 11 1396
En-Sh-Other 16 - 2 18 10 188
Sw-Sh-Other 19 - 1 20 6 110
En-Other-CM 4 - - 4 6 24
Sw-Other-CM 4 - 3 7 6 41
En-Sw-Sh-Other 37 2 1 40 12 481
En-Sw-Other-CM 10 - 2 12 13 161
En-Sh-Other-CM 3 - - 3 4 12
Sw-Sh-Other-CM 4 4 8 33
En-Sw-Sh-Other-CM 9 9 17 151

Total | 3501 | 80 | 137

3719 | 246 | 39922 \

Table 1: Message Distribution by Language. This table displays the count of neutral, positive, and negative messages,
total messages per language, average tokens per message, and total tokens per message for each language studied.

flagging negative messages. Table 1 illustrates
the sentiment distribution according to human an-
notators within our pre-processed dataset, heavily
skewed towards the Neutral class. This imbalance
highlights the evaluation challenge of accurately
identifying the less frequent Negative and Positive
sentiments, testing the LLMs’ ability to detect sen-
timent cues in a predominantly Neutral context.

Languages in the WhatsApp Dataset: Table
1 describes the statistics of languages within the
dataset defined as: En (English), Sw (Swabhili), Sh
(Sheng) and CM (Code-Mixed). These include mes-
sages in single language (Monolingual) and mes-
sages in more than one language (Multilingual).
The dataset includes an ‘Other’ category used for
words that do not fit the primary categories due
to uncertainty, named entities, or other unique fac-
tors.

3 Experimental Setup

3.1 Models

We evaluated three OpenAl models: GPT-4-Turbo,
GPT-4-32k (OpenAl, 2023b), and GPT-3.5-Turbo
(Ouyang et al., 2022), with GPT-4-32k being
the latest iteration and known for its enhanced
performance on text processing and generation.
GPT-4-Turbo and GPT-3.5-Turbo are optimized
versions designed for more efficient processing

without significantly compromising performance.
From the open-source collection, we select Meta’s
Llama-2-70b-chat (Touvron et al., 2023), an
LLM known for its efficiency and chat function-
ality. Additionally from Mistral Al, we include
Mistral-7B-Instruct-v@.2 (Jiang et al., 2023)
and Mixtral-8x7B-Instruct-v@.1 (Jiang et al.,
2024), the former being popular for its exceptional
ability to follow instructions and the latter for its
innovative architecture which makes it excel in
mathematics, code generation, and multilingual
tasks. Lastly, we include Google’s Gemma-7b-it
(Mesnard et al., 2024), a state-of-the-art language
model that excels in language understanding, rea-
soning, and safety, outperforming comparable mod-
els in numerous academic benchmarks. Through-
out this paper, we refer to the mentioned models
as: GPT-4, GPT-4-Turbo, GPT-3.5-Turbo, Llama-
2-70b, Mistral-7b, Mixtral-8x7b and Gemma-7b.

3.2 Model Evaluation

Different prompting approaches (Brown et al.,
2020; Chen et al., 2023) have been shown to effec-
tively guide LL.Ms contextually, towards desired
outputs. Investigations reveal that the quality of
prompts provided, have a profound influence on
the performance of LLMs (Liu et al., 2023; Hada
et al., 2023). Leveraging this technique, we craft a
detailed prompt to guide the LLMs to function as
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specialized NLP assistants for sentiment analysis.
The prompt directs models to identify sentiments
as Positive, Negative, or Neutral. Figure 3 illus-
trates the standardized prompt that we used for
evaluating all seven LLMs, facilitating a fair and
consistent comparison of their performance. We
employ the same sentiment definitions given to
human annotators during the dataset’s sentiment
annotation phase. Furthermore, we direct the mod-
els to justify their sentiment classifications in 200
words or less, focusing on the text spans that influ-
enced their decisions. We conduct the evaluation
on the entire pre-processed dataset and employ the
weighted F1-score* metric instead of accuracy due
to the skew in our dataset.

4 Qualitative Analysis

We supplemented our quantitative evaluation with
in-depth qualitative analyses. Considering the skew
towards the neutral class in our dataset, as illus-
trated in Table 1, and to ensure a balanced and
rigorous analysis, we selected a sample compris-
ing a total of 261 messages at random includ-
ing both monolingual and multilingual messages
for in-depth examination. For monolingual, the
sample included 150 messages divided equally
among the three sentiment categories: Negative,
Positive, and Neutral. For the multilingual case,
the sample entailed 50 Neutral, 50 Negative and
11 Positive messages whereby the positive mes-
sages represented all the positive labels in this cat-
egory. The first author being proficient with the
languages in the WhatsApp dataset, analyzed all
the 261 sampled messages, identifying patterns
in the data. We borrowed five criteria as out-
lined by (Chang et al., 2023) on ‘how to evalu-
ate’ to guide our human evaluation. These cri-
teria, described in Table 4, were linguistic accu-
racy, contextual and cultural relevance, fluency
in maintaining consistency, alignment with hu-
man expectations and transparency in the LLMs’
decision-making process. While these criteria
have been designed for quantitative evaluation, we
used them to provide a structure for analysing
the set of justifications for each message across
models. We supplemented this structured analy-
sis with a more in-depth ethnomethodologically-
informed approach (Crabtree et al., 2000, 2006;
O’Neill and Martin, 2003; Martin et al., 2014)

4https ://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html

where the first author and the last author (who is
skilled in ethnomethodologically-informed analy-
sis) together analysed each turn (message) in detail,
to understand how the justifications produced by
the different models related to the original and the
human-translated message, how they related to one
another and how they related to the sentiment pre-
diction. In these sessions, the two authors looked
in detail at the messages and model justifications
and identified emergent patterns, interrogating and
refining them. This analysis was deeply qualitative,
aiming to derive insights into differences between
models in their justifications. As an additional san-
ity check, we invited three other native speakers to
review a set of 15 messages, selected from the 261
messages the first author had analysed. The review-
ers conducted their assessments independently and
reconvened to discuss their findings, along with the
first author and were all confident about the con-
sistency of the findings. In this paper, for reasons
of space, we use a small number of examples to
illustrate the patterns that we found in the data.

5 Results and Discussion

In this section, we explore the results of our study
by discussing both quantitative and qualitative find-
ings of models performance on the WhatsApp
dataset, beginning with the quantitative results mea-
sured by the F1 score. Following this, we will delve
into the qualitative findings, discussing insights
from the models’ justifications and their implica-
tions for language processing strategies.

5.1 F1 Score-Based Models Comparison

As evidenced by the F1 Score comparison of the
seven models in Figure 1, the Mistral-7b model
demonstrates a higher performance in sentiment
analysis on the WhatsApp dataset, closely followed
by GPT-4. Conversely, the Llama-2-70b model
exhibits the weakest performance.

Mistral-7b
GPT-4
Mixtral-8x7h
GPT-4-Turbo
GPT-3.5-Turbo
Gemma-7h

Llama-2-70b

) 20 40 60 80
F1 Score (%)

Figure 1: Overall F1 score comparison of the models.

As Table 1 illustrates, the majority of positive
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and neutral sentiments were expressed in English,
whereas most negative sentiments were conveyed
in Swahili. This supports the findings of (Rudra
et al., 2016), which suggest that people are more
likely to express negative opinions in non-English
languages. Further analysis of F1 scores by senti-
ment and language, as shown in Figures 2 and 4,
highlights the distinct capabilities of various mod-
els. Specifically, Mistral-7b excels in identifying
neutral sentiments, predominantly in English fol-
lowed closely by GPT-4s, Mixtral-8x7b, and GPT-
3.5-Turbo, with Gemma-7b and Llama-2-70b trail-
ing. Conversely, GPT-4 and GPT-4-Turbo demon-
strate superior performance in accurately classify-
ing the rare negative sentiments, predominantly in
Swahili and code-mixed. These findings are con-
sistent with those from standard NLP benchmarks
such as those reported in (Ahuja et al., 2023b), par-
ticularly in non-English contexts, specifically low-
resource languages like Swahili and code-mixed
languages. In these settings, larger models such
as OpenAl’s GPT-4s frequently outperform other
LLMs.

GPT-4
GPT-4-Turbo

GPT-3.5-Turbo
Llama-2-70b
Negative

Mistral-7b
Mixtral-8x7h

Gemma-7h

Positive

Neutral

Figure 2: Comparison of F1 scores for the models across
Positive, Negative, and Neutral sentiments.

5.2 Insights from the Justifications

As instructed by our detailed prompt in Figure 3, all
the seven LLLMs produced their predictions along
with justifications. Across the board, even where
sentiment predictions were the same for all the
models, we noticed distinct differences in the jus-
tifications provided. Some LLMs consistently in-
corporated words or spans of text as part of their
justifications (as requested in the prompt) others did
so less frequently. Similarly some regularly trans-
lated non-English terms into English, others did
not. See the examples presented in this Section’s
Tables 2 and 3 and in Appendix §A.4. In Table 2,

GPT-3.5-Turbo and Mistral-7b do not provide any
spans of message text in their justifications.
Which models perform best at accurately in-
terpreting linguistic nuances and textual inac-
curacies such as spelling errors, local abbrevi-
ations and grammatical inaccuracies? As il-
lustrated by the examples in Tables 3 and 5 and
Appendix §A.4, GPT-4 and GPT-4-Turbo stand
out with superior performance in languages like
Swahili and Sheng, and in code-mixed scenarios
where they effectively handle the linguistic nuances
between English and local languages. In particular,
they were more consistently correct in their trans-
lation of the non-English word spans used in their
justifications. They maintained strong performance
even in rare sentiment classes, outperforming mod-
els like GPT-3.5-Turbo, which, though proficient,
does not reach the high level of linguistic perfor-
mance exhibited by the GPT-4s. Taking the exam-
ple in Table 6 to illustrate - a code-mixed English-
Swahili-Sheng message, GPT-4 and GPT4-Turbo
provide correct interpretations of the Swahili and
Sheng in their justifications, with GPT-4 Turbo
even identifying ‘kuniboo’ (Translation: ‘bore me’)
as Sheng. Gemma-7b also identifies Sheng, but
wrongly identifies the whole sentence as Sheng,
and mistranslates it. The other models all pro-
vide mistranslations in their justifications. Mod-
els such as Llama-2-7b, Mistral-7b, Mixtral-8x7b
and Gemma-7b face difficulties with Swabhili and
Sheng, as evidenced by their often incorrect trans-
lations of Swahili words and phrases. They of-
ten prioritized English in mixed-language settings
resulting in either incorrect predictions or justifi-
cations when key sentiment indicators lie in the
non-English segments which was mostly the case
for Negative sentiments. Similarly with regards
to LLMSs’ robustness to textual inaccuracies, the
GPT-4s accurately interpreted messages with ir-
regularities. However, the remaining models were
less reliable, struggling with noisy data especially
non-English texts; an example is shown in Table 5.
Nonetheless, overall all the seven LLMs have
demonstrated proficiency in English messages in
the WhatsApp dataset. However, even in English
the models can fail to predict the correct sentiment,
and their justifications reflect the sentiment that
they predicted. Let’s take the example in Appendix
Table 7, for a human reviewer, this message is a
clear example of a social media chain message -
typically *copy and paste’ messages requiring the
reader to either like, respond, or forward. The lin-
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guistic indicators of this are the instruction at the
start "Send to everyone you love..." and the conclu-
sion "You are lovable if you get FIVE sent back to
you". This can be read as an instruction or perhaps
a playful activity. None of the models predicted the
correct sentiment (Neutral), all predicting Positive.
In their justifications, none of them identified this
as a chain message, instruction, activity or similar
- even where they highlighted the phrase "You are
lovable if you get FIVE".

Do the models utilize the surrounding textual
context and cultural subtleties to determine sen-
timent? From our analysis and as illustrated in
Table 2, GPT-4 and GPT-4-Turbo effectively uti-
lized context in their justifications for their senti-
ment predictions. This is evidenced by their use of
relevant word spans and their correct explanations
of the meanings of phrases, leading to accurate
predictions and coherent interpretation. GPT-3.5-
Turbo lagged slightly due to occasional oversights
in contextual (phrase) information. The remaining
models including Llama-2-7b, Mistral-7b, Mixtral-
8x7b and Gemma-7b often used word-level rather
than phrase level justifications, especially in mul-
tilingual and code-mixed texts, leading to misin-
terpretation of meaning and incorrect predictions
or justification. With regards to cultural relevance,
the LLMs generally struggled to incorporate cul-
tural nuances in the dataset, see example in Table
3. However, in specific scenarios, models like Ope-
nAl’s GPT-4s, which excel in grasping linguistic
subtleties and leveraging contextual information,
demonstrated proficiency in incorporating cultural
aspects into their interpretations.

Are the models fluent in maintaining consis-
tency in their interpretation across similar sen-
timent scenarios within the WhatsApp dataset?
Our findings show that models like GPT-4 and GPT-
4-Turbo demonstrate high consistency, reliably ap-
plying their analytical capabilities in sentiment pre-
dictions across both English and non-English lan-
guage settings. In contrast, other models performed
better on English and Neutral sentiments but lagged
behind in non-English cases exhibiting less con-
sistency, often varying in their justifications and
output even under similar conditions. This incon-
sistency can lead to unpredictability in performance
in complex multilingual environments, highlight-
ing the need for models to have stable and reliable
interpretation mechanisms when deployed in varied
real-world applications.

Do the models’ predictions and interpreta-

tion conform to typical human expectation? We
observed that LLLMs such as OpenAl’s GPT-4s,
which demonstrated robust linguistic and contex-
tual comprehension in sentiment detection for the
dataset, often aligned with human expectations,
consistently producing accurate predictions along
with correct justifications. However, the rest of the
LLMs, while mostly aligned in English contexts,
did not perform as well in non-English settings.
Were the models transparent in their decision-
making process in the WhatsApp dataset? Our
analysis revealed that Mistral and Mixtral mod-
els, despite achieving high F1 scores, often lacked
correct and transparent interpretations in their jus-
tifications. This was particularly evident in non-
English contexts, reflecting issues we observed
with LLMs such as GPT-3.5-Turbo, Llama-2-7b,
and Gemma-7b. Frequently, these LLMs incor-
rectly translated the text or failed to disclose the
specific text spans that informed their conclusions.
This opacity makes it challenging to trust their
judgments. That they often reached the correct
prediction could be because the sentiment could
be determined despite the incorrect translation (as-
suming some correlation between the prediction
and the justification). The implications of this are
that these models might well be useful for tasks
like sentiment prediction, but less useful for tasks
which require a more accurate interpretation of lan-
guage and semantics - including translation tasks.
In contrast, OpenAl’s GPT-4s showcased a robust
multilingual and contextual performance. These
models consistently highlighted relevant phrases
or text spans that justified their conclusions, gen-
erally leading to correct and transparent outcomes.
However, when cultural factors influenced their
decision-making process, the models’ performance
were mixed, displaying transparent interpretation
in some instances but falling short in others. This
inconsistency raises concerns about the models’
reliability in culturally nuanced scenarios.

6 Related Works

Multilingualism in LLMs: LLMs’ effectiveness
in multilingual contexts continually attracts atten-
tion. Studies by (Lai et al., 2023; Ahuja et al.,
2023a; Hendy et al., 2023; Ahuja et al., 2023b),
have thoroughly evaluated LLMs across various
languages using standard NLP benchmarks with
(Ojo et al., 2023; Robinson et al., 2023) focusing
on African languages. However, these studies typ-
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Message GPT-4 GPT-4-Turbo GPT-3.5-Turbo

Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b

Original: “Hi The message ‘Hi The message ‘Hi The sentiment is
guys meeting yetu guys meeting yetu guys meeting yetu Neutral. The mes-
imekuewaje.” imekuewaje’  is imekuewaje’ is a sage is a simple
Translation: asking about the neutral sentiment greeting and does

“Hey guys how was
the meeting.”
Actual Sentiment:
Neutral

status of a meeting,
which is a neutral
inquiry and does
not express any
positive or nega-
tive sentiment.

as it is a general in-
quiry about the sta-
tus or outcome of sentiment.

a meeting without Prediction: Neu-
any explicit pos- tral

itive or negative

not express a pos-
itive or negative

Prediction: Neu-  emotion or opin-
tral ion.
Prediction: Neu-
tral

The word ‘meet- The message is The given message The phrase ‘Hi

ing suggests a Swahili greeting, ‘Hi guys meeting guys meeting
a gathering or which is a normal yetu imekuewaje’ yetu imekuewaje’
event, which is aspect and does not is a greeting and is neutral.  The

an invitation to a
meeting. The word
‘guys’ is a friendly
way to refer to
a group of peo-

typically a positive
or neutral activ- ular sentiment.

ity. The phrase Prediction: Neu-
‘imekuewaje’  is tral

in  Swahili and

express any partic- speaker is simply
greeting the recipi-
ents and does not
express any pos-

itive or negative

roughly translates ple, ‘hi’ is a com-  sentiment.
to ‘it’s okay’ or mon greeting, and Prediction: Neu-
‘it’s all good’ in ‘yetu’ means ‘our’ tral

English, which im-
plies a positive or
neutral sentiment.
Therefore, the
overall sentiment
of the message is

in Swabhili, indi-
cating inclusivity.
The word ‘imekue-
waje’ is in Sheng,
a slang language
in Kenya, and it

likely Neutral. means ‘has been
Prediction: Neu- organized’ or ‘has
tral been set’. There-

fore, the sentiment
expressed in this
message is Neu-
tral, as it is a fac-
tual statement and
a simple greeting
without expressing
any positive or neg-
ative emotions.
Prediction: Neu-
tral

Table 2: In this example, only GPT-4 and GPT-4-Turbo showed excellence in both linguistic and contextual
understanding while remaining models misinterpreted the message as simply a greeting, due to a misunderstanding
of the Swahili words. Interestingly all LLMs made the correct prediction, and their explanations correlated with the
prediction they made, but only the explanations by GPT-4 and GPT-4 Turbo matches human expectations.

Message GPT-4 GPT-4-Turbo GPT-3.5-Turbo Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b
Original: “Kama The message The message The sentiment is The sentence The given query in The query ‘Kama The phrase ‘Kama
hauko shule shin- ‘Kama hauko ‘Kama hauko shule Negative. The ‘Kama hauko Swahili translates hauko shule hauko shule
daapo” shule shindaapo’ shindaapo’  trans- phrase ‘shindaapo’ shule shindaapo’ to ‘If school had shindaapo’ is shindaapo’ is a
Translation: “If translates to ‘If lates to ‘If you are expresses a nega- expresses a neg- not closed’. It is a in  Swahili and Swahili  phrase
you are not in you are not in not at school, stay tive feeling or view ative  sentiment. statement express- translates to ‘If that translates to
school stay there” school, stay there’.  where you are’ about not being in The word ‘kama’ ing a factual situa-  you hadn’t gone to “You are not going
Actual Sentiment: This is a neutral in English. This school. means ‘like’ in tion and does not school, you would to school today’.
Negative statement as it message seems to Prediction: Nega-  Swahili, and contain any pos-  have passed’. The The speaker is
does not express be giving neutral tive ‘hauko’ means itive or negative sentence does not expressing a neg-
any positive or advice or instruc- ‘there isn’t’ or sentiment. express any pos- ative sentiment as
negative sentiment. tion without any ‘there is no’. The Prediction: Neu- itive or negative they are saying
It is simply a explicit positive or phrase ‘shule tral sentiment. It is that the recipient
factual advice or negative emotion. shindaapo’ means a hypothetical will not be able
suggestion. Prediction: Neu- ‘school is closed’. situation and there to attend school.
Prediction: Neu- tral Therefore, the is no sentiment in- The words ‘shule’
tral speaker is express- volved. Therefore, and  ‘shindaapo’
ing a negative the sentiment is are the key words

sentiment towards Neutral.
the fact that school Prediction: Neu- sentiment.

is closed. The tone tral Prediction: Nega-
of the sentence is tive

also melancholic,

indicating a nega-

tive emotion.

Prediction: Nega-

tive

used to convey this

Table 3: The Swahili phrase carries a negative sentiment as it is used to dismissively suggest that someone who is
not in school should refrain from participating in discussions, reflecting a cultural emphasis on educational status as
a basis for contributing to intellectual conversations. All LLMs did not understand the cultural context here.

ically depend on NLP benchmarks that may not
closely reflect the complexity of real-world con-
texts, often missing subtleties and scenarios that
occur in everyday use. Moreover, the LLMs might
have already encountered some benchmark content
online, a concern highlighted by (Sainz et al., 2023;
Ahuja et al., 2023b).

Models’ Challenges in Code-Mixed Text Pro-
cessing: Code-mixing - the blending of two or
more languages within a single utterance of a con-
versation (Poplack, 2001), is common in multilin-
gual communities, including Kenya (Orao, 2012).
The phenomenon of code-mixing presents unique
challenges in the field of NLP. (Zhang et al., 2023;
Dogruoz et al., 2023; Kaji and Shah, 2023) em-
phasizes the lack of training data as one of the
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main challenges, attributing to the complexity of
processing code-mixed language.

Importance of Real-World Data in LLMs Evalu-
ation: (Wibowo et al., 2023) introduces COPAL-
ID, a culturally rich Indonesian dataset that chal-
lenges even advanced models like GPT-4, high-
lighting the need for nuanced datasets in LLMs
evaluation. (Chiu et al., 2024) present Cultural-
Teaming, an Al-assisted interactive red-teaming
approach that enhances the creation of multicul-
tural evaluation datasets, revealing significant gaps
in LL.Ms’ understanding of diverse cultural con-
texts through the development of the challenging
CULTURALBENCH-VO.1 dataset. (Zheng et al.,
2023) curates LMSYS-Chat-1M, a dataset of one
million real-world conversations with 25 LLMs,
designed to enhance understanding and develop-
ment of LLMs capabilities in diverse interaction
scenarios. Our work extends the efforts on LLMs
evaluation using real-world datasets by employ-
ing a code-mixed WhatsApp dataset, reflecting a
linguistic phenomena absent in curated datasets.
Our evaluation combines quantitative and qualita-
tive analysis of LLMs’ performance and decision-
making processes.

7 Conclusion

Our study utilized a multilingual and code-mixed
WhatsApp dataset to assess the effectiveness of
seven LLMs on a sentiment analysis task. Our
evaluation includes both quantitative analysis us-
ing metrics like F1 score and qualitative assessment
of LLMs’ explanations for their predictions. Our
comparative analysis revealed that, while Mistral-
7b and Mixtral-8x7b achieved high F1 scores, they
and other LLMs such as GPT-3.5-Turbo, Llama-2-
70b, and Gemma-7b struggled with understanding
linguistic and contextual nuances, as well as lack
of transparency in their decision-making process as
observed from their explanations. In contrast, GPT-
4 and GPT-4-Turbo excelled in grasping diverse lin-
guistic inputs and managing various contextual in-
formation, demonstrating high consistency with hu-
man alignment and transparency in their decision-
making process. The LLMs however, encountered
difficulties in incorporating cultural nuance espe-
cially in non-English settings with the GPT-4s do-
ing so inconsistently. Our evaluation, which lever-
ages real-world data, substantiates the robustness
observed in NLP benchmarks, particularly high-
lighting the superior performance of larger models

like OpenAI’'s GPT-4s in handling low-resource
and code-mixed languages. The study highlights
the importance of using real-world data for LLMs
evaluation. In addition, it advocates for combining
qualitative methods from Human-Computer Inter-
action (HCI) with NLP to gain deeper insights into
model performance.

Future research should explore the integration
of linguistic diversity and cultural intelligence into
model training and evaluation frameworks. Addi-
tionally, further work is needed to bridge the gap be-
tween quantitative performance metrics and quali-
tative understandings of model behavior. Lastly, fu-
ture research should also focus on investigating the
relationship between explanations and Al decision-
making, for example by quantifying correlations
across different NLP tasks. This will ensure that
future models are not only effective but also inter-
pretable and aligned with human expectations.

Limitations

This study, though comprehensive, has several lim-
itations. It primarily examines texts in Swahili, En-
glish, Sheng, and their code-mixed variants, over-
looking the vast array of global languages and di-
alects. Additionally, the focus on seven specific
LLMs provides insights but excludes other emerg-
ing LLMs. Lastly, while combining quantitative
metrics and qualitative analysis, the balance may
constrain the depth of qualitative insights due to
the dataset’s scale and the subjective nature of qual-
itative evaluation.

Ethics Statement
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A Appendix
A.1 The Prompt

You are a helpful NLP assistant, specializing in Sentiment Analysis. You are provided with a WhatsApp chat message (QUERY) in English, Swahili,
Sheng, or in more than one language (code-mixed), along with the defintions about the sentiment classes. Your task is to analyze the message
and categorize it as Positive, Negative, or Neutral based on the sentiment expressed, along with a justification. Make sure to highlight the
words/span of text in the query that you used to make your decision in your justification.

(DEFINITIONS)
*xNegative Sentiment*x: It expresses some sort of negative feeling or view or opinion about someone or something.

**Neutral Sentiment**: It neither expresses a positive nor a negative sentiment of the speaker. It could be a general comment, acknowledgement,
chitchat or any factual advice or a simple greeting.

**Positive Sentiment**: The sentiment needs to be classified as positive if the speaker feels strong and positive at any particular utterance,

except the normal aspects such as any form of greetings.
(/DEFINITIONS)

QUERY: "{query}"

{output_format_instructions}
*%*DO NOT OUTPUT ANYTHING OTHER THAN THE JSON OBJECT**

Figure 3: LangChain prompt for Sentiment Analysis. We randomize the order of the definitions to alleviate position
bias.

A.2 Description of Human Evaluation Criteria

In Table 4, we provide a brief description of each of the five rubrics for human evaluation we adopted as
outlined by (Chang et al., 2023) on ‘how to evaluate’.

Evaluation Criteria Description |

LLM’s capacity for precise linguistic interpretation and generation, covering
Linguistic accuracy grammar, vocabulary, idioms, and language-specific nuances, while ensuring
factual accuracy.

LLM’s ability to provide contextually and culturally relevant justifications in
Contextual and cultural relevance sentiment analysis, ensuring responses are appropriate and significant to the
given context.

LLM’s fluency in producing consistent and logical justifications across various

Fluency in maintaining consistenc . . . .
y g y sentiment analysis cases, ensuring smooth content flow and uniform tone.

LLM’s ability to produce justifications aligned with human reasoning ensures
Alignment with human expectations ethically appropriate predictions, reflecting human values and societal norms,
fostering trust in sensitive applications like sentiment analysis.

LLM’s ability to clearly and openly communicate its decision-making process,
enabling users to understand the rationale behind responses and gain insights
into its inner workings.

Transparency in LLM’s decision-
making process

Table 4: Description of Human Evaluation Criteria.
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A.3 LLMs’ F1 Scores Across Languages
0 GPT4 [ GPT-4-Turbo [ GPT-3.5-Turbo [ Llama-2-70b [ Mistral-7b [ Mixtral-8x7h [ Gemma-7Th
En Sw En-Sw
80 80
60 S 60
i<l (<] j<3
° ° :
740 % Z 40
Fx |3 [
20
0 Positive Negative Neutral Positive Negative Neutral Positive Negative Neutral
Sw-Sh En-Sh En-Sw-Sh
80
— — 60
K00 =60 S
= g £
s} IS} o
S i s
[ [ [
20 20 20
0 0 Positive

Positive Negative Neutral

Positive Negative

Neutral

Negative Neutral

Figure 4: Models’ F1 scores across languages for Positive, Negative, and Neutral sentiments.
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A.4 Detailed Qualitative Analysis of Model Explanations Across Multilingual Examples

Message GPT-4 GPT-4-Turbo GPT-3.5-Turbo Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b
Original: ~ “Mm The phrase ‘nime- The phrase ‘nime- The sentiment The message ex- The given query The query ‘Mm The phrase ‘Mm
nimeboeka acha ni boeka’ translates boeka’ which is categorized presses a positive is in Swahili lan- nimeboeka acha ni nimeboeka acha
lale gud 9t” to ‘I'm bored’ in means ‘I’'m bored’ as Neutral. The sentiment due to guage and trans- lale gud 9t is in ni lale gud 9t is
Translation: “Am English, which in- indicates a neg- message does the use of posi- lates to ‘I have not Sheng, a slang lan- a Sheng phrase
bored let me sleep dicates a negative ative feeling not express a tive words such as found it yet good guage spoken in that translates to
..goodnight” sentiment.  The or mood.  The strong positive or  ‘Mm’, ‘ni lale’, and 9t’. The sentiment Kenya. The phrase ‘T am not feeling
Actual Sentiment: speaker is express- speaker’s intention negative feeling.  ‘gud’. expressed is neu- roughly translates well’. The speaker
Negative ing dissatisfaction to go to sleep It seems to be a Prediction: Posi- tral as the speaker to ‘T have given is expressing
or alack of interest, (‘acha ni lale’) casual comment tive is simply stating a up, it’s late now, 9 negative sentiment
which is a negative could be seen as a about feeling fact about their cur- o’clock’. The sen- due to the use of
feeling. way to escape this tired and going to rent situation. timent expressed the word ‘acha’
Prediction: Nega- boredom, which sleep. The use of Prediction: Neu- in this message and ‘gud’, which
tive further empha- ‘acha ni lale gud tral is Negative as the are both words
sizes the negative 9t" indicates the speaker expresses used to describe
sentiment.  The speaker’s intention giving up and the feeling unwell.
addition of ‘gud 9t to go to sleep, lateness of the time The phrase also
(good night) does which is a neutral could indicate a includes a refer-
not change the statement. negative feeling or ence to the number
overall sentiment Prediction: Neu- situation. The ‘Ot’,  which is
as it is a common tral word ‘acha’ (give commonly used
phrase used before up) is particularly in Sheng to ex-
going to sleep and indicative of aneg-  press feeling sick.
does not express ative sentiment. Therefore, T clas-
a strong positive Prediction: Nega-  sify the sentiment
feeling as per tive of the message as
the definitions Negative.
provided. Prediction: Nega-
Prediction: Nega- tive
tive

Table 5: This example involves an English-Swahili message with various textual irregularities including grammatical
errors (‘ni lale’ instead of ‘nilale’), local abbreviations (‘Mm’ instead of ‘Mimi’), and misspellings (‘gud 9¢’ instead
of ‘good night’, ‘acha’ instead of ‘wacha’). GPT-4-Turbo excelled in this challenging context by demonstrating its
robust multilingual capabilities and resilience to noise, leading to both correct prediction and interpretation. GPT-4
similarly managed to accurately identify the key sentiment indicator in the message. However, the remaining models
including GPT-3.5-Turbo, Llama-2-70b, Mistral-7b, Mixtral-8x7b, and Gemma-7b showed weaker contextual and
linguistic understanding, as well as a lack of robustness to noise. As a result, GPT-3.5-Turbo and Mistral-7b made
incorrect predictions, while Mixtral-8x7b and Gemma-7b, despite correct predictions, failed in their interpretation.

Message GPT4 GPT-4-Turbo GPT-3.5-Turbo Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b
Original: “tu- The phrase The phrase The sentiment The word ‘tuache’ The given query in The Swahili The phrase ‘tu-
ache iyo story ju ‘ishaanza kuniboo’ ‘ishaanza kuniboo’ expressed in the means ‘forget’ in Swahili language phrase ‘tuache iyo ache iyo story ju
ishaanza kuni- in the message indicates that message is nega- Swahili, and the ‘tuache iyo story story’  translates ishaanza kuniboo’
boo.” indicates that the the speaker is tive. The phrase phrase ‘iyo story’ ju ishaanza kuni- to ‘let’s leave that is a Sheng phrase
Translation: speaker is getting getting bored or is ‘tuache iyo story’ means ‘that story’ boo’ translates to story’ in English. that translates to
“Let’s leave that bored or annoyed already bored with indicates a desire or ‘that thing’. ‘leave that story The word ‘leave’ ‘you are telling a
story it is starting with the story, the story being to stop or leave a The word ‘ju’ is alone’ in English. often indicates a story that is not
to bore me.” which is a negative discussed.  The certain  situation, an  interrogative This is a command negative sentiment true’. The speaker
Actual Sentiment: sentiment. word  ‘kuniboo’ and ‘ishaanza pronoun meaning or instruction and as it suggests is expressing disbe-
Negative Prediction: Nega- is a Sheng term kuniboo” suggests ‘what’. There- does not express abandonment  or lief and negativity
tive that translates to that  something fore, the overall any positive or neg- disinterest.  The towards the story
’boring me’ in negative has sentiment of the ative sentiment. word ‘that story’ being told. The
English, ~ which started happening sentence is Neutral Prediction: Neu- is a reference words ~ ‘ishaanza’
conveys a negative to the speaker. because it is asking tral to a previous and ‘kuniboo’ are
sentiment. Therefore, the about something conversation  or the key words
Prediction: Nega- overall sentiment in a factual manner event, which based used to convey this

tive is negative. without expressing on the sentiment sentiment.
Prediction: Nega- any positive or expressed, seems Prediction: Nega-
tive negative emotion. to be something tive
Prediction: Neu- the speaker wants
tral to move away

from. Therefore,
the sentiment of
this message is
Negative.
Prediction: Nega-
tive

Table 6: This message showcases a complex mix of English, Swahili, and Sheng, with the Swahili-Sheng term
‘kuniboo’ serving as a key sentiment indicator. GPT-4 and GPT-4-Turbo excelled in this context, demonstrating
strong multilingual capabilities by accurately understanding both the linguistic elements and the contextual nuances,
leading to correct predictions and interpretation. GPT-3.5-Turbo and Mixtral-8x7b have made a correct prediction,
however, failed to recognize the significance of ‘kuniboo’, likely due to a lack of understanding of this specific
term. The remaining models, including Llama-2-70b, Mistral-7b, and Gemma-7b, also missed the critical non-
English sentiment indicator. Consequently, Llama-2-70b and Mistral-7b made incorrect predictions with incorrect
interpretation, whereas Gemma-7b managed a correct prediction but with flawed interpretation.
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Message GPT-4 GPT-4-Turbo GPT-3.5-Turbo Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b

Original:  “Send The message is The message en- The sentiment The message ex- The message ex- The message The message
to everyone you encouraging  the courages people to expressed in the presses a positive presses a positive expresses a posi- expresses  strong
love whether it’s recipient to spread send love in vari- message is Posi- sentiment as it sentiment towards tive sentiment by positive sentiment
real love or friend-  love to everyone ous forms and im-  tive. The speaker encourages  the love and the im-  encouraging the due to the use of
ship love, broth- they care about, plies that receiv- is expressing love reader to spread portance of receiv- reader to share words like ‘love’,
erly love, sisterly and it also assures ing love back is and positivity love and mentions ing love in return. love with others, ‘lovable’, and
love, child love, them that they a positive outcome towards everyone receiving love in The speaker en- whether it be ‘FIVE sent back to
fatherly love and are lovable. The by stating ‘You are they care about, return. The use courages sending romantic, familial, you’. The message
motherly love. You phrases ‘Send lovable if you get including family of the word ‘love’ love to various rela- or platonic. The also emphasizes
are lovable if you to everyone you FIVE sent back and friends. The multiple times tionships and con- phrase ‘You are the feeling of
get FIVE sent back love’” and ‘You are to you’. The phrase ‘Send to emphasizes  the siders being loved lovable if you get inclusivity and
toyou!” lovable’ indicate a words ‘love’, ‘lov- everyone you love’ positive emotion. as a positive at- FIVE sent back affection towards
Actual Sentiment: positive sentiment. able’, and the con- and the mention Additionally, the tribute. to you’ also adds various  relation-
Neutral Prediction: Posi- cept of sending of different types phrase ‘you are Prediction: Posi- to the positive ships.
tive love to others and of love such as lovable’ suggests tive sentiment as it Prediction: Posi-
receiving it back brotherly, sisterly, that the speaker implies that the tive
suggest a positive child, fatherly, and feels  positively recipient is loved
sentiment. motherly love all about the recipient. and appreciated by
Prediction: Posi- contribute to the Prediction: Posi- others. The use
tive positive sentiment tive of positive words
expressed in the such as ‘love’,
message. ‘lovable’, and
Prediction: Posi- ‘five’  contribute
tive to the overall
positive tone of the
message.
Prediction: Posi-
tive

Table 7: This example focuses on the challenges posed by informational-neutral messages that, despite being
predominantly in English, contain ambiguous sentiments that may be interpreted as either positive or negative.
This ambiguity leads to discrepancies between the models’ predictions and the actual annotations. Despite these
challenges, the example also highlights all models’ strong linguistic understanding of English, showcasing their
ability to handle the language even in nuanced scenarios.

Message GPT-4 GPT-4-Turbo GPT-3.5-Turbo Llama-2-70b Mistral-7b Mixtral-8x7b Gemma-7b
Original: “Me The phrase ‘Me The phrase ‘Me The sentiment is The phrase ‘Me The query ‘Me The query ‘Me The phrase ‘Me
siyo beste yako” siyo beste yako’ siyo beste yako’ in Negative. The siyo beste yako’ is siyo beste yako’ in siyo beste yako’ siyo beste yako’ is
Translation: “Am translates to ‘T am Sheng translates phrase ‘siyo beste a Swahili phrase Swahili translates is in Sheng, a a Swahili phrase
not your friend” not your friend” in to ‘I am not your yako’ in Swahili that translates to to ‘I am not your code-mixed lan- that translates to
Actual Sentiment: English. This state- friend” in English. translates to ‘not ‘I don’t have your best’ in English. guage in Kenya. ‘I am your best
Negative ment expresses a The use of ‘siyo’ your best’, which best interests at This statement The phrase can be friend” in English.
negative sentiment (not) indicates a expresses a nega- heart’ in English. is a simple nega- translated to ‘T am The phrase ex-
as it indicates a re- denial or negation tive opinion about The use of the tion and does not your best’ in presses a strong
jection or negative of friendship, someone or some- phrase implies that not express any English. The use positive sentiment.
view towards the which  conveys thing. the speaker does strong positive or of ‘not’ indicates a The words ‘beste’
person being ad- a negative senti- Prediction: Nega- not have the lis- negative sentiment. negative sentiment. and ‘yako’ are the
dressed. ment towards the tive tener’s well-being It could be a re-  However, the senti-  key words that T
Prediction: Nega- relationship  with in mind, and may sponse to a request ment is not strong used to make this
tive the person being even have negative for compliments as it’s a statement decision.
addressed. intentions. There- or an expression of of fact rather than Prediction: Posi-
Prediction: Nega- fore, the sentiment humility. an expression of a tive
tive of this phrase is Prediction: Neu- negative emotion.
Negative. tral Therefore, the sen-
Prediction: Nega- timent is Negative.
tive Prediction: Nega-
tive

Table 8: This example demonstrates the difficulties all models face when processing the Sheng language, particularly
for those with weaker linguistic understanding of non-English languages. Only GPT-4 and GPT-4-Turbo successfully
identified and correctly interpreted the language, highlighting the significant variability in multilingual capabilities
across the models.
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Abstract

The purpose of this work is to share an
English-Yorubd evaluation dataset for open-
book reading comprehension with open-ended
questions to assess the performance of mod-
els both in a high- and a low-resource lan-
guage. The dataset contains 358 questions
and answers on 338 English documents and
208 Yorubd documents. Experiments show a
consistent disparity in performance between
the two languages, with Yorubd falling be-
hind English for automatic metrics even if doc-
uments are much shorter for this language.
For a small set of documents with comparable
length, performance of Yoruba drops by 2.5
times and this comparison is validated with hu-
man evaluation. When analyzing performance
by length, we observe that Yorubd decreases
performance dramatically for documents that
reach 1500 words while English performance
is barely affected at that length. Our dataset
opens the door to showcasing if English LLM
reading comprehension capabilities extend to
Yoruba, which for the evaluated LLMs is not
the case.

1 Introduction

This study explores the intersection of reading
comprehension with open-ended questions, exam-
ining how models perform on a task requiring both
in-context understanding (i.e., open-book model,
where the model has access to the context docu-
ment during inference to answer a particular ques-
tion) and generative text production (i.e. the an-
swer is free-text which has to be compared to a
gold standard reference). We aim to investigate
the performance of this task in two languages:
a high-resource language (English) and a low-
resource language (Yorubd). For this, we intro-
duce Y-NQ (Yoruba Natural Questions) a compre-
hensive open-book question-answer dataset (Sec-
tion 2). Y-NQ is sourced from NQ (Kwiatkowski

et al., 2019) and provides a complete article con-
text for informed answers, and parallel documents
on the same topic for both high- and low-resource
languages. The data set also includes the compa-
rability of the responses in languages. As a re-
sult, we are increasing Natural Language Process-
ing (NLP) resources in Yorub4 (Ahia et al., 2024).
Our data set is benchmarked against state-of-the-
art Large Language Models (LLMs). The re-
sults and analysis (Section 3) show that responses
in Yoruba are more inaccurate than those in En-
glish. As a by-product of human annotations, we
identify inaccuracies in the English-language ver-
sion of some Wikipedia articles (26 incorrect an-
swers out of 1,566 humanly analyzed questions
in the English-language subset of articles), which
confirms the existence of accuracy discrepancies
across languages for the same Wikipedia topics,
thus supporting, for example, the need to better in-
terlink Wikipedia articles across languages (Klang
and Nugues, 2016).

2 Dataset description

2.1 Requirements and Background

The performance of Reading Comprehension
(RC) in LLMs has been explored in different set-
tings. At the high level, RC tasks can fall under
two main categories: open-book tasks, such as in
SQuAD (Rajpurkar et al., 2016), and close-book
tasks, such as in TriviaQA (Joshi et al., 2017).
Response formats vary across RC tasks as well
and include: true/false classification (e.g., BoolQ;
Clark et al., 2019), multiple-choice questions (e.g.,
Belebele), span selection (e.g., SQUAD), and text
generation (e.g., NQ or TriviaQA).

Since we are interested in exploring the in-
tersection of reading comprehension with open-
ended questions covering both a high- and a low-
resource language, we can explicitly set our re-
quirements to include for each of the two types

248

Proceedings of the Sixth Workshop on African Natural Language Processing (AfricaNLP 2025), pages 248-254
July 31, 2025 ©2025 Association for Computational Linguistics



of language: (a) long articles (>100s words), (b)
question-answer pairs with lengthy answers (>10s
words), and (c) equivalence annotations for cross-
lingual answers. Since there are no existing data
sets to this effect, we extend existing research by
tailoring an established data set to our specific re-
quirements. We justify our choice of data sets and
low-resource language selection as explained in
the following.

Dataset. Among the open-book reading com-
prehenstion with open-ended questions, one of
the largest datasets with multilingual information
available is NQ which is shared under the license
Creative Commons Share-Alike 3.0 .

Low-resource language. There is a large num-
ber of low-resource languages that could be ex-
plored here. We prioritize a low-resource language
that has overall limited digital resources (in com-
pliance with the definition of low resource), but
has a high representation in Wikipedia (on the or-
der of several thousands of entries) and a signif-
icant number of speakers (in the order of tens of
millions), and makes use of the same script (Latin)
as the high-resource language in which results
are compared. One of the languages that com-
plies with all these criteria is Yoruiba, in which we
can also find works on comprehension of the lan-
guage in the domain of language exams (Aremu
et al., 2024), based on short passages and multi-
ple choice answers. Another work is the AfriQA
dataset (Ogundepo et al., 2023) for answering
open-retrieval questions, with a primary focus on
retrieving correct answers that are answerable on
Wikipedia. However, this cannot be used as an
open book. Finally, Bebebele (Bandarkar et al.,
2024) also includes Yorubd, although it uses short
passages and multiple choice answers.

2.2 Dataset creation

NQ pre-selection. We looked at 315,203 exam-
ples and 231,695 unique English Wikipedia pages
from the NQ training and validation datasets. We
filter questions for only those where every long an-
swer is contained in an html tag < p > where
< p > is the first identified html tag in the long
answer span. This filters out about 25 percent of
the questions.

We extracted 2,855 Yoruba Wikipedia pages
that are actively associated with the above En-
glish pages. We removed documents with fewer

than 500 characters, including formatting, and per-
formed multiple cleaning procedures, such as re-
moving html formatting, removing citation no-
tations, and filtering out irrelevant sections in
Wikipedia articles (e.g., references, tables). 664
Yorubd documents and 1,566 questions were sent
for human annotation. We tried a pre-annotation
effort to automatically reduce the workload. Even
if it did not work, we report it for the interest of
negative results.

Pre-annotation automatic effort. In order to
reduce the annotation workload, we automatically
pre-selected Yoruba sentences that could be good
response candidates by computing a similarity
score. If the answer to the question was in agree-
ment with a high similarity score, the annotator
would save time by looking through the docu-
ment and only checking if the match was cor-
rect. We conducted a SONAR embedding sim-
ilarity (Duquenne et al., 2023) analysis between
Yorubé documents and long English answers. We
used Stopes! sensitizers on all text extracted from
< p > elements for both the scraped Yoruba
Wikipedia articles downloaded from the previ-
ous step and the original NQ Wikipedia pages.
We then created SONAR embeddings of each ex-
tracted sentence and identified those sentences in
the Yoruba pages which were most similar to sen-
tences in the long English answers based on their
cosine similarity scores. For a small set of sam-
ples, we asked the annotators to examine the en-
tries in a small validation data set to identify
a reasonable threshold indicating high similarity
between Yorubd/English sentences, which could
then be applied to the rest of the data set. The anal-
ysis shows a low similarity matching rate, which
is likely due to the low quality and short length
of many Yorub4 articles and/or SONAR embed-
dings not being suitable for such a task. Given this
low reliability, we abandoned this automatic pre-
annotation, which would not reduce annotation ef-
forts.

Annotation guidelines and requirements. We
designed the annotation guidelines as follows. We
provided context on the objective of the task to-
gether with the project context and description of
the task. The guidelines are summarized in Table
1.

Finally, beyond the guidelines, we provided ad-

"https://github.com/facebookresearch/stopes
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Objective
specific question.

Read an article and find a paragraph containing enough information to answer a

Project Context

Evaluate accuracy of large language models in finding long contexts and short

answers; extend Natural Questions dataset to multilingual, non-English centric.

Task Components

* QUESTION: Simple question requesting information or explanation.

¢ ARTICLE: Numbered paragraphs containing relevant information.

Task Steps 1. Read QUESTION carefully.
2. Read ARTICLE paragraphs until sufficient information is found.
3. Record findings by answering task questions.
Additional task steps  Discard questions that contain the answer in English in the Yorub4 document

When possible, add Yoruba questions, translate them into English, and find answers
both in the Yoruba and English documents.

Table 1: Linguistic guidelines and annotation

ditional examples and requested that annotators
should be native speakers of the language of the
source documents and should have at least CEFR
C2 level proficiency in English.

ENG YOR

#Q&A 358 358
#DOCS 338 208
AVG. DOC LEN 10363 | 430
MEDIAN DOC LEN 9272 172

AVG. QUESTION LEN 8.86 9.39
AVG. LONG ANSWER LEN | 113.80 | 32.89

Table 2: Dataset Statistics. Length is in words.

Annotator findings. We noticed that many arti-
cles have a significant amount of English content.
Several documents also contained errors, such as
incorrect spelling, ungrammatical sentences, and
sentences that lacked clarity or meaning. We dis-
regarded such articles and corrected articles that
were contaminated with a small amount of English
content. We also removed the entries where no an-
swers could be found in the Yorub4 articles.
Following the guidelines, the annotators en-
countered the following: (a) questions with mul-
tiple correct answers, for which they annotated
each correct answer for the question; (b) ques-
tions with correct answers in Yorubd, but incor-
rect in English, where they annotated the Yoruba
appropriately, but flagged the English portion in-
correct (there were 26 questions in the category);
(c) unclear questions (5 questions) to which no
annotations were assigned; (d) answers existing
in multiple paragraphs in the document for which
they annotated the row with all paragraphs. There
were 456 Yorubd documents that did not answer
the question; therefore, we discarded those. Only
eight incorrect English answers from the previous
26 remain in the final dataset, and we did not cor-

rect them since the English documents remained
the same as in the original NQ.

Statistics. Table 2 details the statistics of the
data set.Our carefully curated selection contains
208 unique Yoruba Wikipedia documents with an
average word count of 430, and 358 questions.
Only the questions are strictly comparable. En-
glish and Yorubd documents are not comparable
in number or length, but are so in topic and do-
main. The answers are not comparable in length.
Notice that English documents outnumber Yoruba
documents mainly due to: (1) multiple versions of
the same English topic counted as different docu-
ments, while in Yoruba we selected one version of
the document; and (2) multiple topics in English
that correspond to the same Yoruba topic, given
limited Yoruba resources on Wikipedia. Also, the
shorter length of Yoruiba documents (compared to
English documents) is due to the limited amount
of Yorub4 resources on Wikipedia.

The fact that English documents are longer than
those in Yoruba makes the task easier for Yoruba,
since documents are significantly shorter within
the same topic or domain. We identified a subset
of four documents that are strictly comparable in
length and topic for English and Yorub4, which al-
lows us to make a fair comparison. Table 3 shows
the list of fields in Y-NQ and a sample entry.

3 Experiments

Baselines We evaluate our dataset with GPT-
407 (et al., 2024b), ol-mini’, and LlaMA-3.1-8b
(et al., 2024a), thereby covering both open and
closed models, as well as models of different sizes.

2gpt-4o version 2024-08-06
301-mini version 2024-09-12
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FIELD DESCRIPTION EXAMPLE

1. Question ID Unique identifier 3506772758530306034

2. English Document English text document

3. English Question Question in English what is the name of the first nigerian
president

4. English Long Answer Detailed answer in English ky is the Internet country code top-level
domain (ccTLD) for the Cayman [..]

5. English Short Answer Brief answer in English Nnamdi Azikiwe

6. Yorubd Document Yoruba text document

7. Yoruba Rewrite Flag Was Yorubd document rewritten? | 1

(0: no, 1: yes)
8. Yoruba Question Question in Yoruba ki ni ky duré fun nf erékusu cayman

9. Yoruba Short Answer

Brief answer in Yoruba

Nnamdi Azikiwe ni Aare

10. Yoruba Long Answer

Detailed answer in Yoruba

Nnamdi Azikiwe ti o je Gomina Agba
nigbana di Aare, ipo to je fun ayeye, [..]

11. Yoruba Paragraph Info

Contextual information

P2

12. Answer Alignment

Semantic equivalence
(0: not literal, 1: literal)

1

Table 3: Dataset Fields, Descriptions and Sample entry.

LAN | R-1 | R-2 | R-L
GPT40 ENG | 0.39 | 0.23 | 0.30
Yor | 034 | 0.19 | 0.27
0 1MINI ENG | 045 | 0.22 | 0.30
Yor | 030 | 0.14 | 0.22
LLAMA | ENG | 031 | 0.18 | 0.23
Yor | 0.20 | 0.15 | 0.18

Table 4: Results for 3 LLM in terms of Rouge com-
puted for the entire set of questions.

For each Y-NQ entry, we prompt the models with
the following formatted instructions.

wnn

Given the following passage and
a question,answer the question
in a single paragraph with
information found in the passage.

A
PASSAGE
{document }

HH#4
QUESTION
{question}

#H##
ANSWER

wnn

Evaluation. We evaluate the results by compar-
ing the generated text and the reference long an-
swer using several Rouge (Lin, 2004) versions
(Rouge-1, Rouge-2, Rouge-L).

251

Automatic metrics. Table 4 reports the results
showing that Yorubd consistently performs worse
than English (e.g., losing 0.4 in Rouge-1). How-
ever, the Yorubd task is much easier because the
documents are much shorter, which means that an-
swering the question becomes an easier task. Even
if we prompt the model to only answer based on
the in-context document, we can not discard the
idea that English may get better results due to us-
ing the internal knowledge from the model.

—e— gpt rougel
gpt rouge:
—e— gpt rougeL

Figure 1: Impact of Document Length Buckets on Per-
formance Scores for English (top) and Yoruba (bottom)
for GPT-4 outputs

Length analysis. Model performance changes
with the length of the document, as shown in Fig-



ure 1. The dataset was split into equal size of doc-
uments in each length bucket. We can see a drop
in performance when the Yorubd documents reach
1,500 words, which shows the challenges that cur-
rent models face in long-context understanding of
low-resource languages.

Comparable documents. For a small portion of
long-enough documents of comparable length be-
tween English and Yorub4 (only 4 documents that
are over 900 words long), English performance
demonstrates a significant edge (1.58X-2.56X),
see Table 5.

Human evaluation. For the comparable docu-
ments, we performed a human evaluation. A bilin-
gual proficiency speaker of English and Yoruba
evaluated the output of the models. Evaluation
was performed by using a Likert scale from 1-
3, being 3 a perfect response. On average, En-
glish responses across models scored 2.33, while
Yorubé responses scored 2.

Table 6 presents a complete sample and its hu-
man scores for all the models output.

LANG | R-1 | R-2 | R-L | Hum
GPT40 | ENG 0.45 | 0.23 | 0.30 | 2.50
YOR 0.32 | 0.09 | 0.19 | 2.75
O1IMINI | ENG 043 | 0.17 | 0.27 | 2.50
YOR 0.27 | 0.06 | 0.17 | 2.25
LLAMA | ENG 0.46 | 0.28 | 0.33 | 2.00
YORrR 0.09 | 0.05 | 0.07 | 1.00

Table 5: Results and human evaluation (Hum) for com-
parable English and Yorubd four documents. English
documents have an average length of 3299 and Yoruba
documents have an average length of 3070 words.

4 Conclusions

Y-NQ is a newly released dataset that enables to
compare generative open-book reading compre-
hension between English and Yorubad. The main
contributions of our data set are to allow for the
comparison of LLM results in a reading compre-
hension task across a high- and a low-resource lan-
guage, showing what are the generalization capa-
bilities of LLMs in this particular case. Moreover,
our annotations confirmed variations in the accu-
racy of Wikipedia articles in all languages. In par-
ticular, we identify inaccurate English responses
for Yorubd language-specific content. Y-NQ al-
lows us to evaluate how reading comprehension
capabilities extend to Yorubd. Y-NQ is not ex-
actly comparable in its totality between languages.

Given that Yoruba has shorter documents than En-
glish, the reading comprehension task is easier for
Yorubd. Therefore, results on this language should
be much better than in English to expect parity be-
tween languages. Our experiments show that the
reading comprehension capabilities of current En-
glish LLMs do not extend to Yoruba. Y-NQ is
freely available®.

Limitations and Ethical considerations

Y-NQ is limited in size, language, and domain
coverage. The fact of using Wikipedia and extend-
ing an existing open-source dataset (NQ) may play
in favor of having higher results in both languages
due to contamination. Furthermore, the data set is
not fully comparable between English and Yorub4,
since documents and answers vary in length.

Our experimentation is limited to models and
automatic evaluation metrics, which is compen-
sated for through a small-size human evaluation.
Annotators were paid a fair rate and they gave con-
sent to the use of the data that they were annotat-
ing. Annotators are included as authors of the pa-
per.
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FIELD CONTENT Hum
ENGLISH where does the vaal dam get its water from -
QUESTION
YORUBA nibo ni isédo vaal ti i gba omi re -
QUESTION
ENGLISH The Vaal Dam in South Africa was constructed in 1938 and lies 77 km south of OR Tambo
LONG- International Airport. The lake behind the dam wall has a surface area of about 320 square
ANSWER kilometres

(120 sq mi) and is 47 meters deep. The Vaal Dam lies on the Vaal River, which is one of South

Africa ’s strongest - flowing rivers. Other rivers flowing into the dam are the Wilge River, Klip

River,

Molspruit and Grootspruit. It has over 800 kilometres (500 mi) of shoreline and is South Africa -

’s second biggest dam by area and the fourth largest by volume.
YORUBA Awon 0do mifran ti fisan sinu idido nda ni Odo Wilge,Odo Klip Molspruit ati Grootspruit. °, -
LONG- *1didd Vaal wa 16ri Odo Vaal, &yi ti 6 j& okan nind awon ddd ti fisan ti 6 ligbdra julo ni orile-ede
ANSWER South Africa.
ENGLISH The Vaal Dam gets its water from several sources, including the Vaal River, into which other 2
GPT40- rivers like the Wilge River, Klip River, Molspruit, and Grootspruit also flow. Additionally, the
ANSWER Lesotho Highlands Water Project contributes to the water supply by piping water from Lesotho

into the Liebenbergsvlei and Wilge Rivers. The Sterkfontein Dam is also part of the water

transfer scheme, releasing water to boost the levels in the Vaal River System when the Vaal

Dam drops below 16%.
YORUBA Isédd Vaal fi gba omi 12 14ti Opdlopd odo, ti wén 1 fi kiin omi laarin idido nda. Awon odo jfje 3
GPT40- wonyi ni Odo Wilge, Odo Klip, Molspruit, ati Grootspruit. Peld ¢yin odd wonyi, awlijo omi &td
ANSWER omi [le-Oke ni Lesotho tun i pésé omi sind idido néa.
ENGLISH The Vaal Dam receives its water from multiple sources, primarily the Vaal River itself along 3
O1MINI- with several tributaries including the Wilge River, Klip River, Molspruit, and Grootspruit. Ad-
ANSWER ditionally, the Lesotho Highlands Water Project contributes to the dam’s water supply by piping

water from Lesotho into the Liebenbergsvlei and Wilge Rivers. Furthermore, the Sterkfontein

Dam plays a crucial role in augmenting the Vaal Dam’s water levels through the Tugela-Vaal

water transfer scheme, which transfers water from the Thukela River in KwaZulu-Natal. These

combined sources ensure a stable and substantial inflow of water to the Vaal Dam, supporting

both domestic and industrial needs in the surrounding regions.
YORUBA Isédd Vaal 11 gba omi re¢ 14ti Odo Vaal ati awon 0do tf i darapd méra bi Odo Wilge, Odo Klip 2
O1MINI- Molspruit, ati Odo Grootspruit. Peld nda, omi t6 wa latind Il¢ Lesotho nipase eto girafiti fi fi
ANSWER omi ransé s{ Odo Liebenbergsvlei ati Odo Wilge. Bakan nda, Ddmu Sterkfontein, t6 jé apd kan

ti eto gbigbé omi Tugela Vaal, i gba omi lati Odo Thukela ni KwaZulu-Natal, ti i k6 ipa té

lagbara si ikiin omi Vaal Dam. Awon orfsun omi wonyi jo fi fiin Damii Vaal nf agbdra t6 po lati

pese omi fiin awujo awon ipinle ati awon isé amdyéderun ni Guusu Afrika.
ENGLISH The Vaal Dam gets its water from several rivers, including the Vaal River, the Wilge River, 2
LLAMA- the Klip River, the Molspruit, and the Grootspruit. Additionally, the Lesotho Highlands Water
ANSWER Project feeds water into the system by gravity, and the Sterkfontein Dam contributes to the Vaal

River System through the Tugela-Vaal water transfer scheme. Water is also piped from Lesotho

into the Liebenbergsvlei and Wilge Rivers. The water from the Sterkfontein Dam is released

once the Vaal Dam drops to below 16%. This stable supply of water is crucial for the people

and industrial complex of Gauteng.
Yoruba Vaal Dam j?? isoro omi si 2,609,799,000 cubic mita (9.21642x1010 cu ft) ati siwdju sii 1

LlaMA-answer

663,000,000 cubic mita (2.34x1010 cu ft) tabf idd m??rindinl??gb??n (26%) le wa ni ipam??
fin igba di?? fiin idinkdl i%n omi. 1didd nda tin di gbighé séke ni ib?2r?2p??p?? 2din 50s
si giga iw??n 60.3 mita (198 ft) eyi ti o fi kin agbara r?? lati di 2,188,000,000 cubic mita
(7.73%1010 cu ft). Igbéga keji wayé ni ?2diin 1985 nigba ti odi di gbighé s6ke nipas?? 3.05 mita
(10.0 ft) si 63.4 mita (208 ft) 1éke ipil?? ti 6 sinm?? i1?? jul?. Agbdra idido 1??7w?M1?7w??
j?7? 2,609,799,000 cubic mita (9.21642x1010 cu ft) ati siwdji sfi 663,000,000 cubic mita
(2.34x1010 cu ft) tabf idd m??rindinl??gb??n (26%) le wa ni ipam?? fin igba di?? fin idinku
i2anomi. . ..........
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