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Abstract

This paper introduces a task aimed at extracting
structured tables from text using natural language
(NL) instructions. We present TABLECODER,
an approach that leverages the symbolic nature
of code to enhance the robustness of table struc-
ture construction and content extraction. TABLE-
CODRER first generates Python classes or SQL state-
ments to explicitly construct table structures, cap-
turing semantic ontology, computational depen-
dencies, numerical properties, and format strings.
This approach reliably mitigates issues such as
structural errors, erroneous computations, and
mismatched value types. Subsequently, TABLE-
CODER proposes grounded content extraction,
populating table cells sequentially and maintaining
the exact order in which they are mentioned in the
source text. By simulating a grounded "transla-
tion" from text to code, this method reduces the
likelihood of omissions and hallucinations.

Experimental results demonstrate that TABLE-
CODRER significantly improves F1 scores and miti-
gates hallucination and computational errors, cru-
cial for high-stakes applications like government
data analytics and financial compliance reporting.
Moreover, the code-generation-based method nat-
urally integrates with standard SQL databases and
Python workflows, ensuring seamless deployment
in existing enterprise data pipelines.

1 Introduction

Structured table extraction from unstructured text is
critical for automating data processing tasks across
industries such as finance, government, and health-
care, where accuracy and reliability are paramount.
As illustrated in Figure 1, relational tables enable
automated processing and analysis through tools like
SQL or Pandas, whereas hierarchical tables (Cheng
et al., 2022a) intuitively present complex statistical
data in government or financial reports. Considering
that table extraction naturally involves diverse de-
mands regarding “what information to extract” and
“how to structure it,” controllable table extraction
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User Instruction 1: Please extract a flat table from the following text

about the top three most populous islands, including details such as "Ranking,"
"Island," "Population," "Area," "Density (/km?)," "Country," and "Capital".

The top three most populous islands in the world are Java in Indonesia, Honsh in Japan, and Great Britain.

Java has an impressive population count of 148,756,685 and is home to Jakarta, the capital of its country.
Its land spans 124,378 square kilometers, which equates to a dense population of 1,196 people per square
kilometer.

Trailing behind Java is Honsha, Japan's largest island, home to 102,579,606 individuals. Honshi boasts a
vast area of 227,954 square kilometers, noticeably larger than Java.

Answer by Assistant:

Ranking Island Population Area Density (/km2) Country Capital
1 Java 148.8 million 124,378 km2 1,196 Indonesia Jakarta
2 Honsha 102.6 million 227,954 km? 450 Japan
3 Great Britain

User Instruction 2: what information can be extracted from the text
regarding the number of postgraduate degrees awarded in fields of Science and
Engineering, specifically focusing on "Total", "Master’s" ("All" and "Percent"), and
"Doctoral" ("All" and "Percent")? Please organize it in a hierarchical table.

In the field of Science, Master's degrees are predominant, with 229,169 graduates, representing 55% of
Science degrees. On the other hand, Doctoral degrees have 186,399 degrees awarded.

Shifting focus to Engineering, within this discipline, Master's degrees prevail, with 96,756 recipients
accounting for 58% of all Engineering degrees. Meanwhile, Doctoral degrees hold a total of 68,825 degrees
awarded.

Answer by Assistant:

Master's Doctoral

Broad fields Total
Al Percent All Percent
4 4
Science 415,568 229,169 55% 186,399 45%
4 4
Engineering 165,581 96,756 58% 68,825 42%

Figure 1: Examples of NL-TO-TABLE. Table schemas
are flexibly defined by user instructions. Cells necessitat-
ing computation are highlighted in red.

tailored by NL user instructions is highly desirable
for real-world deployments.

Pioneering works (Wu et al., 2022; Li et al.,
2023b; Pietruszka et al., 2022; Jiao et al., 2023; Jain
et al., 2024; Tang et al., 2023) have extracted tables
from text. However, they neglect user intent and fail
to tailor table structures for users, resulting in key-
value pairs or simple relational tuples. Additionally,
Reversing a “table-to-text” dataset to construct a
“text-to-table” dataset may results in data quality is-
sues. It includes excessive, missing, or unextractable
cells, such as extracting “127,955 million” from text
stating roughly “128.0 billion”.

To address these challenges, we introduce NL-TO-
TABLE, a human-labeled dataset for table extraction
following NL instructions. Key features include: (1)
We include a rigorous quality-control pipeline where
human annotators carefully address issues like ex-
cessive, missing, or unextractable cells to guarantee
dataset quality. (2) We perform fine-grained anno-
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tations on ontology trees for semantic relationships,
formulas for computational dependencies, and units
and feasible ranges for numerical values. (3) NL-
TO-TABLE introduces numerical reasoning as a key
aspect of table extraction, which is in high demand
in the financial and government domains, as illus-
trated in Figure 1—with red highlights. (4) Due to
the equivalence of identical quantities expressed in
various formats (Jiao et al., 2023), we annotate num-
ber format strings to facilitate automatic evaluation.

SQL and Python provide a robust framework for
generating structured data, so we propose TABLE-
CODER, a novel method to generate code that unrav-
els the complexities involved in structure construc-
tion, data extraction, numerical computation, and
number format representation. (1) TABLECODER
employs Python classes and SQL CREATE statements
to construct a comprehensive table structure with on-
tology trees, computational relationships, number
units, feasible ranges, and number format strings.
It facilitates a symbolic and reliable extraction pro-
cess by defining cell placement, type and range val-
idation, and automatic number computation. (2)
TABLECODER extracts table contents in the order
they appear in the source text, emulating a step-
by-step “translation” from text to code to minimize
omissions and hallucinations often caused by LLMs.

Existing automatic evaluation methods are chal-
lenged by different format expressions of the same
content. To address this, we propose the Format Ag-
nostic Evaluation (FORMATAGNOSTIC-EVAL) for
automatic evaluation of table extraction. Experimen-
tal results show that FORMATAGNOSTIC-EVAL im-
proves existing metrics, making them much closer to
human evaluators’ assessments. Notably, fine-tuned
LLaMA-70B with the NL-TO-TABLE dataset re-
markably mitigates hallucination and computational
errors, outperforming few-shot GPT-4 by 11.4% to
19.2%, and fine-tuned Mistral-7B even outperforms
GPT-4 by 5.7% to 12.3%.

We wrapped up TABLECODER as an API and
deployed it on a server, enabling the storage of ex-
tracted tables using openpyx1 I

2 Preliminaries

2.1 Task Formulation

The task is to extract a table from unstructured text,
given human utterance to specify the table structure.
The purpose of providing NL instructions as inputs
is to meet specific and diverse user requirements

'https://openpyxl.readthedocs.io/en/stable/

concerning the structure of tables. Importantly, con-
ditioning on NL instructions significantly reduces
evaluation ambiguity associated with various poten-
tial structures (Jiao et al., 2023), such as opting for
dual columns labeled “First name” and “Last name”
as opposed to an alternative single “Name” column.

2.2 Semantic and Computational Relationships

Semantic Relationship Semantic relationships can
be explicit hierarchies that are indicated by specific
formats, such as merged cells (Wang et al., 2021;
Cheng et al., 2022a), or implicit functional depen-
dencies (Nan et al., 2020), as seen in the first exam-
ple of Figure 1. Following both the explicit hierar-
chy (Cheng et al., 2022a) and implicit ontology (Nan
et al., 2020), we identify the parent of each column
header to construct a tree-structured ontology for
each table, as illustrated in Figure 4 in the Appendix.

Computational Relationship A column may be
derived from other columns via computations, as
highlighted in Figure 4. They are implicit and re-
quire human reasoning, while only spreadsheets may
have explicit formulas.

2.3 Python and SQL for Table Generation

Existing works on LLMs for tabular data commonly
use Markdown, HTML, LaTeX, or variants to en-
code tables, which are studied by (Singha et al.,
2023; Sui et al., 2024). In this paper, we propose to
leverage code for table generation.

SQL provides a robust framework for generat-
ing structured data. By using CREATE statements,
users define tables with explicit schemas, ensuring
that data is consistently structured and easy to query.
This is crucial for LLM-based generation, which
can produce corrupted tables with row or column
misalignment. INSERT and UPDATE operations can
add new data to existing tables in arbitrary orders
without disrupting the overall structure. This kind
of incremental data generation is essential for keep-
ing the extracted table integral and up-to-date when
processing long and complex unstructured text.

On the other hand, SQL’s common practices may
limit its flexibility for hierarchical tables. Python’s
inherent object-oriented paradigm is able to encode
complex structured tables, and it facilitates auto-
mated data computations, e.g., _update_density
in Program 1. However, despite LLMs’ proficiency
in Python (Li et al., 2023a), they are not fully profi-
cient in generating hierarchical tables.

1400


https://openpyxl.readthedocs.io/en/stable/

Table 1: Dataset statistics of NL-TO-TABLE.

Labeled Data Wikipedia Statistical Reports
# User instructions 5,241 836
# Tokens in instruction 60.2 67.5
# Tables 5,241 836
# Mentioned columns 26,501 3,475
# Mentioned rows 38,572 2,510
# Mentioned cells 60,779 4,115
# Sentences in Text 31,802 3,012
% Complex ontology trees 48.1% 100.0%
% Number format cells 24.4% 74.5%
% Computed cells 1.9% 7.8%

2.4 Evaluation Metrics

We use Exact Match (EM), BERTScore (BERT), and
Chrf metrics (Wu et al., 2022) to assess F1 scores,
as detailed in Appendix B. But they are challenged
by the flexible and equivalent formatting rules found
in tables, e.g., “1.4 thousand dollars” and “$1,400”,
so we annotate the format string for each column
consisting of quantities, e.g., f*{self.total:,.1f} thou-
sand dollars”. Thus, during the evaluation phase, we
format quantities using the human-labeled format
strings before comparing them with ground truth
contents, enabling FORMATAGNOSTIC-EVAL. To
cover all variations of format strings in our dataset,
we first collected 58 built-in formats from Excel
under categories like “Number,” “Currency,” “Ac-
counting,” “Date,” “Percentage,” etc. In addition, we
labeled another 84 format strings that appeared in
our dataset and produced 142 strings.

3 NL-TO-TABLE

We construct NL-TO-TABLE from Wikipedia arti-
cles (ToTTo (Parikh et al., 2020)) and statistical re-
ports (HiTab (Cheng et al., 2022a)). Each dataset is
rich in tables accompanied by corresponding textual
descriptions, with highlighted cells linked to descrip-
tive sentences. We only include tables that have at
least four sentences and four mentioned cells. There
are 5,241 tables from Wikipedia and 836 tables from
statistical reports. Together, the two datasets present
a comprehensive collection that spans various table
structures.

We have designed a six-step annotation process to
construct the first human-labeled dataset for gener-
ally structured table extraction following NL instruc-
tions, comprising a substantial amount of complex
reasoning and fine-grained structure annotations, de-
tailed in Appendix A.

As Table 1 shows, 48.1% of Wikipedia tables and
100.0% of statistical tables feature ontology trees
with more than two layers. A significant portion
(74.5%) of cells in statistical reports are quantities,

and computed cells account for 7.8%, encompassing
various types, including SUM (45.2%), AVG (5.6%),
DIV (21.9%), DIFF (15.6%), and ADD (5.4%).

4 TABLECODER

Existing approaches commonly use Markdown,
HTML, or their variants to encode tables for
LLMs (Singha et al., 2023; Sui et al., 2024; Dong
and Wang, 2024), as well as efficient JSON encod-
ing (Dong et al., 2024). Unfortunately, when the
task is table generation, they may produce structural
corruption, row or column misalignment, erroneous
value computation, missing or excessive informa-
tion, etc. As depicted in Figure 2, TABLECODER
first uses SQL or Python code to construct the table
structure. It then extracts table contents following
the order in the input text.

4.1 Symbolic Structure Construction

TABLECODER leverages LLMs to generate code
to build the table, so that the generated results are
ensured to be well structured, and inherent seman-
tic/computational column relationships are explicitly
reflected. Additionally, type constraints and com-
putational dependencies can also be predefined to
avoid obvious errors and inconsistent units in the
following content extraction phase.

4.1.1 Type and range constraints

In SQL, value type and range constraints are well
supported through CREATE, which is quite concise
and useful. As shown in Program 2, properties of
the column “Ranking” can be simply specified using
“INT CHECK (Ranking > 0)”.

4.1.2 Semantic dependencies

In SQL, we use the column corresponding to the
root of the ontology tree as the primary key, with
other columns as attributes. For tables featuring hi-
erarchical ontology trees, generating multiple tables
with SQL represents a promising direction for fu-
ture work. Instead, we leverage Python’s flexible
object-oriented paradigm to encode both flat and hi-
erarchical ontology trees in a unified manner. As
shown in Program 1, we define classes for all par-
ent nodes in the ontology tree, with dependencies
established among multiple classes.

4.1.3 Computational dependencies

LLMs have difficulty reliably calculating numbers
without an explicit executor (Gao et al., 2023b; Chen
et al., 2022; Zhou et al., 2022). Fortunately, Pro-
gram 1 showcases an example that “_update_density”
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TABLECODER'’s Text-to-Table Extraction Pipeline

User instruction:

Please extract a flat table from the following text about the top three most populous
islands, including details such as "Ranking," "Island," "Population," "Area," "Density
(/km?)," "Country," and "Capital".

Source text:

The top three most populous islands in the world are Java in Indonesia, Honsh in Japan, and Great
Britain. Java has an impressive population count of 148,756,685 and is home to Jakarta, the capital
of its country. Its land spans 124,378 square kilometers, which equates to a dense population of
1,196 people per square kilometer. Trailing behind Java is Honsha, Japan's largest island, home to
102,579,606 individuals. Honshi boasts a vast area of 227,954 square kilometers, noticeably larger
than Java.

Table Structure Construction @ [

Island
Ranking ~ Population ~ Area  Density ~Country - Capital
1 1 km? /km2
>0 >0 >0 >0

Population / Area = Density

Table Content Extraction & [z

Ranking Island Population Area Density (/km’) Country Capital
1 Java 148.8 million 124,378 km? 1,196 Indonesia Jakarta
2 Honsha 102.6 million 227,954 km? 450 Japan Tokyo
3 Great Britain

lllustration of TABLECODER’s Prompts

& o0 Wi ...

Given source text:

The top three most populous islands in the world are Java in Indonesia, Honsha...
Given the user instruction:

Please extract a flat table from the following text about the top three most
populous islands, including details such as "Ranking," "Island,’ "Population,’ "Area,’
"Density (/km?)," "Country," and "Capital”.

Compete the following tasks sequentially.

1. Generate the ontology tree of column names including the units and format strings
for numerical columns using the JSON format;

2. Generate the computational relationships among columns using formulas;

3. Generate Python classes to represent the ontology tree and formulas of the table,
with Docstrings for specifying variable types and units, methods for initializing, setting,
and showing variables, and converting contents of variables to tabular rows.

Given source text:
The top three most populous islands in the world are Java in Indonesia, Honsha...
Given the Python classes representing the structure of the table:
class Island:
def __init__(self, island=None):
self.island = island

def set_density(self, density):
if density <= 0:
raise ValueError("Density must be positive.")
self.density = density
def _update_density(self):
if self.population is not None and self.area is not None:
self.density = self.population / self.area

4. Generate Python code to extract the information from the source text to the
Python classes FOLLOWING the appearance order in text.

Figure 2: Architecture of TABLECODER. The left side illustrates a chain-of-thought pipeline of table extraction. The
right side illustrates the prompt for LLMs, which is streamlined with four steps in a single run.

in TABLECODER automatically triggers a symbolic
execution when “area” and “population” are set with
values. As long as inherent computational relation-
ships are discovered, TABLECODER generates meth-
ods like “_update_density” to ensure all derived cells
are accurately calculated. This mechanism can also
be implemented in SQL through TRIGGER.

4.1.4 Format application

Program 1 shows the example of the Python imple-
mentation. A “convert_to_tabular_row” method seri-
alizes each instance to a tabular row following user-
specified column orders. Note that format strings
are replaced with ground truth format strings during
our format-agnostic evaluation.

class Country:

class Island:

def __init__(self, island=None):
self.area = None
self.density = None
self.country = Country()

set_density(self,
if density <= 0:
raise ValueError( )
self.density = density
def _update_density(self):
if self.population is not None and self.area is not
None:
self.density = self.population / self.area

density):

def convert_to_tabular_row(self):
return [
self.show_ranking(), self.show_island(),
£

if self.show_population() else None

]

Program 1: Python for structure construction.

CREATE TABLE islands (
Ranking INT CHECK (Ranking > 0),
Island VARCHAR(255),

Population BIGINT CHECK (Population > @),
Area BIGINT CHECK (Area > 0),
Density DECIMAL (1@, 2) CHECK (Density > 0),
Country VARCHAR(255),
Capital VARCHAR(255)

);

CREATE TRIGGER compute_density
BEFORE INSERT OR UPDATE ON islands

FOR EACH ROW

BEGIN
IF NEW.Population IS NOT NULL AND NEW.Area IS NOT NULL
THEN
SET NEW.Density = NEW.Population / NEW.Area;
END IF;
END;

Program 2: SQL for structure construction.

4.2 Grounded Content Extraction

Based on the constructed table structure, TABLE-
CODER generates SQL statements or instantiates
Python classes to establish infilling of tabular data.
As demonstrated in Figure 2, previous works se-
quentially generate “450” and the country name
“Japan” due to their adjacency in the table’s surface-
level presentation (Wu et al., 2022; Li et al., 2023b;
Pietruszka et al., 2022). However, these elements
are significantly distant in the source text, appear-
ing in the first and last sentences, respectively. This
surface-level generation often disrupts logical coher-
ence, leading to missing or hallucinated cell values.
As illustrated in Figure 3, we guide LLMs to ex-
tract table contents through symbolic and incremen-
tal code generation that strictly adheres to their order
within the source text. For all ¢ and j, if i < j,
then T; precedes T} in the generated table, where T;
represents the content of the i-th cell in the original
text, and ¢ < j means that cell ¢ appears before cell
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7 in the original text. Composite quantities are gen-
erated right after the appearance of the last operand
in the text. This method minimizes omissions and
inconsistencies in the extraction process.

Python code to extract table contents Input text for table content extraction

va = Island("7ava") The top three most populous islands in the world are Java

in Indonesia, Honsha in Japan, and Great Britain.

Qru azu
585 BZW
T8% 85

IR
g% ®5
5%

85) Java has an impressive population count of 148,756,685 and
rta") is home to Jakarta, the capital of its country.

its land spans 124,378 square kilometers, which equates to
adense population of 1,196 people per square kilometer.

579_606) Trailing behind Java is Honsh, Japan's largest island, home
10 102,579,606 individuals.

Honsh boasts a vast area of 227,954 square kilometers,
noticeably larger than Java.

ar_row())

Figure 3: An example to illustrate Python code generation
for content extraction, grounded to their order within the
source text to avoid frequent jumps in the logical flow.

S Experiments

We examine the performance of TABLECODER
based on open-source models such as Mistral-v2
(7B-Instruct-v0.2), LLaMA-2-7B, and LLaMA-2-
70B-Instruct (Touvron et al., 2023), and closed-
source GPT-3.5 (text-davinci-003) and GPT-4 (the
20230613 4k version) (Brown et al., 2020; Ope-
nAl, 2023). Additionally, we evaluate SOTA base-
lines, such as the ODIE-DORECT method based
on LLaMA-7B (Jiao et al., 2023) and Text-to-Table
based on BART-Large (Lewis et al., 2019), and both
are fine-tuned using NL-TO-TABLE. We present
experiment results in three encoding settings: Mark-
down (MD) (Singha et al., 2023; Sui et al., 2024) and
code (SQL and Python as introduced in Section 4).
Ablation studies include:

w/o semantic dependencies The root column is des-
ignated as the primary key; others are attributes.
w/o computational dependencies Code for auto-
matic value computation like “_update_density” is
removed, but explicit computation is still allowed,
e.g., “Honshu.set_density (102579606/227954)”.
w/o type and range checking in code

w/o ordered and grounded cell infilling The table
is generated row-by-row sequentially.

We experiment with two settings: (1) Few-shot
setting: LLMs take the same six-shot examples.
Few-shot examples are randomly sampled three
times, and the average is used as the final result.
(2) Fine-tuning setting: We use all labeled training
samples for fine-tuning.

5.1 Implementation details

The text to be extracted is provided as a list of sen-
tences. In markdown, we use “|” to separate cells
in a row, and we flatten multiple header rows in
our datasets if there are hierarchical headers to meet
the markdown requirement. We fine-tune all pa-
rameters in BART-Large and partial parameters in
LLaMA, and Mistral using LoRA (Hu et al., 2021).
Fine-tuning takes 10 epochs for LLaMA and Mis-
tral. For open source models set lora_rank to 32,
lora_alpha to 64, and lora_dropout to 0.01 for effi-
ciency, with batch_size setto 5 and learning_rate
set to 0.00005. We utilize Nvidia A100 GPU
nodes to fine-tune LLMs with LoRA. We fix the
temperature and top_p to O for all LLMs to ensure
fair comparison. For ToTTo, we allocate 4,226 for
training and 1,015 for testing. For the HiTab dataset,
we allocate 667 for training and 169 for testing.

5.2 Experiment Result and Analysis

Table 2 presents the experiment results on table ex-
traction. Experimental results show that LLM fine-
tuning increases F1 scores by 8% to 15% compared
to few-shot prompting LLMs, outperforming previ-
ous SOTA baselines on all datasets.

Code generation significantly enhances the perfor-
mance of LLMs, whether in few-shot or fine-tuning
settings. For example, LLaMA-70B equipped with
code generation significantly outperforms the Mark-
down format of fine-tuned LLaMA-70B by large
margins in the F1-EM score, ranging from 12% to
32% for textual cells, single quantities, and com-
posite quantities that are required to be calculated
during extraction. Composite cell extraction poses
the biggest challenge to existing models, while the
accuracy gain of using code generation is the biggest
(over 30% for fine-tuned LLaMA-70B in Wikipedia
and statistical reports).

SQL performs better than Python in the few-shot
learning setting, showing the naturalness of using
SQL code for this task, while Python performs better
than SQL in the fine-tuning setting, showing the
adaptability and flexibility of Python code.

Ablation studies show that utilizing semantic de-
pendencies, type and range checking, and consis-
tently ordered cell infilling greatly improve TABLE-
CODER over vanilla code generation. Leveraging
computational relationships highly improves the per-
formance of composite cells (10% on average).
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Table 2: Results on NL-TO-TABLE, distinguishing Tex-
tual cells (T), Single Quantities (SQ) that do not need
computation, and Composite Quantities (CQ) requiring
multi-quantity computation.

Cell-level F1-score % Wikipedia Reports
EM with FORMATAGNOSTIC-EVAL | SQ | CQ T SQ | CQ
Baselines
Text-to-Table (Bart-Large, Fine-tune) | 35.9 | 15.1 | 39.2 | 43.0 | 20.9

ODIE (LLaMA-7B, Fine-tune) 413 | 182 | 55.6 | 48.5 | 25.5

Table Extraction via Markdown

GPT-3.5, Six-shot 38.8 | 15.8 | 45.3 | 39.2 | 26.1

GPT-4, Six-shot 47.8 | 242 | 56.8 | 452 | 31.3
" BART-Large, Fine-tune | 334 | 145 | 352 | 39.1 | 19.7

Mistral-v2-7B, Fine-tune 48.7 | 22.7 | 55.4 | 48.7 | 30.6

LLaMA-70B, Fine-tune 55.1|21.0 | 573 | 523 | 31.2

Table Extraction via SQL

GPT-4, Six-shot 57.5 | 40.6 | 63.0 | 55.9 | 439

—— W/0 computation dependencies | 57.4 | 30.4 | 62.7 | 55.9 | 34.1
—— W/0 type and range checking 533 | 36.6 | 62.8 | 51.7 | 39.8
—— W/0 ordered cell infilling 53.6 | 37.1 | 59.5 | 524 | 41.4
" Mistral-v2-7B, Fine-tune | 60.4 | 42.1 | 65.1 | 604 | 52.0
—— W/0 computation dependencies | 60.3 | 30.3 | 65.2 | 60.5 | 41.0
—— W/0 type and range checking 59.8 | 40.8 | 64.8 | 59.9 | 50.7
—— W/0 ordered cell infilling 56.6 | 38.0 | 61.7 | 56.7 | 49.7
" CodeLLaMA-70B, Fine-tune | 642 | 472 | 69.2 | 64.4 | 57.1
—— W/0 computation dependencies | 64.4 | 36.9 | 68.9 | 64.6 | 47.1

—— W/0 type and range checking 64.0 | 459 | 68.6 | 63.4 | 55.7

—— W/0 ordered cell infilling 60.6 | 43.3 | 65.7 | 61.1 | 54.4
Table Extraction via Python Code

GPT-4, Six-shot 552 | 40.0 | 60.3 | 53.5 | 433
—— W/0 semantic dependencies 523|379 | 579 | 50.8 | 40.3

—— W/0 computation dependencies | 55.0 | 29.8 | 60.4 | 53.2 | 33.7
—— W/0 type and range checking 50.7 | 36.2 | 60.1 | 49.4 | 39.2

—— W/0 ordered cell infilling 50.9 | 36.7 | 56.9 | 49.7 | 41.0
Mistral-v2- -7B, Fine-tune 62.0 | 46.0 | 66.0 | 63.3 | 55.6
—— W/0 semantic dependencies 59.0 | 434 | 64.0 | 60.4 | 52.5

—— W/0 computation dependencies | 61.8 | 32.0 | 66.0 | 62.9 | 41.3
—— W/0 type and range checking 59.8 | 44.1 | 65.0 | 61.3 | 53.7

—— W/0 ordered cell infilling 58.0 | 42.5 | 61.6 | 59.0 | 53.0
CodeLLaMA-70B, Fine-tune 67.7 | 52.8 | 71.7 | 69.1 | 62.5
—— W/0 semantic dependencies 64.9 | 50.3 | 69.7 | 66.1 | 59.3

—— W/0 computation dependencies | 67.4 | 42.8 | 72.1 | 68.9 | 53.0
—— W/0 type and range checking 65.4 | 51.0 | 71.4 | 66.7 | 60.5
—— W/0 ordered cell infilling 63.8 | 494 | 68.2 | 65.1 | 60.2

5.3 Case Study

We manually investigated 100 tables (1,180 cells)
from Wikipedia and 100 tables (545 cells) produced
by few-shot GPT-4 integrated with Python code gen-
eration to analyze their errors. We categorize bad
cases into the following types:

(1) Incorrect positions, particularly for tables with
complex ontology trees or column names with vague
and default information, e.g., “Total”, “Master’s All”
and “Doctoral All” have similar meaning of the sum
aggregation in Example 2 of Figure 1, and in Fig-
ure 5, two cells are using the cell string*“4” but have
different meanings. Fortunately, our dataset has pro-
vided detailed cell-sentence alignment to enhance
model capabilities.

(2) Missing cells caused by computations, espe-
cially for those requiring complex numerical reason-

ing, such as “15” in Figure 7 and “539” in Figure 8.

(3) Incorrect values often stem from complex on-
tology trees. In Wikipedia.

(4) Incorrect values caused by neglecting the unit
conversion, as shown in Figure 6. Although both
“billion” and “million” are well understood, LLMs
still find it challenging to convert them.

(5) Generated code that is not executable.

(6) Correct semantics but inconsistent formats,
e.g., extracting “3rd” from “bronze medal” as shown
in Figure 9 and adding the unit (“Km2”) of column
“Area” to the cell string in Example 1 of Figure 1.

(7) Excessive cells caused by LLMs’ internal
knowledge or incorrect hallucinations that are not
mentioned in the source text, e.g., generating
“Tokyo” that is not mentioned in the text as shown
in Figure 1. This is undesirable in our task since it’s
hard to evaluate the correctness without labeling ex-
ternal knowledge beyond the text input. After being
augmented with TABLECODER’s code generation,
these cases are much less.

5.4 Evaluation on Complex Tables

In this section, we further investigate TABLE-
CODER'’s scalability regarding complicated table
structures.

Our dataset uniquely contains many complex
structures, and TABLECODER shows significant ad-
vancements in handling these compared to baseline
methods. We present detailed experimental results
of TABLECODER for tables with different depths of
ontology trees (levels 2, 3, and >3). We group the re-
sults by Single Quantities and Composite Quantities.
As shown in Table 3, the more complex the structure
(i.e., the deeper the ontology tree), the greater the
improvement in extraction accuracy by the Semantic
Dependency module.

Table 3: Scalability of TABLECODER for different ontol-
ogy depths. “Depth 2” indicates tables with an ontology
tree of depth 2; similarly for depth 3 and $>3$%. We
highlight the EM F1 (%) values.

EMF1 % Single Quantity Composite Quantities
(Higher is better) | Depth2 Depth3 >3 | Depth2 Depth3 >3 |
Llama 2 (CodeLLaMA 70B)

TableCoder 74.3 69.8 64.2 68.8 63.3 56.5

- w/o Semantic Dependency 74.1 66.8 59.2 68.5 59.8 51.7
Mistral-v2 (7B)

TableCoder 72.6 62.7 575 66.6 56.0  46.8
- w/o Semantic Dependency 72.1 59.7 50.4 66.3 53.0 42.4

Experimental results indicate that the more com-
plex the structure, the greater the improvement in
extraction accuracy provided by the Semantic De-
pendency module. TABLECODER exhibits robust
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performance in these challenging settings, which
demonstrates its capacity to handle real-world data
extraction scenarios with deeply nested table ontolo-
gies.

Another advancement of TABLECODER is its scal-
ability with respect to input size. TABLECODER gen-
erates incremental code that completes the output
table step-by-step by adhering to the order within
the source text. Unlike existing works that gener-
ate output tables row-by-row (e.g., via Markdown),
TABLECODER allows a cell in a row to appear at
the beginning of a long document and another cell
in the same row to appear at the end of the long
document. This incremental approach naturally
handles large input texts by sequentially dividing
the input and filling the table cell-by-cell, rather
than row-by-row. We would like to explore large
table extraction in future work.

5.5 FORMATAGNOSTIC-EVAL Effectiveness

We further employ annotators of this dataset as hu-
man evaluators to check if the extraction results
are correct. Each sample has three annotators to
label it, and we use the majority vote as the hu-
man evaluation result. Table 4 compares evaluation
metrics on 200 randomly selected single-quantity
test samples from statistical reports. This reveals
that EM, Chrf, and BERT underestimate the perfor-
mance of models on quantity cells by about 14%,
and FORMATAGNOSTIC-EVAL successfully miti-
gates the gap and reduces it to about 3%. In future
work, we would like to explore LLM-based evalua-
tion.

Table 4: Comparison of classic evaluation methods,
FORMATAGNOSTIC-EVAL, and human evaluation.

Cell-level F1 Default Evaluation FORMATAGNOSTIC Human
% EM Chrf BERT EM Chrf BERT

GPT-4, Six-shot 412 438 450 535 540 547 58.2
Mistral-v2-7B, Fine-tune 51.3 52.6 545 633 639 649 68.4

— W/0 semantic 483 495 50.8 604 614 623 64.0

— W/0 computational 51.5 53.0 542 629 629 638 66.0
— W/0 type and range 50.1 509 52.0 613 619 63.0 65.8
— W/0 sequential order  48.3 49.0 50.7 59.0 594 60.2 63.8

6 Related Work

Table extraction The “text-to-table” task, as in-
troduced by (Wu et al., 2022; Li et al., 2023b;
Pietruszka et al., 2022; Deng et al., 2024; Wang
et al., 2024; Singh et al., 2024; Jiao et al., 2023; Jain
et al., 2024), represents a pioneering effort in ex-
tracting tables from textual content. However, they
only involve simple and static key-value pairs or re-
lational tuples without controllable NL instruction.

(Huang et al., 2023; Singh et al., 2022; Ma et al.,
2024) propose interactive table manipulation from
semi-structured data for visualization purposes. To
automatically evaluate different column organiza-
tions (Ramu et al., 2024, Jiao et al., 2023), (Ramu
et al., 2024) break down a table into a list of atomic
statements and then measure the statement entail-
ment. Fortunately, the NL instruction in our dataset
has provided sufficient details for column organiza-
tion, so we directly use the column corresponding
to the root node of the ontology tree as the index for
rOWS.

Code for table generation Recent studies fo-
cused on tasks where tables are inputs (Gao et al.,
2023a; Wu et al., 2024; Cheng et al., 2022b; Gao
et al., 2023b; Chen et al., 2022; Li et al., 2024; Dong
and Wang, 2024) rather than generating structured
tables as outputs. As far as we know, the only work
to extract tables using code is (Arora et al., 2023), de-
riving relational tuples from HTML pages and PDFs
with tags. However, it targets parsing code to use
string processing functions and regular expressions
based on tags.

7 Conclusion

We propose TABLECODER, a novel code genera-
tion framework for symbolic structure construction
and grounded content extraction. To enable training
and evaluation, this paper provides a human-labeled
dataset targeting generally structured table extrac-
tion from text following NL instructions, presenting
a unique challenge in this area.

Experimental results show that TABLECODER
substantially reduces structure issues and content
inaccuracies, which is essential for industrial applica-
tions requiring high reliability. Moreover, the code-
generation-based method naturally facilitates seam-
less deployment in existing enterprise data pipelines.
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A NL-TO-TABLE Dataset Construction

We design an annotation process with six steps.
Through a reliable and publicly listed data service
vendor company, we recruited 38 students or grad-
uates (16 women and 22 men) who are majoring
in computer science from top universities to cor-
rect quality issues of table content extraction, label
column properties, and relationships, and annotate
format strings. Labeling costs 1,120 working hours.
Comprehensive online training, documents, and QA
are provided to annotators to ensure their consistent
understanding of the labeling requirements.

A.1 User Instruction in Natural Language

We utilize GPT-4 to create an initial set of instruc-
tions based on the input table using the following
instructions.

Suppose you are a human and want to ask
GPT-4 to extract a table from the
following text: <TEXT>

Imagine that your desired table is as
follows: <TABLE>

How should you ask GPT-4 using an
instruction? This instruction describes
the content and structure of the table
you want in natural language.

Column names should be consistent with the tar-
get table to facilitate evaluation, and the table struc-
ture, whether flat or hierarchical, is also required to
be described. We encourage various forms of expres-
sion to simulate different habits of users. So we set
GPT-4’s temperature to 1 and encourage annotators
to adapt the prompt and guide GPT in generating
queries with diverse styles. Finally, instructions are
manually refined to ensure clarity and alignment.

A.2 Column Property and Relationship

Ontology tree and computational dependency
Column relationships, as detailed in Section 2, are
finely labeled with JSON format, employing ontol-
ogy trees for semantic relationships and spreadsheet
formulas for computational relationships.
Unit and feasible range  Annotators label the
unit (Williams et al., 2020) and feasible range of
each number column, and we use rules to infer types
such as INT and DECIMAL based on cell text.
Format string Each column that contains num-
bers, dates, and times is annotated with an f-string,
a Python feature for string formatting. For example,
Figure 9 in Appendix presents a complex number
string, we label it using an f-string f*%d%s’ % (n,
th” if 4 <=n % 100 <= 20 else {1: ’st’, 2: 'nd’, 3:

rd’ }.get(n % 10, ’th’)). The f-string in Figure 6 is
labeled to be f”{n / 1_000_000:.0f} million’.

Example 1:

Example 2:

Island

Broad Fields

Ranking | Population | Area | Density | Country Master’s Doctoral

Capital

. S T 3 KB K8
Total = Master's All + Doctoral All

Master’s Percent = Master's All / Total
Doctoral Percent = Doctoral All / Total
Doctoral Percent + Master’s Percent = 1

(oL imiion Lorio | ot ] X 3 I3 &8 EX8

Figure 4: Examples illustrating column relationships
through ontology trees (blue), number units and feasi-
ble ranges (gray), formulas (red), and number format
strings (green).

Below is an example JSON structure of Column
Property and Relationship Annotation for the exam-
ple in Figure 1:

"Root of the Ontology Tree”: {
"Children": [

{
"Island”: {
"Children": [

{"Ranking": {"Unit": 1, "
Range": ">@", "
FormatString”: "\{self.
ranking:,0f\}", "Children
" [13}3,

{"Population”: {"Unit": 1, "
Range": ">@", "
FormatString"”: "\{self.

population / 1_.000_000:,1

f\} million"”, "Children":
(133,

{"Area": {"Unit": "km2", "
Range": ">@", "
FormatString”: "\{self.
area:,0f\} km2", "
Children”: [13}3},

{"Density"”: {"Unit": "/km2",
"Range”": ">o0", "
FormatString”: "\{self.
density:,0f\}", "Children

" [133,
{
"Country”": {
"Children": [

{"Capital”: { "Children
" [133]
3313333,
"Formulas for Computational
Relationships”: [
"[@Population] / [@Areal = [@Density

(/km2)1"1]

A.3 Table Extraction

Based on collected table-text paired data, annota-
tors are instructed to be careful with deleting un-
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mentioned cells, adding missing cells, and revising
inconsistent cells in the table. For any omitted cells,
annotators must accurately record the corresponding
sentences, adhering to the methodologies employed
by ToTTo and HiTab, ensuring all extracted cells are
linked to corresponding sentences. Crucially, human
annotators jointly utilize values and format strings
to accurately record quantity cells.

Approximation Given that a quantity expressed in
the text may be an approximate value, annotators
receive careful training to label them with precision.
Figure 6 presents a representative example that the
cell value (“127,955”) is too precise to be extracted
from the text mention (“128.0 billion”), showing that
merely reversing the table-to-text dataset can pro-
duce lots of overprecise errors, so we label the cell to
be 128,000 to ensure the information is extractable.
Same value in different positions Annotators are
required to be careful about distinguishing different
cells with the same value. Figure 5 showcases an
example of a labeling error by (Parikh et al., 2020),
the red box surrounds the annotated cell for text
generation, but the correct one is the cell surrounded
by the green box.

Numerical reasoning inside the table Figure 7
demonstrates that the extracted cell (“15%) is cal-
culated by “33%” and “18%”, which can be easily
omitted by human annotators. Figure 8 also shows a
cell that needs calculation in Wikipedia. These cases
require numerical reasoning, which is a core capabil-
ity needed to meet the key demands and pain points
of table extraction in financial and audit domains.
Gladly, with the annotation on computational depen-
dency, these cases can be labeled in high quality.
Numerical reasoning outside the table There is an-
other kind of challenging case in which annotators
need to verify if a cell can be inferred through nu-
merical using the text information. Figure 8 shows
an example where the cell “539” is calculated from
“2,146” and “1,607” in Wikipedia pages.

A.4 Converting Annotations to Code

Writing code is challenging for annotators. Instead,
we propose a rule-based system to construct code
based on human-labeled table structure and content.
(1) It converts the table structure—comprising on-
tology trees, formulas, number units, and format
strings in JSON format—into Python classes and
SQL statements, as depicted in Section 4. In Python,
the implementation involves building one or more
classes based on ontology trees. Each class contains
various properties and methods for value setting,
checking, computation, and formatting. In SQL, to

avoid splitting the target table into multiple tables,
we use the column corresponding to the root of the
ontology tree as the primary key, and other columns
as attribute columns. (2) It transforms table content
annotations into Python code and SQL INSERT and
UPDATE statements, preserving the sequence of code
snippets to reflect the order in which cells appear in
the source text, as shown in the example in Figure 3.
We refine this rule-based system until all generated
code can be executed flawlessly and produce corre-
sponding table contents.

A.5 Regular Inspections and the Final Review

Due to the complexity of the labeling task, we have
designated our two most experienced annotators to
conduct regular inspections and the final review. (1)
During the labeling process, they periodically re-
view a sample of annotations (about 3%) from all
annotators to provide timely feedback on any issues.
(2) In the final step, they review all annotations to
correct any errors. The agreement between the two
annotators was evaluated by comparing annotations
by all annotators (who are randomly paired) on a
randomly selected sample of 200 tables. Table-level
Fleiss Kappa (Landis and Koch, 1977) are 0.89 for ta-
ble content extraction, 0.82 for column relationship
and property labeling, and 0.94 for format string
annotation, which is regarded as “almost perfect
agreement” (Landis and Koch, 1977). And 98.5%
instructions are considered accurate and high-quality
by the counterpart.

B Existing Evaluation Metrics

Exact match (Popovi¢, 2015) determines if two
texts are the same. Chrf (Popovic¢, 2015) calculates
character-level n-gram similarity between two texts,
useful for assessing similarity in a more granular
manner. BERTScore (Zhang et al., 2019) measures
the similarity of BERT embeddings between two
texts, providing a neural semantic similarity metric.

Existing evaluation methods use the left-most col-
umn to distinguish rows (Wu et al., 2022). However,
the left-most column does not always distinctly in-
dex rows in real tables. Instead, NL-TO-TABLE
leverages the annotations of the ontology tree and
uses the column corresponding to the root node of
the ontology tree as the index for rows. The flat-
tened row headers are used to index columns. There-
fore, the evaluation metric is agnostic to the order of
columns and rows.
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2016 season [ edit]

In Week 2, Amendola caught four passes for 48 yards and a career-high two touchdowns from Jimmy Garoppolo
in a 31-24 win over the Miami Dolphins.[®2 In Week 13 against his former team, the St. Louis Rams, he suffered a
high ankle sprain that sidelined him for the rest of the regular season, but he returned for the playoffs.l5%! The
Patriots reached Super Bowl LI, where Amendola had eight catches for 78 yards in the Patriots' historic 34-28
overtime comeback victory over the Atlanta Falcons.[%4! Amendola scored the Patriots' first touchdown of the fourth
quarter to narrow what had been a 25-point Falcons lead down to 28-18 and a two-point conversion with less than
a minute to go to tie the game at 28-28.1] His Super Bowl LI touchdown was his second Super Bowl receiving
touchdown. He became the 27th player in NFL history to have at least two career receiving touchdowns in the
Super Bowl.[%%]

in2016.1°7! His 79.3% catch rate was the best of his career.[5¢

Regular season [edit]

R (- Games Receiving v Rushing v Kickoff ret

GP GS Rec Yds Avg Lng TD Att|Yds Avg Lng TD Ret| Yds Avg
2009 | STL | 14 | 2 | 43 | 326 76 | 25 1 |3 | -2 |-07| 8 0 66 1,618 245
2010 | STL |16 | 6 | 85 | 689 81 | 36 3 | 7 |81 |116| 30 | O 50 |1,142 228
2011 | STL | 1 1 5 45 (90|18 ([0 |—| — | — | —|—|—| — —
2012 | STL | 11 | 8 | 63 | 666 106 56 3 | 2 8 | 40| & 0 2 16 | 80
2013| NE |12 | 6 | 54 | 633 117 | 867 2 | 1 1 10| 1 0 — | — —
2014| NE |16 | 4 | 27 | 200 74 | 21 |1 |— | — | — | — — 20 | 482 | 241
2015| NE |14 | 7 | 65| 648 100 41 3 | 2 | 11 | 55| 8 0 8 172 [215
2016 | NE | 12 23 | 243 106 32 E— — | - - = 5 129 | 25.8
2017 | NE |15 | 8 | 61 | 659 10827 2  —| — | — | — |— 1 16 | 16.0
2018 | MIA | 15 |15 | 59 | 575 | 9.7 | 39 | 1 11220/ -2 0 — | — —
2019 |DET |15 | 9 | 62 | 678 (109| 47 1 |—| — | — | — — | — | — —
2020 DET | 14 | 56 | 46 | 602 131| 50 | O 1 2 |20 2 0 — — —
2021 |HOU | 8 | 0 | 24 | 248 10339 3 —| — | — | —|— 1 15 | 15.0

https://en.wikipedia.org/wiki/Danny_Amendola

Figure 5: Example of the position challenge.
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Current-dollar federal obligations|2] for research and development and R&D plant decreased
1% from FY 2014 to FY 2015, from $132.5 billion to $131.4 billion. Within this total, funding
for research increased 1% to $63.6 billion while development funding fell 4% to $64.9 billion.
R&D plant funding increased substantially (by 27%) to $2.8 billion (table 1). Federal agencies
estimated an 8% total increase in FY 2016 obligations for R&D and R&D plant, to $142.6
billion, and projected a 2% increase in FY 2017 to $145.4 billion. After adjusting for inflation,
total federal R&D and R&D plant obligations decreased 2% to $119.6 billion from FY 2014 to
FY 2015. 1

TABLE 1. Federal obligations for research and development and R&D plant, by type of R&D: FYs 2013-17

Current $millions Constant 2009 Smillions
Type of R&D
ypeo 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017
preliminary projected preliminary projected
All R&D and
R&D plant 127291 132496 131,398 142,555 145,408 119,399 122,195 119,561 127,692 127,955
R&D 125386 130279 128,573 140,070 142,608 117,612 120,150 116,991 125466 125,491
Research 59,198 62,909 63,645 67,761 69,744 55528 58,018 57912 60,696 61,373
Basic 29,779 31,588 31,527 33227 34,323 27933 29132 28,687 29,763 30,203
Applied 29419 31321 32,118 34,533 35421 27,595 28,886 29,225 30,932 31,169
Development 66,188 67370 64,928 72,309 72,865 62,084 62,132 59,079 64,770 64,119
Scienceand 3 0y 503 15079 16,339 16,311 12,636 13200 13,903 14,635 14,353
technology
Major systems® 52717 53057 49,649 55,971 56,554 49,448 48932 45177 50,135 49,766
R&Dplant 1,905 2218 2825 2485 2,799 1,787 2,046 2,571 2,226 2,463

https://www.nsf.gov/statistics/2017/nsf17316/overview.htm

Figure 6: Example of the unit conversion challenge.

The proportion of women with a university degree in both types of families has
increased over time, however at a slower pace for female lone parents. The proportion
of female lone parents with a university degree more than doubled between 1991 and

2011 to 20% (a difference of 11 percentage points). The proportion of female parents
ﬁ The gap in education levels between female lone

parents and female parents in couples may be partly explained by the tendency for

female lone parents to have had their children at a younger age. 42

Table 9

Percentage of Highest certificate, diploma or degree of female lone
parents and female parents in couples, aged 25 to 54 with children
aged 15 and under in 1991, 2001 and 2011, Canada

Highest certificate, diploma or degree Female lone parents Female parent in couples

1991 2001 2011 Difference 1991 2001 2011 Difference
(2011 - 1991) (2011 - 1991)
Percent
Total 100 100 100 100 100 100
No certificate, diploma or degree 34 20 13 21 24 13 8 -16
High school diploma or equivalency 30 28 25 5 32 28 21 -1
Postsecondary certificate below the bachelor's level 26 39 42 9

16 29 36 38
[ 3

University degree at the bachelor’s level or above 9 13 20

https://www150.statcan.gc.ca/n1/pub/89-503-x/2015001/article/14640-eng.htm

Figure 7: Example of the computation challenge.
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the last drive of the game with 23 yards on 6 rushes. The Eagles won 24-22 and earned a playoff spot — the third seed in the
NFC at 10-6.[1151116] McCoy rushed for 77 yards and one touchdown in the Eagles' Wild Card Round game against the 11-5
New Orleans Saints, but the team lost 26-24 after a last-second field goal.“m

For the 2013 season, McCoy rushed for[1,607 bards and was also the all-purpose yards leader af2,146| /1'%~

Regular season [edit]

Games Rushing Receiving Fumbles
Year Team

GP GS Att Yds Avg Lng TD Rec Yds Avg Lng TD Fum Lost
2009 PHI 16 4 155 | 637 |41 66T 4 40 308 77 45 0 2 | 1
2010 PHI 15 13 207 1,080 52 62 7 78 592 76 40 2 2 | 1
2011 PHI 15 15 273 1,309 48 60 |17 48 315 66 26 3 1 | 1
2012 PHI 12 | 12 | 200 840 42 34 2 54 373 6936 3| 4 3
2013 PHI 16 16 314 [1607] 51 57T o 52 [539 |104 70 2 1 1
2014 PHI 16 16 312 1319 42 53 5 28 155 55 18 0 4 | 3
2015 BUF 12 12 203 895 |44 48T 3 32 202 91 22 2| 2 | 1
2016 BUF 15 15| 234 | 1,267 54 75T 13 50 356 74 41 1 3 | 0
2017 BUF 16 16 287 1,138 40 48T 6 50 448 76 39 2 3 1
2018 BUF 14 13 161 | 514 32 28T 3 34 238 70 24 0 0 0
2019 KC 13 9 101 | 465 46 39 4 28 181 65 23 1 3 | 2
2020 TB 10 0 10 31 31 14 0 15 101 67 15 0 0 0

https://en.wikipedia.org/wiki/LeSean_McCoy

Figure 8: Example of the computation challenge.

ll

however Pavey ran an even better time of 15:04.87 at the Golden Gala two months
earlier.[*?l The Commonwealth Games race was probably one of the most exciting
races of her career. In the closing four laps Pavey battled the Kenyans refusing to
give up the lead. She went to the front, after being overtaken on three occasions. On
the final bend the Kenyan runners had all gone past her again and opened a small

gap but Pavey battled back again down the home straight overtaking one of the Jo Pavey at the 2014 &
Kenyan athletes and narrowly missing the Silver medal by 6/100th of a second. Commonwealth Games in Glasgow

International competitions [edit)

Year ¢ Competition 4 Venue ¢ Position ¢ Event ¢ Notes ¢

Representing =}~ England

2002 Commonwealth Games Manchester, United Kingdom 5th 5000 m | 15:19.91

2006 Commonwealth Games Melbourne, Australia 2nd 5000 m | 14:59.08

2014 Commonwealth Games Glasgow, United Kingdom 5000 m | 15:08.96

https://en.wikipedia.org/wiki/Jo_Pavey

Figure 9: Example of format evaluation challenge.
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