Zhicheng Guo
Tsinghua
Other people with similar names: Zhicheng Guo (xidian)
2024
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Zhicheng Guo
|
Sijie Cheng
|
Hao Wang
|
Shihao Liang
|
Yujia Qin
|
Peng Li
|
Zhiyuan Liu
|
Maosong Sun
|
Yang Liu
Findings of the Association for Computational Linguistics ACL 2024
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
2023
Prompt-Guided Retrieval Augmentation for Non-Knowledge-Intensive Tasks
Zhicheng Guo
|
Sijie Cheng
|
Yile Wang
|
Peng Li
|
Yang Liu
Findings of the Association for Computational Linguistics: ACL 2023
Retrieval-augmented methods have received increasing attention to support downstream tasks by leveraging useful information from external resources. Recent studies mainly focus on exploring retrieval to solve knowledge-intensive (KI) tasks. However, the potential of retrieval for most non-knowledge-intensive (NKI) tasks remains under-explored. There are two main challenges to leveraging retrieval-augmented methods for NKI tasks: 1) the demand for diverse relevance score functions and 2) the dilemma between training cost and task performance. To address these challenges, we propose a two-stage framework for NKI tasks, named PGRA. In the first stage, we adopt a task-agnostic retriever to build a shared static index and select candidate evidence efficiently. In the second stage, we design a prompt-guided reranker to rerank the nearest evidence according to task-specific relevance for the reader. Experimental results show that PGRA outperforms other state-of-the-art retrieval-augmented methods. Our analyses further investigate the influence factors to model performance and demonstrate the generality of PGRA. The code and model will be released for further research.
Search
Co-authors
- Sijie Cheng 2
- Peng Li 2
- Yang Liu 2
- Hao Wang 1
- Shihao Liang 1
- show all...