Zhengyuan Yang
2023
NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Shengming Yin
|
Chenfei Wu
|
Huan Yang
|
Jianfeng Wang
|
Xiaodong Wang
|
Minheng Ni
|
Zhengyuan Yang
|
Linjie Li
|
Shuguang Liu
|
Fan Yang
|
Jianlong Fu
|
Ming Gong
|
Lijuan Wang
|
Zicheng Liu
|
Houqiang Li
|
Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a “coarse-to-fine” process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26%) at the same hardware setting when generating 1024 frames. The homepage link is [NUWA-XL](https://msra-nuwa.azurewebsites.net)
2020
A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine Translation
Yongjing Yin
|
Fandong Meng
|
Jinsong Su
|
Chulun Zhou
|
Zhengyuan Yang
|
Jie Zhou
|
Jiebo Luo
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
Search
Co-authors
- Yongjing Yin 1
- Fandong Meng 1
- Jinsong Su 1
- Chulun Zhou 1
- Jie Zhou 1
- show all...
Venues
- acl2