Zhen Yu


2024

pdf
MultiSQL: A Schema-Integrated Context-Dependent Text2SQL Dataset with Diverse SQL Operations
Chunhui Li | Yifan Wang | Zhen Wu | Zhen Yu | Fei Zhao | Shujian Huang | Xinyu Dai
Findings of the Association for Computational Linguistics ACL 2024

Text2SQL is a task that translates natural language into SQL statements. Context-dependent Text2SQL offers a more natural database interaction by simulating dialogues between users and databases, with CoSQL and SparC as representative datasets. Yet, these datasets struggle to accurately replicate real-world situations. To address this, we introduce MultiSQL, which extends them in three key aspects: (1) Diverse SQL Operations. We incorporate diverse SQL types such as Create, Update, and Insert to broaden the scope of SQL operations. (2) Schema-Integrated Context. We integrated query context with database schema dependencies to better depict database complexity. (3) Extended Dialogues. We expand dialogue length to better simulate long conversations and complex interactions. This multi-type, schema-integrated, context-dependent Text2SQL dataset comprises nearly 800 dialogue groups and over 9,000 interaction turns across 166 complex databases, offering a better benchmark for interactive user-database dialogue.Addressing MultiSQL’s challenges, we refined evaluation metrics to better capture diverse SQL types and schema dependencies. We designed a prompt framework that leverages historical data and self-refinement to accurately capture the dependency between text queries and database structures. Experiments with GPT-3.5, GPT-4, and LLaMA2-7B show both the effectiveness of our strategies and the challenges of MultiSQL. The datasets is available at https://github.com/grandchicken/MultiSQL.

pdf
Query-Efficient Textual Adversarial Example Generation for Black-Box Attacks
Zhen Yu | Zhenhua Chen | Kun He
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Deep neural networks for Natural Language Processing (NLP) have been demonstrated to be vulnerable to textual adversarial examples. Existing black-box attacks typically require thousands of queries on the target model, making them expensive in real-world applications. In this paper, we propose a new approach that guides the word substitutions using prior knowledge from the training set to improve the attack efficiency. Specifically, we introduce Adversarial Boosting Preference (ABP), a metric that quantifies the importance of words and guides adversarial word substitutions. We then propose two query-efficient attack strategies based on ABP: query-free attack (ABPfree) and guided search attack (ABPguide). Extensive evaluations for text classification demonstrate that ABPfree generates more natural adversarial examples than existing universal attacks, ABPguide significantly reduces the number of queries by a factor of 10 500 while achieving comparable or even better performance than black-box attack baselines. Furthermore, we introduce the first ensemble attack ABPens in NLP, which gains further performance improvements and achieves better transferability and generalization by the ensemble of the ABP across different models and domains. Code is available at https://github.com/BaiDingHub/ABP.

2023

pdf
Sparse Black-Box Multimodal Attack for Vision-Language Adversary Generation
Zhen Yu | Zhou Qin | Zhenhua Chen | Meihui Lian | Haojun Fu | Weigao Wen | Hui Xue | Kun He
Findings of the Association for Computational Linguistics: EMNLP 2023

Deep neural networks have been widely applied in real-world scenarios, such as product restrictions on e-commerce and hate speech monitoring on social media, to ensure secure governance of various platforms. However, illegal merchants often deceive the detection models by adding large-scale perturbations to prohibited products, so as to earn illegal profits. Current adversarial attacks using imperceptible perturbations encounter challenges in simulating such adversarial behavior and evaluating the vulnerabilities of detection models to such perturbations. To address this issue, we propose a novel black-box multimodal attack, termed Sparse Multimodal Attack (SparseMA), which leverages sparse perturbations to simulate the adversarial behavior exhibited by illegal merchants in the black-box scenario. Moreover, SparseMA bridges the gap between images and texts by treating the separated image patches and text words uniformly in the discrete space. Extensive experiments demonstrate that SparseMA can identify the vulnerability of the model to different modalities, outperforming existing multimodal attacks and unimodal attacks. SparseMA, which is the first proposed method for black-box multimodal attacks to our knowledge, would be used as an effective tool for evaluating the robustness of multimodal models to different modalities.

2022

pdf
TextHacker: Learning based Hybrid Local Search Algorithm for Text Hard-label Adversarial Attack
Zhen Yu | Xiaosen Wang | Wanxiang Che | Kun He
Findings of the Association for Computational Linguistics: EMNLP 2022

Existing textual adversarial attacks usually utilize the gradient or prediction confidence to generate adversarial examples, making it hard to be deployed in real-world applications. To this end, we consider a rarely investigated but more rigorous setting, namely hard-label attack, in which the attacker can only access the prediction label. In particular, we find we can learn the importance of different words via the change on prediction label caused by word substitutions on the adversarial examples. Based on this observation, we propose a novel adversarial attack, termed Text Hard-label attacker (TextHacker). TextHacker randomly perturbs lots of words to craft an adversarial example. Then, TextHacker adopts a hybrid local search algorithm with the estimation of word importance from the attack history to minimize the adversarial perturbation. Extensive evaluations for text classification and textual entailment show that TextHacker significantly outperforms existing hard-label attacks regarding the attack performance as well as adversary quality.