Yutong Hu


2024

pdf
ELLA: Empowering LLMs for Interpretable, Accurate and Informative Legal Advice
Yutong Hu | Kangcheng Luo | Yansong Feng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Despite remarkable performance in legal consultation exhibited by legal Large Language Models(LLMs) combined with legal article retrieval components, there are still cases when the advice given is incorrect or baseless. To alleviate these problems, we propose ELLA, a tool for Empowering LLMs for interpretable, accurate, and informative Legal Advice. ELLA visually presents the correlation between legal articles and LLM’s response by calculating their similarities, providing users with an intuitive legal basis for the responses. Besides, based on the users’ queries, ELLA retrieves relevant legal articles and displays them to users. Users can interactively select legal articles for LLM to generate more accurate responses. ELLA also retrieves relevant legal cases for user reference. Our user study shows that presenting the legal basis for the response helps users understand better. The accuracy of LLM’s responses also improves when users intervene in selecting legal articles for LLM. Providing relevant legal cases also aids individuals in obtaining comprehensive information. Our github repo is: https://github.com/Huyt00/ELLA.

2023

pdf
More than Classification: A Unified Framework for Event Temporal Relation Extraction
Quzhe Huang | Yutong Hu | Shengqi Zhu | Yansong Feng | Chang Liu | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event temporal relation extraction (ETRE) is usually formulated as a multi-label classification task, where each type of relation is simply treated as a one-hot label. This formulation ignores the meaning of relations and wipes out their intrinsic dependency. After examining the relation definitions in various ETRE tasks, we observe that all relations can be interpreted using the start and end time points of events. For example, relation Includes could be interpreted as event 1 starting no later than event 2 and ending no earlier than event 2. In this paper, we propose a unified event temporal relation extraction framework, which transforms temporal relations into logical expressions of time points and completes the ETRE by predicting the relations between certain time point pairs. Experiments on TB-Dense and MATRES show significant improvements over a strong baseline and outperform the state-of-the-art model by 0.3% on both datasets. By representing all relations in a unified framework, we can leverage the relations with sufficient data to assist the learning of other relations, thus achieving stable improvement in low-data scenarios. When the relation definitions are changed, our method can quickly adapt to the new ones by simply modifying the logic expressions that map time points to new event relations. The code is released at https://github.com/AndrewZhe/A-Unified-Framework-for-ETRE

pdf
Align-then-Enhance: Multilingual Entailment Graph Enhancement with Soft Predicate Alignment
Yuting Wu | Yutong Hu | Yansong Feng | Tianyi Li | Mark Steedman | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Entailment graphs (EGs) with predicates as nodes and entailment relations as edges are typically incomplete, while EGs in different languages are often complementary to each other. In this paper, we propose a new task, multilingual entailment graph enhancement, which aims to utilize the entailment information from one EG to enhance another EG in a different language. The ultimate goal is to obtain an enhanced EG containing richer and more accurate entailment information. We present an align-then-enhance framework (ATE) to achieve accurate multilingual entailment graph enhancement, which first exploits a cross-graph guided interaction mechanism to automatically discover potential equivalent predicates between different EGs and then constructs more accurate enhanced entailment graphs based on soft predicate alignments. Extensive experiments show that ATE achieves better and more robust predicate alignment results between different EGs, and the enhanced entailment graphs generated by ATE outperform the original graphs for entailment detection.