Yonatan Belinkov


2024

pdf
Learning from Others: Similarity-based Regularization for Mitigating Dataset Bias.
Reda Igbaria | Yonatan Belinkov
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)

Common methods for mitigating spurious correlations in natural language understanding (NLU) usually operate in the output space, encouraging a main model to behave differently from a bias model by down-weighing examples where the bias model is confident.While improving out of distribution (OOD) performance, it was recently observed that the internal representations of the presumably debiased models are actually more, rather than less biased. We propose SimgReg, a new method for debiasing internal model components via similarity-based regularization, in representation space: We encourage the model to learn representations that are either similar to an unbiased model or different from a biased model. We experiment with three NLU tasks and different kinds of biases.We find that SimReg improves OOD performance, with little in-distribution degradation. Moreover, the representations learned by SimReg are less biased than in other methods.

pdf
Concept-Best-Matching: Evaluating Compositionality In Emergent Communication
Boaz Carmeli | Yonatan Belinkov | Ron Meir
Findings of the Association for Computational Linguistics ACL 2024

Artificial agents that learn to communicate in order to accomplish a given task acquire communication protocols that are typically opaque to a human. A large body of work has attempted to evaluate the emergent communication via various evaluation measures, with **compositionality** featuring as a prominent desired trait. However, current evaluation procedures do not directly expose the compositionality of the emergent communication. We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts.The best-match algorithm provides both a global score and a translation-map from emergent words to natural language concepts. To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.

pdf
Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines
Michael Toker | Hadas Orgad | Mor Ventura | Dana Arad | Yonatan Belinkov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts require further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines.

pdf
Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias
Itay Itzhak | Gabriel Stanovsky | Nir Rosenfeld | Yonatan Belinkov
Transactions of the Association for Computational Linguistics, Volume 12

Recent studies show that instruction tuning (IT) and reinforcement learning from human feedback (RLHF) improve the abilities of large language models (LMs) dramatically. While these tuning methods can help align models with human objectives and generate high-quality text, not much is known about their potential adverse effects. In this work, we investigate the effect of IT and RLHF on decision making and reasoning in LMs, focusing on three cognitive biases—the decoy effect, the certainty effect, and the belief bias—all of which are known to influence human decision-making and reasoning. Our findings highlight the presence of these biases in various models from the GPT-3, Mistral, and T5 families. Notably, we find a stronger presence of biases in models that have undergone instruction tuning, such as Flan-T5, Mistral-Instruct, GPT3.5, and GPT4. Our work constitutes a step toward comprehending cognitive biases in instruction-tuned LMs, which is crucial for the development of more reliable and unbiased language models.1

pdf
ReFACT: Updating Text-to-Image Models by Editing the Text Encoder
Dana Arad | Hadas Orgad | Yonatan Belinkov
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Our world is marked by unprecedented technological, global, and socio-political transformations, posing a significant challenge to textto-image generative models. These models encode factual associations within their parameters that can quickly become outdated, diminishing their utility for end-users. To that end, we introduce ReFACT, a novel approach for editing factual associations in text-to-image models without relaying on explicit input from end-users or costly re-training. ReFACT updates the weights of a specific layer in the text encoder, modifying only a tiny portion of the model’s parameters and leaving the rest of the model unaffected.We empirically evaluate ReFACT on an existing benchmark, alongside a newly curated dataset.Compared to other methods, ReFACT achieves superior performance in both generalization to related concepts and preservation of unrelated concepts.Furthermore, ReFACT maintains image generation quality, making it a practical tool for updating and correcting factual information in text-to-image models.

pdf
ContraSim – Analyzing Neural Representations Based on Contrastive Learning
Adir Rahamim | Yonatan Belinkov
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent work has compared neural network representations via similarity-based analyses to improve model interpretation. The quality of a similarity measure is typically evaluated by its success in assigning a high score to representations that are expected to be matched. However, existing similarity measures perform mediocrely on standard benchmarks. In this work, we develop a new similarity measure, dubbed ContraSim, based on contrastive learning. In contrast to common closed-form similarity measures, ContraSim learns a parameterized measure by using both similar and dissimilar examples. We perform an extensive experimental evaluation of our method, with both language and vision models, on the standard layer prediction benchmark and two new benchmarks that we introduce: the multilingual benchmark and the image–caption benchmark. In all cases, ContraSim achieves much higher accuracy than previous similarity measures, even when presented with challenging examples. Finally, ContraSim is more suitable for the analysis of neural networks, revealing new insights not captured by previous measures.

pdf
Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information
Shadi Iskander | Kira Radinsky | Yonatan Belinkov
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Mitigating social biases typically requires identifying the social groups associated with each data sample. In this paper, we present DAFair, a novel approach to address social bias in language models. Unlike traditional methods that rely on explicit demographic labels, our approach does not require any such information. Instead, we leverage predefined prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias in the model’s representations. Our empirical results across two tasks and two models demonstrate the effectiveness of our method compared to previous approaches that do not rely on labeled data. Moreover, with limited demographic-annotated data, our approach outperforms common debiasing approaches.

pdf
Generating Benchmarks for Factuality Evaluation of Language Models
Dor Muhlgay | Ori Ram | Inbal Magar | Yoav Levine | Nir Ratner | Yonatan Belinkov | Omri Abend | Kevin Leyton-Brown | Amnon Shashua | Yoav Shoham
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing methods for factuality evaluation of LLM generation focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent domain specific or rare facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM’s propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create three benchmarks: Wiki-FACTOR, News-FACTOR and Expert-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score and perplexity do not always agree on model ranking; (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators.

pdf
A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry
Michael Toker | Oren Mishali | Ophir Münz-Manor | Benny Kimelfeld | Yonatan Belinkov
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main characteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area.

2023

pdf bib
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Yonatan Belinkov | Sophie Hao | Jaap Jumelet | Najoung Kim | Arya McCarthy | Hosein Mohebbi
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

pdf
What Are You Token About? Dense Retrieval as Distributions Over the Vocabulary
Ori Ram | Liat Bezalel | Adi Zicher | Yonatan Belinkov | Jonathan Berant | Amir Globerson
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dual encoders are now the dominant architecture for dense retrieval. Yet, we have little understanding of how they represent text, and why this leads to good performance. In this work, we shed light on this question via distributions over the vocabulary. We propose to interpret the vector representations produced by dual encoders by projecting them into the model’s vocabulary space. We show that the resulting projections contain rich semantic information, and draw connection between them and sparse retrieval. We find that this view can offer an explanation for some of the failure cases of dense retrievers. For example, we observe that the inability of models to handle tail entities is correlated with a tendency of the token distributions to forget some of the tokens of those entities. We leverage this insight and propose a simple way to enrich query and passage representations with lexical information at inference time, and show that this significantly improves performance compared to the original model in zero-shot settings, and specifically on the BEIR benchmark.

pdf
Parallel Context Windows for Large Language Models
Nir Ratner | Yoav Levine | Yonatan Belinkov | Ori Ram | Inbal Magar | Omri Abend | Ehud Karpas | Amnon Shashua | Kevin Leyton-Brown | Yoav Shoham
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When applied to processing long text, Large Language Models (LLMs) are limited by their context window. Existing efforts to address this limitation involve training specialized architectures, and cannot be easily applied to off- the-shelf LLMs. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (“windows”), restrict the attention mechanism to apply only within each window, and re-use the positional embeddings across the windows. Our main results test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. We show additional benefits in other settings where long context windows may be beneficial: multi-hop questions and retrieval-augmented question answering with multiple retrieved documents. Our results highlight Parallel Context Windows as a promising method for applying off-the-shelf LLMs in a range of settings that require long text sequences. We make our code publicly available at https://github.com/ai21labs/parallel-context-windows.

pdf
BLIND: Bias Removal With No Demographics
Hadas Orgad | Yonatan Belinkov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Models trained on real-world data tend to imitate and amplify social biases. Common methods to mitigate biases require prior information on the types of biases that should be mitigated (e.g., gender or racial bias) and the social groups associated with each data sample. In this work, we introduce BLIND, a method for bias removal with no prior knowledge of the demographics in the dataset. While training a model on a downstream task, BLIND detects biased samples using an auxiliary model that predicts the main model’s success, and down-weights those samples during the training process. Experiments with racial and gender biases in sentiment classification and occupation classification tasks demonstrate that BLIND mitigates social biases without relying on a costly demographic annotation process. Our method is competitive with other methods that require demographic information and sometimes even surpasses them.

pdf
Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection
Shadi Iskander | Kira Radinsky | Yonatan Belinkov
Findings of the Association for Computational Linguistics: ACL 2023

Natural language processing models tend to learn and encode social biases present in the data. One popular approach for addressing such biases is to eliminate encoded information from the model’s representations. However, current methods are restricted to removing only linearly encoded information. In this work, we propose Iterative Gradient-Based Projection (IGBP), a novel method for removing non-linear encoded concepts from neural representations. Our method consists of iteratively training neural classifiers to predict a particular attribute we seek to eliminate, followed by a projection of the representation on a hypersurface, such that the classifiers become oblivious to the target attribute. We evaluate the effectiveness of our method on the task of removing gender and race information as sensitive attributes. Our results demonstrate that IGBP is effective in mitigating bias through intrinsic and extrinsic evaluations, with minimal impact on downstream task accuracy.

pdf
VISIT: Visualizing and Interpreting the Semantic Information Flow of Transformers
Shahar Katz | Yonatan Belinkov
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent advances in interpretability suggest we can project weights and hidden states of transformer-based language models (LMs) to their vocabulary, a transformation that makes them more human interpretable. In this paper, we investigate LM attention heads and memory values, the vectors the models dynamically create and recall while processing a given input. By analyzing the tokens they represent through this projection, we identify patterns in the information flow inside the attention mechanism. Based on our discoveries, we create a tool to visualize a forward pass of Generative Pre-trained Transformers (GPTs) as an interactive flow graph, with nodes representing neurons or hidden states and edges representing the interactions between them. Our visualization simplifies huge amounts of data into easy-to-read plots that can reflect the models’ internal processing, uncovering the contribution of each component to the models’ final prediction. Our visualization also unveils new insights about the role of layer norms as semantic filters that influence the models’ output, and about neurons that are always activated during forward passes and act as regularization vectors.

pdf
A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis
Alessandro Stolfo | Yonatan Belinkov | Mrinmaya Sachan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.

pdf
When Language Models Fall in Love: Animacy Processing in Transformer Language Models
Michael Hanna | Yonatan Belinkov | Sandro Pezzelle
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Animacy—whether an entity is alive and sentient—is fundamental to cognitive processing, impacting areas such as memory, vision, and language. However, animacy is not always expressed directly in language: in English it often manifests indirectly, in the form of selectional constraints on verbs and adjectives. This poses a potential issue for transformer language models (LMs): they often train only on text, and thus lack access to extralinguistic information from which humans learn about animacy. We ask: how does this impact LMs’ animacy processing—do they still behave as humans do? We answer this question using open-source LMs. Like previous studies, we find that LMs behave much like humans when presented with entities whose animacy is typical. However, we also show that even when presented with stories about atypically animate entities, such as a peanut in love, LMs adapt: they treat these entities as animate, though they do not adapt as well as humans. Even when the context indicating atypical animacy is very short, LMs pick up on subtle clues and change their behavior. We conclude that despite the limited signal through which LMs can learn about animacy, they are indeed sensitive to the relevant lexical semantic nuances available in English.

2022

pdf
Probing Classifiers: Promises, Shortcomings, and Advances
Yonatan Belinkov
Computational Linguistics, Volume 48, Issue 1 - March 2022

Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple—a classifier is trained to predict some linguistic property from a model’s representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This squib critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.

pdf
A Multilingual Perspective Towards the Evaluation of Attribution Methods in Natural Language Inference
Kerem Zaman | Yonatan Belinkov
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most evaluations of attribution methods focus on the English language. In this work, we present a multilingual approach for evaluating attribution methods for the Natural Language Inference (NLI) task in terms of faithfulness and plausibility.First, we introduce a novel cross-lingual strategy to measure faithfulness based on word alignments, which eliminates the drawbacks of erasure-based evaluations.We then perform a comprehensive evaluation of attribution methods, considering different output mechanisms and aggregation methods.Finally, we augment the XNLI dataset with highlight-based explanations, providing a multilingual NLI dataset with highlights, to support future exNLP studies. Our results show that attribution methods performing best for plausibility and faithfulness are different.

pdf
Part-of-Speech and Morphological Tagging of Algerian Judeo-Arabic
Ofra Tirosh-Becker | Michal Kessler | Oren Becker | Yonatan Belinkov
Northern European Journal of Language Technology, Volume 8

Most linguistic studies of Judeo-Arabic, the ensemble of dialects spoken and written by Jews in Arab lands, are qualitative in nature and rely on laborious manual annotation work, and are therefore limited in scale. In this work, we develop automatic methods for morpho-syntactic tagging of Algerian Judeo-Arabic texts published by Algerian Jews in the 19th–20th centuries, based on a linguistically tagged corpus. First, we describe our semi-automatic approach for preprocessing these texts. Then, we experiment with both an off-the-shelf morphological tagger and several specially designed neural network taggers. Finally, we perform a real-world evaluation of new texts that were never tagged before in comparison with human expert annotators. Our experimental results demonstrate that these methods can dramatically speed up and improve the linguistic research pipeline, enabling linguists to study these dialects on a much greater scale.

pdf
A Generative Approach for Mitigating Structural Biases in Natural Language Inference
Dimion Asael | Zachary Ziegler | Yonatan Belinkov
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

Many natural language inference (NLI) datasets contain biases that allow models to perform well by only using a biased subset of the input, without considering the remainder features. For instance, models are able to classify samples by only using the hypothesis, without learning the true relationship between it and the premise. These structural biases lead discriminative models to learn unintended superficial features and generalize poorly out of the training distribution. In this work, we reformulate the NLI task as a generative task, where a model is conditioned on the biased subset of the input and the label and generates the remaining subset of the input. We show that by imposing a uniform prior, we obtain a provably unbiased model. Through synthetic experiments, we find that this approach is highly robust to large amounts of bias. We then demonstrate empirically on two types of natural bias that this approach leads to fully unbiased models in practice. However, we find that generative models are difficult to train and generally perform worse than discriminative baselines. We highlight the difficulty of the generative modeling task in the context of NLI as a cause for this worse performance. Finally, by fine-tuning the generative model with a discriminative objective, we reduce the performance gap between the generative model and the discriminative baseline, while allowing for a small amount of bias.

pdf
How Gender Debiasing Affects Internal Model Representations, and Why It Matters
Hadas Orgad | Seraphina Goldfarb-Tarrant | Yonatan Belinkov
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Common studies of gender bias in NLP focus either on extrinsic bias measured by model performance on a downstream task or on intrinsic bias found in models’ internal representations. However, the relationship between extrinsic and intrinsic bias is relatively unknown. In this work, we illuminate this relationship by measuring both quantities together: we debias a model during downstream fine-tuning, which reduces extrinsic bias, and measure the effect on intrinsic bias, which is operationalized as bias extractability with information-theoretic probing. Through experiments on two tasks and multiple bias metrics, we show that our intrinsic bias metric is a better indicator of debiasing than (a contextual adaptation of) the standard WEAT metric, and can also expose cases of superficial debiasing. Our framework provides a comprehensive perspective on bias in NLP models, which can be applied to deploy NLP systems in a more informed manner. Our code and model checkpoints are publicly available.

pdf
IDANI: Inference-time Domain Adaptation via Neuron-level Interventions
Omer Antverg | Eyal Ben-David | Yonatan Belinkov
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing

Large pre-trained models are usually fine-tuned on downstream task data, and tested on unseen data. When the train and test data come from different domains, the model is likely to struggle, as it is not adapted to the test domain. We propose a new approach for domain adaptation (DA), using neuron-level interventions: We modify the representation of each test example in specific neurons, resulting in a counterfactual example from the source domain, which the model is more familiar with. The modified example is then fed back into the model. While most other DA methods are applied during training time, ours is applied during inference only, making it more efficient and applicable. Our experiments show that our method improves performance on unseen domains.

pdf
Choose Your Lenses: Flaws in Gender Bias Evaluation
Hadas Orgad | Yonatan Belinkov
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Considerable efforts to measure and mitigate gender bias in recent years have led to the introduction of an abundance of tasks, datasets, and metrics used in this vein. In this position paper, we assess the current paradigm of gender bias evaluation and identify several flaws in it. First, we highlight the importance of extrinsic bias metrics that measure how a model’s performance on some task is affected by gender, as opposed to intrinsic evaluations of model representations, which are less strongly connected to specific harms to people interacting with systems. We find that only a few extrinsic metrics are measured in most studies, although more can be measured. Second, we find that datasets and metrics are often coupled, and discuss how their coupling hinders the ability to obtain reliable conclusions, and how one may decouple them. We then investigate how the choice of the dataset and its composition, as well as the choice of the metric, affect bias measurement, finding significant variations across each of them. Finally, we propose several guidelines for more reliable gender bias evaluation.

pdf bib
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Jasmijn Bastings | Yonatan Belinkov | Yanai Elazar | Dieuwke Hupkes | Naomi Saphra | Sarah Wiegreffe
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

2021

pdf
Debiasing Methods in Natural Language Understanding Make Bias More Accessible
Michael Mendelson | Yonatan Belinkov
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Model robustness to bias is often determined by the generalization on carefully designed out-of-distribution datasets. Recent debiasing methods in natural language understanding (NLU) improve performance on such datasets by pressuring models into making unbiased predictions. An underlying assumption behind such methods is that this also leads to the discovery of more robust features in the model’s inner representations. We propose a general probing-based framework that allows for post-hoc interpretation of biases in language models, and use an information-theoretic approach to measure the extractability of certain biases from the model’s representations. We experiment with several NLU datasets and known biases, and show that, counter-intuitively, the more a language model is pushed towards a debiased regime, the more bias is actually encoded in its inner representations.

pdf
Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models
Matthew Finlayson | Aaron Mueller | Sebastian Gehrmann | Stuart Shieber | Tal Linzen | Yonatan Belinkov
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Targeted syntactic evaluations have demonstrated the ability of language models to perform subject-verb agreement given difficult contexts. To elucidate the mechanisms by which the models accomplish this behavior, this study applies causal mediation analysis to pre-trained neural language models. We investigate the magnitude of models’ preferences for grammatical inflections, as well as whether neurons process subject-verb agreement similarly across sentences with different syntactic structures. We uncover similarities and differences across architectures and model sizes—notably, that larger models do not necessarily learn stronger preferences. We also observe two distinct mechanisms for producing subject-verb agreement depending on the syntactic structure of the input sentence. Finally, we find that language models rely on similar sets of neurons when given sentences with similar syntactic structure.

pdf bib
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Jasmijn Bastings | Yonatan Belinkov | Emmanuel Dupoux | Mario Giulianelli | Dieuwke Hupkes | Yuval Pinter | Hassan Sajjad
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

pdf
Probing the Probing Paradigm: Does Probing Accuracy Entail Task Relevance?
Abhilasha Ravichander | Yonatan Belinkov | Eduard Hovy
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Although neural models have achieved impressive results on several NLP benchmarks, little is understood about the mechanisms they use to perform language tasks. Thus, much recent attention has been devoted to analyzing the sentence representations learned by neural encoders, through the lens of ‘probing’ tasks. However, to what extent was the information encoded in sentence representations, as discovered through a probe, actually used by the model to perform its task? In this work, we examine this probing paradigm through a case study in Natural Language Inference, showing that models can learn to encode linguistic properties even if they are not needed for the task on which the model was trained. We further identify that pretrained word embeddings play a considerable role in encoding these properties rather than the training task itself, highlighting the importance of careful controls when designing probing experiments. Finally, through a set of controlled synthetic tasks, we demonstrate models can encode these properties considerably above chance-level, even when distributed in the data as random noise, calling into question the interpretation of absolute claims on probing tasks.

2020

pdf
Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani | Hassan Sajjad | Fahim Dalvi | Yonatan Belinkov
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While a lot of analysis has been carried to demonstrate linguistic knowledge captured by the representations learned within deep NLP models, very little attention has been paid towards individual neurons. We carry outa neuron-level analysis using core linguistic tasks of predicting morphology, syntax and semantics, on pre-trained language models, with questions like: i) do individual neurons in pre-trained models capture linguistic information? ii) which parts of the network learn more about certain linguistic phenomena? iii) how distributed or focused is the information? and iv) how do various architectures differ in learning these properties? We found small subsets of neurons to predict linguistic tasks, with lower level tasks (such as morphology) localized in fewer neurons, compared to higher level task of predicting syntax. Our study also reveals interesting cross architectural comparisons. For example, we found neurons in XLNet to be more localized and disjoint when predicting properties compared to BERT and others, where they are more distributed and coupled.

pdf
Analyzing Redundancy in Pretrained Transformer Models
Fahim Dalvi | Hassan Sajjad | Nadir Durrani | Yonatan Belinkov
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformer-based deep NLP models are trained using hundreds of millions of parameters, limiting their applicability in computationally constrained environments. In this paper, we study the cause of these limitations by defining a notion of Redundancy, which we categorize into two classes: General Redundancy and Task-specific Redundancy. We dissect two popular pretrained models, BERT and XLNet, studying how much redundancy they exhibit at a representation-level and at a more fine-grained neuron-level. Our analysis reveals interesting insights, such as i) 85% of the neurons across the network are redundant and ii) at least 92% of them can be removed when optimizing towards a downstream task. Based on our analysis, we present an efficient feature-based transfer learning procedure, which maintains 97% performance while using at-most 10% of the original neurons.

pdf
Similarity Analysis of Contextual Word Representation Models
John Wu | Yonatan Belinkov | Hassan Sajjad | Nadir Durrani | Fahim Dalvi | James Glass
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper investigates contextual word representation models from the lens of similarity analysis. Given a collection of trained models, we measure the similarity of their internal representations and attention. Critically, these models come from vastly different architectures. We use existing and novel similarity measures that aim to gauge the level of localization of information in the deep models, and facilitate the investigation of which design factors affect model similarity, without requiring any external linguistic annotation. The analysis reveals that models within the same family are more similar to one another, as may be expected. Surprisingly, different architectures have rather similar representations, but different individual neurons. We also observed differences in information localization in lower and higher layers and found that higher layers are more affected by fine-tuning on downstream tasks.

pdf
The Sensitivity of Language Models and Humans to Winograd Schema Perturbations
Mostafa Abdou | Vinit Ravishankar | Maria Barrett | Yonatan Belinkov | Desmond Elliott | Anders Søgaard
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large-scale pretrained language models are the major driving force behind recent improvements in perfromance on the Winograd Schema Challenge, a widely employed test of commonsense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones.

pdf
End-to-End Bias Mitigation by Modelling Biases in Corpora
Rabeeh Karimi Mahabadi | Yonatan Belinkov | James Henderson
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Several recent studies have shown that strong natural language understanding (NLU) models are prone to relying on unwanted dataset biases without learning the underlying task, resulting in models that fail to generalize to out-of-domain datasets and are likely to perform poorly in real-world scenarios. We propose two learning strategies to train neural models, which are more robust to such biases and transfer better to out-of-domain datasets. The biases are specified in terms of one or more bias-only models, which learn to leverage the dataset biases. During training, the bias-only models’ predictions are used to adjust the loss of the base model to reduce its reliance on biases by down-weighting the biased examples and focusing the training on the hard examples. We experiment on large-scale natural language inference and fact verification benchmarks, evaluating on out-of-domain datasets that are specifically designed to assess the robustness of models against known biases in the training data. Results show that our debiasing methods greatly improve robustness in all settings and better transfer to other textual entailment datasets. Our code and data are publicly available in https://github.com/rabeehk/robust-nli.

pdf bib
Interpretability and Analysis in Neural NLP
Yonatan Belinkov | Sebastian Gehrmann | Ellie Pavlick
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

While deep learning has transformed the natural language processing (NLP) field and impacted the larger computational linguistics community, the rise of neural networks is stained by their opaque nature: It is challenging to interpret the inner workings of neural network models, and explicate their behavior. Therefore, in the last few years, an increasingly large body of work has been devoted to the analysis and interpretation of neural network models in NLP. This body of work is so far lacking a common framework and methodology. Moreover, approaching the analysis of modern neural networks can be difficult for newcomers to the field. This tutorial aims to fill this gap and introduce the nascent field of interpretability and analysis of neural networks in NLP. The tutorial will cover the main lines of analysis work, such as structural analyses using probing classifiers, behavioral studies and test suites, and interactive visualizations. We will highlight not only the most commonly applied analysis methods, but also the specific limitations and shortcomings of current approaches, in order to inform participants where to focus future efforts.

pdf
Findings of the WMT 2020 Shared Task on Machine Translation Robustness
Lucia Specia | Zhenhao Li | Juan Pino | Vishrav Chaudhary | Francisco Guzmán | Graham Neubig | Nadir Durrani | Yonatan Belinkov | Philipp Koehn | Hassan Sajjad | Paul Michel | Xian Li
Proceedings of the Fifth Conference on Machine Translation

We report the findings of the second edition of the shared task on improving robustness in Machine Translation (MT). The task aims to test current machine translation systems in their ability to handle challenges facing MT models to be deployed in the real world, including domain diversity and non-standard texts common in user generated content, especially in social media. We cover two language pairs – English-German and English-Japanese and provide test sets in zero-shot and few-shot variants. Participating systems are evaluated both automatically and manually, with an additional human evaluation for ”catastrophic errors”. We received 59 submissions by 11 participating teams from a variety of types of institutions.

pdf
Probing Neural Dialog Models for Conversational Understanding
Abdelrhman Saleh | Tovly Deutsch | Stephen Casper | Yonatan Belinkov | Stuart Shieber
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI

The predominant approach to open-domain dialog generation relies on end-to-end training of neural models on chat datasets. However, this approach provides little insight as to what these models learn (or do not learn) about engaging in dialog. In this study, we analyze the internal representations learned by neural open-domain dialog systems and evaluate the quality of these representations for learning basic conversational skills. Our results suggest that standard open-domain dialog systems struggle with answering questions, inferring contradiction, and determining the topic of conversation, among other tasks. We also find that the dyadic, turn-taking nature of dialog is not fully leveraged by these models. By exploring these limitations, we highlight the need for additional research into architectures and training methods that can better capture high-level information about dialog.

pdf bib
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Afra Alishahi | Yonatan Belinkov | Grzegorz Chrupała | Dieuwke Hupkes | Yuval Pinter | Hassan Sajjad
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

pdf bib
On the Linguistic Representational Power of Neural Machine Translation Models
Yonatan Belinkov | Nadir Durrani | Fahim Dalvi | Hassan Sajjad | James Glass
Computational Linguistics, Volume 46, Issue 1 - March 2020

Despite the recent success of deep neural networks in natural language processing and other spheres of artificial intelligence, their interpretability remains a challenge. We analyze the representations learned by neural machine translation (NMT) models at various levels of granularity and evaluate their quality through relevant extrinsic properties. In particular, we seek answers to the following questions: (i) How accurately is word structure captured within the learned representations, which is an important aspect in translating morphologically rich languages? (ii) Do the representations capture long-range dependencies, and effectively handle syntactically divergent languages? (iii) Do the representations capture lexical semantics? We conduct a thorough investigation along several parameters: (i) Which layers in the architecture capture each of these linguistic phenomena; (ii) How does the choice of translation unit (word, character, or subword unit) impact the linguistic properties captured by the underlying representations? (iii) Do the encoder and decoder learn differently and independently? (iv) Do the representations learned by multilingual NMT models capture the same amount of linguistic information as their bilingual counterparts? Our data-driven, quantitative evaluation illuminates important aspects in NMT models and their ability to capture various linguistic phenomena. We show that deep NMT models trained in an end-to-end fashion, without being provided any direct supervision during the training process, learn a non-trivial amount of linguistic information. Notable findings include the following observations: (i) Word morphology and part-of-speech information are captured at the lower layers of the model; (ii) In contrast, lexical semantics or non-local syntactic and semantic dependencies are better represented at the higher layers of the model; (iii) Representations learned using characters are more informed about word-morphology compared to those learned using subword units; and (iv) Representations learned by multilingual models are richer compared to bilingual models.

2019

pdf
On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference
Yonatan Belinkov | Adam Poliak | Stuart Shieber | Benjamin Van Durme | Alexander Rush
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

Popular Natural Language Inference (NLI) datasets have been shown to be tainted by hypothesis-only biases. Adversarial learning may help models ignore sensitive biases and spurious correlations in data. We evaluate whether adversarial learning can be used in NLI to encourage models to learn representations free of hypothesis-only biases. Our analyses indicate that the representations learned via adversarial learning may be less biased, with only small drops in NLI accuracy.

pdf
On Evaluating the Generalization of LSTM Models in Formal Languages
Mirac Suzgun | Yonatan Belinkov | Stuart M. Shieber
Proceedings of the Society for Computation in Linguistics (SCiL) 2019

pdf bib
Adversarial Regularization for Visual Question Answering: Strengths, Shortcomings, and Side Effects
Gabriel Grand | Yonatan Belinkov
Proceedings of the Second Workshop on Shortcomings in Vision and Language

Visual question answering (VQA) models have been shown to over-rely on linguistic biases in VQA datasets, answering questions “blindly” without considering visual context. Adversarial regularization (AdvReg) aims to address this issue via an adversary sub-network that encourages the main model to learn a bias-free representation of the question. In this work, we investigate the strengths and shortcomings of AdvReg with the goal of better understanding how it affects inference in VQA models. Despite achieving a new state-of-the-art on VQA-CP, we find that AdvReg yields several undesirable side-effects, including unstable gradients and sharply reduced performance on in-domain examples. We demonstrate that gradual introduction of regularization during training helps to alleviate, but not completely solve, these issues. Through error analyses, we observe that AdvReg improves generalization to binary questions, but impairs performance on questions with heterogeneous answer distributions. Qualitatively, we also find that regularized models tend to over-rely on visual features, while ignoring important linguistic cues in the question. Our results suggest that AdvReg requires further refinement before it can be considered a viable bias mitigation technique for VQA.

pdf
LSTM Networks Can Perform Dynamic Counting
Mirac Suzgun | Yonatan Belinkov | Stuart Shieber | Sebastian Gehrmann
Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges

In this paper, we systematically assess the ability of standard recurrent networks to perform dynamic counting and to encode hierarchical representations. All the neural models in our experiments are designed to be small-sized networks both to prevent them from memorizing the training sets and to visualize and interpret their behaviour at test time. Our results demonstrate that the Long Short-Term Memory (LSTM) networks can learn to recognize the well-balanced parenthesis language (Dyck-1) and the shuffles of multiple Dyck-1 languages, each defined over different parenthesis-pairs, by emulating simple real-time k-counter machines. To the best of our knowledge, this work is the first study to introduce the shuffle languages to analyze the computational power of neural networks. We also show that a single-layer LSTM with only one hidden unit is practically sufficient for recognizing the Dyck-1 language. However, none of our recurrent networks was able to yield a good performance on the Dyck-2 language learning task, which requires a model to have a stack-like mechanism for recognition.

pdf bib
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
Tal Linzen | Grzegorz Chrupała | Yonatan Belinkov | Dieuwke Hupkes
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

pdf
Analyzing the Structure of Attention in a Transformer Language Model
Jesse Vig | Yonatan Belinkov
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transformer language model, the GPT-2 small pretrained model. We visualize attention for individual instances and analyze the interaction between attention and syntax over a large corpus. We find that attention targets different parts of speech at different layer depths within the model, and that attention aligns with dependency relations most strongly in the middle layers. We also find that the deepest layers of the model capture the most distant relationships. Finally, we extract exemplar sentences that reveal highly specific patterns targeted by particular attention heads.

pdf
Findings of the First Shared Task on Machine Translation Robustness
Xian Li | Paul Michel | Antonios Anastasopoulos | Yonatan Belinkov | Nadir Durrani | Orhan Firat | Philipp Koehn | Graham Neubig | Juan Pino | Hassan Sajjad
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

We share the findings of the first shared task on improving robustness of Machine Translation (MT). The task provides a testbed representing challenges facing MT models deployed in the real world, and facilitates new approaches to improve models’ robustness to noisy input and domain mismatch. We focus on two language pairs (English-French and English-Japanese), and the submitted systems are evaluated on a blind test set consisting of noisy comments on Reddit and professionally sourced translations. As a new task, we received 23 submissions by 11 participating teams from universities, companies, national labs, etc. All submitted systems achieved large improvements over baselines, with the best improvement having +22.33 BLEU. We evaluated submissions by both human judgment and automatic evaluation (BLEU), which shows high correlations (Pearson’s r = 0.94 and 0.95). Furthermore, we conducted a qualitative analysis of the submitted systems using compare-mt, which revealed their salient differences in handling challenges in this task. Such analysis provides additional insights when there is occasional disagreement between human judgment and BLEU, e.g. systems better at producing colloquial expressions received higher score from human judgment.

pdf
Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov | James Glass
Transactions of the Association for Computational Linguistics, Volume 7

The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems. A plethora of new models have been proposed, many of which are thought to be opaque compared to their feature-rich counterparts. This has led researchers to analyze, interpret, and evaluate neural networks in novel and more fine-grained ways. In this survey paper, we review analysis methods in neural language processing, categorize them according to prominent research trends, highlight existing limitations, and point to potential directions for future work.

pdf
Don’t Take the Premise for Granted: Mitigating Artifacts in Natural Language Inference
Yonatan Belinkov | Adam Poliak | Stuart Shieber | Benjamin Van Durme | Alexander Rush
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Natural Language Inference (NLI) datasets often contain hypothesis-only biases—artifacts that allow models to achieve non-trivial performance without learning whether a premise entails a hypothesis. We propose two probabilistic methods to build models that are more robust to such biases and better transfer across datasets. In contrast to standard approaches to NLI, our methods predict the probability of a premise given a hypothesis and NLI label, discouraging models from ignoring the premise. We evaluate our methods on synthetic and existing NLI datasets by training on datasets containing biases and testing on datasets containing no (or different) hypothesis-only biases. Our results indicate that these methods can make NLI models more robust to dataset-specific artifacts, transferring better than a baseline architecture in 9 out of 12 NLI datasets. Additionally, we provide an extensive analysis of the interplay of our methods with known biases in NLI datasets, as well as the effects of encouraging models to ignore biases and fine-tuning on target datasets.

pdf
Improving Neural Language Models by Segmenting, Attending, and Predicting the Future
Hongyin Luo | Lan Jiang | Yonatan Belinkov | James Glass
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Common language models typically predict the next word given the context. In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase. The model does not require any linguistic annotation of phrase segmentation. Instead, we define syntactic heights and phrase segmentation rules, enabling the model to automatically induce phrases, recognize their task-specific heads, and generate phrase embeddings in an unsupervised learning manner. Our method can easily be applied to language models with different network architectures since an independent module is used for phrase induction and context-phrase alignment, and no change is required in the underlying language modeling network. Experiments have shown that our model outperformed several strong baseline models on different data sets. We achieved a new state-of-the-art performance of 17.4 perplexity on the Wikitext-103 dataset. Additionally, visualizing the outputs of the phrase induction module showed that our model is able to learn approximate phrase-level structural knowledge without any annotation.

pdf
Linguistic Knowledge and Transferability of Contextual Representations
Nelson F. Liu | Matt Gardner | Yonatan Belinkov | Matthew E. Peters | Noah A. Smith
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer language model, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on top of frozen contextual representations are competitive with state-of-the-art task-specific models in many cases, but fail on tasks requiring fine-grained linguistic knowledge (e.g., conjunct identification). To investigate the transferability of contextual word representations, we quantify differences in the transferability of individual layers within contextualizers, especially between recurrent neural networks (RNNs) and transformers. For instance, higher layers of RNNs are more task-specific, while transformer layers do not exhibit the same monotonic trend. In addition, to better understand what makes contextual word representations transferable, we compare language model pretraining with eleven supervised pretraining tasks. For any given task, pretraining on a closely related task yields better performance than language model pretraining (which is better on average) when the pretraining dataset is fixed. However, language model pretraining on more data gives the best results.

pdf
One Size Does Not Fit All: Comparing NMT Representations of Different Granularities
Nadir Durrani | Fahim Dalvi | Hassan Sajjad | Yonatan Belinkov | Preslav Nakov
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent work has shown that contextualized word representations derived from neural machine translation are a viable alternative to such from simple word predictions tasks. This is because the internal understanding that needs to be built in order to be able to translate from one language to another is much more comprehensive. Unfortunately, computational and memory limitations as of present prevent NMT models from using large word vocabularies, and thus alternatives such as subword units (BPE and morphological segmentations) and characters have been used. Here we study the impact of using different kinds of units on the quality of the resulting representations when used to model morphology, syntax, and semantics. We found that while representations derived from subwords are slightly better for modeling syntax, character-based representations are superior for modeling morphology and are also more robust to noisy input.

2018

pdf
On the Evaluation of Semantic Phenomena in Neural Machine Translation Using Natural Language Inference
Adam Poliak | Yonatan Belinkov | James Glass | Benjamin Van Durme
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We propose a process for investigating the extent to which sentence representations arising from neural machine translation (NMT) systems encode distinct semantic phenomena. We use these representations as features to train a natural language inference (NLI) classifier based on datasets recast from existing semantic annotations. In applying this process to a representative NMT system, we find its encoder appears most suited to supporting inferences at the syntax-semantics interface, as compared to anaphora resolution requiring world knowledge. We conclude with a discussion on the merits and potential deficiencies of the existing process, and how it may be improved and extended as a broader framework for evaluating semantic coverage

2017

pdf
Neural Machine Translation Training in a Multi-Domain Scenario
Hassan Sajjad | Nadir Durrani | Fahim Dalvi | Yonatan Belinkov | Stephan Vogel
Proceedings of the 14th International Conference on Spoken Language Translation

In this paper, we explore alternative ways to train a neural machine translation system in a multi-domain scenario. We investigate data concatenation (with fine tuning), model stacking (multi-level fine tuning), data selection and multi-model ensemble. Our findings show that the best translation quality can be achieved by building an initial system on a concatenation of available out-of-domain data and then fine-tuning it on in-domain data. Model stacking works best when training begins with the furthest out-of-domain data and the model is incrementally fine-tuned with the next furthest domain and so on. Data selection did not give the best results, but can be considered as a decent compromise between training time and translation quality. A weighted ensemble of different individual models performed better than data selection. It is beneficial in a scenario when there is no time for fine-tuning an already trained model.

pdf bib
Evaluating Layers of Representation in Neural Machine Translation on Part-of-Speech and Semantic Tagging Tasks
Yonatan Belinkov | Lluís Màrquez | Hassan Sajjad | Nadir Durrani | Fahim Dalvi | James Glass
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

While neural machine translation (NMT) models provide improved translation quality in an elegant framework, it is less clear what they learn about language. Recent work has started evaluating the quality of vector representations learned by NMT models on morphological and syntactic tasks. In this paper, we investigate the representations learned at different layers of NMT encoders. We train NMT systems on parallel data and use the models to extract features for training a classifier on two tasks: part-of-speech and semantic tagging. We then measure the performance of the classifier as a proxy to the quality of the original NMT model for the given task. Our quantitative analysis yields interesting insights regarding representation learning in NMT models. For instance, we find that higher layers are better at learning semantics while lower layers tend to be better for part-of-speech tagging. We also observe little effect of the target language on source-side representations, especially in higher quality models.

pdf
Understanding and Improving Morphological Learning in the Neural Machine Translation Decoder
Fahim Dalvi | Nadir Durrani | Hassan Sajjad | Yonatan Belinkov | Stephan Vogel
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

End-to-end training makes the neural machine translation (NMT) architecture simpler, yet elegant compared to traditional statistical machine translation (SMT). However, little is known about linguistic patterns of morphology, syntax and semantics learned during the training of NMT systems, and more importantly, which parts of the architecture are responsible for learning each of these phenomenon. In this paper we i) analyze how much morphology an NMT decoder learns, and ii) investigate whether injecting target morphology in the decoder helps it to produce better translations. To this end we present three methods: i) simultaneous translation, ii) joint-data learning, and iii) multi-task learning. Our results show that explicit morphological information helps the decoder learn target language morphology and improves the translation quality by 0.2–0.6 BLEU points.

pdf
What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov | Nadir Durrani | Fahim Dalvi | Hassan Sajjad | James Glass
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.

pdf
Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging
Hassan Sajjad | Fahim Dalvi | Nadir Durrani | Ahmed Abdelali | Yonatan Belinkov | Stephan Vogel
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.

2016

pdf
Neural Attention for Learning to Rank Questions in Community Question Answering
Salvatore Romeo | Giovanni Da San Martino | Alberto Barrón-Cedeño | Alessandro Moschitti | Yonatan Belinkov | Wei-Ning Hsu | Yu Zhang | Mitra Mohtarami | James Glass
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In real-world data, e.g., from Web forums, text is often contaminated with redundant or irrelevant content, which leads to introducing noise in machine learning algorithms. In this paper, we apply Long Short-Term Memory networks with an attention mechanism, which can select important parts of text for the task of similar question retrieval from community Question Answering (cQA) forums. In particular, we use the attention weights for both selecting entire sentences and their subparts, i.e., word/chunk, from shallow syntactic trees. More interestingly, we apply tree kernels to the filtered text representations, thus exploiting the implicit features of the subtree space for learning question reranking. Our results show that the attention-based pruning allows for achieving the top position in the cQA challenge of SemEval 2016, with a relatively large gap from the other participants while greatly decreasing running time.

pdf
SLS at SemEval-2016 Task 3: Neural-based Approaches for Ranking in Community Question Answering
Mitra Mohtarami | Yonatan Belinkov | Wei-Ning Hsu | Yu Zhang | Tao Lei | Kfir Bar | Scott Cyphers | Jim Glass
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf
Improving Sequence to Sequence Learning for Morphological Inflection Generation: The BIU-MIT Systems for the SIGMORPHON 2016 Shared Task for Morphological Reinflection
Roee Aharoni | Yoav Goldberg | Yonatan Belinkov
Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
Shamela: A Large-Scale Historical Arabic Corpus
Yonatan Belinkov | Alexander Magidow | Maxim Romanov | Avi Shmidman | Moshe Koppel
Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)

Arabic is a widely-spoken language with a rich and long history spanning more than fourteen centuries. Yet existing Arabic corpora largely focus on the modern period or lack sufficient diachronic information. We develop a large-scale, historical corpus of Arabic of about 1 billion words from diverse periods of time. We clean this corpus, process it with a morphological analyzer, and enhance it by detecting parallel passages and automatically dating undated texts. We demonstrate its utility with selected case-studies in which we show its application to the digital humanities.

pdf
A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects
Yonatan Belinkov | James Glass
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)

Discriminating between closely-related language varieties is considered a challenging and important task. This paper describes our submission to the DSL 2016 shared-task, which included two sub-tasks: one on discriminating similar languages and one on identifying Arabic dialects. We developed a character-level neural network for this task. Given a sequence of characters, our model embeds each character in vector space, runs the sequence through multiple convolutions with different filter widths, and pools the convolutional representations to obtain a hidden vector representation of the text that is used for predicting the language or dialect. We primarily focused on the Arabic dialect identification task and obtained an F1 score of 0.4834, ranking 6th out of 18 participants. We also analyze errors made by our system on the Arabic data in some detail, and point to challenges such an approach is faced with.

2015

pdf
Answer Selection in Arabic Community Question Answering: A Feature-Rich Approach
Yonatan Belinkov | Alberto Barrón-Cedeño | Hamdy Mubarak
Proceedings of the Second Workshop on Arabic Natural Language Processing

pdf
VectorSLU: A Continuous Word Vector Approach to Answer Selection in Community Question Answering Systems
Yonatan Belinkov | Mitra Mohtarami | Scott Cyphers | James Glass
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf
Arabic Diacritization with Recurrent Neural Networks
Yonatan Belinkov | James Glass
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf
Exploring Compositional Architectures and Word Vector Representations for Prepositional Phrase Attachment
Yonatan Belinkov | Tao Lei | Regina Barzilay | Amir Globerson
Transactions of the Association for Computational Linguistics, Volume 2

Prepositional phrase (PP) attachment disambiguation is a known challenge in syntactic parsing. The lexical sparsity associated with PP attachments motivates research in word representations that can capture pertinent syntactic and semantic features of the word. One promising solution is to use word vectors induced from large amounts of raw text. However, state-of-the-art systems that employ such representations yield modest gains in PP attachment accuracy. In this paper, we show that word vector representations can yield significant PP attachment performance gains. This is achieved via a non-linear architecture that is discriminatively trained to maximize PP attachment accuracy. The architecture is initialized with word vectors trained from unlabeled data, and relearns those to maximize attachment accuracy. We obtain additional performance gains with alternative representations such as dependency-based word vectors. When tested on both English and Arabic datasets, our method outperforms both a strong SVM classifier and state-of-the-art parsers. For instance, we achieve 82.6% PP attachment accuracy on Arabic, while the Turbo and Charniak self-trained parsers obtain 76.7% and 80.8% respectively.

2013

pdf bib
Translating Dialectal Arabic to English
Hassan Sajjad | Kareem Darwish | Yonatan Belinkov
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Search
Co-authors