The latest large language models (LMs) support increasingly longer contexts. While this trend permits using substantial amounts of text with SOTA LMs, requiring these large LMs to process potentially redundant or irrelevant data needlessly increases inference time and cost. To remedy this problem, we propose BLINDER, a method that leverages a small finetuned LM to sample the minimal set of input features that maximizes the performance of a downstream LM. BLINDER trains an LM with a value head to estimate the likelihood of optimal outputs from a downstream LM given an input. We evaluate BLINDER on embodied decision making tasks with notoriously verbose state descriptions: NetHack and robot planning. BLINDER reduces the length of LM actor input by 87% and 99% while improving task success rates by 158% and 54% on NetHack and robot planning respectively which represents substantial inference cost savings while actually increasing performance.
Language models are achieving impressive performance on various tasks by aggressively adopting inference-time prompting techniques,such as zero-shot and few-shot prompting. In this work, we introduce EchoPrompt, a simple yet effective approach that prompts the model to rephrase its queries before answering them. EchoPrompt is tailored for four scenarios, including standard and chain-of-thought prompting, in both zero-shot and few-shot settings. Experimental results show that EchoPrompt yields substantial improvementsacross all these settings for four families of causal language models. These improvements are observed across various numerical reasoning (e.g., GSM8K, SVAMP), reading comprehension (e.g., DROP), and logical reasoning (e.g., Coin flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. Our empirical results indicate that EchoPrompt is an effective technique that enhances in-context learning performance.
Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800 GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks, while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at
https://nlp.ics.uci.edu/snoopy.
Pretrained Language Models (LMs) have demonstrated ability to perform numerical reasoning by extrapolating from a few examples in few-shot settings. However, the extent to which this extrapolation relies on robust reasoning is unclear. In this paper, we investigate how well these models reason with terms that are less frequent in the pretraining data. In particular, we examine the correlations between the model performance on test instances and the frequency of terms from those instances in the pretraining data. We measure the strength of this correlation for a number of GPT-based language models (pretrained on the Pile dataset) on various numerical deduction tasks (e.g., arithmetic and unit conversion). Our results consistently demonstrate that models are more accurate on instances whose terms are more prevalent, in some cases above 70% (absolute) more accurate on the top 10% frequent terms in comparison to the bottom 10%. Overall, although LMs appear successful at few-shot numerical reasoning, our results raise the question of how much models actually generalize beyond pretraining data, and we encourage researchers to take the pretraining data into account when interpreting evaluation results.
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.