This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YangLiu
Edinburgh Ph.D., Microsoft
Other people with similar names:Yang Janet Liu
(Georgetown University; 刘洋),
Yang Liu
(May refer to several people),
Yang Liu
(3M Health Information Systems),
Yang Liu
(University of Helsinki),
Yang Liu
(Beijing Language and Culture University),
Yang Liu
(National University of Defense Technology),
Yang Liu
(The Chinese University of Hong Kong (Shenzhen)),
Yang Liu
(刘扬; Ph.D Purdue; ICSI, Dallas, Facebook, Liulishuo, Amazon),
Yang Liu
(刘洋; ICT, Tsinghua, Beijing Academy of Artificial Intelligence),
Yang Liu
(Microsoft Cognitive Services Research),
Yang Liu
(Peking University),
Yang Liu
(Samsung Research Center Beijing),
Yang Liu
(Tianjin University, China),
Yang Liu
(Univ. of Michigan, UC Santa Cruz),
Yang Liu
(Wilfrid Laurier University)
Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing work has to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on most metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state-of-the-art encoder-decoder model using three techniques. First, we use a two-phase pre-training to improve the model’s performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ createsa new state-of-the-art on 9 of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM540B on XSum, and the finetuned 200x larger GPT3175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models.
The high annotation costs and diverse demands of various summarization tasks motivate the development of few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose UniSumm, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization task. Meanwhile, to better evaluate few-shot summarizers, under the principles of diversity and robustness, we assemble and release a new benchmark SummZoo. It consists of 8 summarization tasks with multiple sets of few-shot samples for each task, covering diverse domains. Experimental results and analysis show that UniSumm outperforms strong baselines by a large margin across all sub-tasks in SummZoo under both automatic and human evaluations and achieves comparable results in human evaluation compared with a GPT-3.5 model.
Previous studies show that intermediate supervision signals benefit various Natural Language Processing tasks. However, it is not clear whether there exist intermediate signals that benefit Neural Machine Translation (NMT). Borrowing techniques from Statistical Machine Translation, we propose intermediate signals which are intermediate sequences from the “source-like” structure to the “target-like” structure. Such intermediate sequences introduce an inductive bias that reflects a domain-agnostic principle of translation, which reduces spurious correlations that are harmful to out-of-domain generalisation. Furthermore, we introduce a full-permutation multi-task learning to alleviate the spurious causal relations from intermediate sequences to the target, which results from exposure bias. The Minimum Bayes Risk decoding algorithm is used to pick the best candidate translation from all permutations to further improve the performance. Experiments show that the introduced intermediate signals can effectively improve the domain robustness of NMT and reduces the amount of hallucinations on out-of-domain translation. Further analysis shows that our methods are especially promising in low-resource scenarios.
Large language models (LLMs) can use in-context demonstrations to improve performance on zero-shot tasks. However, selecting the best in-context examples is challenging because model performance can vary widely depending on the selected examples. We present a cross-entropy difference (CED) method for selecting in-context demonstrations. Our method is based on the observation that the effectiveness of in-context demonstrations negatively correlates with the perplexity of the test example by a language model that was finetuned on that demonstration. We utilize parameter efficient finetuning to train small models on training data that are used for computing the cross-entropy difference between a test example and every candidate in-context demonstration. This metric is used to rank and select in-context demonstrations independently for each test input. We evaluate our method on a mix-domain dataset that combines 8 benchmarks, representing 4 text generation tasks, showing that CED for in-context demonstration selection can improve performance for a variety of LLMs over baseline selection methods.
Large language models (LLMs) can perform a wide range of tasks by following natural language instructions, without the necessity of task-specific fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by the quality of these instructions, and manually writing effective instructions for each task is a laborious and subjective process. In this paper, we introduce Auto-Instruct, a novel method to automatically improve the quality of instructions provided to LLMs. Our method leverages the inherent generative ability of LLMs to produce diverse candidate instructions for a given task, and then ranks them using a scoring model trained on a variety of 575 existing NLP tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both human-written instructions and existing baselines of LLM-generated instructions. Furthermore, our method exhibits notable generalizability even with other LLMs that are not incorporated into its training process.
While large models such as GPT-3 demonstrate exceptional performance in zeroshot and fewshot summarization tasks, their extensive serving and fine-tuning costs hinder their utilization in various applications. Conversely, previous studies have found that although automatic metrics tend to favor smaller fine-tuned models, the quality of the summaries they generate is inferior to that of larger models like GPT-3 when assessed by human evaluators. To address this issue, we propose InheritSumm, a versatile and compact summarization model derived from GPT-3.5 through distillation. InheritSumm not only exhibits comparable zeroshot and fewshot summarization capabilities to GPT-3.5 but is also sufficiently compact for fine-tuning purposes. Experimental results demonstrate that InheritSumm achieves similar or superior performance to GPT-3.5 in zeroshot and fewshot settings. Furthermore, it outperforms the previously established best small models in both prefix-tuning and full-data fine-tuning scenarios.
Query-focused summarization (QFS) aims to extract or generate a summary of an input document that directly answers or is relevant to a given query. The lack of large-scale datasets in the form of documents, queries, and summaries has hindered model development in this area. In contrast, multiple large-scale high-quality datasets for generic summarization exist. We hypothesize that there is a hidden query for each summary sentence in a generic summarization annotation, and we utilize a large-scale pretrained language model to recover it. In this way, we convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS, which consists of over 1 million document-query-summary samples. We thoroughly investigate the properties of our proposed dataset and establish baselines with state-of-the-art summarization models. By fine-tuning a language model on LMGQS, we achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks, demonstrating the high quality and diversity of LMGQS.
Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between academic research in NLP and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as “design” and “planning” are prevalent in user interactions but largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges, and provide insights toward a roadmap to make LLMs better aligned with user needs.
The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose analysis on the behavior of LLM-based evaluators, and highlight the potential concern of LLM-based evaluators having a bias towards the LLM-generated texts.
We report the results of DialogSum Challenge, the shared task on summarizing real-life sce- nario dialogues at INLG 2022. Four teams participate in this shared task and three submit their system reports, exploring different meth- ods to improve the performance of dialogue summarization. Although there is a great im- provement over the baseline models regarding automatic evaluation metrics, such as ROUGE scores, we find that there is a salient gap be- tween model generated outputs and human an- notated summaries by human evaluation from multiple aspects. These findings demonstrate the difficulty of dialogue summarization and suggest that more fine-grained evaluatuion met- rics are in need.
In this paper we apply self-knowledge distillation to text summarization which we argue can alleviate problems with maximum-likelihood training on single reference and noisy datasets. Instead of relying on one-hot annotation labels, our student summarization model is trained with guidance from a teacher which generates smoothed labels to help regularize training. Furthermore, to better model uncertainty during training, we introduce multiple noise signals for both teacher and student models. We demonstrate experimentally on three benchmarks that our framework boosts the performance of both pretrained and non-pretrained summarizers achieving state-of-the-art results.
Meetings are a key component of human collaboration. As increasing numbers of meetings are recorded and transcribed, meeting summaries have become essential to remind those who may or may not have attended the meetings about the key decisions made and the tasks to be completed. However, it is hard to create a single short summary that covers all the content of a long meeting involving multiple people and topics. In order to satisfy the needs of different types of users, we define a new query-based multi-domain meeting summarization task, where models have to select and summarize relevant spans of meetings in response to a query, and we introduce QMSum, a new benchmark for this task. QMSum consists of 1,808 query-summary pairs over 232 meetings in multiple domains. Besides, we investigate a locate-then-summarize method and evaluate a set of strong summarization baselines on the task. Experimental results and manual analysis reveal that QMSum presents significant challenges in long meeting summarization for future research. Dataset is available at https://github.com/Yale-LILY/QMSum.
This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic descriptions as summaries. Compared with existing public corpora for dialogue summarization, our dataset is an order of magnitude larger and contains complex multi-party conversations from multiple domains. We conduct statistical analysis to demonstrate the unique positional bias exhibited in the transcripts of televised and radioed interviews. We also show that MediaSum can be used in transfer learning to improve a model’s performance on other dialogue summarization tasks.
We propose a shared task on summarizing real-life scenario dialogues, DialogSum Challenge, to encourage researchers to address challenges in dialogue summarization, which has been less studied by the summarization community. Real-life scenario dialogue summarization has a wide potential application prospect in chat-bot and personal assistant. It contains unique challenges such as special discourse structure, coreference, pragmatics, and social common sense, which require specific representation learning technologies to deal with. We carefully annotate a large-scale dialogue summarization dataset based on multiple public dialogue corpus, opening the door to all kinds of summarization models.
In this paper, we develop a neural summarization model which can effectively process multiple input documents and distill Transformer architecture with the ability to encode documents in a hierarchical manner. We represent cross-document relationships via an attention mechanism which allows to share information as opposed to simply concatenating text spans and processing them as a flat sequence. Our model learns latent dependencies among textual units, but can also take advantage of explicit graph representations focusing on similarity or discourse relations. Empirical results on the WikiSum dataset demonstrate that the proposed architecture brings substantial improvements over several strong baselines.
Existing neural generation approaches create multi-sentence text as a single sequence. In this paper we propose a structured convolutional decoder that is guided by the content structure of target summaries. We compare our model with existing sequential decoders on three data sets representing different domains. Automatic and human evaluation demonstrate that our summaries have better content coverage.
In this paper, we conceptualize single-document extractive summarization as a tree induction problem. In contrast to previous approaches which have relied on linguistically motivated document representations to generate summaries, our model induces a multi-root dependency tree while predicting the output summary. Each root node in the tree is a summary sentence, and the subtrees attached to it are sentences whose content relates to or explains the summary sentence. We design a new iterative refinement algorithm: it induces the trees through repeatedly refining the structures predicted by previous iterations. We demonstrate experimentally on two benchmark datasets that our summarizer performs competitively against state-of-the-art methods.
Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings.
Many tasks in natural language processing involve comparing two sentences to compute some notion of relevance, entailment, or similarity. Typically this comparison is done either at the word level or at the sentence level, with no attempt to leverage the inherent structure of the sentence. When sentence structure is used for comparison, it is obtained during a non-differentiable pre-processing step, leading to propagation of errors. We introduce a model of structured alignments between sentences, showing how to compare two sentences by matching their latent structures. Using a structured attention mechanism, our model matches candidate spans in the first sentence to candidate spans in the second sentence, simultaneously discovering the tree structure of each sentence. Our model is fully differentiable and trained only on the matching objective. We evaluate this model on two tasks, natural entailment detection and answer sentence selection, and find that modeling latent tree structures results in superior performance. Analysis of the learned sentence structures shows they can reflect some syntactic phenomena.
In this paper, we focus on learning structure-aware document representations from data without recourse to a discourse parser or additional annotations. Drawing inspiration from recent efforts to empower neural networks with a structural bias (Cheng et al., 2016; Kim et al., 2017), we propose a model that can encode a document while automatically inducing rich structural dependencies. Specifically, we embed a differentiable non-projective parsing algorithm into a neural model and use attention mechanisms to incorporate the structural biases. Experimental evaluations across different tasks and datasets show that the proposed model achieves state-of-the-art results on document modeling tasks while inducing intermediate structures which are both interpretable and meaningful.
Recent advances in RST discourse parsing have focused on two modeling paradigms: (a) high order parsers which jointly predict the tree structure of the discourse and the relations it encodes; or (b) linear-time parsers which are efficient but mostly based on local features. In this work, we propose a linear-time parser with a novel way of representing discourse constituents based on neural networks which takes into account global contextual information and is able to capture long-distance dependencies. Experimental results show that our parser obtains state-of-the art performance on benchmark datasets, while being efficient (with time complexity linear in the number of sentences in the document) and requiring minimal feature engineering.