2024
pdf
bib
abs
Low-code LLM: Graphical User Interface over Large Language Models
Yuzhe Cai
|
Shaoguang Mao
|
Wenshan Wu
|
Zehua Wang
|
Yaobo Liang
|
Tao Ge
|
Chenfei Wu
|
WangYou WangYou
|
Ting Song
|
Yan Xia
|
Nan Duan
|
Furu Wei
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)
Utilizing Large Language Models (LLMs) for complex tasks is challenging, often involving a time-consuming and uncontrollable prompt engineering process. This paper introduces a novel human-LLM interaction framework, Low-code LLM. It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses. Through visual interaction with a graphical user interface, users can incorporate their ideas into the process without writing trivial prompts. The proposed Low-code LLM framework consists of a Planning LLM that designs a structured planning workflow for complex tasks, which can be correspondingly edited and confirmed by users through low-code visual programming operations, and an Executing LLM that generates responses following the user-confirmed workflow. We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability. We demonstrate its benefits using four typical applications. By introducing this framework, we aim to bridge the gap between humans and LLMs, enabling more effective and efficient utilization of LLMs for complex tasks. The code, prompts, and experimental details are available at https://github.com/moymix/TaskMatrix/tree/main/LowCodeLLM. A system demonstration video can be found at https://www.youtube.com/watch?v=jb2C1vaeO3E.
2023
pdf
abs
Overview of CCL23-Eval Task 8: Chinese Essay Fluency Evaluation (CEFE) Task
Xinshu Shen
|
Hongyi Wu
|
Xiaopeng Bai
|
Yuanbin Wu
|
Aimin Zhou
|
Shaoguang Mao
|
Tao Ge
|
Yan Xia
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
“This paper provides a comprehensive review of the CCL23-Eval Task 8, i.e., Chinese EssayFluency Evaluation (CEFE). The primary aim of this task is to systematically identify the typesof grammatical fine-grained errors that affect the readability and coherence of essays writtenby Chinese primary and secondary school students, and then to suggest suitable corrections toenhance the fluidity of their written expression. This task consists of three distinct tracks: (1)Coarse-grained and fine-grained error identification; (2) Character-level error identification andcorrection; (3) Error sentence rewriting. In the end, we received 44 completed registration forms,leading to a total of 130 submissions from 11 dedicated participating teams. We present theresults of all participants and our analysis of these results. Both the dataset and evaluation toolused in this task are available1.”
pdf
abs
Scene-robust Natural Language Video Localization via Learning Domain-invariant Representations
Zehan Wang
|
Yang Zhao
|
Haifeng Huang
|
Yan Xia
|
Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023
Natural language video localization(NLVL) task involves the semantic matching of a text query with a moment from an untrimmed video. Previous methods primarily focus on improving performance with the assumption of independently identical data distribution while ignoring the out-of-distribution data. Therefore, these approaches often fail when handling the videos and queries in novel scenes, which is inevitable in real-world scenarios. In this paper, we, for the first time, formulate the scene-robust NLVL problem and propose a novel generalizable NLVL framework utilizing data in multiple available scenes to learn a robust model. Specifically, our model learns a group of generalizable domain-invariant representations by alignment and decomposition. First, we propose a comprehensive intra- and inter-sample distance metric for complex multi-modal feature space, and an asymmetric multi-modal alignment loss for different information densities of text and vision. Further, to alleviate the conflict between domain-invariant features for generalization and domain-specific information for reasoning, we introduce domain-specific and domain-agnostic predictors to decompose and refine the learned features by dynamically adjusting the weights of samples. Based on the original video tags, we conduct extensive experiments on three NLVL datasets with different-grained scene shifts to show the effectiveness of our proposed methods.
pdf
abs
Smart Word Suggestions for Writing Assistance
Chenshuo Wang
|
Shaoguang Mao
|
Tao Ge
|
Wenshan Wu
|
Xun Wang
|
Yan Xia
|
Jonathan Tien
|
Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023
Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces “Smart Word Suggestions” (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes will be available for research purposes.
pdf
abs
Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting
Haoyang Huang
|
Tianyi Tang
|
Dongdong Zhang
|
Xin Zhao
|
Ting Song
|
Yan Xia
|
Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages. In this work, we introduce a simple yet effective method, called cross-lingual-thought prompting (XLT), to systematically improve the multilingual capability of LLMs. Specifically, XLT is a generic template prompt that stimulates cross-lingual and logical reasoning skills to enhance task performance across languages. We conduct comprehensive evaluations on 7 typical benchmarks related to reasoning, understanding, and generation tasks, covering both high-resource and low-resource languages. Experimental results show that XLT not only remarkably enhances the performance of various multilingual tasks but also significantly reduces the gap between the average performance and the best performance of each task in different languages. Notably, XLT brings over 10 points of average improvement in arithmetic reasoning and open-domain question-answering tasks.