Xinwei Yuan
2024
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Tianjie Ju
|
Weiwei Sun
|
Wei Du
|
Xinwei Yuan
|
Zhaochun Ren
|
Gongshen Liu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ \mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
Investigating Multi-Hop Factual Shortcuts in Knowledge Editing of Large Language Models
Tianjie Ju
|
Yijin Chen
|
Xinwei Yuan
|
Zhuosheng Zhang
|
Wei Du
|
Yubin Zheng
|
Gongshen Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent work has showcased the powerful capability of large language models (LLMs) in recalling knowledge and reasoning. However, the reliability of LLMs in combining these two capabilities into reasoning through multi-hop facts has not been widely explored. This paper systematically investigates the possibilities for LLMs to utilize shortcuts based on direct connections between the initial and terminal entities of multi-hop knowledge. We first explore the existence of factual shortcuts through Knowledge Neurons, revealing that: (i) the strength of factual shortcuts is highly correlated with the frequency of co-occurrence of initial and terminal entities in the pre-training corpora; (ii) few-shot prompting leverage more shortcuts in answering multi-hop questions compared to chain-of-thought prompting. Then, we analyze the risks posed by factual shortcuts from the perspective of multi-hop knowledge editing. Analysis shows that approximately 20% of the failures are attributed to shortcuts, and the initial and terminal entities in these failure instances usually have higher co-occurrences in the pre-training corpus. Finally, we propose erasing shortcut neurons to mitigate the associated risks and find that this approach significantly reduces failures in multiple-hop knowledge editing caused by shortcuts. Code is publicly available at https://github.com/Jometeorie/MultiHopShortcuts.
Search
Co-authors
- Tianjie Ju 2
- Wei Du 2
- Gongshen Liu 2
- Weiwei Sun 1
- Zhaochun Ren 1
- show all...