This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel “Self-Explanation” prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs’ comprehension in complex dialogue tasks.
Recent researches have shown that multi-task instruction tuning after pre-training greatly improves the model’s robustness and transfer ability, which is crucial for building a high-quality dialog system. However, most previous works on multi-task instruction tuning rely heavily on human-defined input format or prompt, which is not optimal in quality and quantity.In this work, we propose to use Task-aware Automatic Prompt generation (TAP) to automatically generate high-quality prompts. Using the high-quality prompts generated, we scale the corpus of the pre-trained conversation model to 122 datasets from 15 dialog-related tasks, resulting in Universal Pre-trained Conversation Model (UniPCM), a powerful foundation model for various conversational tasks and different dialog systems. Extensive experiments have shown that UniPCM is robust to input prompts and capable of various dialog-related tasks. Moreover, UniPCM has strong transfer ability and excels at low resource scenarios, achieving SOTA results on 9 different datasets ranging from task-oriented dialog to open-domain conversation. Furthermore, we are amazed to find that TAP can generate prompts on par with those collected with crowdsourcing.
Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models may not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by proposing a pre-training task named Word-Exchange Aligning Model (WEAM), which uses the statistical alignment information as the prior knowledge to guide cross-lingual word prediction. We evaluate our model on multilingual machine reading comprehension task MLQA and natural language interface task XNLI. The results show that WEAM can significantly improve the zero-shot performance.
Human conversations contain many types of information, e.g., knowledge, common sense, and language habits. In this paper, we propose a conversational word embedding method named PR-Embedding, which utilizes the conversation pairs <post, reply> to learn word embedding. Different from previous works, PR-Embedding uses the vectors from two different semantic spaces to represent the words in post and reply. To catch the information among the pair, we first introduce the word alignment model from statistical machine translation to generate the cross-sentence window, then train the embedding on word-level and sentence-level. We evaluate the method on single-turn and multi-turn response selection tasks for retrieval-based dialog systems. The experiment results show that PR-Embedding can improve the quality of the selected response.
Most pre-trained language models (PLMs) construct word representations at subword level with Byte-Pair Encoding (BPE) or its variations, by which OOV (out-of-vocab) words are almost avoidable. However, those methods split a word into subword units and make the representation incomplete and fragile. In this paper, we propose a character-aware pre-trained language model named CharBERT improving on the previous methods (such as BERT, RoBERTa) to tackle these problems. We first construct the contextual word embedding for each token from the sequential character representations, then fuse the representations of characters and the subword representations by a novel heterogeneous interaction module. We also propose a new pre-training task named NLM (Noisy LM) for unsupervised character representation learning. We evaluate our method on question answering, sequence labeling, and text classification tasks, both on the original datasets and adversarial misspelling test sets. The experimental results show that our method can significantly improve the performance and robustness of PLMs simultaneously.
Owing to the continuous efforts by the Chinese NLP community, more and more Chinese machine reading comprehension datasets become available. To add diversity in this area, in this paper, we propose a new task called Sentence Cloze-style Machine Reading Comprehension (SC-MRC). The proposed task aims to fill the right candidate sentence into the passage that has several blanks. We built a Chinese dataset called CMRC 2019 to evaluate the difficulty of the SC-MRC task. Moreover, to add more difficulties, we also made fake candidates that are similar to the correct ones, which requires the machine to judge their correctness in the context. The proposed dataset contains over 100K blanks (questions) within over 10K passages, which was originated from Chinese narrative stories. To evaluate the dataset, we implement several baseline systems based on the pre-trained models, and the results show that the state-of-the-art model still underperforms human performance by a large margin. We release the dataset and baseline system to further facilitate our community. Resources available through https://github.com/ymcui/cmrc2019
We consider the importance of different utterances in the context for selecting the response usually depends on the current query. In this paper, we propose the model TripleNet to fully model the task with the triple <context, query, response> instead of <context, response > in previous works. The heart of TripleNet is a novel attention mechanism named triple attention to model the relationships within the triple at four levels. The new mechanism updates the representation of each element based on the attention with the other two concurrently and symmetrically. We match the triple <C, Q, R> centered on the response from char to context level for prediction. Experimental results on two large-scale multi-turn response selection datasets show that the proposed model can significantly outperform the state-of-the-art methods.
Machine Reading Comprehension (MRC) has become enormously popular recently and has attracted a lot of attention. However, the existing reading comprehension datasets are mostly in English. In this paper, we introduce a Span-Extraction dataset for Chinese machine reading comprehension to add language diversities in this area. The dataset is composed by near 20,000 real questions annotated on Wikipedia paragraphs by human experts. We also annotated a challenge set which contains the questions that need comprehensive understanding and multi-sentence inference throughout the context. We present several baseline systems as well as anonymous submissions for demonstrating the difficulties in this dataset. With the release of the dataset, we hosted the Second Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2018). We hope the release of the dataset could further accelerate the Chinese machine reading comprehension research. Resources are available: https://github.com/ymcui/cmrc2018