This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
While LLMs demonstrate impressive capabilities in musical knowledge, we find that music reasoning is still an unsolved task.We introduce ChatMusician, an open-source large language model (LLM) that integrates intrinsic musical abilities. It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language.ChatMusician can understand and generate music with a pure text tokenizer without external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score.ChatMusician is capable of composing well-structured, full-length music, condition on texts, chords, melodies, motifs, musical forms, etc.On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 by a noticeable margin. We show that ChatMusician preserves or even surpasses the original LLaMA2 7B’s language abilities by evaluating on MMLU benchmark.Our work reveals that LLMs can be an excellent compressor for music, which can be seen as humanity’s creative language, but there remains significant territory to be conquered.We release our 5B token music-language corpora MusicPiles, the collected MusicTheoryBench, code, model and demo.
Taxonomy completion, enriching existing taxonomies by inserting new concepts as parents or attaching them as children, has gained significant interest. Previous approaches embed concepts as vectors in Euclidean space, which makes it difficult to model asymmetric relations in taxonomy. In addition, they introduce pseudo-leaves to convert attachment cases into insertion cases, leading to an incorrect bias in network learning dominated by numerous pseudo-leaves. Addressing these, our framework, TaxBox, leverages box containment and center closeness to design two specialized geometric scorers within the box embedding space. These scorers are tailored for insertion and attachment operations and can effectively capture intrinsic relationships between concepts by optimizing on a granular box constraint loss. We employ a dynamic ranking loss mechanism to balance the scores from these scorers, allowing adaptive adjustments of insertion and attachment scores. Experiments on four real-world datasets show that TaxBox significantly outperforms previous methods, yielding substantial improvements over prior methods in real-world datasets, with average performance boosts of 6.7%, 34.9%, and 51.4% in MRR, Hit@1, and Prec@1, respectively.
Emotion recognition in conversation (ERC) has attracted increasing attention in natural language processing community. Previous work commonly first extract semantic-view features via fine-tuning PLMs, then models context-view features based on the obtained semantic-view features by various graph neural networks. However, it is difficult to fully model interaction between utterances simply through a graph neural network and the features at semantic-view and context-view are not well aligned. Moreover, the previous parametric learning paradigm struggle to learn the patterns of tail class given fewer instances. To this end, we treat the pre-trained conversation model as a prior knowledge base and from which we elicit correlations between utterances by a probing procedure. And we adopt supervised contrastive learning to align semantic-view and context-view features, these two views of features work together in a complementary manner, contributing to ERC from distinct perspectives. Meanwhile, we propose a new semi-parametric paradigm of inferencing through memorization to solve the recognition problem of tail class samples. We consistently achieve state-of-the-art results on four widely used benchmarks. Extensive experiments demonstrate the effectiveness of our proposed multi-view feature alignment and memorization.
Creating high-quality annotated dialogue corpora is challenging. It is essential to develop practical annotation tools to support humans in this time-consuming and error-prone task. We present metaCAT, which is an open-source web-based annotation tool designed specifically for developing task-oriented dialogue data. To the best of our knowledge, metaCAT is the first annotation tool that provides comprehensive metadata annotation coverage to the domain, intent, and span information. The data annotation quality is enhanced by a real-time annotation constraint-checking mechanism. An Automatic Speech Recognition (ASR) function is implemented to allow users to paraphrase and create more diversified annotated utterances. metaCAT is publicly available for the community.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.
Online reviews are valuable resources not only for consumers to make decisions before purchase, but also for providers to get feedbacks for their services or commodities. In Aspect Based Sentiment Analysis (ABSA), it is critical to identify aspect categories and extract aspect terms from the sentences of user-generated reviews. However, the two tasks are often treated independently, even though they are closely related. Intuitively, the learned knowledge of one task should inform the other learning task. In this paper, we propose a multi-task learning model based on neural networks to solve them together. We demonstrate the improved performance of our multi-task learning model over the models trained separately on three public dataset released by SemEval workshops.