This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The increasing volume of commercially available conversational agents (CAs) on the market has resulted in users being burdened with learning and adopting multiple agents to accomplish their tasks. Though prior work has explored supporting a multitude of domains within the design of a single agent, the interaction experience suffers due to the large action space of desired capabilities. To address these problems, we introduce a new task BBAI: Black-Box Agent Integration, focusing on combining the capabilities of multiple black-box CAs at scale. We explore two techniques: question agent pairing and question response pairing aimed at resolving this task. Leveraging these techniques, we design One For All (OFA), a scalable system that provides a unified interface to interact with multiple CAs. Additionally, we introduce MARS: Multi-Agent Response Selection, a new encoder model for question response pairing that jointly encodes user question and agent response pairs. We demonstrate that OFA is able to automatically and accurately integrate an ensemble of commercially available CAs spanning disparate domains. Specifically, using the MARS encoder we achieve the highest accuracy on our BBAI task, outperforming strong baselines.
Resources for Semantic Role Labeling (SRL) are typically annotated by experts at great expense. Prior attempts to develop crowdsourcing methods have either had low accuracy or required substantial expert annotation. We propose a new multi-stage crowd workflow that substantially reduces expert involvement without sacrificing accuracy. In particular, we introduce a unique filter stage based on the key observation that crowd workers are able to almost perfectly filter out incorrect options for labels. Our three-stage workflow produces annotations with 95% accuracy for predicate labels and 93% for argument labels, which is comparable to expert agreement. Compared to prior work on crowdsourcing for SRL, we decrease expert effort by 4x, from 56% to 14% of cases. Our approach enables more scalable annotation of SRL, and could enable annotation of NLP tasks that have previously been considered too complex to effectively crowdsource.
Goal-oriented dialogue in complex domains is an extremely challenging problem and there are relatively few datasets. This task provided two new resources that presented different challenges: one was focused but small, while the other was large but diverse. We also considered several new variations on the next utterance selection problem: (1) increasing the number of candidates, (2) including paraphrases, and (3) not including a correct option in the candidate set. Twenty teams participated, developing a range of neural network models, including some that successfully incorporated external data to boost performance. Both datasets have been publicly released, enabling future work to build on these results, working towards robust goal-oriented dialogue systems.
Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.
While the role of humans is increasingly recognized in machine learning community, representation of and interaction with models in current human-in-the-loop machine learning (HITL-ML) approaches are too low-level and far-removed from human’s conceptual models. We demonstrate HEIDL, a prototype HITL-ML system that exposes the machine-learned model through high-level, explainable linguistic expressions formed of predicates representing semantic structure of text. In HEIDL, human’s role is elevated from simply evaluating model predictions to interpreting and even updating the model logic directly by enabling interaction with rule predicates themselves. Raising the currency of interaction to such semantic levels calls for new interaction paradigms between humans and machines that result in improved productivity for text analytics model development process. Moreover, by involving humans in the process, the human-machine co-created models generalize better to unseen data as domain experts are able to instill their expertise by extrapolating from what has been learned by automated algorithms from few labelled data.
We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https://yale-lily.github.io/cosql.
Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems.
Linguistically diverse datasets are critical for training and evaluating robust machine learning systems, but data collection is a costly process that often requires experts. Crowdsourcing the process of paraphrase generation is an effective means of expanding natural language datasets, but there has been limited analysis of the trade-offs that arise when designing tasks. In this paper, we present the first systematic study of the key factors in crowdsourcing paraphrase collection. We consider variations in instructions, incentives, data domains, and workflows. We manually analyzed paraphrases for correctness, grammaticality, and linguistic diversity. Our observations provide new insight into the trade-offs between accuracy and diversity in crowd responses that arise as a result of task design, providing guidance for future paraphrase generation procedures.