Verrah Otiende


2024

pdf
Mitigating Translationese in Low-resource Languages: The Storyboard Approach
Garry Kuwanto | Eno-Abasi E. Urua | Priscilla Amondi Amuok | Shamsuddeen Hassan Muhammad | Anuoluwapo Aremu | Verrah Otiende | Loice Emma Nanyanga | Teresiah W. Nyoike | Aniefon D. Akpan | Nsima Ab Udouboh | Idongesit Udeme Archibong | Idara Effiong Moses | Ifeoluwatayo A. Ige | Benjamin Ajibade | Olumide Benjamin Awokoya | Idris Abdulmumin | Saminu Mohammad Aliyu | Ruqayya Nasir Iro | Ibrahim Said Ahmad | Deontae Smith | Praise-EL Michaels | David Ifeoluwa Adelani | Derry Tanti Wijaya | Anietie Andy
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.

pdf
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang | David Adelani | Sweta Agrawal | Marek Masiak | Ricardo Rei | Eleftheria Briakou | Marine Carpuat | Xuanli He | Sofia Bourhim | Andiswa Bukula | Muhidin Mohamed | Temitayo Olatoye | Tosin Adewumi | Hamam Mokayed | Christine Mwase | Wangui Kimotho | Foutse Yuehgoh | Anuoluwapo Aremu | Jessica Ojo | Shamsuddeen Muhammad | Salomey Osei | Abdul-Hakeem Omotayo | Chiamaka Chukwuneke | Perez Ogayo | Oumaima Hourrane | Salma El Anigri | Lolwethu Ndolela | Thabiso Mangwana | Shafie Mohamed | Hassan Ayinde | Oluwabusayo Awoyomi | Lama Alkhaled | Sana Al-azzawi | Naome Etori | Millicent Ochieng | Clemencia Siro | Njoroge Kiragu | Eric Muchiri | Wangari Kimotho | Toadoum Sari Sakayo | Lyse Naomi Wamba | Daud Abolade | Simbiat Ajao | Iyanuoluwa Shode | Ricky Macharm | Ruqayya Iro | Saheed Abdullahi | Stephen Moore | Bernard Opoku | Zainab Akinjobi | Abeeb Afolabi | Nnaemeka Obiefuna | Onyekachi Ogbu | Sam Ochieng’ | Verrah Otiende | Chinedu Mbonu | Yao Lu | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).

2023

pdf
Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo | Tajuddeen Gwadabe | Clara Rivera | Jonathan Clark | Sebastian Ruder | David Adelani | Bonaventure Dossou | Abdou Diop | Claytone Sikasote | Gilles Hacheme | Happy Buzaaba | Ignatius Ezeani | Rooweither Mabuya | Salomey Osei | Chris Emezue | Albert Kahira | Shamsuddeen Muhammad | Akintunde Oladipo | Abraham Owodunni | Atnafu Tonja | Iyanuoluwa Shode | Akari Asai | Anuoluwapo Aremu | Ayodele Awokoya | Bernard Opoku | Chiamaka Chukwuneke | Christine Mwase | Clemencia Siro | Stephen Arthur | Tunde Ajayi | Verrah Otiende | Andre Rubungo | Boyd Sinkala | Daniel Ajisafe | Emeka Onwuegbuzia | Falalu Lawan | Ibrahim Ahmad | Jesujoba Alabi | Chinedu Mbonu | Mofetoluwa Adeyemi | Mofya Phiri | Orevaoghene Ahia | Ruqayya Iro | Sonia Adhiambo
Findings of the Association for Computational Linguistics: EMNLP 2023

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

2021

pdf
MasakhaNER: Named Entity Recognition for African Languages
David Ifeoluwa Adelani | Jade Abbott | Graham Neubig | Daniel D’souza | Julia Kreutzer | Constantine Lignos | Chester Palen-Michel | Happy Buzaaba | Shruti Rijhwani | Sebastian Ruder | Stephen Mayhew | Israel Abebe Azime | Shamsuddeen H. Muhammad | Chris Chinenye Emezue | Joyce Nakatumba-Nabende | Perez Ogayo | Aremu Anuoluwapo | Catherine Gitau | Derguene Mbaye | Jesujoba Alabi | Seid Muhie Yimam | Tajuddeen Rabiu Gwadabe | Ignatius Ezeani | Rubungo Andre Niyongabo | Jonathan Mukiibi | Verrah Otiende | Iroro Orife | Davis David | Samba Ngom | Tosin Adewumi | Paul Rayson | Mofetoluwa Adeyemi | Gerald Muriuki | Emmanuel Anebi | Chiamaka Chukwuneke | Nkiruka Odu | Eric Peter Wairagala | Samuel Oyerinde | Clemencia Siro | Tobius Saul Bateesa | Temilola Oloyede | Yvonne Wambui | Victor Akinode | Deborah Nabagereka | Maurice Katusiime | Ayodele Awokoya | Mouhamadane MBOUP | Dibora Gebreyohannes | Henok Tilaye | Kelechi Nwaike | Degaga Wolde | Abdoulaye Faye | Blessing Sibanda | Orevaoghene Ahia | Bonaventure F. P. Dossou | Kelechi Ogueji | Thierno Ibrahima DIOP | Abdoulaye Diallo | Adewale Akinfaderin | Tendai Marengereke | Salomey Osei
Transactions of the Association for Computational Linguistics, Volume 9

We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1
Search
Co-authors