Tong Zheng


2024

pdf
PartialFormer: Modeling Part Instead of Whole for Machine Translation
Tong Zheng | Bei Li | Huiwen Bao | Jiale Wang | Weiqiao Shan | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics ACL 2024

The design choices in Transformer feed-forward neural networks have resulted in significant computational and parameter overhead. In this work, we emphasize the importance of hidden dimensions in designing lightweight FFNs, a factor often overlooked in previous architectures. Guided by this principle, we introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs to reduce parameters and computation while maintaining essential hidden dimensions. These smaller FFNs are integrated into a multi-head attention mechanism for effective collaboration. We also propose a tailored head scaling strategy to enhance PartialFormer’s capabilities. Furthermore, we present a residual-like attention calculation to improve depth scaling within PartialFormer. Extensive experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach on machine translation and summarization tasks. Our code would be available at: https://github.com/zhengkid/PartialFormer.

pdf
EIT: Enhanced Interactive Transformer
Tong Zheng | Bei Li | Huiwen Bao | Tong Xiao | JingBo Zhu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Two principles: the complementary principle and the consensus principle are widely acknowledged in the literature of multi-view learning. However, the current design of multi-head self-attention, an instance of multi-view learning, prioritizes the complementarity while ignoring the consensus. To address this problem, we propose an enhanced multi-head self-attention (EMHA). First, to satisfy the complementary principle, EMHA removes the one-to-one mapping constraint among queries and keys in multiple subspaces and allows each query to attend to multiple keys. On top of that, we develop a method to fully encourage consensus among heads by introducing two interaction models, namely inner-subspace interaction and cross-subspace interaction. Extensive experiments on a wide range of language tasks (e.g., machine translation, abstractive summarization and grammar correction, language modeling), show its superiority, with a very modest increase in model size. Our code would be available at: https://github.com/zhengkid/EIT-Enhanced-Interactive-Transformer.

2023

pdf
Incorporating Probing Signals into Multimodal Machine Translation via Visual Question-Answering Pairs
Yuxin Zuo | Bei Li | Chuanhao Lv | Tong Zheng | Tong Xiao | JingBo Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

This paper presents an in-depth study of multimodal machine translation (MMT), examining the prevailing understanding that MMT systems exhibit decreased sensitivity to visual information when text inputs are complete. Instead, we attribute this phenomenon to insufficient cross-modal interaction, rather than image information redundancy. A novel approach is proposed to generate parallel Visual Question-Answering (VQA) style pairs from the source text, fostering more robust cross-modal interaction. Using Large Language Models (LLMs), we explicitly model the probing signal in MMT to convert it into VQA-style data to create the Multi30K-VQA dataset. An MMT-VQA multitask learning framework is introduced to incorporate explicit probing signals from the dataset into the MMT training process. Experimental results on two widely-used benchmarks demonstrate the effectiveness of this novel approach. Our code and data would be available at: https://github.com/libeineu/MMT-VQA.