This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos’s generalization and provide more insights.
Empowering Large Language Models (LLMs) with distinct human-like personality traits has become an innovative task for developing advanced dialog systems.Although LLMs demonstrate impressive capabilities in following instructions, directly prompting them to exhibit certain personalities through manually crafted instructions may result in sub-optimal performance.In this paper, we propose a plug-and-play prompting method to manipulate the LLMs’ personality traits.Specifically, we append discrete personalized suffixes, automatically generated through an aggregated gradient-based search method, to the user query or dialog histories and induce LLMs to respond with target personalities.In addition, due to the high redundancy of the search space, we adopt a reward-based strategy to prune the vocabulary and focus exclusively on influential tokens.Experiment results on four models ranging from 1.1B to 13B show that our method achieves 79.9% accuracy in customizing LLMs’ personalities, significantly outperforming other prompting methods (65.5%) and model editing methods.Our method also excels in generation fluency and quality with the lowest generation perplexity and the highest GPT-4 evaluation scores.
Large language models (LLMs) have shown great potential to empower various domains and are often customized by fine-tuning for the requirements of different applications. However, the powerful learning ability of LLMs not only enables them to learn new tasks but also makes them vulnerable to learning undesired behaviors, such as harmfulness and hallucination, as the fine-tuning data often implicitly or explicitly contains such content. Can we fine-tune LLMs on harmful data without learning harmful behaviors? This paper proposes a controllable training framework to make undesired behaviors unlearnable during the fine-tuning process. Specifically, we introduce security vectors to control the model’s behavior and make it consistent with the undesired behavior. Security vectors are activated during fine-tuning, the consistent behavior makes the model believe that such behavior has already been learned and there is no need for further optimization, while inconsistent data can still be learned. After fine-tuning, security vectors are deactivated to restore the LLM’s normal behavior. Our experiments show that the security vectors can prevent LLM from learning harmful and hallucination behavior while preserving the ability to learn other information.
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE’s generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads’ best temperature hyper-parameters, which substantially expands NoPE’s context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
Domain adaption has been widely adapted for cross-domain sentiment analysis to transfer knowledge from the source domain to the target domain. Whereas, most methods are proposed under the assumption that the target (test) domain is known, making them fail to generalize well on unknown test data that is not always available in practice. In this paper, we focus on the problem of domain generalization for cross-domain sentiment analysis. Specifically, we propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations that play essential roles in tackling domain shift. First, we rethink the cross-domain sentiment analysis task in a causal view to model the causal-and-effect relationships among different variables. Then, to learn an invariant feature representation, we remove the effect of domain confounders (e.g., domain knowledge) using the backdoor adjustment. A series of experiments over many homologous and diverse datasets show the great performance and robustness of our model by comparing it with the state-of-the-art domain generalization baselines.
Pretrained language models can be applied for various downstream tasks but are susceptible to subtle perturbations. Most adversarial defense methods often introduce adversarial training during the fine-tuning phase to enhance empirical robustness. However, the repeated execution of adversarial training hinders training efficiency when transitioning to different tasks. In this paper, we explore the transferability of robustness within subnetworks and leverage this insight to introduce a novel adversarial defense method ORTicket, eliminating the need for separate adversarial training across diverse downstream tasks. Specifically, (i) pruning the full model using the MLM task (the same task employed for BERT pretraining) yields a task-agnostic robust subnetwork(i.e., winning ticket in Lottery Ticket Hypothesis); and (ii) fine-tuning this subnetwork for downstream tasks. Extensive experiments demonstrate that our approach achieves comparable robustness to other defense methods while retaining the efficiency of traditional fine-tuning.This also confirms the significance of selecting MLM task for identifying the transferable robust subnetwork. Furthermore, our method is orthogonal to other adversarial training approaches, indicating the potential for further enhancement of model robustness.
Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs for natural language understanding (NLU) tasks when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (adversarial context method) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language, for example, with gpt-3.5-turbo on average, our method achieves an improvement of 5.68% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).
Deep neural networks (DNNs) are notoriously vulnerable to adversarial attacks that place carefully crafted perturbations on normal examples to fool DNNs. To better understand such attacks, a characterization of the features carried by adversarial examples is needed. In this paper, we tackle this challenge by inspecting the subspaces of sample features through spectral analysis. We first empirically show that the features of either clean signals or adversarial perturbations are redundant and span in low-dimensional linear subspaces respectively with minimal overlap, and the classical low-dimensional subspace projection can suppress perturbation features out of the subspace of clean signals. This makes it possible for DNNs to learn a subspace where only features of clean signals exist while those of perturbations are discarded, which can facilitate the distinction of adversarial examples. To prevent the residual perturbations that is inevitable in subspace learning, we propose an independence criterion to disentangle clean signals from perturbations. Experimental results show that the proposed strategy enables the model to inherently suppress adversaries, which not only boosts model robustness but also motivates new directions of effective adversarial defense.
Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks. Substantially increasing instruction data is a direct solution to align the model with a broader range of downstream tasks or notably improve its performance on a specific task. However, we find that large-scale increases in instruction data can damage the world knowledge previously stored in LLMs. To address this challenge, we propose LoRAMoE, a novelty framework that introduces several low-rank adapters (LoRA) and integrates them by using a router network, like a plugin version of Mixture of Experts (MoE). It freezes the backbone model and forces a portion of LoRAs to focus on leveraging world knowledge to solve downstream tasks, to alleviate world knowledge forgetting. Experimental results show that, as the instruction data increases, LoRAMoE can significantly improve the ability to process downstream tasks, while maintaining the world knowledge stored in the LLM. Our code is available at https://github.com/Ablustrund/LoRAMoE.
Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present ToolSword, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing maliciousqueries and jailbreakattacks in the input stage, noisymisdirection and riskycues in the execution stage, and harmfulfeedback and errorconflicts in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data will be released upon acceptance of the paper.
The principle of continual relation extraction (CRE) involves adapting to emerging novel relations while preserving old knowledge. Existing CRE approaches excel in preserving old knowledge but falter when confronted with contaminated data streams, likely due to an artificial assumption of no annotation errors. Recognizing the prevalence of noisy labels in real-world datasets, we introduce a more practical learning scenario, termed as noisy-CRE. In response to this challenge, we propose a noise-resistant contrastive framework called Noise-guided Attack in Contrastive Learning (NaCL), aimed at learning incremental corrupted relations. Diverging from conventional approaches like sample discarding or relabeling in the presence of noisy labels, NaCL takes a transformative route by modifying the feature space through targeted attack. This attack aims to align the feature space with the provided, albeit inaccurate, labels, thereby enhancing contrastive representations. Extensive empirical validations demonstrate the consistent performance improvement of NaCL with increasing noise rates, surpassing state-of-the-art methods.
The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks. The code and dataset will be made available upon publication.
Large language models are meticulously aligned to be both helpful and harmless. However, recent research points to a potential overkill which means models may refuse to answer benign queries. In this paper, we investigate the factors for overkill by exploring how models handle and determine the safety of queries. Our findings reveal the presence of shortcuts within models, leading to excessive attention to harmful words like ‘kill’ and prompts emphasizing safety will exacerbate overkill. Based on these insights, we introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon. We first extract such excessive attention by amplifying the difference in the model’s output distributions when responding to system prompts that either include or omit an emphasis on safety. Then we determine the final next-token predictions by downplaying the excessive attention via contrastive decoding. Empirical results have indicated that our method has achieved an average reduction of the refusal rate by 20 % while having almost no impact on safety.
Large Language Models (LLMs) have demonstrated considerable cross-lingual alignment and generalization ability. Current research primarily focuses on improving LLMs’ cross-lingual generalization capabilities. However, there is still a lack of research on the intrinsic mechanisms of how LLMs achieve cross-lingual alignment. From the perspective of region partitioning, this paper conducts several investigations on the linguistic competence of LLMs. We discover a core region in LLMs that corresponds to linguistic competence, accounting for approximately 1% of the total model parameters. Removing this core region by setting parameters to zero results in a significant performance decrease across 30 different languages. Furthermore, this core region exhibits significant dimensional dependence, perturbations to even a single parameter on specific dimensions leading to a loss of linguistic competence. Moreover, we discover that distinct monolingual regions exist for different languages, and disruption to these specific regions substantially reduces the LLMs’ proficiency in those corresponding languages. Our research also indicates that freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic forgetting (CF), a common phenomenon observed during further pre-training of LLMs. Overall, exploring the LLMs’ functional regions provides insights into the foundation of their intelligence.
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages.We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs.Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/.
Customizing LLMs for a specific task involves separating high-quality responses from lower-quality ones. This skill can be developed using supervised fine-tuning with extensive human preference data. However, obtaining a large volume of expert-annotated data is costly for most tasks. In this paper, we explore a novel method to optimize LLMs using ranking metrics. This method trains the model to prioritize the best responses from a pool of candidates created for a particular task. Rather than a traditional full ordering, we advocate for a partial ordering, as achieving consensus on the perfect order of candidate responses can be challenging. Our partial ordering is more robust, less sensitive to noise, and can be achieved with limited human annotations or through heuristic methods. We test our system’s improved response generation ability using benchmark datasets, including textual entailment and multi-document question answering. We conduct ablation studies to understand crucial factors, such as how to gather candidate responses for a specific task, determine their most suitable order, and balance supervised fine-tuning with ranking metrics. Our approach, named RESCUE, offers a promising avenue for enhancing the response generation and task accuracy of LLMs.
Current clustering-based Open Relation Extraction (OpenRE) methods usually adopt a two-stage pipeline, which simultaneously learns relation representations and assignments in the first stage, then manually labels relation for each cluster. However, unsupervised objectives struggle to explicitly optimize clusters to align with relational semantics, and the number of clusters K has to be supplied in advance. In this paper, we present a novel setting, named actively supervised clustering for OpenRE. Our insight lies in that clustering learning and relation labeling can be performed simultaneously, which provides the necessary guidance for clustering without a significant increase in human effort. Along with this setting, we propose an active labeling strategy tailored for clustering. Instead of only focusing on improving the clustering of relations that have been discovered, our strategy is encouraged to discover new relations through diversity regularization. This is particularly beneficial for long-tail relations in the real world. Experimental results show that our method is able to discover almost all relational clusters in the data and improve the SOTA methods by 13.8% and 10.6%, on two datasets respectively.
As the categories of named entities rapidly increase, the deployed NER models are required to keep updating toward recognizing more entity types, creating a demand for class-incremental learning for NER. Considering the privacy concerns and storage constraints, the standard paradigm for class-incremental NER updates the models with training data only annotated with the new classes, yet the entities from other entity classes are regarded as “Non-entity” (or “O”). In this work, we conduct an empirical study on the “Unlabeled Entity Problem” and find that it leads to severe confusion between “O” and entities, decreasing class discrimination of old classes and declining the model’s ability to learn new classes. To solve the Unlabeled Entity Problem, we propose a novel representation learning method to learn discriminative representations for the entity classes and “O”. Specifically, we propose an entity-aware contrastive learning method that adaptively detects entity clusters in “O”. Furthermore, we propose two effective distance-based relabeling strategies for better learning the old classes. We introduce a more realistic and challenging benchmark for class-incremental NER, and the proposed method achieves up to 10.62% improvement over the baseline methods.
Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.
The existing supervised relation extraction methods have achieved impressive performance in a closed-set setting, in which the relations remain the same during both training and testing. In a more realistic open-set setting, unknown relations may appear in the test set. Due to the lack of supervision signals from unknown relations, a well-performing closed-set relation extractor can still confidently misclassify them into known relations. In this paper, we propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances that can provide the missing supervision signals. Inspired by text adversarial attack, We adaptively apply small but critical perturbations to original training data,synthesizing difficult enough negative instances that are mistaken by the model as known relations, thus facilitating a compact decision boundary. Experimental results show that our method achieves SOTA unknown relation detection without compromising the classification of known relations.
Dialogue summarization aims to condense the lengthy dialogue into a concise summary, and has recently achieved significant progress. However, the result of existing methods is still far from satisfactory. Previous works indicated that omission is a major factor in affecting the quality of summarization, but few of them have further explored the omission problem, such as how omission affects summarization results and how to detect omission, which is critical for reducing omission and improving summarization quality. Moreover, analyzing and detecting omission relies on summarization datasets with omission labels (i.e., which dialogue utterances are omitted in the summarization), which are not available in the current literature. In this paper, we propose the OLDS dataset, which provides high-quality omission labels for dialogue summarization. By analyzing this dataset, we find that a large improvement in summarization quality can be achieved by providing ground-truth omission labels for the summarization model to recover omission information, which demonstrates the importance of omission detection for omission mitigation in dialogue summarization. Therefore, we formulate an omission detection task and demonstrate our proposed dataset can support the training and evaluation of this task well. We also call for research action on omission detection based on our proposed datasets. Our dataset and codes are publicly available.
Models trained with empirical risk minimization (ERM) are revealed to easily rely on spurious correlations, resulting in poor generalization. Group distributionally robust optimization (group DRO) can alleviate this problem by minimizing the worst-case loss over pre-defined groups. While promising, in practice factors like expensive annotations and privacy preclude the availability of group labels. More crucially, when taking a closer look at the failure modes of out-of-distribution generalization, the typical procedure of reweighting in group DRO loses efficiency. Hinged on the limitations, in this work, we reformulate the group DRO framework by proposing Q-Diversity. Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization. Furthermore, a novel mixing strategy across groups is presented to diversify the under-represented groups. In a series of experiments on both synthetic and real-world text classification tasks, results demonstrate that Q-Diversity can consistently improve worst-case accuracy under different distributional shifts, outperforming state-of-the-art alternatives.
Pretrained language models have achieved remarkable success in various natural language processing tasks. However, pretraining has recently shifted toward larger models and larger data, which has resulted in significant computational and energy costs. In this paper, we propose Influence Subset Selection (ISS) for language model, which explicitly utilizes end-task knowledge to select a tiny subset of the pretraining corpus. Specifically, the ISS selects the samples that will provide the most positive influence on the performance of the end task. Furthermore, we design a gradient matching-based influence estimation method, which can drastically reduce the computation time of influence. With only 0.45% of the data and a three-orders-of-magnitude lower computational cost, ISS outperformed pretrained models (e.g., RoBERTa) on eight datasets covering four domains.
Existing models for named entity recognition (NER) are mainly based on large-scale labeled datasets, which always obtain using crowdsourcing. However, it is hard to obtain a unified and correct label via majority voting from multiple annotators for NER due to the large labeling space and complexity of this task. To address this problem, we aim to utilize the original multi-annotator labels directly. Particularly, we propose a CONfidence-based partial Label Learning (CONLL) method to integrate the prior confidence (given by annotators) and posterior confidences (learned by models) for crowd-annotated NER. This model learns a token- and content-dependent confidence via an Expectation–Maximization (EM) algorithm by minimizing empirical risk. The true posterior estimator and confidence estimator perform iteratively to update the true posterior and confidence respectively. We conduct extensive experimental results on both real-world and synthetic datasets, which show that our model can improve performance effectively compared with strong baselines.
Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.
Recently, Few-shot Named Entity Recognition has received wide attention with the growing need for NER models to learn new classes with minimized annotation costs. However, one common yet understudied situation is to transfer a model trained with coarse-grained classes to recognize fine-grained classes, such as separating a product category into sub-classes. We find that existing few-shot NER solutions are not suitable for such a situation since they do not consider the sub-class discrimination during coarse training and various granularity of new classes during few-shot learning. In this work, we introduce the Coarse-to-fine Few-shot NER (C2FNER) task and propose an effective solution. Specifically, during coarse training, we propose a cluster-based prototype margin loss to learn group-wise discriminative representations, so as to benefit fine-grained learning. Targeting various granularity of new classes, we separate the coarse classes into extra-fine clusters and propose a novel prototype retrieval and bootstrapping algorithm to retrieve representative clusters for each fine class. We then adopt a mixture prototype loss to efficiently learn the representations of fine classes. We conduct experiments on both in-domain and cross-domain C2FNER settings with various target granularity, and the proposed method shows superior performance over the baseline methods.
In real-world applications, pre-trained language models are typically deployed on the cloud, allowing clients to upload data and perform compute-intensive inference remotely. To avoid sharing sensitive data directly with service providers, clients can upload numerical representations rather than plain text to the cloud. However, recent text reconstruction techniques have demonstrated that it is possible to transform representations into original words, suggesting that privacy risk remains. In this paper, we propose TextObfuscator, a novel framework for protecting inference privacy by applying random perturbations to clustered representations. The random perturbations make the representations indistinguishable from surrounding clustered representations, thus obscuring word information while retaining the original word functionality. To achieve this, we utilize prototypes to learn clustered representation, where tokens of similar functionality are encouraged to be closer to the same prototype during training. Additionally, we design different methods to find prototypes for token-level and sentence-level tasks, which can improve performance by incorporating semantic and task information. Experimental results on token and sentence classification tasks show that TextObfuscator achieves improvement over compared methods without increasing inference cost.
Deep neural networks (DNNs) have been proven to be sensitive towards perturbations on input samples, and previous works highlight that adversarial samples are even more vulnerable than normal ones. In this work, this phenomenon is illustrated frWe first show that adversarial samples locate in steep and narrow local minima of the loss landscape (high sharpness) while normal samples, which differs distinctly from adversarial ones, reside in the loss surface that is more flatter (low sharpness).om the perspective of sharpness via visualizing the input loss landscape of models. Based on this, we propose a simple and effective sharpness-based detector to distinct adversarial samples by maximizing the loss increment within the region where the inference sample is located. Considering that the notion of sharpness of a loss landscape is relative, we further propose an adaptive optimization strategy in an attempt to fairly compare the relative sharpness among different samples. Experimental results show that our approach can outperform previous detection methods by large margins (average +6.6 F1 score) for four advanced attack strategies considered in this paper across three text classification tasks.
Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.
Recently, Target-oriented Multimodal Sentiment Classification (TMSC) has gained significant attention among scholars. However, current multimodal models have reached a performance bottleneck. To investigate the causes of this problem, we perform extensive empirical evaluation and in-depth analysis of the datasets to answer the following questions: **Q1**: Are the modalities equally important for TMSC? **Q2**: Which multimodal fusion modules are more effective? **Q3**: Do existing datasets adequately support the research? Our experiments and analyses reveal that the current TMSC systems primarily rely on the textual modality, as most of targets’ sentiments can be determined *solely* by text. Consequently, we point out several directions to work on for the TMSC task in terms of model design and dataset construction. The code and data can be found in https://github.com/Junjie-Ye/RethinkingTMSC.
Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values. This alignment requires a vast corpus of human feedback to learn a reward model, which is subsequently used to finetune language models. However, we have identified that the reward model often finds shortcuts to bypass its intended objectives, misleadingly assuming that humans prefer longer responses. The emergence of length bias often induces the model to favor longer outputs, yet it doesn’t equate to an increase in helpful information within these outputs. In this paper, we propose an innovative solution, applying the Product-of-Experts (PoE) technique to separate reward modeling from the influence of sequence length. In our framework, the main expert concentrates on understanding human intents, while the biased expert targets the identification and capture of length bias. To further enhance the learning of bias, we introduce perturbations into the bias-focused expert, disrupting the flow of semantic information. Experimental results validate the effectiveness of our approach, indicating that language model performance is improved, irrespective of sequence length.
Pre-trained language models (PLMs) are often deployed as cloud services, enabling users to upload textual data and perform inference remotely. However, users’ personal text often contains sensitive information, and sharing such data directly with the service providers can lead to serious privacy leakage. To address this problem, we introduce a novel privacy-preserving inference framework called MixPi, which prevents plaintext leakage during the inference phase. Inspired by k-anonymity, MixPi aims to obfuscate a user’s private input by mixing it with multiple other inputs, thereby confounding potential privacy attackers. To achieve this, our approach involves: (1) proposing a novel encryption module, Privacy Mixer, which encrypts input from three distinct dimensions: mixing, representation, and position. (2) adopting a pre-trained Multi-input Multi-output network to handle mixed representations and obtain multiple predictions. (3) employing a Privacy Demixer to ensure only the user can decrypt the real output among the multiple predictions. Furthermore, we explore different ways to automatically generate synthetic inputs required for mixing. Experimental results on token and sentence classification tasks demonstrate that MixPi greatly surpasses existing privacy-preserving methods in both performance and privacy.
The inductive inference of the knowledge graph aims to complete the potential relations between the new unknown entities in the graph. Most existing methods are based on entity-independent features such as graph structure information and relationship information to inference. However, the neighborhood of these new entities is often too sparse to obtain enough information to build these features effectively. In this work, we propose a knowledge graph inductive inference method that fuses ontology information. Based on the enclosing subgraph, we bring in feature embeddings of concepts corresponding to entities to learn the semantic information implicit in the ontology. Considering that the ontology information of entities may be missing, we build a type constraint regular loss to explicitly model the semantic connections between entities and concepts, and thus capture the missing concepts of entities. Experimental results show that our approach significantly outperforms large language models like ChatGPT on two benchmark datasets, YAGO21K-610 and DB45K-165, and improves the MRR metrics by 15.4% and 44.1%, respectively, when compared with the state-of-the-art methods.
Reports of human-like behaviors in foundation models are growing, with psychological theories providing enduring tools to investigate these behaviors. However, current research tends to directly apply these human-oriented tools without verifying the faithfulness of their outcomes. In this paper, we introduce a framework, RealBehavior, which is designed to characterize the humanoid behaviors of models faithfully. Beyond simply measuring behaviors, our framework assesses the faithfulness of results based on reproducibility, internal and external consistency, and generalizability. Our findings suggest that a simple application of psychological tools cannot faithfully characterize all human-like behaviors. Moreover, we discuss the impacts of aligning models with human and social values, arguing for the necessity of diversifying alignment objectives to prevent the creation of models with restricted characteristics.
Benefiting from massive corpora and advanced hardware, large language models (LLMs) exhibit remarkable capabilities in language understanding and generation. However, their performance degrades in scenarios where multiple tasks are encountered sequentially, also known as catastrophic forgetting. In this paper, we propose orthogonal low-rank adaptation (O-LoRA), a simple and efficient approach for continual learning in language models, effectively mitigating catastrophic forgetting while learning new tasks. Specifically, O-LoRA learns tasks in different (low-rank) vector subspaces that are kept orthogonal to each other in order to minimize interference. Our method induces only marginal additional parameter costs and requires no user data storage for replay. Experimental results on continual learning benchmarks show that our method outperforms state-of-the-art methods. Furthermore, compared to previous approaches, our method excels in preserving the generalization ability of LLMs on unseen tasks.
To enhance the multi-step reasoning capabilities of large language models, researchers have extensively explored prompting methods, notably the Chain-of-Thought (CoT) method which explicitly elicits human-like rationales. However, they have inadvertently overlooked the potential of enhancing model reasoning performance by formulating higher-quality problems. In this work, we start from the problem side and propose Self-Polish (SP), a novel method that facilitates the model’s reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable. We also explore several automatic prompting varients and propose the Self-Polish prompt bank for the community. SP is orthogonal to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement. Thorough experiments show that the proposed method attains notable and consistent effectiveness on five reasoning benchmarks across different models. Furthermore, our method also showcases impressive performance on robustness evaluation. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish.
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Multilingual BERT (mBERT) has demonstrated considerable cross-lingual syntactic ability, whereby it enables effective zero-shot cross-lingual transfer of syntactic knowledge. The transfer is more successful between some languages, but it is not well understood what leads to this variation and whether it fairly reflects difference between languages. In this work, we investigate the distributions of grammatical relations induced from mBERT in the context of 24 typologically different languages. We demonstrate that the distance between the distributions of different languages is highly consistent with the syntactic difference in terms of linguistic formalisms. Such difference learnt via self-supervision plays a crucial role in the zero-shot transfer performance and can be predicted by variation in morphosyntactic properties between languages. These results suggest that mBERT properly encodes languages in a way consistent with linguistic diversity and provide insights into the mechanism of cross-lingual transfer.
Adversarial training is one of the most powerful methods to improve the robustness of pre-trained language models (PLMs). However, this approach is typically more expensive than traditional fine-tuning because of the necessity to generate adversarial examples via gradient descent. Delving into the optimization process of adversarial training, we find that robust connectivity patterns emerge in the early training phase (typically 0.15~0.3 epochs), far before parameters converge. Inspired by this finding, we dig out robust early-bird tickets (i.e., subnetworks) to develop an efficient adversarial training method: (1) searching for robust tickets with structured sparsity in the early stage; (2) fine-tuning robust tickets in the remaining time. To extract the robust tickets as early as possible, we design a ticket convergence metric to automatically terminate the searching process. Experiments show that the proposed efficient adversarial training method can achieve up to 7× ∼ 13 × training speedups while maintaining comparable or even better robustness compared to the most competitive state-of-the-art adversarial training methods.
Recently, more and more pre-trained language models are released as a cloud service. It allows users who lack computing resources to perform inference with a powerful model by uploading data to the cloud. The plain text may contain private information, as the result, users prefer to do partial computations locally and upload intermediate representations to the cloud for subsequent inference.However, recent studies have shown that intermediate representations can also be recovered to plain text with reasonable accuracy, thus the risk of privacy leakage still exists. To address this issue, we propose TextFusion, a novel method for preserving inference privacy.Specifically, we train a Fusion Predictor to dynamically fuse token representations, which hides multiple private token representations behind an unrecognizable one.Furthermore, an adversarial training regime is employed to privatize these representations. In this way, the cloud only receives incomplete and perturbed representations, making it difficult to accurately recover the complete plain text.The experimental results on diverse classification tasks show that our approach can effectively preserve inference privacy without significantly sacrificing performance in different scenarios.
Proof generation focuses on deductive reasoning: given a hypothesis and a set of theories, including some supporting facts and logical rules expressed in natural language, the model generates a proof tree indicating how to deduce the hypothesis from given theories.Current models with state-of-the-art performance employ the stepwise method that adds an individual node to the proof step-by-step.However, these methods actually focus on generating several proof paths rather than a whole tree.During generation, they focus on the most relevant areas of the currently generated node while neglecting the rest of the proof tree. To address this problem, we propose ProofInfer, which generates the proof tree via iterative hierarchical inference.At each step, ProofInfer adds the entire layer to the proof, where all nodes in this layer are generated simultaneously. Since the conventional autoregressive generation architecture cannot simultaneously predict multiple nodes, ProofInfer employs text-to-text paradigm.To this end, we propose a divide-and-conquer algorithm to encode the proof tree as the plain text without losing structure information.Experimental results show that ProofInfer significantly improves performance on several widely-used datasets.In addition, ProofInfer still performs well with data-limited, achieving comparable performance to the state-of-the-art model with about 40% of the training data.
Prompt-based methods have been successfully applied in sentence-level few-shot learning tasks, mostly owing to the sophisticated design of templates and label words. However, when applied to token-level labeling tasks such as NER, it would be time-consuming to enumerate the template queries over all potential entity spans. In this work, we propose a more elegant method to reformulate NER tasks as LM problems without any templates. Specifically, we discard the template construction process while maintaining the word prediction paradigm of pre-training models to predict a class-related pivot word (or label word) at the entity position. Meanwhile, we also explore principled ways to automatically search for appropriate label words that the pre-trained models can easily adapt to. While avoiding the complicated template-based process, the proposed LM objective also reduces the gap between different objectives used in pre-training and fine-tuning, thus it can better benefit the few-shot performance. Experimental results demonstrate the effectiveness of the proposed method over bert-tagger and template-based method under few-shot settings. Moreover, the decoding speed of the proposed method is up to 1930.12 times faster than the template-based method.
Datasets with significant proportions of bias present threats for training a trustworthy model on NLU tasks. Despite yielding great progress, current debiasing methods impose excessive reliance on the knowledge of bias attributes. Definition of the attributes, however, is elusive and varies across different datasets. In addition, leveraging these attributes at input level to bias mitigation may leave a gap between intrinsic properties and the underlying decision rule. To narrow down this gap and liberate the supervision on bias, we suggest extending bias mitigation into feature space. Therefore, a novel model, Recovering Intended-Feature Subspace with Knowledge-Free (RISK) is developed. Assuming that shortcut features caused by various biases are unintended for prediction, RISK views them as redundant features. When delving into a lower manifold to remove redundancies, RISK reveals that an extremely low-dimensional subspace with intended features can robustly represent the highly biased dataset. Empirical results demonstrate our model can consistently improve model generalization to out-of-distribution set, and achieves a new state-of-the-art performance.
The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.
Adversarial training, which minimizes the loss of adversarially perturbed examples, has received considerable attention. However, these methods require modifying all model parameters and optimizing the model from scratch, which is parameter inefficient and unfriendly to the already deployed models. As an alternative, we propose a pluggable defense module PlugAT, to provide robust predictions by adding a few trainable parameters to the model inputs while keeping the original model frozen. To reduce the potential side effects of using defense modules, we further propose a novel forgetting restricted adversarial training, which filters out bad adversarial examples that impair the performance of original ones. The PlugAT-equipped BERT model substantially improves robustness over several strong baselines on various text classification tasks, whilst training only 9.1% parameters. We observe that defense modules trained under the same model architecture have domain adaptation ability between similar text classification datasets.
Question generation over knowledge bases (KBQG) aims at generating natural questions about a subgraph, which can be answered by a given answer entity. Existing KBQG models still face two main challenges: (1) Most models often focus on the most relevant part of the answer entity, while neglecting the rest of the subgraph. (2) There are a large number of out-of-vocabulary (OOV) predicates in real-world scenarios, which are hard to adapt for most KBQG models. To address these challenges, we propose LFKQG, a controlled generation framework for Question Generation over Knowledge Bases. (1) LFKQG employs a simple controlled generation method to generate the questions containing the critical entities in the subgraph, ensuring the question is relevant to the whole subgraph. (2) We propose an optimization strategy called local fine-tuning, which can make good use of the rich information hidden in the pre-trained model to improve the ability of the model to adapt the OOV predicates. Extensive experiments show that our method outperforms existing methods significantly on three widely-used benchmark datasets SimpleQuestion, PathQuestions, and WebQuestions.
Despite having achieved great success for sentiment analysis, existing neural models struggle with implicit sentiment analysis. It is because they may latch onto spurious correlations (“shortcuts”, e.g., focusing only on explicit sentiment words), resulting in undermining the effectiveness and robustness of the learned model. In this work, we propose a CausaL intervention model for implicit sEntiment ANalysis using instrumental variable (CLEAN). We first review sentiment analysis from a causal perspective and analyze the confounders existing in this task. Then, we introduce instrumental variable to eliminate the confounding causal effects, thus extracting the pure causal effect between sentence and sentiment. We compare the proposed CLEAN with several strong baselines on both the general implicit sentiment analysis and aspect-based implicit sentiment analysis tasks. The results indicate the great advantages of our model and the efficacy of implicit sentiment reasoning.
Large pre-trained language models (PLMs) have demonstrated superior performance in industrial applications. Recent studies have explored parameter-efficient PLM tuning, which only updates a small amount of task-specific parameters while achieving both high efficiency and comparable performance against standard fine-tuning. However, all these methods ignore the inefficiency problem caused by the task-specific output layers, which is inflexible for us to re-use PLMs and introduces non-negligible parameters. In this work, we focus on the text classification task and propose plugin-tuning, a framework that further improves the efficiency of existing parameter-efficient methods with a unified classifier. Specifically, we re-formulate both token and sentence classification tasks into a unified language modeling task, and map label spaces of different tasks into the same vocabulary space. In this way, we can directly re-use the language modeling heads of PLMs, avoiding introducing extra parameters for different tasks. We conduct experiments on six classification benchmarks. The experimental results show that plugin-tuning can achieve comparable performance against fine-tuned PLMs, while further saving around 50% parameters on top of other parameter-efficient methods.
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization. Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary(OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rotate memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities.
Adversarial robustness has attracted much attention recently, and the mainstream solution is adversarial training. However, the tradition of generating adversarial perturbations for each input embedding (in the settings of NLP) scales up the training computational complexity by the number of gradient steps it takes to obtain the adversarial samples. To address this problem, we leverage Flooding method which primarily aims at better generalization and we find promising in defending adversarial attacks. We further propose an effective criterion to bring hyper-parameter-dependent flooding into effect with a narrowed-down search space by measuring how the gradient steps taken within one epoch affect the loss of each batch. Our approach requires zero adversarial sample for training, and its time consumption is equivalent to fine-tuning, which can be 2-15 times faster than standard adversarial training. We experimentally show that our method improves BERT’s resistance to textual adversarial attacks by a large margin, and achieves state-of-the-art robust accuracy on various text classification and GLUE tasks.
Multi-hop question generation focuses on generating complex questions that require reasoning over multiple pieces of information of the input passage. Current models with state-of-the-art performance have been able to generate the correct questions corresponding to the answers. However, most models can not ensure the complexity of generated questions, so they may generate shallow questions that can be answered without multi-hop reasoning. To address this challenge, we propose the CQG, which is a simple and effective controlled framework. CQG employs a simple method to generate the multi-hop questions that contain key entities in multi-hop reasoning chains, which ensure the complexity and quality of the questions. In addition, we introduce a novel controlled Transformer-based decoder to guarantee that key entities appear in the questions. Experiment results show that our model greatly improves performance, which also outperforms the state-of-the-art model about 25% by 5 BLEU points on HotpotQA.
Knowledge graph construction which aims to extract knowledge from the text corpus, has appealed to the NLP community researchers. Previous decades have witnessed the remarkable progress of knowledge graph construction on the basis of neural models; however, those models often cost massive computation or labeled data resources and suffer from unstable inference accounting for biased or adversarial samples. Recently, numerous approaches have been explored to mitigate the efficiency and robustness issues for knowledge graph construction, such as prompt learning and adversarial training. In this tutorial, we aim to bring interested NLP researchers up to speed on the recent and ongoing techniques for efficient and robust knowledge graph construction. Additionally, our goal is to provide a systematic and up-to-date overview of these methods and reveal new research opportunities to the audience.
Text semantic matching is a fundamental task that has been widely used in various scenarios, such as community question answering, information retrieval, and recommendation. Most state-of-the-art matching models, e.g., BERT, directly perform text comparison by processing each word uniformly. However, a query sentence generally comprises content that calls for different levels of matching granularity. Specifically, keywords represent factual information such as action, entity, and event that should be strictly matched, while intents convey abstract concepts and ideas that can be paraphrased into various expressions. In this work, we propose a simple yet effective training strategy for text semantic matching in a divide-and-conquer manner by disentangling keywords from intents. Our approach can be easily combined with pre-trained language models (PLM) without influencing their inference efficiency, achieving stable performance improvements against a wide range of PLMs on three benchmarks.
With the rapid increase in the volume of dialogue data from daily life, there is a growing demand for dialogue summarization. Unfortunately, training a large summarization model is generally infeasible due to the inadequacy of dialogue data with annotated summaries. Most existing works for low-resource dialogue summarization directly pretrain models in other domains, e.g., the news domain, but they generally neglect the huge difference between dialogues and conventional articles. To bridge the gap between out-of-domain pretraining and in-domain fine-tuning, in this work, we propose a multi-source pretraining paradigm to better leverage the external summary data. Specifically, we exploit large-scale in-domain non-summary data to separately pretrain the dialogue encoder and the summary decoder. The combined encoder-decoder model is then pretrained on the out-of-domain summary data using adversarial critics, aiming to facilitate domain-agnostic summarization. The experimental results on two public datasets show that with only limited training data, our approach achieves competitive performance and generalizes well in different dialogue scenarios.
The encoder–decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relations with different levels of granularity of the source document and its retrieved references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.
The clustering-based unsupervised relation discovery method has gradually become one of the important methods of open relation extraction (OpenRE). However, high-dimensional vectors can encode complex linguistic information which leads to the problem that the derived clusters cannot explicitly align with the relational semantic classes. In this work, we propose a relation-oriented clustering model and use it to identify the novel relations in the unlabeled data. Specifically, to enable the model to learn to cluster relational data, our method leverages the readily available labeled data of pre-defined relations to learn a relation-oriented representation. We minimize distance between the instance with same relation by gathering the instances towards their corresponding relation centroids to form a cluster structure, so that the learned representation is cluster-friendly. To reduce the clustering bias on predefined classes, we optimize the model by minimizing a joint objective on both labeled and unlabeled data. Experimental results show that our method reduces the error rate by 29.2% and 15.7%, on two datasets respectively, compared with current SOTA methods.
Recently, the sequence-to-sequence models have made remarkable progress on the task of keyphrase generation (KG) by concatenating multiple keyphrases in a predefined order as a target sequence during training. However, the keyphrases are inherently an unordered set rather than an ordered sequence. Imposing a predefined order will introduce wrong bias during training, which can highly penalize shifts in the order between keyphrases. In this work, we propose a new training paradigm One2Set without predefining an order to concatenate the keyphrases. To fit this paradigm, we propose a novel model that utilizes a fixed set of learned control codes as conditions to generate a set of keyphrases in parallel. To solve the problem that there is no correspondence between each prediction and target during training, we propose a K-step label assignment mechanism via bipartite matching, which greatly increases the diversity and reduces the repetition rate of generated keyphrases. The experimental results on multiple benchmarks demonstrate that our approach significantly outperforms the state-of-the-art methods.
Named Entity Recognition (NER) is the task of identifying spans that represent entities in sentences. Whether the entity spans are nested or discontinuous, the NER task can be categorized into the flat NER, nested NER, and discontinuous NER subtasks. These subtasks have been mainly solved by the token-level sequence labelling or span-level classification. However, these solutions can hardly tackle the three kinds of NER subtasks concurrently. To that end, we propose to formulate the NER subtasks as an entity span sequence generation task, which can be solved by a unified sequence-to-sequence (Seq2Seq) framework. Based on our unified framework, we can leverage the pre-trained Seq2Seq model to solve all three kinds of NER subtasks without the special design of the tagging schema or ways to enumerate spans. We exploit three types of entity representations to linearize entities into a sequence. Our proposed framework is easy-to-implement and achieves state-of-the-art (SoTA) or near SoTA performance on eight English NER datasets, including two flat NER datasets, three nested NER datasets, and three discontinuous NER datasets.
Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for sentence-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that “the instance does not belong to these complementary labels”. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the model’s performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.
Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.
Recurrent neural networks (RNN) used for Chinese named entity recognition (NER) that sequentially track character and word information have achieved great success. However, the characteristic of chain structure and the lack of global semantics determine that RNN-based models are vulnerable to word ambiguities. In this work, we try to alleviate this problem by introducing a lexicon-based graph neural network with global semantics, in which lexicon knowledge is used to connect characters to capture the local composition, while a global relay node can capture global sentence semantics and long-range dependency. Based on the multiple graph-based interactions among characters, potential words, and the whole-sentence semantics, word ambiguities can be effectively tackled. Experiments on four NER datasets show that the proposed model achieves significant improvements against other baseline models.
Attention mechanisms have been leveraged for sentiment classification tasks because not all words have the same importance. However, most existing attention models did not take full advantage of sentiment lexicons, which provide rich sentiment information and play a critical role in sentiment analysis. To achieve the above target, in this work, we propose a novel lexicon-based supervised attention model (LBSA), which allows a recurrent neural network to focus on the sentiment content, thus generating sentiment-informative representations. Compared with general attention models, our model has better interpretability and less noise. Experimental results on three large-scale sentiment classification datasets showed that the proposed method outperforms previous methods.
Part-of-Speech (POS) tagging for Twitter has received considerable attention in recent years. Because most POS tagging methods are based on supervised models, they usually require a large amount of labeled data for training. However, the existing labeled datasets for Twitter are much smaller than those for newswire text. Hence, to help POS tagging for Twitter, most domain adaptation methods try to leverage newswire datasets by learning the shared features between the two domains. However, from a linguistic perspective, Twitter users not only tend to mimic the formal expressions of traditional media, like news, but they also appear to be developing linguistically informal styles. Therefore, POS tagging for the formal Twitter context can be learned together with the newswire dataset, while POS tagging for the informal Twitter context should be learned separately. To achieve this task, in this work, we propose a hypernetwork-based method to generate different parameters to separately model contexts with different expression styles. Experimental results on three different datasets show that our approach achieves better performance than state-of-the-art methods in most cases.
In this work, we study the problem of part-of-speech tagging for Tweets. In contrast to newswire articles, Tweets are usually informal and contain numerous out-of-vocabulary words. Moreover, there is a lack of large scale labeled datasets for this domain. To tackle these challenges, we propose a novel neural network to make use of out-of-domain labeled data, unlabeled in-domain data, and labeled in-domain data. Inspired by adversarial neural networks, the proposed method tries to learn common features through adversarial discriminator. In addition, we hypothesize that domain-specific features of target domain should be preserved in some degree. Hence, the proposed method adopts a sequence-to-sequence autoencoder to perform this task. Experimental results on three different datasets show that our method achieves better performance than state-of-the-art methods.