Taeyoon Kwon
2024
Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation
Dongjin Kang
|
Sunghwan Kim
|
Taeyoon Kwon
|
Seungjun Moon
|
Hyunsouk Cho
|
Youngjae Yu
|
Dongha Lee
|
Jinyoung Yeo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Emotional Support Conversation (ESC) is a task aimed at alleviating individuals’ emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.
2023
Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents
Hyungjoo Chae
|
Yongho Song
|
Kai Ong
|
Taeyoon Kwon
|
Minjin Kim
|
Youngjae Yu
|
Dongha Lee
|
Dongyeop Kang
|
Jinyoung Yeo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
Search
Co-authors
- Youngjae Yu 2
- Dongha Lee 2
- Jinyoung Yeo 2
- Dongjin Kang 1
- Sunghwan Mac Kim 1
- show all...