Shulin Cao


2024

pdf
How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering
Jinxin Liu | Shulin Cao | Jiaxin Shi | Tingjian Zhang | Lunyiu Nie | Linmei Hu | Lei Hou | Juanzi Li
Findings of the Association for Computational Linguistics ACL 2024

Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases. A typical approach to KBQA is semantic parsing, which translates a question into an executable logical form in a formal language. Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance. However, although it is validated that LLMs are capable of solving some KBQA problems, there has been little discussion on the differences in LLMs’ proficiency in formal languages used in semantic parsing. In this work, we propose to evaluate the understanding and generation ability of LLMs to deal with differently structured logical forms by examining the inter-conversion of natural and formal language through in-context learning of LLMs. Extensive experiments with models of different sizes show that state-of-the-art LLMs can understand formal languages as well as humans, but generating correct logical forms given a few examples remains a challenge. Most importantly, our results also indicate that LLMs exhibit considerable sensitivity. In general, the formal language with a lower formalization level, i.e., the more similar it is to natural language, is more friendly to LLMs. Code and data can be found at https://github.com/Matthewlliu/structure_probe.

pdf
Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models
Yantao Liu | Zijun Yao | Xin Lv | Yuchen Fan | Shulin Cao | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Providing knowledge documents for large language models (LLMs) has emerged as a promising solution to update the static knowledge inherent in their parameters. However, knowledge in the document may conflict with the memory of LLMs due to outdated or incorrect knowledge in the LLMs’ parameters. This leads to the necessity of examining the capability of LLMs to assimilate supplemental external knowledge that conflicts with their memory. While previous studies have explained to what extent LLMs extract conflicting knowledge from the provided text, they neglect the necessity to <b>reason</b> with conflicting knowledge. Furthermore, there lack a detailed analysis on strategies to enable LLMs to resolve conflicting knowledge via prompting, decoding strategy, and supervised fine-tuning. To address these limitations, we construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering. KNOT facilitates in-depth analysis by dividing reasoning with conflicting knowledge into three levels: (1) Direct Extraction, which directly extracts conflicting knowledge to answer questions. (2) Explicit Reasoning, which reasons with conflicting knowledge when the reasoning path is explicitly provided in the question. (3) Implicit Reasoning, where reasoning with conflicting knowledge requires LLMs to infer the reasoning path independently to answer questions. We also conduct extensive experiments on KNOT to establish empirical guidelines for LLMs to utilize conflicting knowledge in complex circumstances. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/KNOT>GitHub repository</a> .

2023

pdf
FC-KBQA: A Fine-to-Coarse Composition Framework for Knowledge Base Question Answering
Lingxi Zhang | Jing Zhang | Yanling Wang | Shulin Cao | Xinmei Huang | Cuiping Li | Hong Chen | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The generalization problem on KBQA has drawn considerable attention. Existing research suffers from the generalization issue brought by the entanglement in the coarse-grained modeling of the logical expression, or inexecutability issues due to the fine-grained modeling of disconnected classes and relations in real KBs. We propose a Fine-to-Coarse Composition framework for KBQA (FC-KBQA) to both ensure the generalization ability and executability of the logical expression. The main idea of FC-KBQA is to extract relevant fine-grained knowledge components from KB and reformulate them into middle-grained knowledge pairs for generating the final logical expressions. FC-KBQA derives new state-of-the-art performance on GrailQA and WebQSP, and runs 4 times faster than the baseline. Our code is now available at GitHub https://github.com/RUCKBReasoning/FC-KBQA.

pdf
Reasoning over Hierarchical Question Decomposition Tree for Explainable Question Answering
Jiajie Zhang | Shulin Cao | Tingjian Zhang | Xin Lv | Juanzi Li | Lei Hou | Jiaxin Shi | Qi Tian
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Explainable question answering (XQA) aims to answer a given question and provide an explanation why the answer is selected. Existing XQA methods focus on reasoning on a single knowledge source, e.g., structured knowledge bases, unstructured corpora, etc. However, integrating information from heterogeneous knowledge sources is essential to answer complex questions. In this paper, we propose to leverage question decomposing for heterogeneous knowledge integration, by breaking down a complex question into simpler ones, and selecting the appropriate knowledge source for each sub-question. To facilitate reasoning, we propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT). First, we build the Hierarchical Question Decomposition Tree (HQDT) to understand the semantics of a complex question; then, we conduct probabilistic reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels and search for a best solution considering the decomposing and answering probabilities. The experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly, demonstrating the effectiveness of leveraging question decomposing for knowledge integration and our RoHT framework.

pdf
VisKoP: Visual Knowledge oriented Programming for Interactive Knowledge Base Question Answering
Zijun Yao | Yuanyong Chen | Xin Lv | Shulin Cao | Amy Xin | Jifan Yu | Hailong Jin | Jianjun Xu | Peng Zhang | Lei Hou | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We present Visual Knowledge oriented Programming platform (VisKoP), a knowledge base question answering (KBQA) system that integrates human into the loop to edit and debug the knowledge base (KB) queries. VisKoP not only provides a neural program induction module, which converts natural language questions into knowledge oriented program language (KoPL), but also maps KoPL programs into graphical elements. KoPL programs can be edited with simple graphical operators, such as ”dragging” to add knowledge operators and ”slot filling” to designate operator arguments. Moreover, VisKoP provides auto-completion for its knowledge base schema and users can easily debug the KoPL program by checking its intermediate results. To facilitate the practical KBQA on a million-entity-level KB, we design a highly efficient KoPL execution engine for the back-end. Experiment results show that VisKoP is highly efficient and user interaction can fix a large portion of wrong KoPL programs to acquire the correct answer. The VisKoP online demo, highly efficient KoPL engine, and screencast video are now publicly available.

pdf
KoRC: Knowledge Oriented Reading Comprehension Benchmark for Deep Text Understanding
Zijun Yao | Yantao Liu | Xin Lv | Shulin Cao | Jifan Yu | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: ACL 2023

Deep text understanding, which requires the connections between a given document and prior knowledge beyond its text, has been highlighted by many benchmarks in recent years. However, these benchmarks have encountered two major limitations. On the one hand, most of them require human annotation of knowledge, which leads to limited knowledge coverage. On the other hand, they usually use choices or spans in the texts as the answers, which results in narrow answer space. To overcome these limitations, we build a new challenging benchmark named KoRC in this paper. Compared with previous benchmarks, KoRC has two advantages, i.e., broad knowledge coverage and flexible answer format. Specifically, we utilize massive knowledge bases to guide annotators or large language models (LLMs) to construct knowledgable questions. Moreover, we use labels in knowledge bases rather than spans or choices as the final answers. We test state-of-the-art models on KoRC and the experimental results show that the strongest baseline only achieves 68.3% and 30.0% F1 measure in the IID and OOD test set, respectively. These results indicate that deep text understanding is still an unsolved challenge. We will release our dataset and baseline methods upon acceptance.

pdf
Probabilistic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions
Shulin Cao | Jiajie Zhang | Jiaxin Shi | Xin Lv | Zijun Yao | Qi Tian | Lei Hou | Juanzi Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models’ parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.

2022

pdf
GraphQ IR: Unifying the Semantic Parsing of Graph Query Languages with One Intermediate Representation
Lunyiu Nie | Shulin Cao | Jiaxin Shi | Jiuding Sun | Qi Tian | Lei Hou | Juanzi Li | Jidong Zhai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Subject to the huge semantic gap between natural and formal languages, neural semantic parsing is typically bottlenecked by its complexity of dealing with both input semantics and output syntax. Recent works have proposed several forms of supplementary supervision but none is generalized across multiple formal languages. This paper proposes a unified intermediate representation for graph query languages, named GraphQ IR. It has a natural-language-like expression that bridges the semantic gap and formally defined syntax that maintains the graph structure. Therefore, a neural semantic parser can more precisely convert user queries into GraphQ IR, which can be later losslessly compiled into various downstream graph query languages. Extensive experiments on several benchmarks including KQA Pro, Overnight, GrailQA, and MetaQA-Cypher under the standard i.i.d., out-of-distribution, and low-resource settings validate GraphQ IR’s superiority over the previous state-of-the-arts with a maximum 11% accuracy improvement.

pdf
KQA Pro: A Dataset with Explicit Compositional Programs for Complex Question Answering over Knowledge Base
Shulin Cao | Jiaxin Shi | Liangming Pan | Lunyiu Nie | Yutong Xiang | Lei Hou | Juanzi Li | Bin He | Hanwang Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation, etc. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are poor in diversity or scale. To this end, we introduce KQA Pro, a dataset for Complex KBQA including around 120K diverse natural language questions. We introduce a compositional and interpretable programming language KoPL to represent the reasoning process of complex questions. For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro can serve for both KBQA and semantic parsing tasks. Experimental results show that state-of-the-art KBQA methods cannot achieve promising results on KQA Pro as on current datasets, which suggests that KQA Pro is challenging and Complex KBQA requires further research efforts. We also treat KQA Pro as a diagnostic dataset for testing multiple reasoning skills, conduct a thorough evaluation of existing models and discuss further directions for Complex KBQA. Our codes and datasets can be obtained from https://github.com/shijx12/KQAPro_Baselines.

pdf
Program Transfer for Answering Complex Questions over Knowledge Bases
Shulin Cao | Jiaxin Shi | Zijun Yao | Xin Lv | Jifan Yu | Lei Hou | Juanzi Li | Zhiyuan Liu | Jinghui Xiao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Program induction for answering complex questions over knowledge bases (KBs) aims to decompose a question into a multi-step program, whose execution against the KB produces the final answer. Learning to induce programs relies on a large number of parallel question-program pairs for the given KB. However, for most KBs, the gold program annotations are usually lacking, making learning difficult. In this paper, we propose the approach of program transfer, which aims to leverage the valuable program annotations on the rich-resourced KBs as external supervision signals to aid program induction for the low-resourced KBs that lack program annotations. For program transfer, we design a novel two-stage parsing framework with an efficient ontology-guided pruning strategy. First, a sketch parser translates the question into a high-level program sketch, which is the composition of functions. Second, given the question and sketch, an argument parser searches the detailed arguments from the KB for functions. During the searching, we incorporate the KB ontology to prune the search space. The experiments on ComplexWebQuestions and WebQuestionSP show that our method outperforms SOTA methods significantly, demonstrating the effectiveness of program transfer and our framework. Our codes and datasets can be obtained from https://github.com/THU-KEG/ProgramTransfer.

pdf
Knowledge-augmented Self-training of A Question Rewriter for Conversational Knowledge Base Question Answering
Xirui Ke | Jing Zhang | Xin Lv | Yiqi Xu | Shulin Cao | Cuiping Li | Hong Chen | Juanzi Li
Findings of the Association for Computational Linguistics: EMNLP 2022

The recent rise of conversational applications such as online customer service systems and intelligent personal assistants has promoted the development of conversational knowledge base question answering (ConvKBQA). Different from the traditional single-turn KBQA, ConvKBQA usually explores multi-turn questions around a topic, where ellipsis and coreference pose great challenges to the single-turn KBQA systems which require self-contained questions. In this paper, we propose a rewrite-and-reason framework to first produce a full-fledged rewritten question based on the conversation history and then reason the answer by existing single-turn KBQA models. To overcome the absence of the rewritten supervision signals, we introduce a knowledge-augmented self-training mechanism to transfer the question rewriter from another dataset to adapt to the current knowledge base. Our question rewriter is decoupled from the subsequent QA process, which makes it easy to be united with either retrieval-based or semantic parsing-based KBQA models. Experiment results demonstrate the effectiveness of our method and a new state-of-the-art result is achieved. The code and dataset are available online now.

pdf
Dependency Parsing via Sequence Generation
Boda Lin | Zijun Yao | Jiaxin Shi | Shulin Cao | Binghao Tang | Si Li | Yong Luo | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: EMNLP 2022

Dependency parsing aims to extract syntactic dependency structure or semantic dependency structure for sentences.Existing methods for dependency parsing include transition-based method, graph-based method and sequence-to-sequence method.These methods obtain excellent performance and we notice them belong to labeling method.Therefore, it may be very valuable and interesting to explore the possibility of using generative method to implement dependency parsing.In this paper, we propose to achieve Dependency Parsing (DP) via Sequence Generation (SG) by utilizing only the pre-trained language model without any auxiliary structures.We first explore different serialization designing strategies for converting parsing structures into sequences.Then we design dependency units and concatenate these units into the sequence for DPSG.We verify the DPSG is capable of parsing on widely used DP benchmarks, i.e., PTB, UD2.2, SDP15 and SemEval16.In addition, we also investigate the astonishing low-resource applicability of DPSG, which includes unsupervised cross-domain conducted on CODT and few-shot cross-task conducted on SDP15.Our research demonstrates that sequence generation is one of the effective methods to achieve dependency parsing.Our codes are available now.

2021

pdf
TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph
Jiaxin Shi | Shulin Cao | Lei Hou | Juanzi Li | Hanwang Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., spouse) or text in text corpus (e.g., they have been married for 26 years). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.

2018

pdf
OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han | Shulin Cao | Xin Lv | Yankai Lin | Zhiyuan Liu | Maosong Sun | Juanzi Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We release an open toolkit for knowledge embedding (OpenKE), which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space. OpenKE prioritizes operational efficiency to support quick model validation and large-scale knowledge representation learning. Meanwhile, OpenKE maintains sufficient modularity and extensibility to easily incorporate new models into the framework. Besides the toolkit, the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are also available, which can be directly applied for many applications including information retrieval, personalized recommendation and question answering. The toolkit, documentation, and pre-trained embeddings are all released on http://openke.thunlp.org/.