Sahithya Ravi


2024

pdf
Small But Funny: A Feedback-Driven Approach to Humor Distillation
Sahithya Ravi | Patrick Huber | Akshat Shrivastava | Vered Shwartz | Arash Einolghozati
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The emergence of Large Language Models (LLMs) has brought to light promising language generation capabilities, particularly in performing tasks like complex reasoning and creative writing. Consequently, distillation through imitation of teacher responses has emerged as a popular technique to transfer knowledge from LLMs to more accessible, Small Language Models (SLMs). While this works well for simpler tasks, there is a substantial performance gap on tasks requiring intricate language comprehension and creativity, such as humor generation. We hypothesize that this gap may stem from the fact that creative tasks might be hard to learn by imitation alone and explore whether an approach, involving supplementary guidance from the teacher, could yield higher performance. To address this, we study the effect of assigning a dual role to the LLM - as a “teacher” generating data, as well as a “critic” evaluating the student’s performance. Our experiments on humor generation reveal that the incorporation of feedback significantly narrows the performance gap between SLMs and their larger counterparts compared to merely relying on imitation. As a result, our research highlights the potential of using feedback as an additional dimension to data when transferring complex language abilities via distillation.

2023

pdf
CASE: Commonsense-Augmented Score with an Expanded Answer Space
Wenkai Chen | Sahithya Ravi | Vered Shwartz
Findings of the Association for Computational Linguistics: EMNLP 2023

LLMs have demonstrated impressive zero-shot performance on NLP tasks thanks to the knowledge they acquired in their training. In multiple-choice QA tasks, the LM probabilities are used as an imperfect measure of the plausibility of each answer choice. One of the major limitations of the basic score is that it treats all words as equally important. We propose CASE, a Commonsense-Augmented Score with an Expanded Answer Space. CASE addresses this limitation by assigning importance weights for individual words based on their semantic relations to other words in the input. The dynamic weighting approach outperforms basic LM scores, not only because it reduces noise from unimportant words, but also because it informs the model of implicit commonsense knowledge that may be useful for answering the question. We then also follow prior work in expanding the answer space by generating lexically-divergent answers that are conceptually-similar to the choices. When combined with answer space expansion, our method outperforms strong baselines on 5 commonsense benchmarks. We further show these two approaches are complementary and may be especially beneficial when using smaller LMs.

pdf
COMET-M: Reasoning about Multiple Events in Complex Sentences
Sahithya Ravi | Raymond Ng | Vered Shwartz
Findings of the Association for Computational Linguistics: EMNLP 2023

Understanding the speaker’s intended meaning often involves drawing commonsense inferences to reason about what is not stated explicitly. In multi-event sentences, it requires understanding the relationships between events based on contextual knowledge. We propose COMET-M (Multi-Event), an event-centric commonsense model capable of generating commonsense inferences for a target event within a complex sentence. COMET-M builds upon COMET (Bosselut et al., 2019), which excels at generating event-centric inferences for simple sentences, but struggles with the complexity of multi-event sentences prevalent in natural text. To overcome this limitation, we curate a Multi-Event Inference (MEI) dataset of 35K human-written inferences. We train COMET-M on the human-written inferences and also create baselines using automatically labeled examples. Experimental results demonstrate the significant performance improvement of COMET-M over COMET in generating multi-event inferences. Moreover, COMET-M successfully produces distinct inferences for each target event, taking the complete context into consideration. COMET-M holds promise for downstream tasks involving natural text such as coreference resolution, dialogue, and story understanding.

pdf
What happens before and after: Multi-Event Commonsense in Event Coreference Resolution
Sahithya Ravi | Chris Tanner | Raymond Ng | Vered Shwartz
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Event coreference models cluster event mentions pertaining to the same real-world event. Recent models rely on contextualized representations to recognize coreference among lexically or contextually similar mentions. However, models typically fail to leverage commonsense inferences, which is particularly limiting for resolving lexically-divergent mentions. We propose a model that extends event mentions with temporal commonsense inferences. Given a complex sentence with multiple events, e.g., “the man killed his wife and got arrested”, with the target event “arrested”, our model generates plausible events that happen before the target event – such as “the police arrived”, and after it, such as “he was sentenced”. We show that incorporating such inferences into an existing event coreference model improves its performance, and we analyze the coreferences in which such temporal knowledge is required.