Rolando Coto-Solano

Also published as: Rolando Coto Solano, Rolando Coto-solano


2024

pdf
Development of Community-Oriented Text-to-Speech Models for Māori ‘Avaiki Nui (Cook Islands Māori)
Jesin James | Rolando Coto-Solano | Sally Akevai Nicholas | Joshua Zhu | Bovey Yu | Fuki Babasaki | Jenny Tyler Wang | Nicholas Derby
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper we describe the development of a text-to-speech system for Māori ‘Avaiki Nui (Cook Islands Māori). We provide details about the process of community-collaboration that was followed throughout the project, a continued engagement where we are trying to develop speech and language technology for the benefit of the community. During this process we gathered a group of recordings that we used to train a TTS system. When training we used two approaches, the HMM-system MaryTTS (Schröder et al., 2011) and the deep learning system FastSpeech2 (Ren et al., 2020). We performed two evaluation tasks on the models: First, we measured their quality by having the synthesized speech transcribed by ASR. The human produced ground truth had lower error rates (CER=4.3, WER=18), but the FastSpeech2 audio has lower error rates (CER=11.8 and WER=42.7) than the MaryTTS voice (CER=17.9 and WER=48.1). The second evaluation was a survey amongst speakers of the language so they could judge the voice’s quality. The ground truth was rated with the highest quality (MOS=4.6), but the FastSpeech2 voice had an overall quality of MOS=3.2, which was significantly higher than that of the MaryTTS synthesized recordings (MOS=2.0). We intend to use the FastSpeech2 model to create language learning tools for community members both on the Cook Islands and in the diaspora.

pdf
Parsing for Mauritian Creole Using Universal Dependencies
Neha Ramsurrun | Rolando Coto-Solano | Michael Gonzalez
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper presents a first attempt to apply Universal Dependencies (De Marneffe et al., 2021) to train a parser for Mauritian Creole (MC), a French-based Creole language spoken on the island of Mauritius. This paper demonstrates the construction of a 161-sentence (1007-token) treebank for MC and evaluates the performance of a part-of-speech tagger and Universal Dependencies parser trained on this data. The sentences were collected from publicly available grammar books (Syea, 2013) and online resources (Baker and Kriegel, 2013), as well as from government-produced school textbooks (Antonio-Françoise et al., 2021; Natchoo et al., 2017). The parser, trained with UDPipe 2 (Straka, 2018), reached F1 scores of UPOS=86.2, UAS=80.8 and LAS=69.8. This fares favorably when compared to models of similar size for other under-resourced Indigenous and Creole languages. We then address some of the challenges faced when applying UD to Creole languages in general and to Mauritian Creole in particular. The main challenge was the handling of spelling variation in the input. Other issues include the tagging of modal verbs, middle voice sentences, and parts of the tense-aspect-mood system (such as the particle fek).

pdf
Morphological Tagging in Bribri Using Universal Dependency Features
Jessica Karson | Rolando Coto-Solano
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

This paper outlines the Universal Features tagging of a dependency treebank for Bribri, an Indigenous language of Costa Rica. Universal Features are a morphosyntactic tagging component of Universal Dependencies, which is a framework that aims to provide an annotation system inclusive of all languages and their diverse structures (Nivre et al., 2016; de Marneffe et al., 2021). We used a rule-based system to do a first-pass tagging of a treebank of 1572 words. After manual corrections, the treebank contained 3051 morphological features. We then used this morphologically-tagged treebank to train a UDPipe 2 parsing and tagging model. This model has a UFEATS precision of 80.5 ± 3.6, which is a statistically significant improvement upon the previously available FOMA-based morphological tagger for Bribri. An error analysis suggests that missing TAM and case markers are the most common problem for the model. We hope to use this model to expand upon existing treebanks and facilitate the construction of linguistically-annotated corpora for the language.

pdf
Findings of the AmericasNLP 2024 Shared Task on the Creation of Educational Materials for Indigenous Languages
Luis Chiruzzo | Pavel Denisov | Alejandro Molina-Villegas | Silvia Fernandez-Sabido | Rolando Coto-Solano | Marvin Agüero-Torales | Aldo Alvarez | Samuel Canul-Yah | Lorena Hau-Ucán | Abteen Ebrahimi | Robert Pugh | Arturo Oncevay | Shruti Rijhwani | Katharina von der Wense | Manuel Mager
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

This paper presents the results of the first shared task about the creation of educational materials for three indigenous languages of the Americas.The task proposes to automatically generate variations of sentences according to linguistic features that could be used for grammar exercises.The languages involved in this task are Bribri, Maya, and Guarani.Seven teams took part in the challenge, submitting a total of 22 systems, obtaining very promising results.

pdf
Findings of the AmericasNLP 2024 Shared Task on Machine Translation into Indigenous Languages
Abteen Ebrahimi | Ona de Gibert | Raul Vazquez | Rolando Coto-Solano | Pavel Denisov | Robert Pugh | Manuel Mager | Arturo Oncevay | Luis Chiruzzo | Katharina von der Wense | Shruti Rijhwani
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

This paper presents the findings of the third iteration of the AmericasNLP Shared Task on Machine Translation. This year’s competition features eleven Indigenous languages found across North, Central, and South America. A total of six teams participate with a total of 157 submissions across all languages and models. Two baselines – the Sheffield and Helsinki systems from 2023 – are provided and represent hard-to-beat starting points for the competition. In addition to the baselines, teams are given access to a new repository of training data which consists of data collected by teams in prior shared tasks. Using ChrF++ as the main competition metric, we see improvements over the baseline for 4 languages: Chatino, Guarani, Quechua, and Rarámuri, with performance increases over the best baseline of 4.2 ChrF++. In this work, we present a summary of the submitted systems, results, and a human evaluation of system outputs for Bribri, which consists of both (1) a rating of meaning and fluency and (2) a qualitative error analysis of outputs from the best submitted system.

pdf
End-to-End Speech Recognition for Endangered Languages of Nepal
Marieke Meelen | Alexander O’neill | Rolando Coto-Solano
Proceedings of the Seventh Workshop on the Use of Computational Methods in the Study of Endangered Languages

This paper presents three experiments to test the most effective and efficient ASR pipeline to facilitate the documentation and preservation of endangered languages, which are often extremely low-resourced. With data from two languages in Nepal —Dzardzongke and Newar— we show that model improvements are different for different masses of data, and that transfer learning as well as a range of modifications (e.g. normalising amplitude and pitch) can be effective, but that a consistently-standardised orthography as NLP input and post-training dictionary corrections improve results even more.

pdf
Multilingual Models for ASR in Chibchan Languages
Rolando Coto-Solano | Tai Wan Kim | Alexander Jones | Sharid Loáiciga
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present experiments on Automatic Speech Recognition (ASR) for Bribri and Cabécar, two languages from the Chibchan family. We fine-tune four ASR algorithms (Wav2Vec2, Whisper, MMS & WavLM) to create monolingual models, with the Wav2Vec2 model demonstrating the best performance. We then proceed to use Wav2Vec2 for (1) experiments on training joint and transfer learning models for both languages, and (2) an analysis of the errors, with a focus on the transcription of tone. Results show effective transfer learning for both Bribri and Cabécar, but especially for Bribri. A post-processing spell checking step further reduced character and word error rates. As for the errors, tone is where the Bribri models make the most errors, whereas the simpler tonal system of Cabécar is better transcribed by the model. Our work contributes to developing better ASR technology, an important tool that could facilitate transcription, one of the major bottlenecks in language documentation efforts. Our work also assesses how existing pre-trained models and algorithms perform for genuine extremely low resource-languages.

2023

pdf
Improving Syntactic Probing Correctness and Robustness with Control Tasks
Weicheng Ma | Brian Wang | Hefan Zhang | Lili Wang | Rolando Coto-Solano | Saeed Hassanpour | Soroush Vosoughi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Syntactic probing methods have been used to examine whether and how pre-trained language models (PLMs) encode syntactic features. However, the probing methods are usually biased by the PLMs’ memorization of common word co-occurrences, even if they do not form syntactic relations. This paper presents a random-word-substitution and random-label-matching control task to reduce these biases and improve the robustness of syntactic probing methods. Our control tasks are also shown to notably improve the consistency of probing results between different probing methods and make the methods more robust with respect to the text attributes of the probing instances. Our control tasks make syntactic probing methods better at reconstructing syntactic features and more generalizable to unseen text domains. Our experiments show that our proposed control tasks are effective on different PLMs, probing methods, and syntactic features.

pdf
Findings of the AmericasNLP 2023 Shared Task on Machine Translation into Indigenous Languages
Abteen Ebrahimi | Manuel Mager | Shruti Rijhwani | Enora Rice | Arturo Oncevay | Claudia Baltazar | María Cortés | Cynthia Montaño | John E. Ortega | Rolando Coto-solano | Hilaria Cruz | Alexis Palmer | Katharina Kann
Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP)

In this work, we present the results of the AmericasNLP 2023 Shared Task on Machine Translation into Indigenous Languages of the Americas. This edition of the shared task featured eleven language pairs, one of which – Chatino-Spanish – uses a newly collected evaluation dataset, consisting of professionally translated text from the legal domain. Seven teams participated in the shared task, with a total of 181 submissions. Additionally, we conduct a human evaluation of the best system outputs, and compare them to the best submissions from the prior shared task. We find that this analysis agrees with the quantitative measures used to rank submissions, which shows further improvements of 9.64 ChrF on average across all languages, when compared to the prior winning system.

pdf
TalaMT: Multilingual Machine Translation for Cabécar-Bribri-Spanish
Alex Jones | Rolando Coto-Solano | Guillermo González Campos
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

pdf
Meeting the Needs of Low-Resource Languages: The Value of Automatic Alignments via Pretrained Models
Abteen Ebrahimi | Arya D. McCarthy | Arturo Oncevay | John E. Ortega | Luis Chiruzzo | Gustavo Giménez-Lugo | Rolando Coto-Solano | Katharina Kann
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Large multilingual models have inspired a new class of word alignment methods, which work well for the model’s pretraining languages. However, the languages most in need of automatic alignment are low-resource and, thus, not typically included in the pretraining data. In this work, we ask: How do modern aligners perform on unseen languages, and are they better than traditional methods? We contribute gold-standard alignments for Bribri–Spanish, Guarani–Spanish, Quechua–Spanish, and Shipibo-Konibo–Spanish. With these, we evaluate state-of-the-art aligners with and without model adaptation to the target language. Finally, we also evaluate the resulting alignments extrinsically through two downstream tasks: named entity recognition and part-of-speech tagging. We find that although transformer-based methods generally outperform traditional models, the two classes of approach remain competitive with each other.

2022

pdf
Evaluating Word Embeddings in Extremely Under-Resourced Languages: A Case Study in Bribri
Rolando Coto-Solano
Proceedings of the 29th International Conference on Computational Linguistics

Word embeddings are critical for numerous NLP tasks but their evaluation in actual under-resourced settings needs further examination. This paper presents a case study in Bribri, a Chibchan language from Costa Rica. Four experiments were adapted from English: Word similarities, WordSim353 correlations, odd-one-out tasks and analogies. Here we discuss their adaptation to an under-resourced Indigenous language and we use them to measure semantic and morphological learning. We trained 96 word2vec models with different hyperparameter combinations. The best models for this under-resourced scenario were Skip-grams with an intermediate size (100 dimensions) and large window sizes (10). These had an average correlation of r=0.28 with WordSim353, a 76% accuracy in semantic odd-one-out and 70% accuracy in structural/morphological odd-one-out. The performance was lower for the analogies: The best models could find the appropriate semantic target amongst the first 25 results approximately 60% of the times, but could only find the morphological/structural target 11% of the times. Future research needs to further explore the patterns of morphological/structural learning, to examine the behavior of deep learning embeddings, and to establish a human baseline. This project seeks to improve Bribri NLP and ultimately help in its maintenance and revitalization.

pdf
Development of Automatic Speech Recognition for the Documentation of Cook Islands Māori
Rolando Coto-Solano | Sally Akevai Nicholas | Samiha Datta | Victoria Quint | Piripi Wills | Emma Ngakuravaru Powell | Liam Koka’ua | Syed Tanveer | Isaac Feldman
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper describes the process of data processing and training of an automatic speech recognition (ASR) system for Cook Islands Māori (CIM), an Indigenous language spoken by approximately 22,000 people in the South Pacific. We transcribed four hours of speech from adults and elderly speakers of the language and prepared two experiments. First, we trained three ASR systems: one statistical, Kaldi; and two based on Deep Learning, DeepSpeech and XLSR-Wav2Vec2. Wav2Vec2 tied with Kaldi for lowest character error rate (CER=6±1) and was slightly behind in word error rate (WER=23±2 versus WER=18±2 for Kaldi). This provides evidence that Deep Learning ASR systems are reaching the performance of statistical methods on small datasets, and that they can work effectively with extremely low-resource Indigenous languages like CIM. In the second experiment we used Wav2Vec2 to train models with held-out speakers. While the performance decreased (CER=15±7, WER=46±16), the system still showed considerable learning. We intend to use ASR to accelerate the documentation of CIM, using newly transcribed texts to improve the ASR and also generate teaching and language revitalization materials. The trained model is available under a license based on the Kaitiakitanga License, which provides for non-commercial use while retaining control of the model by the Indigenous community.

pdf
AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages
Abteen Ebrahimi | Manuel Mager | Arturo Oncevay | Vishrav Chaudhary | Luis Chiruzzo | Angela Fan | John Ortega | Ricardo Ramos | Annette Rios | Ivan Vladimir Meza Ruiz | Gustavo Giménez-Lugo | Elisabeth Mager | Graham Neubig | Alexis Palmer | Rolando Coto-Solano | Thang Vu | Katharina Kann
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, syntactic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 Indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-R’s zero-shot performance is poor for all 10 languages, with an average performance of 38.48%. Continued pretraining offers improvements, with an average accuracy of 43.85%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 49.12%.

2021

pdf bib
Towards Universal Dependencies for Bribri
Rolando Coto-Solano | Sharid Loáiciga | Sofía Flores-Solórzano
Proceedings of the Fifth Workshop on Universal Dependencies (UDW, SyntaxFest 2021)

pdf
Explicit Tone Transcription Improves ASR Performance in Extremely Low-Resource Languages: A Case Study in Bribri
Rolando Coto-Solano
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Linguistic tone is transcribed for input into ASR systems in numerous ways. This paper shows a systematic test of several transcription styles, using as an example the Chibchan language Bribri, an extremely low-resource language from Costa Rica. The most successful models separate the tone from the vowel, so that the ASR algorithms learn tone patterns independently. These models showed improvements ranging from 4% to 25% in character error rate (CER), and between 3% and 23% in word error rate (WER). This is true for both traditional GMM/HMM and end-to-end CTC algorithms. This paper also presents the first attempt to train ASR models for Bribri. The best performing models had a CER of 33% and a WER of 50%. Despite the disadvantage of using hand-engineered representations, these models were trained on only 68 minutes of data, and therefore show the potential of ASR to generate further training materials and aid in the documentation and revitalization of the language.

pdf
Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas
Manuel Mager | Arturo Oncevay | Abteen Ebrahimi | John Ortega | Annette Rios | Angela Fan | Ximena Gutierrez-Vasques | Luis Chiruzzo | Gustavo Giménez-Lugo | Ricardo Ramos | Ivan Vladimir Meza Ruiz | Rolando Coto-Solano | Alexis Palmer | Elisabeth Mager-Hois | Vishrav Chaudhary | Graham Neubig | Ngoc Thang Vu | Katharina Kann
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This paper presents the results of the 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. The shared task featured two independent tracks, and participants submitted machine translation systems for up to 10 indigenous languages. Overall, 8 teams participated with a total of 214 submissions. We provided training sets consisting of data collected from various sources, as well as manually translated sentences for the development and test sets. An official baseline trained on this data was also provided. Team submissions featured a variety of architectures, including both statistical and neural models, and for the majority of languages, many teams were able to considerably improve over the baseline. The best performing systems achieved 12.97 ChrF higher than baseline, when averaged across languages.

2020

pdf
Neural Machine Translation Models with Back-Translation for the Extremely Low-Resource Indigenous Language Bribri
Isaac Feldman | Rolando Coto-Solano
Proceedings of the 28th International Conference on Computational Linguistics

This paper presents a neural machine translation model and dataset for the Chibchan language Bribri, with an average performance of BLEU 16.9±1.7. This was trained on an extremely small dataset (5923 Bribri-Spanish pairs), providing evidence for the applicability of NMT in extremely low-resource environments. We discuss the challenges entailed in managing training input from languages without standard orthographies, we provide evidence of successful learning of Bribri grammar, and also examine the translations of structures that are infrequent in major Indo-European languages, such as positional verbs, ergative markers, numerical classifiers and complex demonstrative systems. In addition to this, we perform an experiment of augmenting the dataset through iterative back-translation (Sennrich et al., 2016a; Hoang et al., 2018) by using Spanish sentences to create synthetic Bribri sentences. This improves the score by an average of 1.0 BLEU, but only when the new Spanish sentences belong to the same domain as the other Spanish examples. This contributes to the small but growing body of research on Chibchan NLP.

2018

pdf
Development of Natural Language Processing Tools for Cook Islands Māori
Rolando Coto Solano | Sally Akevai Nicholas | Samantha Wray
Proceedings of the Australasian Language Technology Association Workshop 2018

This paper presents three ongoing projects for NLP in Cook Islands Maori: Untrained Forced Alignment (approx. 9% error when detecting the center of words), speech-to-text (37% WER in the best trained models) and POS tagging (92% accuracy for the best performing model). Included as part of these projects are new resources filling in a gap in Australasian languages, including gold standard POS-tagged written corpora, transcribed speech corpora, time-aligned corpora down to the level of phonemes. These are part of efforts to accelerate the documentation of Cook Islands Maori and to increase its vitality amongst its users.