This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This paper provides a comprehensive summary of the “Homophobia and Transphobia Detection in Social Media Comments” shared task, which was held at the LT-EDI@EACL 2024. The objective of this task was to develop systems capable of identifying instances of homophobia and transphobia within social media comments. This challenge was extended across ten languages: English, Tamil, Malayalam, Telugu, Kannada, Gujarati, Hindi, Marathi, Spanish, and Tulu. Each comment in the dataset was annotated into three categories. The shared task attracted significant interest, with over 60 teams participating through the CodaLab platform. The submission of prediction from the participants was evaluated with the macro F1 score.
Aspect-Based Sentiment Analysis ( ABSA) aims to identify terms or multiword expressions (MWEs) on which sentiments are expressed and the sentiment polarities associated with them. The development of supervised models has been at the forefront of research in this area. However, training these models requires the availability of manually annotated datasets which is both expensive and time-consuming. Furthermore, the available annotated datasets are tailored to a specific domain, language, and text type. In this work, we address this notable challenge in current state-of-the-art ABSA research. We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning. The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies. We utilise syntactic dependency structures of sentences to complement the annotations generated by LLMs, as they may overlook domain-specific aspect terms. Extensive experimentation on multiple datasets is performed to demonstrate the efficacy of our hybrid method for the tasks of aspect term extraction and aspect sentiment classification.
Users of social media platforms are negatively affected by the proliferation of hate or abusive content. There has been a rise in homophobic and transphobic content in recent years targeting LGBT+ individuals. The increasing levels of homophobia and transphobia online can make online platforms harmful and threatening for LGBT+ persons, potentially inhibiting equality, diversity, and inclusion. We are introducing a new dataset for three languages, namely Telugu, Kannada, and Gujarati. Additionally, we have created an expert-labeled dataset to automatically identify homophobic and transphobic content within comments collected from YouTube. We provided comprehensive annotation rules to educate annotators in this process. We collected approximately 10,000 comments from YouTube for all three languages. Marking the first dataset of these languages for this task, we also developed a baseline model with pre-trained transformers.
In this digital era, memes have become a prevalent online expression, humor, sarcasm, and social commentary. However, beneath their surface lies concerning issues such as the propagation of misogyny, gender-based bias, and harmful stereotypes. To overcome these issues, we introduced MDMD (Misogyny Detection Meme Dataset) in this paper. This article focuses on creating an annotated dataset with detailed annotation guidelines to delve into online misogyny within the Tamil and Malayalam-speaking communities. Through analyzing memes, we uncover the intricate world of gender bias and stereotypes in these communities, shedding light on their manifestations and impact. This dataset, along with its comprehensive annotation guidelines, is a valuable resource for understanding the prevalence, origins, and manifestations of misogyny in various contexts, aiding researchers, policymakers, and organizations in developing effective strategies to combat gender-based discrimination and promote equality and inclusivity. It enables a deeper understanding of the issue and provides insights that can inform strategies for cultivating a more equitable and secure online environment. This work represents a crucial step in raising awareness and addressing gender-based discrimination in the digital space.
This paper describes the structure and findings of the WILDRE 2024 shared task on Code-mixed Less-resourced Sentiment Analysis for Indo-Aryan Languages. The participants were asked to submit the test data’s final prediction on CodaLab. A total of fourteen teams registered for the shared task. Only four participants submitted the system for evaluation on CodaLab, with only two teams submitting the system description paper. While all systems show a rather promising performance, they outperform the baseline scores.
There has been notable progress in the development of open-domain dialogue systems (chatbots) especially with the rapid advancement of the capabilities of Large Language Models. Chatbots excel at holding conversations in a manner that keeps a user interested and engaged. However, their responses can be unsafe, as they can respond in an offensive manner or offer harmful professional advice. As a way to mitigate this issue, recent work crowdsource datasets with exemplary responses or annotate dialogue safety datasets, which are relatively scarce compared to casual dialogues. Despite the quality of data obtained from crowdsourcing, it can be expensive and time consuming. This work proposes an effective pipeline, using information retrieval, to automatically repurpose existing dialogue datasets for safe chatbot development, as a way to address the aforementioned challenges. We select an existing dialogue dataset, revise its unsafe responses, as a way to obtain a dataset with safer responses to unsafe user inputs. We then fine-tune dialogue models on the original and revised datasets and generate responses to evaluate the safeness of the models.
While Large Language Models (LLMs) have found success in real-world applications, their underlying explanatory process is still poorly understood. This paper proposes IBE-Eval, a framework inspired by philosophical accounts on Inference to the Best Explanation (IBE) to advance the interpretation and evaluation of LLMs’ explanations. IBE-Eval estimates the plausibility of natural language explanations through a combination of explicit logical and linguistic features including: consistency, parsimony, coherence, and uncertainty. Extensive experiments are conducted on Causal Question Answering (CQA), where IBE-Eval is tasked to select the most plausible causal explanation amongst competing ones generated by LLMs (i.e., GPT 3.5 and Llama 2). The experiments reveal that IBE-Eval can successfully identify the best explanation with up to 77% accuracy (≈ 27% above random), improving upon a GPT 3.5-as-a-Judge baseline (≈+17%) while being intrinsically more efficient and interpretable. Additional analyses suggest that, despite model-specific variances, LLM-generated explanations tend to conform to IBE criteria and that IBE-Eval is significantly correlated with human judgment, opening up opportunities for future development of automated explanation verification tools.
Recent studies in Multimodal Machine Translation (MMT) have explored the use of visual information in a multimodal setting to analyze its redundancy with textual information. The aim of this work is to develop a more effective approach to incorporating relevant visual information into the translation process and improve the overall performance of MMT models. This paper proposes an object-level filtering approach in Multimodal Machine Translation, where the approach is applied to object regions extracted from an image to filter out irrelevant objects based on the image captions to be translated. Using the filtered image helps the model to consider only relevant objects and their relative locations to each other. Different matching methods, including string matching and word embeddings, are employed to identify relevant objects. Gaussian blurring is used to soften irrelevant objects from the image and to evaluate the effect of object filtering on translation quality. The performance of the filtering approaches was evaluated on the Multi30K dataset in English to German, French, and Czech translations, based on BLEU, ChrF2, and TER metrics.
We present an overview of the second shared task on homophobia/transphobia Detection in social media comments. Given a comment, a system must predict whether or not it contains any form of homophobia/transphobia. The shared task included five languages: English, Spanish, Tamil, Hindi, and Malayalam. The data was given for two tasks. Task A was given three labels, and Task B fine-grained seven labels. In total, 75 teams enrolled for the shared task in Codalab. For task A, 12 teams submitted systems for English, eight teams for Tamil, eight teams for Spanish, and seven teams for Hindi. For task B, nine teams submitted for English, 7 teams for Tamil, 6 teams for Malayalam. We present and analyze all submissions in this paper.
We explore the use of the well established lexical resource and theory of the Berkeley FrameNet project to support the creation of a domain-specific knowledge graph in the financial domain, more precisely from financial customer interactions. We introduce a domain independent and unsupervised method that can be used across multiple applications, and test our experiments on the financial domain. We use an existing tool for term extraction and taxonomy generation in combination with information taken from FrameNet. By using principles from frame semantic theory, we show that we can connect domain-specific terms with their semantic concepts (semantic frames) and their properties (frame elements) to enrich knowledge about these terms, in order to improve the customer experience in customer-agent dialogue settings.
Causal reasoning is a critical component of human cognition and is required across a range of question-answering (QA) tasks (such as abductive reasoning, commonsense QA, and procedural reasoning). Research on causal QA has been underdefined, task-specific, and limited in complexity. Recent advances in foundation language models (such as BERT, ERNIE, and T5) have shown the efficacy of pre-trained models across diverse QA tasks. However, there is limited research exploring the causal reasoning capabilities of those language models and no standard evaluation benchmark. To unify causal QA research, we propose CALM-Bench, a multi-task benchmark for evaluating causality-aware language models (CALM). We present a standardized definition of causal QA tasks and show empirically that causal reasoning can be generalized and transferred across different QA tasks. Additionally, we share a strong multi-task baseline model which outperforms single-task fine-tuned models on the CALM-Bench tasks.
We describe initial work in developing a methodology for the automatic generation of a conversational agent or ‘chatbot’ through term and relation extraction from a relevant corpus of language data. We develop our approach in the domain of industrial heritage in the 18th and 19th centuries, and more specifically on the industrial history of canals and mills in Ireland. We collected a corpus of relevant newspaper reports and Wikipedia articles, which we deemed representative of a layman’s understanding of this topic. We used the Saffron toolkit to extract relevant terms and relations between the terms from the corpus and leveraged the extracted knowledge to query the British Library Digital Collection and the Project Gutenberg library. We leveraged the extracted terms and relations in identifying possible answers for a constructed set of questions based on the extracted terms, by matching them with sentences in the British Library Digital Collection and the Project Gutenberg library. In a final step, we then took this data set of question-answer pairs to train a chatbot. We evaluate our approach by manually assessing the appropriateness of the generated answers for a random sample, each of which is judged by four annotators.
Multimodal Neural Machine Translation is focusing on using visual information to translate sentences in the source language into the target language. The main idea is to utilise information from visual modalities to promote the output quality of the text-based translation model. Although the recent multimodal strategies extract the most relevant visual information in images, the effectiveness of using visual information on translation quality changes based on the text dataset. Due to this, this work studies the impact of leveraging visual information in multimodal translation models of ambiguous sentences. Our experiments analyse the Multi30k evaluation dataset and calculate ambiguity scores of sentences based on the WordNet hierarchical structure. To calculate the ambiguity of a sentence, we extract the ambiguity scores for all nouns based on the number of senses in WordNet. The main goal is to find in which sentences, visual content can improve the text-based translation model. We report the correlation between the ambiguity scores and translation quality extracted for all sentences in the English-German dataset.
Language resources are a key component of natural language processing and related research and applications. Users of language resources have different needs in terms of format, language, topics, etc. for the data they need to use. Linghub (McCrae and Cimiano, 2015) was first developed for this purpose, using the capabilities of linked data to represent metadata, and tackling the heterogeneous metadata issue. Linghub aimed at helping language resources and technology users to easily find and retrieve relevant data, and identify important information on access, topics, etc. This work describes a rejuvenation and modernisation of the 2015 platform into using a popular open source data management system, DSpace, as foundation. The new platform, Linghub2, contains updated and extended resources, more languages offered, and continues the work towards homogenisation of metadata through conversions, through linkage to standardisation strategies and community groups, such as the Open Digital Rights Language (ODRL) community group.
Homophobia and Transphobia Detection is the task of identifying homophobia, transphobia, and non-anti-LGBT+ content from the given corpus. Homophobia and transphobia are both toxic languages directed at LGBTQ+ individuals that are described as hate speech. This paper summarizes our findings on the “Homophobia and Transphobia Detection in social media comments” shared task held at LT-EDI 2022 - ACL 2022 1. This shared taskfocused on three sub-tasks for Tamil, English, and Tamil-English (code-mixed) languages. It received 10 systems for Tamil, 13 systems for English, and 11 systems for Tamil-English. The best systems for Tamil, English, and Tamil-English scored 0.570, 0.870, and 0.610, respectively, on average macro F1-score.
This paper describes the submission by NUIG-DSI to the GEM benchmark 2021. We participate in the modeling shared task where we submit outputs on four datasets for data-to-text generation, namely, DART, WebNLG (en), E2E and CommonGen. We follow an approach similar to the one described in the GEM benchmark paper where we use the pre-trained T5-base model for our submission. We train this model on additional monolingual data where we experiment with different masking strategies specifically focused on masking entities, predicates and concepts as well as a random masking strategy for pre-training. In our results we find that random masking performs the best in terms of automatic evaluation metrics, though the results are not statistically significantly different compared to other masking strategies.
The task of causal question answering aims to reason about causes and effects over a provided real or hypothetical premise. Recent approaches have converged on using transformer-based language models to solve question answering tasks. However, pretrained language models often struggle when external knowledge is not present in the premise or when additional context is required to answer the question. To the best of our knowledge, no prior work has explored the efficacy of augmenting pretrained language models with external causal knowledge for multiple-choice causal question answering. In this paper, we present novel strategies for the representation of causal knowledge. Our empirical results demonstrate the efficacy of augmenting pretrained models with external causal knowledge. We show improved performance on the COPA (Choice of Plausible Alternatives) and WIQA (What If Reasoning Over Procedural Text) benchmark tasks. On the WIQA benchmark, our approach is competitive with the state-of-the-art and exceeds it within the evaluation subcategories of In-Paragraph and Out-of-Paragraph perturbations.
A meme is a form of media that spreads an idea or emotion across the internet. As posting meme has become a new form of communication of the web, due to the multimodal nature of memes, postings of hateful memes or related events like trolling, cyberbullying are increasing day by day. Hate speech, offensive content and aggression content detection have been extensively explored in a single modality such as text or image. However, combining two modalities to detect offensive content is still a developing area. Memes make it even more challenging since they express humour and sarcasm in an implicit way, because of which the meme may not be offensive if we only consider the text or the image. Therefore, it is necessary to combine both modalities to identify whether a given meme is offensive or not. Since there was no publicly available dataset for multimodal offensive meme content detection, we leveraged the memes related to the 2016 U.S. presidential election and created the MultiOFF multimodal meme dataset for offensive content detection dataset. We subsequently developed a classifier for this task using the MultiOFF dataset. We use an early fusion technique to combine the image and text modality and compare it with a text- and an image-only baseline to investigate its effectiveness. Our results show improvements in terms of Precision, Recall, and F-Score. The code and dataset for this paper is published in https://github.com/bharathichezhiyan/Multimodal-Meme-Classification-Identifying-Offensive-Content-in-Image-and-Text
Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.
Metaphor processing and understanding has attracted the attention of many researchers recently with an increasing number of computational approaches. A common factor among these approaches is utilising existing benchmark datasets for evaluation and comparisons. The availability, quality and size of the annotated data are among the main difficulties facing the growing research area of metaphor processing. The majority of current approaches pertaining to metaphor processing concentrate on word-level processing due to data availability. On the other hand, approaches that process metaphors on the relation-level ignore the context where the metaphoric expression. This is due to the nature and format of the available data. Word-level annotation is poorly grounded theoretically and is harder to use in downstream tasks such as metaphor interpretation. The conversion from word-level to relation-level annotation is non-trivial. In this work, we attempt to fill this research gap by adapting three benchmark datasets, namely the VU Amsterdam metaphor corpus, the TroFi dataset and the TSV dataset, to suit relation-level metaphor identification. We publish the adapted datasets to facilitate future research in relation-level metaphor processing.
Identifying metaphors in text is very challenging and requires comprehending the underlying comparison. The automation of this cognitive process has gained wide attention lately. However, the majority of existing approaches concentrate on word-level identification by treating the task as either single-word classification or sequential labelling without explicitly modelling the interaction between the metaphor components. On the other hand, while existing relation-level approaches implicitly model this interaction, they ignore the context where the metaphor occurs. In this work, we address these limitations by introducing a novel architecture for identifying relation-level metaphoric expressions of certain grammatical relations based on contextual modulation. In a methodology inspired by works in visual reasoning, our approach is based on conditioning the neural network computation on the deep contextualised features of the candidate expressions using feature-wise linear modulation. We demonstrate that the proposed architecture achieves state-of-the-art results on benchmark datasets. The proposed methodology is generic and could be applied to other textual classification problems that benefit from contextual interaction.
The voice of the customer has for a long time been a key focus of businesses in all domains. It has received a lot of attention from the research community in Natural Language Processing (NLP) resulting in many approaches to analyzing customers feedback ((aspect-based) sentiment analysis, topic modeling, etc.). In the health domain, public and private bodies are increasingly prioritizing patient engagement for assessing the quality of the service given at each stage of the care. Patient and customer satisfaction analysis relate in many ways. In the domain of health particularly, a more precise and insightful analysis is needed to help practitioners locate potential issues and plan actions accordingly. We introduce here an approach to patient experience with the analysis of free text questions from the 2017 Irish National Inpatient Survey campaign using term extraction as a means to highlight important and insightful subject matters raised by patients. We evaluate the results by mapping them to a manually constructed framework following the Activity, Resource, Context (ARC) methodology (Ordenes, 2014) and specific to the health care environment, and compare our results against manual annotations done on the full 2017 dataset based on those categories.
In this work, we address the task of extracting application-specific taxonomies from the category hierarchy of Wikipedia. Previous work on pruning the Wikipedia knowledge graph relied on silver standard taxonomies which can only be automatically extracted for a small subset of domains rooted in relatively focused nodes, placed at an intermediate level in the knowledge graphs. In this work, we propose an iterative methodology to extract an application-specific gold standard dataset from a knowledge graph and an evaluation framework to comparatively assess the quality of noisy automatically extracted taxonomies. We employ an existing state of the art algorithm in an iterative manner and we propose several sampling strategies to reduce the amount of manual work needed for evaluation. A first gold standard dataset is released to the research community for this task along with a companion evaluation framework. This dataset addresses a real-world application from the medical domain, namely the extraction of food-drug and herb-drug interactions.
Metaphor comprehension and understanding is a complex cognitive task that requires interpreting metaphors by grasping the interaction between the meaning of their target and source concepts. This is very challenging for humans, let alone computers. Thus, automatic metaphor interpretation is understudied in part due to the lack of publicly available datasets. The creation and manual annotation of such datasets is a demanding task which requires huge cognitive effort and time. Moreover, there will always be a question of accuracy and consistency of the annotated data due to the subjective nature of the problem. This work addresses these issues by presenting an annotation scheme to interpret verb-noun metaphoric expressions in text. The proposed approach is designed with the goal of reducing the workload on annotators and maintain consistency. Our methodology employs an automatic retrieval approach which utilises external lexical resources, word embeddings and semantic similarity to generate possible interpretations of identified metaphors in order to enable quick and accurate annotation. We validate our proposed approach by annotating around 1,500 metaphors in tweets which were annotated by six native English speakers. As a result of this work, we publish as linked data the first gold standard dataset for metaphor interpretation which will facilitate research in this area.
This work addresses the classification problem defined by sub-task A (English only) of the OffensEval 2020 challenge. We used a semi-supervised approach to classify given tweets into an offensive (OFF) or not-offensive (NOT) class. As the OffensEval 2020 dataset is loosely labelled with confidence scores given by unsupervised models, we used last year’s offensive language identification dataset (OLID) to label the OffensEval 2020 dataset. Our approach uses a pseudo-labelling method to annotate the current dataset. We trained four text classifiers on the OLID dataset and the classifier with the highest macro-averaged F1-score has been used to pseudo label the OffensEval 2020 dataset. The same model which performed best amongst four text classifiers on OLID dataset has been trained on the combined dataset of OLID and pseudo labelled OffensEval 2020. We evaluated the classifiers with precision, recall and macro-averaged F1-score as the primary evaluation metric on the OLID and OffensEval 2020 datasets. This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://creativecommons.org/licenses/by/4.0/.
Data-to-text generation has recently seen a move away from modular and pipeline architectures towards end-to-end architectures based on neural networks. In this work, we employ knowledge graph embeddings and explore their utility for end-to-end approaches in a data-to-text generation task. Our experiments show that using knowledge graph embeddings can yield an improvement of up to 2 – 3 BLEU points for seen categories on the WebNLG corpus without modifying the underlying neural network architecture.
This paper describes the system submitted by NUIG-DSI to the WebNLG+ challenge 2020 in the RDF-to-text generation task for the English language. For this challenge, we leverage transfer learning by adopting the T5 model architecture for our submission and fine-tune the model on the WebNLG+ corpus. Our submission ranks among the top five systems for most of the automatic evaluation metrics achieving a BLEU score of 51.74 over all categories with scores of 58.23 and 45.57 across seen and unseen categories respectively.
We present the pilot SemEval task on Suggestion Mining. The task consists of subtasks A and B, where we created labeled data from feedback forum and hotel reviews respectively. Subtask A provides training and test data from the same domain, while Subtask B evaluates the system on a test dataset from a different domain than the available training data. 33 teams participated in the shared task, with a total of 50 members. We summarize the problem definition, benchmark dataset preparation, and methods used by the participating teams, providing details of the methods used by the top ranked systems. The dataset is made freely available to help advance the research in suggestion mining, and reproduce the systems submitted under this task
Metaphor is an essential element of human cognition which is often used to express ideas and emotions that might be difficult to express using literal language. Processing metaphoric language is a challenging task for a wide range of applications ranging from text simplification to psychotherapy. Despite the variety of approaches that are trying to process metaphor, there is still a need for better models that mimic the human cognition while exploiting fewer resources. In this paper, we present an approach based on distributional semantics to identify metaphors on the phrase-level. We investigated the use of different word embeddings models to identify verb-noun pairs where the verb is used metaphorically. Several experiments are conducted to show the performance of the proposed approach on benchmark datasets.
With the rising popularity of social media in the society and in research, analysing texts short in length, such as microblogs, becomes an increasingly important task. As a medium of communication, microblogs carry peoples sentiments and express them to the public. Given that sentiments are driven by multiple factors including the news media, the question arises if the sentiment expressed in news and the news article themselves can be leveraged to detect and classify sentiment in microblogs. Prior research has highlighted the impact of sentiments and opinions on the market dynamics, making the financial domain a prime case study for this approach. Therefore, this paper describes ongoing research dealing with the exploitation of news contained sentiment to improve microblog sentiment classification in a financial context.
Social media’s popularity in society and research is gaining momentum and simultaneously increasing the importance of short textual content such as microblogs. Microblogs are affected by many factors including the news media, therefore, we exploit sentiments conveyed from news to detect and classify sentiment in microblogs. Given that texts can deal with the same entity but might not be vastly related when it comes to sentiment, it becomes necessary to introduce further measures ensuring the relatedness of texts while leveraging the contained sentiments. This paper describes ongoing research introducing distributional semantics to improve the exploitation of news-contained sentiment to enhance microblog sentiment classification.
Princeton WordNet is one of the most important resources for natural language processing, but is only available for English. While it has been translated using the expand approach to many other languages, this is an expensive manual process. Therefore it would be beneficial to have a high-quality automatic translation approach that would support NLP techniques, which rely on WordNet in new languages. The translation of wordnets is fundamentally complex because of the need to translate all senses of a word including low frequency senses, which is very challenging for current machine translation approaches. For this reason we leverage existing translations of WordNet in other languages to identify contextual information for wordnet senses from a large set of generic parallel corpora. We evaluate our approach using 10 translated wordnets for European languages. Our experiment shows a significant improvement over translation without any contextual information. Furthermore, we evaluate how the choice of pivot languages affects performance of multilingual word sense disambiguation.
Text analysis methods for the automatic identification of emerging technologies by analyzing the scientific publications, are gaining attention because of their socio-economic impact. The approaches so far have been mainly focused on retrospective analysis by mapping scientific topic evolution over time. We propose regression based approaches to predict future keyword distribution. The prediction is based on historical data of the keywords, which in our case, are LREC conference proceedings. Considering the insufficient number of data points available from LREC proceedings, we do not employ standard time series forecasting methods. We form a dataset by extracting the keywords from previous year proceedings and quantify their yearly relevance using tf-idf scores. This dataset additionally contains ranked lists of related keywords and experts for each keyword.
We describe IRIS, a statistical machine translation (SMT) system for translating from English into Irish and vice versa. Since Irish is considered an under-resourced language with a limited amount of machine-readable text, building a machine translation system that produces reasonable translations is rather challenging. As translation is a difficult task, current research in SMT focuses on obtaining statistics either from a large amount of parallel, monolingual or other multilingual resources. Nevertheless, we collected available English-Irish data and developed an SMT system aimed at supporting human translators and enabling cross-lingual language technology tasks.
Wikipedia has been increasingly used as a knowledge base for open-domain Named Entity Linking and Disambiguation. In this task, a dictionary with entity surface forms plays an important role in finding a set of candidate entities for the mentions in text. Existing dictionaries mostly rely on the Wikipedia link structure, like anchor texts, redirect links and disambiguation links. In this paper, we introduce a dictionary for Entity Linking that includes name variations extracted from Wikipedia article text, in addition to name variations derived from the Wikipedia link structure. With this approach, we show an increase in the coverage of entities and their mentions in the dictionary in comparison to other Wikipedia based dictionaries.
In this paper, we address the problem of extracting and integrating bilingual terminology into a Statistical Machine Translation (SMT) system for a Computer Aided Translation (CAT) tool scenario. We develop a framework that, taking as input a small amount of parallel in-domain data, gathers domain-specific bilingual terms and injects them in an SMT system to enhance the translation productivity. Therefore, we investigate several strategies to extract and align bilingual terminology, and to embed it into the SMT. We compare two embedding methods that can be easily used at run-time without altering the normal activity of an SMT system: XML markup and the cache-based model. We tested our framework on two different domains showing improvements up to 15% BLEU score points.
A translation memory system stores a data set of source-target pairs of translations. It attempts to respond to a query in the source language with a useful target text from the data set to assist a human translator. Such systems estimate the usefulness of a target text suggestion according to the similarity of its associated source text to the source text query. This study analyses two data sets in two language pairs each to find highly similar target texts, which would be useful mutual suggestions. We further investigate which of these useful suggestions can not be selected through source text similarity, and we do a thorough analysis of these cases to categorise and quantify them. This analysis provides insight into areas where the recall of translation memory systems can be improved. Specifically, source texts with an omission, and semantically very similar source texts are some of the more frequent cases with useful target text suggestions that are not selected with the baseline approach of simple edit distance between the source texts.
In this paper we present a comparative analysis of two series of conferences in the field of Computational Linguistics, the LREC conference and the ACL conference. Conference proceedings were analysed using Saffron by performing term extraction and topical hierarchy construction with the goal of analysing topic trends and research communities. The system aims to provide insight into a research community and to guide publication and participation strategies, especially of novice researchers.
In this paper, we address the problem of extracting technical terms automatically from an unannotated corpus. We introduce a technology term tagger that is based on Liblinear Support Vector Machines and employs linguistic features including Part of Speech tags and Dependency Structures, in addition to user feedback to perform the task of identification of technology related terms. Our experiments show the applicability of our approach as witnessed by acceptable results on precision and recall.
Enterprise content analysis and platform configuration for enterprise content management is often carried out by external consultants that are not necessarily domain experts. In this paper, we propose a set of methods for automatic content analysis that allow users to gain a high level view of the enterprise content. Here, a main concern is the automatic identification of key stakeholders that should ideally be involved in analysis interviews. The proposed approach employs recent advances in term extraction, semantic term grounding, expert profiling and expert finding in an enterprise content management setting. Extracted terms are evaluated using human judges, while term grounding is evaluated using a manually created gold standard for the DBpedia datasource.
OntoSelect is a dynamic web-based ontology library that harvests, analyzes and organizes ontologies published on the Semantic Web. OntoSelect allows searching as well as browsing of ontologies according to size (number of classes, properties), representation format (DAML, RDFS, OWL), connectedness (score over the number of included and referring ontologies) and human languages used for class- and object property-labels. Ontology search in OntoSelect is based on a combined measure of coverage, structure and connectedness. Further, and in contrast to other ontology search engines, OntoSelect provides ontology search based on a complete web document instead of one or more keywords only.
This paper is motivated by the demand for more linguistic resources for the study of languages and the improvement of those already existing. The first step in our work is the selection of the most significant frames in the English FrameNet according to a representative medical corpus. These frames were subsequently attached to different EuroWordNet synsets and translated into Spanish. Results show how the translation was made with high accuracy (95.9 % of correct words). In addition to that, the original English lexical units were augmented with new units by 120%
In this paper we describe SOBA, a sub-component of the SmartWeb multi-modal dialog system. SOBA is a component for ontologybased information extraction from soccer web pages for automatic population of a knowledge base that can be used for domainspecific question answering. SOBA realizes a tight connection between the ontology, knowledge base and the information extraction component. The originality of SOBA is in the fact that it extracts information from heterogeneous sources such as tabular structures, text and image captions in a semantically integrated way. In particular, it stores extracted information in a knowledge base, and in turn uses the knowledge base to interpret and link newly extracted information with respect to already existing entities.