In this paper, we detail the methods we used to determine the idiomaticity and plausibility of candidate words or phrases into an instructional text as part of the SemEval Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts. Given a set of steps in an instructional text, there are certain phrases that most plausibly fill that spot. We explored various possible architectures, including tree-based methods over GloVe embeddings, ensembled BERT and ELECTRA models, and GPT 2-based infilling methods.
While large pre-trained language models are powerful, their predictions often lack logical consistency across test inputs. For example, a state-of-the-art Macaw question-answering (QA) model answers <i>Yes</i> to <i>Is a sparrow a bird?</i> and <i>Does a bird have feet?</i> but answers <i>No</i> to <i>Does a sparrow have feet?</i>. To address this failure mode, we propose a framework, Consistency Correction through Relation Detection, or <b>ConCoRD</b>, for boosting the consistency and accuracy of pre-trained NLP models using pre-trained natural language inference (NLI) models without fine-tuning or re-training. Given a batch of test inputs, ConCoRD samples several candidate outputs for each input and instantiates a factor graph that accounts for both the model’s belief about the likelihood of each answer choice in isolation and the NLI model’s beliefs about pair-wise answer choice compatibility. We show that a weighted MaxSAT solver can efficiently compute high-quality answer choices under this factor graph, improving over the raw model’s predictions. Our experiments demonstrate that ConCoRD consistently boosts accuracy and consistency of off-the-shelf closed-book QA and VQA models using off-the-shelf NLI models, notably increasing accuracy of LXMERT on ConVQA by 5% absolute. See the project website (https://ericmitchell.ai/emnlp-2022-concord/) for code and data.
This paper presents our system for the single- and multi-word lexical complexity prediction tasks of SemEval Task 1: Lexical Complexity Prediction. Text comprehension depends on the reader’s ability to understand the words present in it; evaluating the lexical complexity of such texts can enable readers to find an appropriate text and systems to tailor a text to an audience’s needs. We present our model pipeline, which applies a combination of embedding-based and manual features to predict lexical complexity on the CompLex English dataset using various tree-based and linear models. Our method is ranked 27 / 54 on single-word prediction and 14 / 37 on multi-word prediction.
This paper presents our system for the Quantity span identification, Unit of measurement identification and Value modifier classification subtasks of the MeasEval 2021 task. The purpose of the Quantity span identification task was to locate spans of text that contain a count or measurement, consisting of a value, usually followed by a unit and occasionally additional modifiers. The goal of the modifier classification task was to determine whether an associated text fragment served to indicate range, tolerance, mean value, etc. of a quantity. The developed systems used pre-trained BERT models which were fine-tuned for the task at hand. We present our system, investigate how architectural decisions affected model predictions, and conduct an error analysis. Overall, our system placed 12 / 19 in the shared task and in the 2nd place for the Unit subcategory.