Neelamadhav Gantayat


2018

pdf
SandhiKosh: A Benchmark Corpus for Evaluating Sanskrit Sandhi Tools
Shubham Bhardwaj | Neelamadhav Gantayat | Nikhil Chaturvedi | Rahul Garg | Sumeet Agarwal
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
Sanskrit Sandhi Splitting using seq2(seq)2
Rahul Aralikatte | Neelamadhav Gantayat | Naveen Panwar | Anush Sankaran | Senthil Mani
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In Sanskrit, small words (morphemes) are combined to form compound words through a process known as Sandhi. Sandhi splitting is the process of splitting a given compound word into its constituent morphemes. Although rules governing word splitting exists in the language, it is highly challenging to identify the location of the splits in a compound word. Though existing Sandhi splitting systems incorporate these pre-defined splitting rules, they have a low accuracy as the same compound word might be broken down in multiple ways to provide syntactically correct splits. In this research, we propose a novel deep learning architecture called Double Decoder RNN (DD-RNN), which (i) predicts the location of the split(s) with 95% accuracy, and (ii) predicts the constituent words (learning the Sandhi splitting rules) with 79.5% accuracy, outperforming the state-of-art by 20%. Additionally, we show the generalization capability of our deep learning model, by showing competitive results in the problem of Chinese word segmentation, as well.