Moein Shahiki Tash


2022

pdf
Transformer-based Model for Word Level Language Identification in Code-mixed Kannada-English Texts
Atnafu Lambebo Tonja | Mesay Gemeda Yigezu | Olga Kolesnikova | Moein Shahiki Tash | Grigori Sidorov | Alexander Gelbukh
Proceedings of the 19th International Conference on Natural Language Processing (ICON): Shared Task on Word Level Language Identification in Code-mixed Kannada-English Texts

Language Identification at the Word Level in Kannada-English Texts. This paper describes the system paper of CoLI-Kanglish 2022 shared task. The goal of this task is to identify the different languages used in CoLI-Kanglish 2022. This dataset is distributed into different categories including Kannada, English, Mixed-Language, Location, Name, and Others. This Code-Mix was compiled by CoLI-Kanglish 2022 organizers from posts on social media. We use two classification techniques, KNN and SVM, and achieve an F1-score of 0.58 and place third out of nine competitors.

pdf
Word Level Language Identification in Code-mixed Kannada-English Texts using Deep Learning Approach
Mesay Gemeda Yigezu | Atnafu Lambebo Tonja | Olga Kolesnikova | Moein Shahiki Tash | Grigori Sidorov | Alexander Gelbukh
Proceedings of the 19th International Conference on Natural Language Processing (ICON): Shared Task on Word Level Language Identification in Code-mixed Kannada-English Texts

The goal of code-mixed language identification (LID) is to determine which language is spoken or written in a given segment of a speech, word, sentence, or document. Our task is to identify English, Kannada, and mixed language from the provided data. To train a model we used the CoLI-Kenglish dataset, which contains English, Kannada, and mixed-language words. In our work, we conducted several experiments in order to obtain the best performing model. Then, we implemented the best model by using Bidirectional Long Short Term Memory (Bi-LSTM), which outperformed the other trained models with an F1-score of 0.61%.