Maxwell Nye


2023

pdf
Language Modeling with Latent Situations
Belinda Z. Li | Maxwell Nye | Jacob Andreas
Findings of the Association for Computational Linguistics: ACL 2023

Language models (LMs) often generate incoherent outputs: they refer to events and entity states that are incompatible with the state of the world described in inputs. We introduce SITUATIONSUPERVISION, a family of approaches for improving coherence in LMs by training them to construct and condition on explicit representations of entities and their states. SITUATIONSUPERVISION has two components: an *auxiliary situation modeling* task that trains models to predict entity state representations in context, and a *latent state inference* procedure that imputes these states from partially annotated training data. SITUATIONSUPERVISION can be applied via fine-tuning (by supervising LMs to encode state variables in their hidden representations) and prompting (by inducing LMs to interleave textual descriptions of entity states with output text). In both cases, it requires only a small number of state annotations to produce substantial coherence improvements (up to an 16% reduction in errors), showing that standard LMs can be efficiently adapted to explicitly model language and aspects of its meaning.

2021

pdf
Implicit Representations of Meaning in Neural Language Models
Belinda Z. Li | Maxwell Nye | Jacob Andreas
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Does the effectiveness of neural language models derive entirely from accurate modeling of surface word co-occurrence statistics, or do these models represent and reason about the world they describe? In BART and T5 transformer language models, we identify contextual word representations that function as *models of entities and situations* as they evolve throughout a discourse. These neural representations have functional similarities to linguistic models of dynamic semantics: they support a linear readout of each entity’s current properties and relations, and can be manipulated with predictable effects on language generation. Our results indicate that prediction in pretrained neural language models is supported, at least in part, by dynamic representations of meaning and implicit simulation of entity state, and that this behavior can be learned with only text as training data.