This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on https://aka.ms/readi.
Adaptive retrieval-augmented generation (ARAG) aims to dynamically determine the necessity of retrieval for queries instead of retrieving indiscriminately to enhance the efficiency and relevance of the sourced information. However, previous works largely overlook the evaluation of ARAG approaches, leading to their effectiveness being understudied. This work presents a benchmark, RetrievalQA, comprising 1,271 short-form questions covering new world and long-tail knowledge. The knowledge necessary to answer the questions is absent from LLMs; therefore, external information must be retrieved to answer correctly. This makes RetrievalQA a suitable testbed to evaluate existing ARAG methods. We observe that calibration-based methods heavily rely on threshold tuning, while vanilla prompting is inadequate for guiding LLMs to make reliable retrieval decisions. Based on our findings, we propose Time-Aware Adaptive Retrieval (TA-ARE), a simple yet effective method that helps LLMs assess the necessity of retrieval without calibration or additional training.
Pretrained models learned from real corpora can often capture undesirable features, leading to bias issues against different demographic groups. Most existing studies on bias dataset construction or bias mitigation methods only focus on one demographic group pair to study a certain bias, e.g. black vs. white for racial bias. However, in real-world applications, there are more than two demographic groups that are at risk of the same bias. In this paper, we propose to analyze and reduce biases across multiple demographic groups. We collect and build a multi-demographic bias dataset including five commonly discussed bias dimensions. To mitigate multi-demographic bias, we adopt several novel debiasing methods, including regularisation-based and augmentation-based methods, as well as appropriate evaluation metrics for multi-demographic bias measurement. Experimental results on the proposed multi-demographic dataset show that a fairer model can be achieved using a multi-demographic debiasing approach. Also, the model debiased using the proposed multi-demographic debiasing methods can better transfer to unseen demographics without sacrificing the performance of the pretrained model.
The remarkable multimodal capabilities demonstrated by OpenAI’s GPT-4 have sparked significant interest in the development of multimodal Large Language Models (LLMs). A primary research objective of such models is to align visual and textual modalities effectively while comprehending human instructions.Current methodologies often rely on annotations derived from benchmark datasets to construct image-dialogue datasets for training purposes, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias, potentially constraining the generative capabilities of the models. In an effort to mitigate these limitations, we propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning. This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models to yield a diverse and controllable dataset with varied image content. This not only provides greater flexibility compared to existing methodologies but also significantly enhances several model capabilities. Our research includes comprehensive experiments conducted on various datasets using the open-source LLAVA model as a testbed for our proposed pipeline. Our results underscore marked enhancements across more than ten commonly assessed capabilities.
redWarning: This paper contains content that may be offensive or upsetting.Pretrained conversational agents have been exposed to safety issues, exhibiting a range of stereotypical human biases such as gender bias. However, there are still limited bias categories in current research, and most of them only focus on English. In this paper, we introduce a new Chinese dataset, CHBias, for bias evaluation and mitigation of Chinese conversational language models.Apart from those previous well-explored bias categories, CHBias includes under-explored bias categories, such as ageism and appearance biases, which received less attention. We evaluate two popular pretrained Chinese conversational models, CDial-GPT and EVA2.0, using CHBias. Furthermore, to mitigate different biases, we apply several debiasing methods to the Chinese pretrained models. Experimental results show that these Chinese pretrained models are potentially risky for generating texts that contain social biases, and debiasing methods using the proposed dataset can make response generation less biased while preserving the models’ conversational capabilities.
Continual learning (CL) is a paradigm that aims to replicate the human ability to learn and accumulate knowledge continually without forgetting previous knowledge and transferring it to new tasks. Recent instruction tuning (IT) involves fine-tuning models to make them more adaptable to solving NLP tasks in general. However, it is still uncertain how instruction tuning works in the context of CL tasks. This challenging yet practical problem is formulated as Continual Instruction Tuning (CIT). In this work, we establish a CIT benchmark consisting of learning and evaluation protocols. We curate two long dialogue task streams of different types, InstrDialog and InstrDialog++, to study various CL methods systematically. Our experiments show that existing CL methods do not effectively leverage the rich natural language instructions, and fine-tuning an instruction-tuned model sequentially can yield similar or better results. We further explore different aspects that might affect the learning of CIT. We hope this benchmark will facilitate more research in this direction.
In this work, we study reinforcement learning (RL) in solving text-based games. We address the challenge of combinatorial action space, by proposing a confidence-based self-imitation model to generate action candidates for the RL agent. Firstly, we leverage the self-imitation learning to rank and exploit past valuable trajectories to adapt a pre-trained language model (LM) towards a target game. Then, we devise a confidence-based strategy to measure the LM’s confidence with respect to a state, thus adaptively pruning the generated actions to yield a more compact set of action candidates. In multiple challenging games, our model demonstrates promising performance in comparison to the baselines.
Dialogue state tracking (DST) plays an important role in task-oriented dialogue systems. However, collecting a large amount of turn-by-turn annotated dialogue data is costly and inefficient. In this paper, we propose a novel turn-level active learning framework for DST to actively select turns in dialogues to annotate. Given the limited labelling budget, experimental results demonstrate the effectiveness of selective annotation of dialogue turns. Additionally, our approach can effectively achieve comparable DST performance to traditional training approaches with significantly less annotated data, which provides a more efficient way to annotate new dialogue data.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning deployed LLMs with the ever-changing world knowledge. We categorize research works systemically and provide in-depth comparisons and discussions. We also discuss existing challenges and highlight future directions to facilitate research in this field.
Recent work incorporates pre-trained word embeddings such as BERT embeddings into Neural Topic Models (NTMs), generating highly coherent topics. However, with high-quality contextualized document representations, do we really need sophisticated neural models to obtain coherent and interpretable topics? In this paper, we conduct thorough experiments showing that directly clustering high-quality sentence embeddings with an appropriate word selecting method can generate more coherent and diverse topics than NTMs, achieving also higher efficiency and simplicity.
Text-based games provide an interactive way to study natural language processing. While deep reinforcement learning has shown effectiveness in developing the game playing agent, the low sample efficiency and the large action space remain to be the two major challenges that hinder the DRL from being applied in the real world. In this paper, we address the challenges by introducing world-perceiving modules, which automatically decompose tasks and prune actions by answering questions about the environment. We then propose a two-phase training framework to decouple language learning from reinforcement learning, which further improves the sample efficiency. The experimental results show that the proposed method significantly improves the performance and sample efficiency. Besides, it shows robustness against compound error and limited pre-training data.
Deep reinforcement learning provides a promising approach for text-based games in studying natural language communication between humans and artificial agents. However, the generalization still remains a big challenge as the agents depend critically on the complexity and variety of training tasks. In this paper, we address this problem by introducing a hierarchical framework built upon the knowledge graph-based RL agent. In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals, and select one of them based on the KG. Then a sub-policy in the low level is executed to conduct goal-conditioned reinforcement learning. We carry out experiments on games with various difficulty levels and show that the proposed method enjoys favorable generalizability.