Kripabandhu Ghosh


2024

pdf
Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts
Shubham Nigam | Anurag Sharma | Danush Khanna | Noel Shallum | Kripabandhu Ghosh | Arnab Bhattacharya
Findings of the Association for Computational Linguistics ACL 2024

In the era of Large Language Models (LLMs), predicting judicial outcomes poses significant challenges due to the complexity of legal proceedings and the scarcity of expert-annotated datasets. Addressing this, we introduce Prediction with Explanation (PredEx), the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context, featuring over 15,000 annotations. This groundbreaking corpus significantly enhances the training and evaluation of AI models in legal analysis, with innovations including the application of instruction tuning to LLMs. This method has markedly improved the predictive accuracy and explanatory depth of these models for legal judgments. We employed various transformer-based models, tailored for both general and Indian legal contexts. Through rigorous lexical, semantic, and expert assessments, our models effectively leverage PredEx to provide precise predictions and meaningful explanations, establishing it as a valuable benchmark for both the legal profession and the NLP community.

2023

pdf
LLMs – the Good, the Bad or the Indispensable?: A Use Case on Legal Statute Prediction and Legal Judgment Prediction on Indian Court Cases
Shaurya Vats | Atharva Zope | Somsubhra De | Anurag Sharma | Upal Bhattacharya | Shubham Nigam | Shouvik Guha | Koustav Rudra | Kripabandhu Ghosh
Findings of the Association for Computational Linguistics: EMNLP 2023

The Large Language Models (LLMs) have impacted many real-life tasks. To examine the efficacy of LLMs in a high-stake domain like law, we have applied state-of-the-art LLMs for two popular tasks: Statute Prediction and Judgment Prediction, on Indian Supreme Court cases. We see that while LLMs exhibit excellent predictive performance in Statute Prediction, their performance dips in Judgment Prediction when compared with many standard models. The explanations generated by LLMs (along with prediction) are of moderate to decent quality. We also see evidence of gender and religious bias in the LLM-predicted results. In addition, we present a note from a senior legal expert on the ethical concerns of deploying LLMs in these critical legal tasks.

pdf
Nonet at SemEval-2023 Task 6: Methodologies for Legal Evaluation
Shubham Kumar Nigam | Aniket Deroy | Noel Shallum | Ayush Kumar Mishra | Anup Roy | Shubham Kumar Mishra | Arnab Bhattacharya | Saptarshi Ghosh | Kripabandhu Ghosh
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our submission to the SemEval-2023 for Task 6 on LegalEval: Understanding Legal Texts. Our submission concentrated on three subtasks: Legal Named Entity Recognition (L-NER) for Task-B, Legal Judgment Prediction (LJP) for Task-C1, and Court Judgment Prediction with Explanation (CJPE) for Task-C2. We conducted various experiments on these subtasks and presented the results in detail, including data statistics and methodology. It is worth noting that legal tasks, such as those tackled in this research, have been gaining importance due to the increasing need to automate legal analysis and support. Our team obtained competitive rankings of 15th, 11th, and 1st in Task-B, Task-C1, and Task-C2, respectively, as reported on the leaderboard.

2022

pdf
Legal Case Document Summarization: Extractive and Abstractive Methods and their Evaluation
Abhay Shukla | Paheli Bhattacharya | Soham Poddar | Rajdeep Mukherjee | Kripabandhu Ghosh | Pawan Goyal | Saptarshi Ghosh
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Summarization of legal case judgement documents is a challenging problem in Legal NLP. However, not much analyses exist on how different families of summarization models (e.g., extractive vs. abstractive) perform when applied to legal case documents. This question is particularly important since many recent transformer-based abstractive summarization models have restrictions on the number of input tokens, and legal documents are known to be very long. Also, it is an open question on how best to evaluate legal case document summarization systems. In this paper, we carry out extensive experiments with several extractive and abstractive summarization methods (both supervised and unsupervised) over three legal summarization datasets that we have developed. Our analyses, that includes evaluation by law practitioners, lead to several interesting insights on legal summarization in specific and long document summarization in general.

2021

pdf
ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation
Vijit Malik | Rishabh Sanjay | Shubham Kumar Nigam | Kripabandhu Ghosh | Shouvik Kumar Guha | Arnab Bhattacharya | Ashutosh Modi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research.