Joseph Bradley


2023

pdf
The economic trade-offs of large language models: A case study
Kristen Howell | Gwen Christian | Pavel Fomitchov | Gitit Kehat | Julianne Marzulla | Leanne Rolston | Jadin Tredup | Ilana Zimmerman | Ethan Selfridge | Joseph Bradley
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Contacting customer service via chat is a common practice. Because employing customer service agents is expensive, many companies are turning to NLP that assists human agents by auto-generating responses that can be used directly or with modifications. With their ability to handle large context windows, Large Language Models (LLMs) are a natural fit for this use case. However, their efficacy must be balanced with the cost of training and serving them. This paper assesses the practical cost and impact of LLMs for the enterprise as a function of the usefulness of the responses that they generate. We present a cost framework for evaluating an NLP model’s utility for this use case and apply it to a single brand as a case study in the context of an existing agent assistance product. We compare three strategies for specializing an LLM — prompt engineering, fine-tuning, and knowledge distillation — using feedback from the brand’s customer service agents. We find that the usability of a model’s responses can make up for a large difference in inference cost for our case study brand, and we extrapolate our findings to the broader enterprise space.

2022

pdf
Domain-specific knowledge distillation yields smaller and better models for conversational commerce
Kristen Howell | Jian Wang | Akshay Hazare | Joseph Bradley | Chris Brew | Xi Chen | Matthew Dunn | Beth Hockey | Andrew Maurer | Dominic Widdows
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

We demonstrate that knowledge distillation can be used not only to reduce model size, but to simultaneously adapt a contextual language model to a specific domain. We use Multilingual BERT (mBERT; Devlin et al., 2019) as a starting point and follow the knowledge distillation approach of (Sahn et al., 2019) to train a smaller multilingual BERT model that is adapted to the domain at hand. We show that for in-domain tasks, the domain-specific model shows on average 2.3% improvement in F1 score, relative to a model distilled on domain-general data. Whereas much previous work with BERT has fine-tuned the encoder weights during task training, we show that the model improvements from distillation on in-domain data persist even when the encoder weights are frozen during task training, allowing a single encoder to support classifiers for multiple tasks and languages.