Jinsung Yoon
2024
Search-Adaptor: Embedding Customization for Information Retrieval
Jinsung Yoon
|
Yanfei Chen
|
Sercan Arik
|
Tomas Pfister
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Embeddings extracted by pre-trained Large Language Models (LLMs) have significant potential to improve information retrieval and search. Beyond the zero-shot setup in which they are being conventionally used, being able to take advantage of the information from the relevant query-corpus paired data can further boost the LLM capabilities. In this paper, we propose a novel method, Search-Adaptor, for customizing LLMs for information retrieval in an efficient and robust way. Search-Adaptor modifies the embeddings generated by pre-trained LLMs, and can be integrated with any LLM, including those only available via prediction APIs. On multiple English, multilingual, and multimodal retrieval datasets, we show consistent and significant performance benefits for Search-Adaptor – e.g., more than 5% improvements for Google Embedding APIs in nDCG@10 averaged over 14 BEIR datasets.
2023
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
Jiefeng Chen
|
Jinsung Yoon
|
Sayna Ebrahimi
|
Sercan Arik
|
Tomas Pfister
|
Somesh Jha
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. *Selective prediction* is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%.
Search
Co-authors
- Sercan Arik 2
- Tomas Pfister 2
- Jiefeng Chen 1
- Sayna Ebrahimi 1
- Somesh Jha 1
- show all...