This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA). However, even though there are various approaches dealing with queries of different complexities, they either handle simple queries with unnecessary computational overhead or fail to adequately address complex multi-step queries; yet, not all user requests fall into only one of the simple or complex categories. In this work, we propose a novel adaptive QA framework that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs from the simplest to the most sophisticated ones based on the query complexity. Also, this selection process is operationalized with a classifier, which is a smaller LM trained to predict the complexity level of incoming queries with automatically collected labels, obtained from actual predicted outcomes of models and inherent inductive biases in datasets. This approach offers a balanced strategy, seamlessly adapting between the iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval methods, in response to a range of query complexities. We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems, compared to relevant baselines including the adaptive retrieval approaches. Code is available at: https://github.com/starsuzi/Adaptive-RAG.
There has been a surge of interest in utilizing Knowledge Graphs (KGs) for various natural language processing/understanding tasks. The conventional mechanism to retrieve facts in KGs usually involves three steps: entity span detection, entity disambiguation, and relation classification. However, this approach requires additional labels for training each of the three subcomponents in addition to pairs of input texts and facts, and also may accumulate errors propagated from failures in previous steps. To tackle these limitations, we propose a simple knowledge retrieval framework, which directly retrieves facts from the KGs given the input text based on their representational similarities, which we refer to as Direct Fact Retrieval (DiFaR). Specifically, we first embed all facts in KGs onto a dense embedding space by using a language model trained by only pairs of input texts and facts, and then provide the nearest facts in response to the input text. Since the fact, consisting of only two entities and one relation, has little context to encode, we propose to further refine ranks of top-k retrieved facts with a reranker that contextualizes the input text and the fact jointly. We validate our DiFaR framework on multiple fact retrieval tasks, showing that it significantly outperforms relevant baselines that use the three-step approach.
Open-Domain Conversational Question Answering (ODConvQA) aims at answering questions through a multi-turn conversation based on a retriever-reader pipeline, which retrieves passages and then predicts answers with them. However, such a pipeline approach not only makes the reader vulnerable to the errors propagated from the retriever, but also demands additional effort to develop both the retriever and the reader, which further makes it slower since they are not runnable in parallel. In this work, we propose a method to directly predict answers with a phrase retrieval scheme for a sequence of words, reducing the conventional two distinct subtasks into a single one. Also, for the first time, we study its capability for ODConvQA tasks. However, simply adopting it is largely problematic, due to the dependencies between previous and current turns in a conversation. To address this problem, we further introduce a novel contrastive learning strategy, making sure to reflect previous turns when retrieving the phrase for the current context, by maximizing representational similarities of consecutive turns in a conversation while minimizing irrelevant conversational contexts. We validate our model on two ODConvQA datasets, whose experimental results show that it substantially outperforms the relevant baselines with the retriever-reader. Code is available at: https://github.com/starsuzi/PRO-ConvQA.
Recent instruction-finetuned large language models (LMs) have achieved notable performances in various tasks, such as question-answering (QA). However, despite their ability to memorize a vast amount of general knowledge across diverse tasks, they might be suboptimal on specific tasks due to their limited capacity to transfer and adapt knowledge to target tasks. Moreover, further finetuning LMs with labeled datasets is often infeasible due to their absence, but it is also questionable if we can transfer smaller LMs having limited knowledge only with unlabeled test data. In this work, we show and investigate the capabilities of smaller self-adaptive LMs, only with unlabeled test data. In particular, we first stochastically generate multiple answers, and then ensemble them while filtering out low-quality samples to mitigate noise from inaccurate labels. Our proposed self-adaption strategy demonstrates significant performance improvements on benchmark QA datasets with higher robustness across diverse prompts, enabling LMs to stay stable. Code is available at: https://github.com/starsuzi/T-SAS.
Large Language Models (LLMs) are capable of performing zero-shot closed-book question answering tasks, based on their internal knowledge stored in parameters during pre-training. However, such internalized knowledge might be insufficient and incorrect, which could lead LLMs to generate factually wrong answers. Furthermore, fine-tuning LLMs to update their knowledge is expensive. To this end, we propose to augment the knowledge directly in the input of LLMs. Specifically, we first retrieve the relevant facts to the input question from the knowledge graph based on semantic similarities between the question and its associated facts. After that, we prepend the retrieved facts to the input question in the form of the prompt, which is then forwarded to LLMs to generate the answer. Our framework, Knowledge-Augmented language model PromptING (KAPING), requires no model training, thus completely zero-shot. We validate the performance of our KAPING framework on the knowledge graph question answering task, that aims to answer the user’s question based on facts over a knowledge graph, on which ours outperforms relevant zero-shot baselines by up to 48% in average, across multiple LLMs of various sizes.
Large Language Models (LLMs) are capable of performing zero-shot closed-book question answering tasks, based on their internal knowledge stored in parameters during pre-training. However, such internalized knowledge might be insufficient and incorrect, which could lead LLMs to generate factually wrong answers. Furthermore, fine-tuning LLMs to update their knowledge is expensive. To this end, we propose to augment the knowledge directly in the input of LLMs. Specifically, we first retrieve the relevant facts to the input question from the knowledge graph based on semantic similarities between the question and its associated facts. After that, we prepend the retrieved facts to the input question in the form of the prompt, which is then forwarded to LLMs to generate the answer. Our framework, Knowledge-Augmented language model PromptING (KAPING), requires no model training, thus completely zero-shot. We validate the performance of our KAPING framework on the knowledge graph question answering task, that aims to answer the user’s question based on facts over a knowledge graph, on which ours outperforms relevant zero-shot baselines by up to 48% in average, across multiple LLMs of various sizes.
Conversational Question Answering (ConvQA) models aim at answering a question with its relevant paragraph and previous question-answer pairs that occurred during conversation multiple times. To apply such models to a real-world scenario, some existing work uses predicted answers, instead of unavailable ground-truth answers, as the conversation history for inference. However, since these models usually predict wrong answers, using all the predictions without filtering significantly hampers the model performance. To address this problem, we propose to filter out inaccurate answers in the conversation history based on their estimated confidences and uncertainties from the ConvQA model, without making any architectural changes. Moreover, to make the confidence and uncertainty values more reliable, we propose to further calibrate them, thereby smoothing the model predictions. We validate our models, Answer Selection-based realistic Conversation Question Answering, on two standard ConvQA datasets, and the results show that our models significantly outperform relevant baselines. Code is available at: https://github.com/starsuzi/AS-ConvQA.
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since their knowledge may be inaccurate, incomplete, and outdated. To address this problem, previous works propose to augment LMs with the knowledge retrieved from an external knowledge source. However, such approaches often show suboptimal text generation performance due to two reasons: 1) the model may fail to retrieve the knowledge relevant to the given query, or 2) the model may not faithfully reflect the retrieved knowledge in the generated text. To overcome these, we propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier, which is a small LM that is trained to detect those two types of errors through instruction-finetuning. Then, when the verifier recognizes an error, we can rectify it by either retrieving new knowledge or generating new text. Further, we use an ensemble of the outputs from different instructions with a single verifier to enhance the reliability of the verification processes. We validate the effectiveness of the proposed verification steps on multiple question answering benchmarks, whose results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs. Our code is available at https://github.com/JinheonBaek/KALMV.
Pre-trained language models (PLMs) have achieved remarkable success on various natural language understanding tasks. Simple fine-tuning of PLMs, on the other hand, might be suboptimal for domain-specific tasks because they cannot possibly cover knowledge from all domains. While adaptive pre-training of PLMs can help them obtain domain-specific knowledge, it requires a large training cost. Moreover, adaptive pre-training can harm the PLM’s performance on the downstream task by causing catastrophic forgetting of its general knowledge. To overcome such limitations of adaptive pre-training for PLM adaption, we propose a novel domain adaption framework for PLMs coined as Knowledge-Augmented Language model Adaptation (KALA), which modulates the intermediate hidden representations of PLMs with domain knowledge, consisting of entities and their relational facts. We validate the performance of our KALA on question answering and named entity recognition tasks on multiple datasets across various domains. The results show that, despite being computationally efficient, our KALA largely outperforms adaptive pre-training.
Dense retrieval models, which aim at retrieving the most relevant document for an input query on a dense representation space, have gained considerable attention for their remarkable success. Yet, dense models require a vast amount of labeled training data for notable performance, whereas it is often challenging to acquire query-document pairs annotated by humans. To tackle this problem, we propose a simple but effective Document Augmentation for dense Retrieval (DAR) framework, which augments the representations of documents with their interpolation and perturbation. We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR.