Hao Fang


2024

pdf
LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error
Boshi Wang | Hao Fang | Jason Eisner | Benjamin Van Durme | Yu Su
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tools are essential for large language models (LLMs) to acquire up-to-date information and take consequential actions in external environments. Existing work on tool-augmented LLMs primarily focuses on the broad coverage of tools and the flexibility of adding new tools. However, a critical aspect that has surprisingly been understudied is simply how accurately an LLM uses tools for which it has been trained. We find that existing LLMs, including GPT-4 and open-source LLMs specifically fine-tuned for tool use, only reach a correctness rate in the range of 30% to 60%, far from reliable use in practice. We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE), that orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory. Specifically, STE leverages an LLM’s ‘imagination’ to simulate plausible scenarios for using a tool, after which the LLM interacts with the tool to learn from its execution feedback. Both short-term and long-term memory are employed to improve the depth and breadth of the exploration, respectively. Comprehensive experiments on ToolBench show that STE substantially improves tool learning for LLMs under both in-context learning and fine-tuning settings, bringing a boost of 46.7% to Mistral-Instruct-7B and enabling it to outperform GPT-4. We also show effective continual learning of tools via a simple experience replay strategy.

2023

pdf
Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering
Hao Cheng | Hao Fang | Xiaodong Liu | Jianfeng Gao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Given its effectiveness on knowledge-intensive natural language processing tasks, dense retrieval models have become increasingly popular. Specifically, the de-facto architecture for open-domain question answering uses two isomorphic encoders that are initialized from the same pretrained model but separately parameterized for questions and passages. This biencoder architecture is parameter-inefficient in that there is no parameter sharing between encoders. Further, recent studies show that such dense retrievers underperform BM25 in various settings. We thus propose a new architecture, Task-Aware Specialization for dEnse Retrieval (TASER), which enables parameter sharing by interleaving shared and specialized blocks in a single encoder. Our experiments on five question answering datasets show that TASER can achieve superior accuracy, surpassing BM25, while using about 60% of the parameters as bi-encoder dense retrievers. In out-of-domain evaluations, TASER is also empirically more robust than bi-encoder dense retrievers. Our code is available at https://github.com/microsoft/taser.

pdf
The Whole Truth and Nothing But the Truth: Faithful and Controllable Dialogue Response Generation with Dataflow Transduction and Constrained Decoding
Hao Fang | Anusha Balakrishnan | Harsh Jhamtani | John Bufe | Jean Crawford | Jayant Krishnamurthy | Adam Pauls | Jason Eisner | Jacob Andreas | Dan Klein
Findings of the Association for Computational Linguistics: ACL 2023

In a real-world dialogue system, generated text must be truthful and informative while remaining fluent and adhering to a prescribed style. Satisfying these constraints simultaneously isdifficult for the two predominant paradigms in language generation: neural language modeling and rule-based generation. We describe a hybrid architecture for dialogue response generation that combines the strengths of both paradigms. The first component of this architecture is a rule-based content selection model defined using a new formal framework called dataflow transduction, which uses declarative rules to transduce a dialogue agent’s actions and their results (represented as dataflow graphs) into context-free grammars representing the space of contextually acceptable responses. The second component is a constrained decoding procedure that uses these grammars to constrain the output of a neural language model, which selects fluent utterances. Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.

pdf
Few-Shot Adaptation for Parsing Contextual Utterances with LLMs
Kevin Lin | Patrick Xia | Hao Fang
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

2022

pdf
When More Data Hurts: A Troubling Quirk in Developing Broad-Coverage Natural Language Understanding Systems
Elias Stengel-Eskin | Emmanouil Antonios Platanios | Adam Pauls | Sam Thomson | Hao Fang | Benjamin Van Durme | Jason Eisner | Yu Su
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In natural language understanding (NLU) production systems, users’ evolving needs necessitate the addition of new features over time, indexed by new symbols added to the meaning representation space. This requires additional training data and results in ever-growing datasets. We present the first systematic investigation into this incremental symbol learning scenario. Our analysis reveals a troubling quirk in building broad-coverage NLU systems: as the training dataset grows, performance on a small set of new symbols often decreases. We show that this trend holds for multiple mainstream models on two common NLU tasks: intent recognition and semantic parsing. Rejecting class imbalance as the sole culprit, we reveal that the trend is closely associated with an effect we call source signal dilution, where strong lexical cues for the new symbol become diluted as the training dataset grows. Selectively dropping training examples to prevent dilution often reverses the trend, showing the over-reliance of mainstream neural NLU models on simple lexical cues.

2021

pdf
Compositional Generalization for Neural Semantic Parsing via Span-level Supervised Attention
Pengcheng Yin | Hao Fang | Graham Neubig | Adam Pauls | Emmanouil Antonios Platanios | Yu Su | Sam Thomson | Jacob Andreas
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We describe a span-level supervised attention loss that improves compositional generalization in semantic parsers. Our approach builds on existing losses that encourage attention maps in neural sequence-to-sequence models to imitate the output of classical word alignment algorithms. Where past work has used word-level alignments, we focus on spans; borrowing ideas from phrase-based machine translation, we align subtrees in semantic parses to spans of input sentences, and encourage neural attention mechanisms to mimic these alignments. This method improves the performance of transformers, RNNs, and structured decoders on three benchmarks of compositional generalization.

2020

pdf
Task-Oriented Dialogue as Dataflow Synthesis
Jacob Andreas | John Bufe | David Burkett | Charles Chen | Josh Clausman | Jean Crawford | Kate Crim | Jordan DeLoach | Leah Dorner | Jason Eisner | Hao Fang | Alan Guo | David Hall | Kristin Hayes | Kellie Hill | Diana Ho | Wendy Iwaszuk | Smriti Jha | Dan Klein | Jayant Krishnamurthy | Theo Lanman | Percy Liang | Christopher H. Lin | Ilya Lintsbakh | Andy McGovern | Aleksandr Nisnevich | Adam Pauls | Dmitrij Petters | Brent Read | Dan Roth | Subhro Roy | Jesse Rusak | Beth Short | Div Slomin | Ben Snyder | Stephon Striplin | Yu Su | Zachary Tellman | Sam Thomson | Andrei Vorobev | Izabela Witoszko | Jason Wolfe | Abby Wray | Yuchen Zhang | Alexander Zotov
Transactions of the Association for Computational Linguistics, Volume 8

We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and revision that reuse dataflow fragments from previous turns. Our graph-based state enables the expression and manipulation of complex user intents, and explicit metacomputation makes these intents easier for learned models to predict. We introduce a new dataset, SMCalFlow, featuring complex dialogues about events, weather, places, and people. Experiments show that dataflow graphs and metacomputation substantially improve representability and predictability in these natural dialogues. Additional experiments on the MultiWOZ dataset show that our dataflow representation enables an otherwise off-the-shelf sequence-to-sequence model to match the best existing task-specific state tracking model. The SMCalFlow dataset, code for replicating experiments, and a public leaderboard are available at https://www.microsoft.com/en-us/research/project/dataflow-based-dialogue-semantic-machines.

2019

pdf
A Dynamic Speaker Model for Conversational Interactions
Hao Cheng | Hao Fang | Mari Ostendorf
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Individual differences in speakers are reflected in their language use as well as in their interests and opinions. Characterizing these differences can be useful in human-computer interaction, as well as analysis of human-human conversations. In this work, we introduce a neural model for learning a dynamically updated speaker embedding in a conversational context. Initial model training is unsupervised, using context-sensitive language generation as an objective, with the context being the conversation history. Further fine-tuning can leverage task-dependent supervised training. The learned neural representation of speakers is shown to be useful for content ranking in a socialbot and dialog act prediction in human-human conversations.

2018

pdf
Sounding Board: A User-Centric and Content-Driven Social Chatbot
Hao Fang | Hao Cheng | Maarten Sap | Elizabeth Clark | Ari Holtzman | Yejin Choi | Noah A. Smith | Mari Ostendorf
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.

2017

pdf
A Factored Neural Network Model for Characterizing Online Discussions in Vector Space
Hao Cheng | Hao Fang | Mari Ostendorf
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We develop a novel factored neural model that learns comment embeddings in an unsupervised way leveraging the structure of distributional context in online discussion forums. The model links different context with related language factors in the embedding space, providing a way to interpret the factored embeddings. Evaluated on a community endorsement prediction task using a large collection of topic-varying Reddit discussions, the factored embeddings consistently achieve improvement over other text representations. Qualitative analysis shows that the model captures community style and topic, as well as response trigger patterns.

2016

pdf
Bi-directional Attention with Agreement for Dependency Parsing
Hao Cheng | Hao Fang | Xiaodong He | Jianfeng Gao | Li Deng
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf
Learning Latent Local Conversation Modes for Predicting Comment Endorsement in Online Discussions
Hao Fang | Hao Cheng | Mari Ostendorf
Proceedings of the Fourth International Workshop on Natural Language Processing for Social Media

2015

pdf
Open-Domain Name Error Detection using a Multi-Task RNN
Hao Cheng | Hao Fang | Mari Ostendorf
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf
Talking to the crowd: What do people react to in online discussions?
Aaron Jaech | Victoria Zayats | Hao Fang | Mari Ostendorf | Hannaneh Hajishirzi
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf
Language Models for Image Captioning: The Quirks and What Works
Jacob Devlin | Hao Cheng | Hao Fang | Saurabh Gupta | Li Deng | Xiaodong He | Geoffrey Zweig | Margaret Mitchell
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)