Garrett Nicolai


2024

pdf bib
Proceedings of the 21st SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Eleanor Chodroff | Frederic Mailhot | Çağrı Çöltekin
Proceedings of the 21st SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

2023

pdf
An Investigation of Noise in Morphological Inflection
Adam Wiemerslage | Changbing Yang | Garrett Nicolai | Miikka Silfverberg | Katharina Kann
Findings of the Association for Computational Linguistics: ACL 2023

With a growing focus on morphological inflection systems for languages where high-quality data is scarce, training data noise is a serious but so far largely ignored concern. We aim at closing this gap by investigating the types of noise encountered within a pipeline for truly unsupervised morphological paradigm completion and its impact on morphological inflection systems: First, we propose an error taxonomy and annotation pipeline for inflection training data. Then, we compare the effect of different types of noise on multiple state-of-the- art inflection models. Finally, we propose a novel character-level masked language modeling (CMLM) pretraining objective and explore its impact on the models’ resistance to noise. Our experiments show that various architectures are impacted differently by separate types of noise, but encoder-decoders tend to be more robust to noise than models trained with a copy bias. CMLM pretraining helps transformers, but has lower impact on LSTMs.

pdf bib
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Eleanor Chodroff | Frederic Mailhot | Çağrı Çöltekin
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
SIGMORPHONUniMorph 2023 Shared Task 0: Typologically Diverse Morphological Inflection
Omer Goldman | Khuyagbaatar Batsuren | Salam Khalifa | Aryaman Arora | Garrett Nicolai | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

The 2023 SIGMORPHON–UniMorph shared task on typologically diverse morphological inflection included a wide range of languages: 26 languages from 9 primary language families. The data this year was all lemma-split, to allow testing models’ generalization ability, and structured along the new hierarchical schema presented in (Batsuren et al., 2022). The systems submitted this year, 9 in number, showed ingenuity and innovativeness, including hard attention for explainability and bidirectional decoding. Special treatment was also given by many participants to the newly-introduced data in Japanese, due to the high abundance of unseen Kanji characters in its test set.

pdf
Findings of the SIGMORPHON 2023 Shared Task on Interlinear Glossing
Michael Ginn | Sarah Moeller | Alexis Palmer | Anna Stacey | Garrett Nicolai | Mans Hulden | Miikka Silfverberg
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the findings of the SIGMORPHON 2023 Shared Task on Interlinear Glossing. This first iteration of the shared task explores glossing of a set of six typologically diverse languages: Arapaho, Gitksan, Lezgi, Natügu, Tsez and Uspanteko. The shared task encompasses two tracks: a resource-scarce closed track and an open track, where participants are allowed to utilize external data resources. Five teams participated in the shared task. The winning team Tü-CL achieved a 23.99%-point improvement over a baseline RoBERTa system in the closed track and a 17.42%-point improvement in the open track.

pdf
Glossy Bytes: Neural Glossing using Subword Encoding
Ziggy Cross | Michelle Yun | Ananya Apparaju | Jata MacCabe | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents several different neural subword modelling based approaches to interlinear glossing for seven under-resourced languages as a part of the 2023 SIGMORPHON shared task on interlinear glossing. We experiment with various augmentation and tokenization strategies for both the open and closed tracks of data. We found that while byte-level models may perform well for greater amounts of data, character based approaches remain competitive in their performance in lower resource settings.

2022

pdf
Penalizing Divergence: Multi-Parallel Translation for Low-Resource Languages of North America
Garrett Nicolai | Changbing Yang | Miikka Silfverberg
Proceedings of the 29th International Conference on Computational Linguistics

This paper explores a special case in multilingual machine translation: so called multi-parallel translation, where the target data for all language pairs are identical. While multi-parallelism offers benefits which are not available in a standard translation setting, translation models can easily overfit when training data are limited. We introduce a regularizer, the divergence penalty, which penalizes the translation model when it represents source sentences with identical target translations in divergent ways. Experiments on very low-resourced Indigenous North American languages show that an initially deficient multilingual translator can improve by 4.9 BLEU through mBART pre-training, and 5.5 BLEU points with the strategic addition of monolingual data, and that a divergence penalty leads to further increases of 0.4 BLEU. Further experiments on Germanic languages demonstrate a improvement of 0.5 BLEU when applying the divergence penalty. An investigation of the neural encoder representations learned by our translation models shows that the divergence penalty encourages models to learn a unified neural interlingua.

pdf
UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

pdf
An Inflectional Database for Gitksan
Bruce Oliver | Clarissa Forbes | Changbing Yang | Farhan Samir | Edith Coates | Garrett Nicolai | Miikka Silfverberg
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents a new inflectional resource for Gitksan, a low-resource Indigenous language of Canada. We use Gitksan data in interlinear glossed format, stemming from language documentation efforts, to build a database of partial inflection tables. We then enrich this morphological resource by filling in blank slots in the partial inflection tables using neural transformer reinflection models. We extend the training data for our transformer reinflection models using two data augmentation techniques: data hallucination and back-translation. Experimental results demonstrate substantial improvements from data augmentation, with data hallucination delivering particularly impressive gains. We also release reinflection models for Gitksan.

pdf
Impact of Sequence Length and Copying on Clause-Level Inflection
Badr Jaidi | Utkarsh Saboo | Xihan Wu | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 2nd Workshop on Multi-lingual Representation Learning (MRL)

We present the University of British Columbia’s submission to the MRL shared task on multilingual clause-level morphology. Our submission extends word-level inflectional models to the clause-level in two ways: first, by evaluating the role that BPE has on the learning of inflectional morphology, and second, by evaluating the importance of a copy bias obtained through data hallucination. Experiments demonstrate a strong preference for language-tuned BPE and a copy bias over a vanilla transformer. The methods are complementary for inflection and analysis tasks – combined models see error reductions of 38% for inflection and 15.6% for analysis; However, this synergy does not hold for reinflection, which performs best under a BPE-only setting. A deeper analysis of the errors generated by our models illustrates that the copy bias may be too strong - the combined model produces predictions more similar to the copy-influenced system, despite the success of the BPE-model.

pdf
Morphological Processing of Low-Resource Languages: Where We Are and What’s Next
Adam Wiemerslage | Miikka Silfverberg | Changbing Yang | Arya McCarthy | Garrett Nicolai | Eliana Colunga | Katharina Kann
Findings of the Association for Computational Linguistics: ACL 2022

Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages. Having long been multilingual, the field of computational morphology is increasingly moving towards approaches suitable for languages with minimal or no annotated resources. First, we survey recent developments in computational morphology with a focus on low-resource languages. Second, we argue that the field is ready to tackle the logical next challenge: understanding a language’s morphology from raw text alone. We perform an empirical study on a truly unsupervised version of the paradigm completion task and show that, while existing state-of-the-art models bridged by two newly proposed models we devise perform reasonably, there is still much room for improvement. The stakes are high: solving this task will increase the language coverage of morphological resources by a number of magnitudes.

pdf
Dim Wihl Gat Tun: The Case for Linguistic Expertise in NLP for Under-Documented Languages
Clarissa Forbes | Farhan Samir | Bruce Oliver | Changbing Yang | Edith Coates | Garrett Nicolai | Miikka Silfverberg
Findings of the Association for Computational Linguistics: ACL 2022

Recent progress in NLP is driven by pretrained models leveraging massive datasets and has predominantly benefited the world’s political and economic superpowers. Technologically underserved languages are left behind because they lack such resources. Hundreds of underserved languages, nevertheless, have available data sources in the form of interlinear glossed text (IGT) from language documentation efforts. IGT remains underutilized in NLP work, perhaps because its annotations are only semi-structured and often language-specific. With this paper, we make the case that IGT data can be leveraged successfully provided that target language expertise is available. We specifically advocate for collaboration with documentary linguists. Our paper provides a roadmap for successful projects utilizing IGT data: (1) It is essential to define which NLP tasks can be accomplished with the given IGT data and how these will benefit the speech community. (2) Great care and target language expertise is required when converting the data into structured formats commonly employed in NLP. (3) Task-specific and user-specific evaluation can help to ascertain that the tools which are created benefit the target language speech community. We illustrate each step through a case study on developing a morphological reinflection system for the Tsimchianic language Gitksan.

pdf bib
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Eleanor Chodroff
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
Generalizing Morphological Inflection Systems to Unseen Lemmas
Changbing Yang | Ruixin (Ray) Yang | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents experiments on morphological inflection using data from the SIGMORPHON-UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection. We present a transformer inflection system, which enriches the standard transformer architecture with reverse positional encoding and type embeddings. We further apply data hallucination and lemma copying to augment training data. We train models using a two-stage procedure: (1) We first train on the augmented training data using standard backpropagation and teacher forcing. (2) We then continue training with a variant of the scheduled sampling algorithm dubbed student forcing. Our system delivers competitive performance under the small and large data conditions on the shared task datasets.

2021

pdf bib
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Kyle Gorman | Ryan Cotterell
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
Findings of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering
Adam Wiemerslage | Arya D. McCarthy | Alexander Erdmann | Garrett Nicolai | Manex Agirrezabal | Miikka Silfverberg | Mans Hulden | Katharina Kann
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we release corpora for 5 development and 9 test languages, as well as gold partial paradigms for evaluation. We receive 14 submissions from 4 teams that follow different strategies, and the best performing system is based on adaptor grammars. Results vary significantly across languages. However, all systems are outperformed by a supervised lemmatizer, implying that there is still room for improvement.

pdf
Unsupervised Paradigm Clustering Using Transformation Rules
Changbing Yang | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper describes the submission of the CU-UBC team for the SIGMORPHON 2021 Shared Task 2: Unsupervised morphological paradigm clustering. Our system generates paradigms using morphological transformation rules which are discovered from raw data. We experiment with two methods for discovering rules. Our first approach generates prefix and suffix transformations between similar strings. Secondly, we experiment with more general rules which can apply transformations inside the input strings in addition to prefix and suffix transformations. We find that the best overall performance is delivered by prefix and suffix rules but more general transformation rules perform better for languages with templatic morphology and very high morpheme-to-word ratios.

pdf
Linguistic Knowledge in Multilingual Grapheme-to-Phoneme Conversion
Roger Yu-Hsiang Lo | Garrett Nicolai
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper documents the UBC Linguistics team’s approach to the SIGMORPHON 2021 Grapheme-to-Phoneme Shared Task, concentrating on the low-resource setting. Our systems expand the baseline model with simple modifications informed by syllable structure and error analysis. In-depth investigation of test-set predictions shows that our best model rectifies a significant number of mistakes compared to the baseline prediction, besting all other submissions. Our results validate the view that careful error analysis in conjunction with linguistic knowledge can lead to more effective computational modeling.

pdf
An FST morphological analyzer for the Gitksan language
Clarissa Forbes | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents a finite-state morphological analyzer for the Gitksan language. The analyzer draws from a 1250-token Eastern dialect wordlist. It is based on finite-state technology and additionally includes two extensions which can provide analyses for out-of-vocabulary words: rules for generating predictable dialect variants, and a neural guesser component. The pre-neural analyzer, tested against interlinear-annotated texts from multiple dialects, achieves coverage of (75-81%), and maintains high precision (95-100%). The neural extension improves coverage at the cost of lowered precision.

pdf
SIGMORPHON 2021 Shared Task on Morphological Reinflection: Generalization Across Languages
Tiago Pimentel | Maria Ryskina | Sabrina J. Mielke | Shijie Wu | Eleanor Chodroff | Brian Leonard | Garrett Nicolai | Yustinus Ghanggo Ate | Salam Khalifa | Nizar Habash | Charbel El-Khaissi | Omer Goldman | Michael Gasser | William Lane | Matt Coler | Arturo Oncevay | Jaime Rafael Montoya Samame | Gema Celeste Silva Villegas | Adam Ek | Jean-Philippe Bernardy | Andrey Shcherbakov | Aziyana Bayyr-ool | Karina Sheifer | Sofya Ganieva | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Andrew Krizhanovsky | Natalia Krizhanovsky | Clara Vania | Sardana Ivanova | Aelita Salchak | Christopher Straughn | Zoey Liu | Jonathan North Washington | Duygu Ataman | Witold Kieraś | Marcin Woliński | Totok Suhardijanto | Niklas Stoehr | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Richard J. Hatcher | Emily Prud’hommeaux | Ritesh Kumar | Mans Hulden | Botond Barta | Dorina Lakatos | Gábor Szolnok | Judit Ács | Mohit Raj | David Yarowsky | Ryan Cotterell | Ben Ambridge | Ekaterina Vylomova
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This year’s iteration of the SIGMORPHON Shared Task on morphological reinflection focuses on typological diversity and cross-lingual variation of morphosyntactic features. In terms of the task, we enrich UniMorph with new data for 32 languages from 13 language families, with most of them being under-resourced: Kunwinjku, Classical Syriac, Arabic (Modern Standard, Egyptian, Gulf), Hebrew, Amharic, Aymara, Magahi, Braj, Kurdish (Central, Northern, Southern), Polish, Karelian, Livvi, Ludic, Veps, Võro, Evenki, Xibe, Tuvan, Sakha, Turkish, Indonesian, Kodi, Seneca, Asháninka, Yanesha, Chukchi, Itelmen, Eibela. We evaluate six systems on the new data and conduct an extensive error analysis of the systems’ predictions. Transformer-based models generally demonstrate superior performance on the majority of languages, achieving >90% accuracy on 65% of them. The languages on which systems yielded low accuracy are mainly under-resourced, with a limited amount of data. Most errors made by the systems are due to allomorphy, honorificity, and form variation. In addition, we observe that systems especially struggle to inflect multiword lemmas. The systems also produce misspelled forms or end up in repetitive loops (e.g., RNN-based models). Finally, we report a large drop in systems’ performance on previously unseen lemmas.

pdf
Do RNN States Encode Abstract Phonological Alternations?
Miikka Silfverberg | Francis Tyers | Garrett Nicolai | Mans Hulden
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Sequence-to-sequence models have delivered impressive results in word formation tasks such as morphological inflection, often learning to model subtle morphophonological details with limited training data. Despite the performance, the opacity of neural models makes it difficult to determine whether complex generalizations are learned, or whether a kind of separate rote memorization of each morphophonological process takes place. To investigate whether complex alternations are simply memorized or whether there is some level of generalization across related sound changes in a sequence-to-sequence model, we perform several experiments on Finnish consonant gradation—a complex set of sound changes triggered in some words by certain suffixes. We find that our models often—though not always—encode 17 different consonant gradation processes in a handful of dimensions in the RNN. We also show that by scaling the activations in these dimensions we can control whether consonant gradation occurs and the direction of the gradation.

pdf bib
Expanding the JHU Bible Corpus for Machine Translation of the Indigenous Languages of North America
Garrett Nicolai | Edith Coates | Ming Zhang | Miikka Silfverberg
Proceedings of the 4th Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers)

2020

pdf
Cross-Linguistic Syntactic Evaluation of Word Prediction Models
Aaron Mueller | Garrett Nicolai | Panayiota Petrou-Zeniou | Natalia Talmina | Tal Linzen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A range of studies have concluded that neural word prediction models can distinguish grammatical from ungrammatical sentences with high accuracy. However, these studies are based primarily on monolingual evidence from English. To investigate how these models’ ability to learn syntax varies by language, we introduce CLAMS (Cross-Linguistic Assessment of Models on Syntax), a syntactic evaluation suite for monolingual and multilingual models. CLAMS includes subject-verb agreement challenge sets for English, French, German, Hebrew and Russian, generated from grammars we develop. We use CLAMS to evaluate LSTM language models as well as monolingual and multilingual BERT. Across languages, monolingual LSTMs achieved high accuracy on dependencies without attractors, and generally poor accuracy on agreement across object relative clauses. On other constructions, agreement accuracy was generally higher in languages with richer morphology. Multilingual models generally underperformed monolingual models. Multilingual BERT showed high syntactic accuracy on English, but noticeable deficiencies in other languages.

pdf
JHUBC’s Submission to LT4HALA EvaLatin 2020
Winston Wu | Garrett Nicolai
Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages

We describe the JHUBC submission to the EvaLatin Shared task on lemmatization and part-of-speech tagging for Latin. We modify a hard-attentional character-based encoder-decoder to produce lemmas and POS tags with separate decoders, and to incorporate contextual tagging cues. While our results show that the dual decoder approach fails to encode data as successfully as the single encoder, our simple context incorporation method does lead to modest improvements.

pdf bib
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Kyle Gorman | Ryan Cotterell
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf
The SIGMORPHON 2020 Shared Task on Unsupervised Morphological Paradigm Completion
Katharina Kann | Arya D. McCarthy | Garrett Nicolai | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

In this paper, we describe the findings of the SIGMORPHON 2020 shared task on unsupervised morphological paradigm completion (SIGMORPHON 2020 Task 2), a novel task in the field of inflectional morphology. Participants were asked to submit systems which take raw text and a list of lemmas as input, and output all inflected forms, i.e., the entire morphological paradigm, of each lemma. In order to simulate a realistic use case, we first released data for 5 development languages. However, systems were officially evaluated on 9 surprise languages, which were only revealed a few days before the submission deadline. We provided a modular baseline system, which is a pipeline of 4 components. 3 teams submitted a total of 7 systems, but, surprisingly, none of the submitted systems was able to improve over the baseline on average over all 9 test languages. Only on 3 languages did a submitted system obtain the best results. This shows that unsupervised morphological paradigm completion is still largely unsolved. We present an analysis here, so that this shared task will ground further research on the topic.

pdf
Induced Inflection-Set Keyword Search in Speech
Oliver Adams | Matthew Wiesner | Jan Trmal | Garrett Nicolai | David Yarowsky
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We investigate the problem of searching for a lexeme-set in speech by searching for its inflectional variants. Experimental results indicate how lexeme-set search performance changes with the number of hypothesized inflections, while ablation experiments highlight the relative importance of different components in the lexeme-set search pipeline and the value of using curated inflectional paradigms. We provide a recipe and evaluation set for the community to use as an extrinsic measure of the performance of inflection generation approaches.

pdf
Noise Isn’t Always Negative: Countering Exposure Bias in Sequence-to-Sequence Inflection Models
Garrett Nicolai | Miikka Silfverberg
Proceedings of the 28th International Conference on Computational Linguistics

Morphological inflection, like many sequence-to-sequence tasks, sees great performance from recurrent neural architectures when data is plentiful, but performance falls off sharply in lower-data settings. We investigate one aspect of neural seq2seq models that we hypothesize contributes to overfitting - teacher forcing. By creating different training and test conditions, exposure bias increases the likelihood that a system too closely models its training data. Experiments show that teacher-forced models struggle to recover when they enter unknown territory. However, a simple modification to the training algorithm to more closely mimic test conditions creates models that are better able to generalize to unseen environments.

pdf
The Johns Hopkins University Bible Corpus: 1600+ Tongues for Typological Exploration
Arya D. McCarthy | Rachel Wicks | Dylan Lewis | Aaron Mueller | Winston Wu | Oliver Adams | Garrett Nicolai | Matt Post | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present findings from the creation of a massively parallel corpus in over 1600 languages, the Johns Hopkins University Bible Corpus (JHUBC). The corpus consists of over 4000 unique translations of the Christian Bible and counting. Our data is derived from scraping several online resources and merging them with existing corpora, combining them under a common scheme that is verse-parallel across all translations. We detail our effort to scrape, clean, align, and utilize this ripe multilingual dataset. The corpus captures the great typological variety of the world’s languages. We catalog this by showing highly similar proportions of representation of Ethnologue’s typological features in our corpus. We also give an example application: projecting pronoun features like clusivity across alignments to richly annotate languages which do not mark the distinction.

pdf
An Analysis of Massively Multilingual Neural Machine Translation for Low-Resource Languages
Aaron Mueller | Garrett Nicolai | Arya D. McCarthy | Dylan Lewis | Winston Wu | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

In this work, we explore massively multilingual low-resource neural machine translation. Using translations of the Bible (which have parallel structure across languages), we train models with up to 1,107 source languages. We create various multilingual corpora, varying the number and relatedness of source languages. Using these, we investigate the best ways to use this many-way aligned resource for multilingual machine translation. Our experiments employ a grammatically and phylogenetically diverse set of source languages during testing for more representative evaluations. We find that best practices in this domain are highly language-specific: adding more languages to a training set is often better, but too many harms performance—the best number depends on the source language. Furthermore, training on related languages can improve or degrade performance, depending on the language. As there is no one-size-fits-most answer, we find that it is critical to tailor one’s approach to the source language and its typology.

pdf
UniMorph 3.0: Universal Morphology
Arya D. McCarthy | Christo Kirov | Matteo Grella | Amrit Nidhi | Patrick Xia | Kyle Gorman | Ekaterina Vylomova | Sabrina J. Mielke | Garrett Nicolai | Miikka Silfverberg | Timofey Arkhangelskiy | Nataly Krizhanovsky | Andrew Krizhanovsky | Elena Klyachko | Alexey Sorokin | John Mansfield | Valts Ernštreits | Yuval Pinter | Cassandra L. Jacobs | Ryan Cotterell | Mans Hulden | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological paradigms for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. We have implemented several improvements to the extraction pipeline which creates most of our data, so that it is both more complete and more correct. We have added 66 new languages, as well as new parts of speech for 12 languages. We have also amended the schema in several ways. Finally, we present three new community tools: two to validate data for resource creators, and one to make morphological data available from the command line. UniMorph is based at the Center for Language and Speech Processing (CLSP) at Johns Hopkins University in Baltimore, Maryland. This paper details advances made to the schema, tooling, and dissemination of project resources since the UniMorph 2.0 release described at LREC 2018.

pdf
Fine-grained Morphosyntactic Analysis and Generation Tools for More Than One Thousand Languages
Garrett Nicolai | Dylan Lewis | Arya D. McCarthy | Aaron Mueller | Winston Wu | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

Exploiting the broad translation of the Bible into the world’s languages, we train and distribute morphosyntactic tools for approximately one thousand languages, vastly outstripping previous distributions of tools devoted to the processing of inflectional morphology. Evaluation of the tools on a subset of available inflectional dictionaries demonstrates strong initial models, supplemented and improved through ensembling and dictionary-based reranking. Likewise, a novel type-to-token based evaluation metric allows us to confirm that models generalize well across rare and common forms alike

pdf
Multilingual Dictionary Based Construction of Core Vocabulary
Winston Wu | Garrett Nicolai | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

We propose a new functional definition and construction method for core vocabulary sets for multiple applications based on the relative coverage of a target concept in thousands of bilingual dictionaries. Our newly developed core concept vocabulary list derived from these dictionary consensus methods achieves high overlap with existing widely utilized core vocabulary lists targeted at applications such as first and second language learning or field linguistics. Our in-depth analysis illustrates multiple desirable properties of our newly proposed core vocabulary set, including their non-compositionality. We employ a cognate prediction method to recover missing coverage of this core vocabulary in massively multilingual dictionary construction, and we argue that this core vocabulary should be prioritized for elicitation when creating new dictionaries for low-resource languages for multiple downstream tasks including machine translation and language learning.

2019

pdf bib
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
Garrett Nicolai | Ryan Cotterell
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
The SIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection
Arya D. McCarthy | Ekaterina Vylomova | Shijie Wu | Chaitanya Malaviya | Lawrence Wolf-Sonkin | Garrett Nicolai | Christo Kirov | Miikka Silfverberg | Sabrina J. Mielke | Jeffrey Heinz | Ryan Cotterell | Mans Hulden
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

The SIGMORPHON 2019 shared task on cross-lingual transfer and contextual analysis in morphology examined transfer learning of inflection between 100 language pairs, as well as contextual lemmatization and morphosyntactic description in 66 languages. The first task evolves past years’ inflection tasks by examining transfer of morphological inflection knowledge from a high-resource language to a low-resource language. This year also presents a new second challenge on lemmatization and morphological feature analysis in context. All submissions featured a neural component and built on either this year’s strong baselines or highly ranked systems from previous years’ shared tasks. Every participating team improved in accuracy over the baselines for the inflection task (though not Levenshtein distance), and every team in the contextual analysis task improved on both state-of-the-art neural and non-neural baselines.

pdf
Learning Morphosyntactic Analyzers from the Bible via Iterative Annotation Projection across 26 Languages
Garrett Nicolai | David Yarowsky
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

A large percentage of computational tools are concentrated in a very small subset of the planet’s languages. Compounding the issue, many languages lack the high-quality linguistic annotation necessary for the construction of such tools with current machine learning methods. In this paper, we address both issues simultaneously: leveraging the high accuracy of English taggers and parsers, we project morphological information onto translations of the Bible in 26 varied test languages. Using an iterative discovery, constraint, and training process, we build inflectional lexica in the target languages. Through a combination of iteration, ensembling, and reranking, we see double-digit relative error reductions in lemmatization and morphological analysis over a strong initial system.

2018

pdf bib
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology
Sandra Kuebler | Garrett Nicolai
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
String Transduction with Target Language Models and Insertion Handling
Garrett Nicolai | Saeed Najafi | Grzegorz Kondrak
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

Many character-level tasks can be framed as sequence-to-sequence transduction, where the target is a word from a natural language. We show that leveraging target language models derived from unannotated target corpora, combined with a precise alignment of the training data, yields state-of-the art results on cognate projection, inflection generation, and phoneme-to-grapheme conversion.

pdf bib
The CoNLLSIGMORPHON 2018 Shared Task: Universal Morphological Reinflection
Ryan Cotterell | Christo Kirov | John Sylak-Glassman | Géraldine Walther | Ekaterina Vylomova | Arya D. McCarthy | Katharina Kann | Sabrina J. Mielke | Garrett Nicolai | Miikka Silfverberg | David Yarowsky | Jason Eisner | Mans Hulden
Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection

2017

pdf
Morphological Analysis without Expert Annotation
Garrett Nicolai | Grzegorz Kondrak
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

The task of morphological analysis is to produce a complete list of lemma+tag analyses for a given word-form. We propose a discriminative string transduction approach which exploits plain inflection tables and raw text corpora, thus obviating the need for expert annotation. Experiments on four languages demonstrate that our system has much higher coverage than a hand-engineered FST analyzer, and is more accurate than a state-of-the-art morphological tagger.

pdf
Bootstrapping Unsupervised Bilingual Lexicon Induction
Bradley Hauer | Garrett Nicolai | Grzegorz Kondrak
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

The task of unsupervised lexicon induction is to find translation pairs across monolingual corpora. We develop a novel method that creates seed lexicons by identifying cognates in the vocabularies of related languages on the basis of their frequency and lexical similarity. We apply bidirectional bootstrapping to a method which learns a linear mapping between context-based vector spaces. Experimental results on three language pairs show consistent improvement over prior work.

pdf
If you can’t beat them, join them: the University of Alberta system description
Garrett Nicolai | Bradley Hauer | Mohammad Motallebi | Saeed Najafi | Grzegorz Kondrak
Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection

2016

pdf
Morphological Reinflection via Discriminative String Transduction
Garrett Nicolai | Bradley Hauer | Adam St Arnaud | Grzegorz Kondrak
Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
Morphological Segmentation Can Improve Syllabification
Garrett Nicolai | Lei Yao | Grzegorz Kondrak
Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

pdf
Leveraging Inflection Tables for Stemming and Lemmatization.
Garrett Nicolai | Grzegorz Kondrak
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf
Morpho-syntactic Regularities in Continuous Word Representations: A multilingual study.
Garrett Nicolai | Colin Cherry | Grzegorz Kondrak
Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing

pdf
Multiple System Combination for Transliteration
Garrett Nicolai | Bradley Hauer | Mohammad Salameh | Adam St Arnaud | Ying Xu | Lei Yao | Grzegorz Kondrak
Proceedings of the Fifth Named Entity Workshop

pdf
English orthography is not “close to optimal”
Garrett Nicolai | Grzegorz Kondrak
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf
Inflection Generation as Discriminative String Transduction
Garrett Nicolai | Colin Cherry | Grzegorz Kondrak
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf
Does the Phonology of L1 Show Up in L2 Texts?
Garrett Nicolai | Grzegorz Kondrak
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf
Cognate and Misspelling Features for Natural Language Identification
Garrett Nicolai | Bradley Hauer | Mohammad Salameh | Lei Yao | Grzegorz Kondrak
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications

Search
Co-authors