Frederik Hartmann


2021

pdf
Deciphering Undersegmented Ancient Scripts Using Phonetic Prior
Jiaming Luo | Frederik Hartmann | Enrico Santus | Regina Barzilay | Yuan Cao
Transactions of the Association for Computational Linguistics, Volume 9

Most undeciphered lost languages exhibit two characteristics that pose significant decipherment challenges: (1) the scripts are not fully segmented into words; (2) the closest known language is not determined. We propose a decipherment model that handles both of these challenges by building on rich linguistic constraints reflecting consistent patterns in historical sound change. We capture the natural phonological geometry by learning character embeddings based on the International Phonetic Alphabet (IPA). The resulting generative framework jointly models word segmentation and cognate alignment, informed by phonological constraints. We evaluate the model on both deciphered languages (Gothic, Ugaritic) and an undeciphered one (Iberian). The experiments show that incorporating phonetic geometry leads to clear and consistent gains. Additionally, we propose a measure for language closeness which correctly identifies related languages for Gothic and Ugaritic. For Iberian, the method does not show strong evidence supporting Basque as a related language, concurring with the favored position by the current scholarship.1

2019

pdf
Predicting Historical Phonetic Features using Deep Neural Networks: A Case Study of the Phonetic System of Proto-Indo-European
Frederik Hartmann
Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change

Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.