This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We describe our approach for SemEval-2021 task 6 on detection of persuasion techniques in multimodal content (memes). Our system combines pretrained multimodal models (CLIP) and chained classifiers. Also, we propose to enrich the data by a data augmentation technique. Our submission achieves a rank of 8/16 in terms of F1-micro and 9/16 with F1-macro on the test set.
In this paper, we show that automatically-generated questions and answers can be used to evaluate the quality of Machine Translation (MT) systems. Building on recent work on the evaluation of abstractive text summarization, we propose a new metric for system-level MT evaluation, compare it with other state-of-the-art solutions, and show its robustness by conducting experiments for various MT directions.
In this paper, we describe our submission to the WMT 2021 Metrics Shared Task. We use the automatically-generated questions and answers to evaluate the quality of Machine Translation (MT) systems. Our submission builds upon the recently proposed MTEQA framework. Experiments on WMT20 evaluation datasets show that at the system-level the MTEQA metric achieves performance comparable with other state-of-the-art solutions, while considering only a certain amount of information from the whole translation.
This paper presents our system entitled ‘LIIR’ for SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval 2). We have participated in sub-task A for English, Danish, Greek, Arabic, and Turkish languages. We adapt and fine-tune the BERT and Multilingual Bert models made available by Google AI for English and non-English languages respectively. For the English language, we use a combination of two fine-tuned BERT models. For other languages we propose a cross-lingual augmentation approach in order to enrich training data and we use Multilingual BERT to obtain sentence representations.