Elsbeth Turcan


2023

pdf
Evaluation of African American Language Bias in Natural Language Generation
Nicholas Deas | Jessica Grieser | Shana Kleiner | Desmond Patton | Elsbeth Turcan | Kathleen McKeown
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While biases disadvantaging African American Language (AAL) have been uncovered in models for tasks such as speech recognition and toxicity detection, there has been little investigation of these biases for language generation models like ChatGPT. We evaluate how well LLMs understand AAL in comparison to White Mainstream English (WME), the encouraged “standard” form of English taught in American classrooms. We measure large language model performance on two tasks: a counterpart generation task, where a model generates AAL given WME and vice versa, and a masked span prediction (MSP) task, where models predict a phrase hidden from their input. Using a novel dataset of AAL texts from a variety of regions and contexts, we present evidence of dialectal bias for six pre-trained LLMs through performance gaps on these tasks.

2022

pdf
Constrained Regeneration for Cross-Lingual Query-Focused Extractive Summarization
Elsbeth Turcan | David Wan | Faisal Ladhak | Petra Galuscakova | Sukanta Sen | Svetlana Tchistiakova | Weijia Xu | Marine Carpuat | Kenneth Heafield | Douglas Oard | Kathleen McKeown
Proceedings of the 29th International Conference on Computational Linguistics

Query-focused summaries of foreign-language, retrieved documents can help a user understand whether a document is actually relevant to the query term. A standard approach to this problem is to first translate the source documents and then perform extractive summarization to find relevant snippets. However, in a cross-lingual setting, the query term does not necessarily appear in the translations of relevant documents. In this work, we show that constrained machine translation and constrained post-editing can improve human relevance judgments by including a query term in a summary when its translation appears in the source document. We also present several strategies for selecting only certain documents for regeneration which yield further improvements

2021

pdf
Emotion-Infused Models for Explainable Psychological Stress Detection
Elsbeth Turcan | Smaranda Muresan | Kathleen McKeown
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the use of a semantically related task, emotion detection, for equally competent but more explainable and human-like psychological stress detection as compared to a black-box model. In particular, we explore the use of multi-task learning as well as emotion-based language model fine-tuning. With our emotion-infused models, we see comparable results to state-of-the-art BERT. Our analysis of the words used for prediction show that our emotion-infused models mirror psychological components of stress.

pdf
Multi-Task Learning and Adapted Knowledge Models for Emotion-Cause Extraction
Elsbeth Turcan | Shuai Wang | Rishita Anubhai | Kasturi Bhattacharjee | Yaser Al-Onaizan | Smaranda Muresan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Segmenting Subtitles for Correcting ASR Segmentation Errors
David Wan | Chris Kedzie | Faisal Ladhak | Elsbeth Turcan | Petra Galuscakova | Elena Zotkina | Zhengping Jiang | Peter Bell | Kathleen McKeown
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Typical ASR systems segment the input audio into utterances using purely acoustic information, which may not resemble the sentence-like units that are expected by conventional machine translation (MT) systems for Spoken Language Translation. In this work, we propose a model for correcting the acoustic segmentation of ASR models for low-resource languages to improve performance on downstream tasks. We propose the use of subtitles as a proxy dataset for correcting ASR acoustic segmentation, creating synthetic acoustic utterances by modeling common error modes. We train a neural tagging model for correcting ASR acoustic segmentation and show that it improves downstream performance on MT and audio-document cross-language information retrieval (CLIR).

2020

pdf
Subtitles to Segmentation: Improving Low-Resource Speech-to-TextTranslation Pipelines
David Wan | Zhengping Jiang | Chris Kedzie | Elsbeth Turcan | Peter Bell | Kathy McKeown
Proceedings of the workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020)

In this work, we focus on improving ASR output segmentation in the context of low-resource language speech-to-text translation. ASR output segmentation is crucial, as ASR systems segment the input audio using purely acoustic information and are not guaranteed to output sentence-like segments. Since most MT systems expect sentences as input, feeding in longer unsegmented passages can lead to sub-optimal performance. We explore the feasibility of using datasets of subtitles from TV shows and movies to train better ASR segmentation models. We further incorporate part-of-speech (POS) tag and dependency label information (derived from the unsegmented ASR outputs) into our segmentation model. We show that this noisy syntactic information can improve model accuracy. We evaluate our models intrinsically on segmentation quality and extrinsically on downstream MT performance, as well as downstream tasks including cross-lingual information retrieval (CLIR) tasks and human relevance assessments. Our model shows improved performance on downstream tasks for Lithuanian and Bulgarian.

2019

pdf
Dreaddit: A Reddit Dataset for Stress Analysis in Social Media
Elsbeth Turcan | Kathy McKeown
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Stress is a nigh-universal human experience, particularly in the online world. While stress can be a motivator, too much stress is associated with many negative health outcomes, making its identification useful across a range of domains. However, existing computational research typically only studies stress in domains such as speech, or in short genres such as Twitter. We present Dreaddit, a new text corpus of lengthy multi-domain social media data for the identification of stress. Our dataset consists of 190K posts from five different categories of Reddit communities; we additionally label 3.5K total segments taken from 3K posts using Amazon Mechanical Turk. We present preliminary supervised learning methods for identifying stress, both neural and traditional, and analyze the complexity and diversity of the data and characteristics of each category.