This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Defeasibility in causal reasoning implies that the causal relationship between cause and effect can be strengthened or weakened. Namely, the causal strength between cause and effect should increase or decrease with the incorporation of strengthening arguments (supporters) or weakening arguments (defeaters), respectively. However, existing works ignore defeasibility in causal reasoning and fail to evaluate existing causal strength metrics in defeasible settings. In this work, we present 𝛿-CAUSAL, the first benchmark dataset for studying defeasibility in causal reasoning. 𝛿-CAUSAL includes around 11K events spanning ten domains, featuring defeasible causality pairs, namely, cause-effect pairs accompanied by supporters and defeaters. We further show that current causal strength metrics fail to reflect the change of causal strength with the incorporation of supporters or defeaters in 𝛿-CAUSAL. To this end, we propose CESAR (Causal Embedding aSsociation with Attention Rating), a metric that measures causal strength based on token-level causal relationships. CESAR achieves a significant 69.7% relative improvement over existing metrics, increasing from 47.2% to 80.1% in capturing the causal strength change brought by supporters and defeaters. We further demonstrate even Large Language Models (LLMs) like GPT-3.5 still lag 4.5 and 10.7 points behind humans in generating supporters and defeaters, emphasizing the challenge posed by 𝛿-CAUSAL.
Language models (LMs) have recently shown remarkable performance on reasoning tasks by explicitly generating intermediate inferences,e.g., chain-of-thought prompting. However, these intermediate inference steps may be inappropriate deductions from the initial contextand lead to incorrect final predictions. Here we introduce REFINER, a framework for finetuning LMs to explicitly generate intermediate reasoning steps while interacting with a critic model that provides automated feedback on the reasoning. Specifically, the critic provides structured feedback that the reasoning LM uses to iteratively improve its intermediate arguments. Empirical evaluations of REFINER on three diverse reasoning tasks show significant improvements over baseline LMs of comparable scale. Furthermore, when using GPT-3.5 or ChatGPT as the reasoner, the trained critic significantly improves reasoning without finetuning the reasoner. Finally, our critic model is trained without expensive human-in-the-loop data but can be substituted with humans at inference time.
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of a decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios, and their findings do not generalize across tasks. We argue that the misalignment between the model’s likelihood and the task-specific notion of utility is the key factor in understanding the effectiveness of decoding algorithms. To structure the discussion, we introduce a taxonomy of misalignment mitigation strategies (MMSs), providing a unifying view of decoding as a tool for alignment. The MMS taxonomy groups decoding algorithms based on their implicit assumptions about likelihood–utility misalignment, yielding general statements about their applicability across tasks. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide empirical evidence supporting the proposed taxonomy and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first to relate likelihood-based decoding algorithms with algorithms that rely on external information, such as value-guided methods and prompting, and covers the most diverse set of tasks to date. Code, data, and models are available at https://github.com/epfl-dlab/understanding-decoding.
Recent efforts in natural language processing (NLP) commonsense reasoning research have yielded a considerable number of new datasets and benchmarks. However, most of these datasets formulate commonsense reasoning challenges in artificial scenarios that are not reflective of the tasks which real-world NLP systems are designed to solve. In this work, we present CRoW, a manually-curated, multi-task benchmark that evaluates the ability of models to apply commonsense reasoning in the context of six real-world NLP tasks. CRoW is constructed using a multi-stage data collection pipeline that rewrites examples from existing datasets using commonsense-violating perturbations. We use CRoW to study how NLP systems perform across different dimensions of commonsense knowledge, such as physical, temporal, and social reasoning. We find a significant performance gap when NLP systems are evaluated on CRoW compared to humans, showcasing that commonsense reasoning is far from being solved in real-world task settings. We make our dataset and leaderboard available to the research community.
Understanding narratives requires reasoning about the cause-and-effect relationships between events mentioned in the text. While existing foundation models yield impressive results in many NLP tasks requiring reasoning, it is unclear whether they understand the complexity of the underlying network of causal relationships of events in narratives. In this work, we present CRAB, a new Causal Reasoning Assessment Benchmark designed to evaluate causal understanding of events in real-world narratives. CRAB contains fine-grained, contextual causality annotations for ~2.7K pairs of real-world events that describe various newsworthy event timelines (e.g., the acquisition of Twitter by Elon Musk). Using CRAB, we measure the performance of several large language models, demonstrating that most systems achieve poor performance on the task. Motivated by classical causal principles, we also analyze the causal structures of groups of events in CRAB, and find that models perform worse on causal reasoning when events are derived from complex causal structures compared to simple linear causal chains. We make our dataset and code available to the research community.
In this paper, we explore class-incremental learning for intent classification (IC) in a setting with limited old data available. IC is the task of mapping user utterances to their corresponding intents. Even though class-incremental learning without storing the old data yields high potential of reducing human and computational resources in industry NLP model releases, to the best of our knowledge, it hasn’t been studied for NLP classification tasks in the literature before. In this work, we compare several contemporary class-incremental learning methods, i.e., BERT warm start, L2, Elastic Weight Consolidation, RecAdam and Knowledge Distillation within two realistic class-incremental learning scenarios: one where only the previous model is assumed to be available, but no data corresponding to old classes, and one in which limited unlabeled data for old classes is assumed to be available. Our results indicate that among the investigated continual learning methods, Knowledge Distillation worked best for our class-incremental learning tasks, and adding limited unlabeled data helps the model in both adaptability and stability.
Despite recent successes of large pre-trained language models in solving reasoning tasks, their inference capabilities remain opaque. We posit that such models can be made more interpretable by explicitly generating interim inference rules, and using them to guide the generation of task-specific textual outputs. In this paper we present Coins, a recursive inference framework that i) iteratively reads context sentences, ii) dynamically generates contextualized inference rules, encodes them, and iii) uses them to guide task-specific output generation. We apply to a Narrative Story Completion task that asks a model to complete a story with missing sentences, to produce a coherent story with plausible logical connections, causal relationships, and temporal dependencies. By modularizing inference and sentence generation steps in a recurrent model, we aim to make reasoning steps and their effects on next sentence generation transparent. Our automatic and manual evaluations show that the model generates better story sentences than SOTA baselines, especially in terms of coherence. We further demonstrate improved performance over strong pre-trained LMs in generating commonsense inference rules. The recursive nature of holds the potential for controlled generation of longer sequences.
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situation can result in different outcomes. This work offers the first study of how such knowledge impacts the Abductive NLI task – which consists in choosing the more likely explanation for given observations. We train a specialized language model LMI that is tasked to generate what could happen next from a hypothetical scenario that evolves from a given event. We then propose a multi-task model MTL to solve the Abductive NLI task, which predicts a plausible explanation by a) considering different possible events emerging from candidate hypotheses – events generated by LMI – and b) selecting the one that is most similar to the observed outcome. We show that our MTL model improves over prior vanilla pre-trained LMs fine-tuned on Abductive NLI. Our manual evaluation and analysis suggest that learning about possible next events from different hypothetical scenarios supports abductive inference.
In this work we leverage commonsense knowledge in form of knowledge paths to establish connections between sentences, as a form of explicitation of implicit knowledge. Such connections can be direct (singlehop paths) or require intermediate concepts (multihop paths). To construct such paths we combine two model types in a joint framework we call Co-nnect: a relation classifier that predicts direct connections between concepts; and a target prediction model that generates target or intermediate concepts given a source concept and a relation, which we use to construct multihop paths. Unlike prior work that relies exclusively on static knowledge sources, we leverage language models finetuned on knowledge stored in ConceptNet, to dynamically generate knowledge paths, as explanations of implicit knowledge that connects sentences in texts. As a central contribution we design manual and automatic evaluation settings for assessing the quality of the generated paths. We conduct evaluations on two argumentative datasets and show that a combination of the two model types generates meaningful, high-quality knowledge paths between sentences that reveal implicit knowledge conveyed in text.
Social Commonsense Reasoning requires understanding of text, knowledge about social events and their pragmatic implications, as well as commonsense reasoning skills. In this work we propose a novel multi-head knowledge attention model that encodes semi-structured commonsense inference rules and learns to incorporate them in a transformer-based reasoning cell. We assess the model’s performance on two tasks that require different reasoning skills: Abductive Natural Language Inference and Counterfactual Invariance Prediction as a new task. We show that our proposed model improves performance over strong state-of-the-art models (i.e., RoBERTa) across both reasoning tasks. Notably we are, to the best of our knowledge, the first to demonstrate that a model that learns to perform counterfactual reasoning helps predicting the best explanation in an abductive reasoning task. We validate the robustness of the model’s reasoning capabilities by perturbing the knowledge and provide qualitative analysis on the model’s knowledge incorporation capabilities.
To make machines better understand sentiments, research needs to move from polarity identification to understanding the reasons that underlie the expression of sentiment. Categorizing the goals or needs of humans is one way to explain the expression of sentiment in text. Humans are good at understanding situations described in natural language and can easily connect them to the character’s psychological needs using commonsense knowledge. We present a novel method to extract, rank, filter and select multi-hop relation paths from a commonsense knowledge resource to interpret the expression of sentiment in terms of their underlying human needs. We efficiently integrate the acquired knowledge paths in a neural model that interfaces context representations with knowledge using a gated attention mechanism. We assess the model’s performance on a recently published dataset for categorizing human needs. Selectively integrating knowledge paths boosts performance and establishes a new state-of-the-art. Our model offers interpretability through the learned attention map over commonsense knowledge paths. Human evaluation highlights the relevance of the encoded knowledge.
In this paper, we address the problem of effectively self-training neural networks in a low-resource setting. Self-training is frequently used to automatically increase the amount of training data. However, in a low-resource scenario, it is less effective due to unreliable annotations created using self-labeling of unlabeled data. We propose to combine self-training with noise handling on the self-labeled data. Directly estimating noise on the combined clean training set and self-labeled data can lead to corruption of the clean data and hence, performs worse. Thus, we propose the Clean and Noisy Label Neural Network which trains on clean and noisy self-labeled data simultaneously by explicitly modelling clean and noisy labels separately. In our experiments on Chunking and NER, this approach performs more robustly than the baselines. Complementary to this explicit approach, noise can also be handled implicitly with the help of an auxiliary learning task. To such a complementary approach, our method is more beneficial than other baseline methods and together provides the best performance overall.