Claudia Matos Veliz
2019
Comparing MT Approaches for Text Normalization
Claudia Matos Veliz
|
Orphee De Clercq
|
Veronique Hoste
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
One of the main characteristics of social media data is the use of non-standard language. Since NLP tools have been trained on traditional text material their performance drops when applied to social media data. One way to overcome this is to first perform text normalization. In this work, we apply text normalization to noisy English and Dutch text coming from different social media genres: text messages, message board posts and tweets. We consider the normalization task as a Machine Translation problem and test the two leading paradigms: statistical and neural machine translation. For SMT we explore the added value of varying background corpora for training the language model. For NMT we have a look at data augmentation since the parallel datasets we are working with are limited in size. Our results reveal that when relying on SMT to perform the normalization it is beneficial to use a background corpus that is close to the genre you are normalizing. Regarding NMT, we find that the translations - or normalizations - coming out of this model are far from perfect and that for a low-resource language like Dutch adding additional training data works better than artificially augmenting the data.
Benefits of Data Augmentation for NMT-based Text Normalization of User-Generated Content
Claudia Matos Veliz
|
Orphee De Clercq
|
Veronique Hoste
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a small publicly available parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that, while the different approaches yield similar results regarding the normalization issues in the test set, they also introduce a large amount of over-normalizations.
Search