Bastien Rance
2023
Positionnement temporel indépendant des évènements : application à des textes cliniques en français
Nesrine Bannour
|
Xavier Tannier
|
Bastien Rance
|
Aurélie Névéol
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 2 : travaux de recherche originaux -- articles courts
L’extraction de relations temporelles consiste à identifier et classifier la relation entre deux mentions. Néanmoins, la définition des mentions temporelles dépend largement du type du texte et du domained’application. En particulier, le texte clinique est complexe car il décrit des évènements se produisant à des moments différents et contient des informations redondantes et diverses expressions temporellesspécifiques au domaine. Dans cet article, nous proposons une nouvelle représentation des relations temporelles, qui est indépendante du domaine et de l’objectif de la tâche d’extraction. Nous nousintéressons à extraire la relation entre chaque portion du texte et la date de création du document. Nous formulons l’extraction de relations temporelles comme une tâche d’étiquetage de séquences.Une macro F-mesure de 0,8 est obtenue par un modèle neuronal entraîné sur des textes cliniques, écrits en français. Nous évaluons notre représentation temporelle par le positionnement temporel desévènements de toxicité des chimiothérapies.
Event-independent temporal positioning: application to French clinical text
Nesrine Bannour
|
Bastien Rance
|
Xavier Tannier
|
Aurelie Neveol
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks
Extracting temporal relations usually entails identifying and classifying the relation between two mentions. However, the definition of temporal mentions strongly depends on the text type and the application domain. Clinical text in particular is complex. It may describe events that occurred at different times, contain redundant information and a variety of domain-specific temporal expressions. In this paper, we propose a novel event-independent representation of temporal relations that is task-independent and, therefore, domain-independent. We are interested in identifying homogeneous text portions from a temporal standpoint and classifying the relation between each text portion and the document creation time. Temporal relation extraction is cast as a sequence labeling task and evaluated on oncology notes. We further evaluate our temporal representation by the temporal positioning of toxicity events of chemotherapy administrated to colon and lung cancer patients described in French clinical reports. An overall macro F-measure of 0.86 is obtained for temporal relation extraction by a neural token classification model trained on clinical texts written in French. Our results suggest that the toxicity event extraction task can be performed successfully by automatically identifying toxicity events and placing them within the patient timeline (F-measure .62). The proposed system has the potential to assist clinicians in the preparation of tumor board meetings.
Search