Post-editing Productivity with Neural Machine Translation: An Empirical Assessment of Speed and Quality in the Banking and Finance Domain

Samuel Läubli, Chantal Amrhein, Patrick Düggelin, Beatriz Gonzalez, Alena Zwahlen, Martin Volk

[How to correct problems with metadata yourself]


Anthology ID:
W19-6626
Volume:
Proceedings of Machine Translation Summit XVII: Research Track
Month:
August
Year:
2019
Address:
Dublin, Ireland
Editors:
Mikel Forcada, Andy Way, Barry Haddow, Rico Sennrich
Venue:
MTSummit
SIG:
Publisher:
European Association for Machine Translation
Note:
Pages:
267–272
Language:
URL:
https://aclanthology.org/W19-6626
DOI:
Bibkey:
Cite (ACL):
Samuel Läubli, Chantal Amrhein, Patrick Düggelin, Beatriz Gonzalez, Alena Zwahlen, and Martin Volk. 2019. Post-editing Productivity with Neural Machine Translation: An Empirical Assessment of Speed and Quality in the Banking and Finance Domain. In Proceedings of Machine Translation Summit XVII: Research Track, pages 267–272, Dublin, Ireland. European Association for Machine Translation.
Cite (Informal):
Post-editing Productivity with Neural Machine Translation: An Empirical Assessment of Speed and Quality in the Banking and Finance Domain (Läubli et al., MTSummit 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/W19-6626.pdf