Correlating Twitter Language with Community-Level Health Outcomes

Arno Schneuwly, Ralf Grubenmann, Séverine Rion Logean, Mark Cieliebak, Martin Jaggi

[How to correct problems with metadata yourself]


Abstract
We study how language on social media is linked to mortal diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clustering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors.
Anthology ID:
W19-3210
Volume:
Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
Month:
August
Year:
2019
Address:
Florence, Italy
Editors:
Davy Weissenbacher, Graciela Gonzalez-Hernandez
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
71–78
Language:
URL:
https://aclanthology.org/W19-3210
DOI:
10.18653/v1/W19-3210
Bibkey:
Cite (ACL):
Arno Schneuwly, Ralf Grubenmann, Séverine Rion Logean, Mark Cieliebak, and Martin Jaggi. 2019. Correlating Twitter Language with Community-Level Health Outcomes. In Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, pages 71–78, Florence, Italy. Association for Computational Linguistics.
Cite (Informal):
Correlating Twitter Language with Community-Level Health Outcomes (Schneuwly et al., ACL 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/W19-3210.pdf
Code
 epfml/correlating-tweets