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Introduction

The Second Conference on Machine Translation (WMT 2017) took place on Thursday and Friday,
September 7–8, 2017 in Copenhagen, Denmark, immediately preceding the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2017).

This is the second time WMT has been held as a conference. The first time WMT was held as a
conference was at ACL 2016 in Berlin, Germany. Prior to being a conference, WMT was held 10 times
as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the
following years the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech
Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala,
Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia,
Bulgaria, ACL 2014 in Baltimore, USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of MT systems varies greatly with the source language. In this
conference we encouraged researchers to investigate ways to improve the performance of MT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of three translation tasks: Machine Translation of News,
Biomedical Translation, and Multimodal Machine Translation, two evaluation tasks: Metrics and Quality
Estimation, as well as the Automatic Post-Editing, Neural MT Training, and the Bandit Learning
tasks. Two of these tasks were run at WMT for the first time. The Neural MT Training task provide
comparable conditions and encouraging researchers to explore training methods that lead to improved
and more robust translation quality and help speed up the training. The Bandit Learning Task encourages
participants to train and improve MT systems by learning from weak or partial feedback instead of the
commonly used gold-standard human-generated translations.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. This year we have received 40 full research paper submissions. In total, WMT 2017
featured 16 full paper oral presentations and 59 shared task poster presentations.

Holger Schwenk gave the invited on “Multilingual Representions and Applications in NLP”.

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all volunteers who helped with the evaluations.

Ondřej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Yvette Graham Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Julia Kreutzer, Varvara Logacheva Christof
Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Stefan Riezler, Raphael Rubino, Artem
Sokolov, Lucia Specia, Marco Turchi, and Karin Verspoor
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Antonio Valerio Miceli Barone, Jindřich Helcl, Rico Sennrich, Barry Haddow and Alexandra Birch

99

Biasing Attention-Based Recurrent Neural Networks Using External Alignment Information
Tamer Alkhouli and Hermann Ney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Effective Domain Mixing for Neural Machine Translation
Denny Britz, Quoc Le and Reid Pryzant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Multi-Domain Neural Machine Translation through Unsupervised Adaptation
M. Amin Farajian, Marco Turchi, Matteo Negri and Marcello Federico. . . . . . . . . . . . . . . . . . . . . .127

Adapting Neural Machine Translation with Parallel Synthetic Data
Mara Chinea-Rios, Álvaro Peris and Francisco Casacuberta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Copied Monolingual Data Improves Low-Resource Neural Machine Translation
Anna Currey, Antonio Valerio Miceli Barone and Kenneth Heafield . . . . . . . . . . . . . . . . . . . . . . . . .148

Guiding Neural Machine Translation Decoding with External Knowledge
Rajen Chatterjee, Matteo Negri, Marco Turchi, Marcello Federico, Lucia Specia and Frédéric Blain

157

ix



Findings of the 2017 Conference on Machine Translation (WMT17)
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ings, Miguel Rios, Wilker Aziz, Philip Williams, Frédéric Blain and Lucia Specia

The RWTH Aachen University English-German and German-English Machine
Translation System for WMT 2017
Jan-Thorsten Peter, Andreas Guta, Tamer Alkhouli, Parnia Bahar, Jan Rosendahl,
Nick Rossenbach, Miguel Graça and Hermann Ney

The Karlsruhe Institute of Technology Systems for the News Translation Task in
WMT 2017
Ngoc-Quan Pham, Jan Niehues, Thanh-Le Ha, Eunah Cho, Matthias Sperber and
Alexander Waibel

Tilde’s Machine Translation Systems for WMT 2017
Mārcis Pinnis, Rihards Krišlauks, Toms Miks, Daiga Deksne and Valters Šics

C-3MA: Tartu-Riga-Zurich Translation Systems for WMT17
Matı̄ss Rikters, Chantal Amrhein, Maksym Del and Mark Fishel

The University of Edinburgh’s Neural MT Systems for WMT17
Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Germann, Barry Haddow,
Kenneth Heafield, Antonio Valerio Miceli Barone and Philip Williams

XMU Neural Machine Translation Systems for WMT 17
Zhixing Tan, Boli Wang, Jinming Hu, Yidong Chen and xiaodong shi

The JAIST Machine Translation Systems for WMT 17
Long Trieu, Trung-Tin Pham and Le-Minh Nguyen

xvii



Thursday, September 7, 2016 (continued)

Sogou Neural Machine Translation Systems for WMT17
Yuguang Wang, Shanbo Cheng, Liyang Jiang, Jiajun Yang, Wei Chen, Muze Li, Lin
Shi, Yanfeng Wang and Hongtao Yang

PJIIT’s systems for WMT 2017 Conference
Krzysztof Wolk and Krzysztof Marasek

Hunter MT: A Course for Young Researchers in WMT17
Jia Xu, Yi Zong Kuang, Shondell Baijoo, Jacob Hyun Lee, Uman Shahzad, Mir
Ahmed, Meredith Lancaster and Chris Carlan

CASICT-DCU Neural Machine Translation Systems for WMT17
Jinchao Zhang, Peerachet Porkaew, Jiawei Hu, Qiuye Zhao and Qun Liu

11:00–12:30 Shared Task: Multi-Modal Translation

LIUM-CVC Submissions for WMT17 Multimodal Translation Task
Ozan Caglayan, Walid Aransa, Adrien Bardet, Mercedes García-Martínez, Fethi
Bougares, Loïc Barrault, Marc Masana, Luis Herranz and Joost van de Weijer

DCU System Report on the WMT 2017 Multi-modal Machine Translation Task
Iacer Calixto, Koel Dutta Chowdhury and Qun Liu

The AFRL-OSU WMT17 Multimodal Translation System: An Image Processing Ap-
proach
John Duselis, Michael Hutt, Jeremy Gwinnup, James Davis and Joshua Sandvick

CUNI System for the WMT17 Multimodal Translation Task
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Abstract

Statistical machine translation (SMT) sys-
tems use local cues from n-gram trans-
lation and language models to select the
translation of each source word. Such
systems do not explicitly perform word
sense disambiguation (WSD), although
this would enable them to select transla-
tions depending on the hypothesized sense
of each word. Previous attempts to con-
strain word translations based on the re-
sults of generic WSD systems have suf-
fered from their limited accuracy. We
demonstrate that WSD systems can be
adapted to help SMT, thanks to three key
achievements: (1) we consider a larger
context for WSD than SMT can afford
to consider; (2) we adapt the number of
senses per word to the ones observed in the
training data using clustering-based WSD
with K-means; and (3) we initialize sense-
clustering with definitions or examples ex-
tracted from WordNet. Our WSD system
is competitive, and in combination with a
factored SMT system improves noun and
verb translation from English to Chinese,
Dutch, French, German, and Spanish.

1 Introduction

Selecting the correct translation of polysemous
words remains an important challenge for ma-
chine translation (MT). While some translation
options may be interchangeable, substantially dif-
ferent senses of source words must generally be
rendered by different words in the target language.
In this case, an MT system should identify – im-
plicitly or explicitly – the correct sense conveyed
by each occurrence in order to select the appropri-
ate translation.

Source: And I do really like this shot, be-
cause it shows all the detritus that’s sort
of embedded in the sole of the sneakers.

Baseline SMT: Und ich mag dieses Bild . . .

Online NMT: Und ich mag diesen Schuss
wirklich, . . .

Sense-aware MT: Und ich mag diese Auf-
nahme wirklich, . . .

Reference translation: Ich mag diese Auf-
nahme wirklich, . . .

Figure 1: Example of sense-aware translation that
is closer to a reference translation than a baseline
statistical MT system or an online neural one.

Current statistical or neural MT systems per-
form word sense disambiguation (WSD) implic-
itly, for instance through the n-gram frequency in-
formation stored in the translation and language
models. However, the context taken into account
by an MT system when performing implicit WSD
is limited. For instance, in the case of phrase-
based SMT, it is the order of the language model
(often between 3 and 5) and the length of n-grams
in the phrase table (seldom above 5). In attention-
based neural MT systems, the context extends to
the entire sentence, but is not specifically trained
to be used for WSD.

For instance, Figure 1 shows an English sen-
tence translated into German by a baseline statisti-
cal MT, an online neural MT, and the sense-aware
MT system proposed in this paper. The word shot
is respectively translated as Schuss (gun shot), Bild
(drawing) and Aufnahme (picture) by the online
NMT, the baseline system, and our sense-aware
system. The latter selects a correct sense, which is
identical to the reference translation, while the first
two are incorrect (especially the online NMT).
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…
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…

MT	training	data	with	‘rock’
w0:	…clinging	to	a	rock face…
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w2:	…like	rock band…
…

MT	training/test	data	with	‘rock’	
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w2:	…like	rock|1 band…	
…Context	of	‘rock’

w0:	[w0_vector]	
w1:	[w1_vector]
w2:	[w2_vector]
…

Figure 2: Adaptive WSD for MT: vectors from WordNet definitions (or examples) are clustered with
context vectors of each occurrence (here of ‘rock’), resulting in sense labels used as factors for MT.

In this paper, we introduce a sense-aware statis-
tical MT system that performs explicit WSD, and
uses for this task a larger context than is accessi-
ble to state-of-the-art SMT. Our WSD system per-
forms context-dependent clustering of word oc-
currences and is initialized with knowledge from
WordNet, in the form of vector representations of
definitions or examples for each sense. The la-
bels of the resulting clusters are used as abstract
source-side sense labels within a factored phrase-
based SMT system. The stages of our method are
presented in Figure 2, and will be explained in de-
tail in Section 3.

Our results, presented in Section 5, show first
that our WSD system is competitive on the Se-
mEval 2010 WSD task, but especially that it helps
SMT to increase its BLEU scores and to improve
the translation of polysemous nouns and verbs,
when translating from English into Chinese, Ger-
man, French, Spanish or Dutch, in comparison to
an SMT baseline that is not aware of word senses.

With respect to previous work that used WSD
for MT, discussed in Section 2, we innovate on the
following points:

• we design a sense clustering method with ex-
plicit knowledge (WordNet definitions or ex-
amples) to disambiguate polysemous nouns
and verbs;

• we represent each token by its context vec-
tor, obtained from word2vec word vectors in
a large window surrounding the token;

• we adapt the possible number of senses per
word to the ones observed in the training data
rather than constraining them by the full list
of senses from WordNet;

• we use the abstract sense labels for each ana-
lyzed word as factors in an SMT system.

2 Related Work

Word sense disambiguation aims to identify the
sense of a word appearing in a given context
(Agirre and Edmonds, 2007). Resolving word
sense ambiguities should be useful, in particular,
for lexical choice in MT.

An initial investigation found that an SMT sys-
tem which makes use of off-the-shelf WSD does
not yield significantly better quality translations
than a SMT system not using it (Carpuat and Wu,
2005). However, another study (Vickrey et al.,
2005) reformulated the task of WSD for SMT as
predicting possible target translations rather than
senses of ambiguous source words, and showed
that WSD improved such a simplified word trans-
lation task. Subsequent studies which adopted
this formulation (Cabezas and Resnik, 2005; Chan
et al., 2007; Carpuat and Wu, 2007), successfully
integrated WSD to hierarchical or phrase-based
SMT. These systems yielded slightly better trans-
lations compared to SMT baselines in most cases
(0.15–0.30 BLEU).

Although the WSD reformulation above proved
helpful for SMT, it did not determine whether ac-
tual source-side senses are helpful or not for end-
to-end SMT. Xiong and Zhang (2014) attempted
to answer this question by performing word sense
induction for large scale data. In particular, they
proposed a topic model that automatically learned
sense clusters for words in the source language.
In this way, on the one hand, they avoided using
a pre-specified inventory of word senses as tradi-
tional WSD does, but on the other hand, they cre-
ated the risk of discovering sense clusters which
do not correspond to the common senses of words
needed for MT. Hence, this study left open an im-
portant question, namely whether WSD based on
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semantic resources such as WordNet (Fellbaum,
1998) can be successfully integrated with SMT.

Neale et al. (2016) attempted such an integra-
tion, by using a WSD system based on a sense
graph from WordNet (Agirre and Soroa, 2009).
This system detects the senses of words in con-
text using a random walk algorithm over the sense
graph. The authors used it to specify the senses
of the source words and integrate them as con-
textual features with a MaxEnt-based translation
model for English-Portuguese MT. Similarly, Su
et al. (2015) built a large weighted graph model
of both source and target word dependencies and
integrated them as features to a SMT model. How-
ever, apart from the sense graph, WordNet pro-
vides also textual information such as sense def-
initions and examples, which should be useful for
disambiguating senses, but were not used in the
above studies. Here, we aim to exploit this in-
formation to perform word sense induction from
large scale monolingual data (in a first phase), thus
combining the benefits of semantic ontologies and
word sense induction for WSD.

Several other studies integrated additional infor-
mation from a larger context using factored-based
MT models (Koehn and Hoang, 2007). Birch et al.
(2007) used supertags from a Combinatorial Cat-
egorial Grammar as factors in phrase-based trans-
lation model. Avramidis and Koehn (2008) added
source-side syntactic information for each word
for translating from a morphologically poorer lan-
guage to a richer one (English-Greek). The lev-
els of improvement achieved with factored mod-
els such as the ones above range from 0.15 to 0.50
BLEU points. Here, we also observe improve-
ments in the upper part of this range, and they are
consistent across several language pairs.

3 Adaptive Sense Clustering for SMT

In this section, we describe our adaptive WSD
method and show how we integrate it with SMT,
as represented in Figure 2 above. In a nutshell, we
consider all source words that have more than one
sense (synset) in WordNet, and extract from Word-
Net the definition of each sense and, if available,
the example. We associate to them word embed-
dings built using word2vec. For each occurrence
of these words in the training data, we also build
vectors for their contexts (i.e. neighboring words)
using the same model. All the vectors are passed
to a clustering algorithm, resulting in the labeling

of each occurrence with a cluster number that will
be used as a factor in statistical MT.

Our method answers several limitations of pre-
vious supervised or unsupervised WSD methods.
Supervised methods require data with manually
sense-annotated labels and are therefore often lim-
ited to a small number of word types: for instance,
only 50 nouns and 50 verbs were targeted in Se-
mEval 20101 (Manandhar et al., 2010). On the
contrary, our method does not require labeled texts
for training, and applies to all word types appear-
ing with multiple senses in WordNet.

Unsupervised methods often pre-define the
number of possible senses for each ambiguous
word before clustering the various occurrences ac-
cording to the senses. If these numbers come from
WordNet, the senses may be too fine-grained for
the needs of translation, especially when a spe-
cific domain is targeted. In contrast, as we explain
below, our WSD method initializes a context-
dependent clustering algorithm with information
from WordNet senses for each word (nouns and
verbs), but then adapts the number of clusters to
the observed training data for MT.

3.1 Representing Definitions, Examples and
Contexts of Word Occurrences

For each noun or verb type Wt appearing in the
training data, as identified by the Stanford POS
tagger,2 we extract the senses associated to it
in WordNet3 by using NLTK.4 Specifically, we
extract the set of definitions Dt = {dtj |j =
1, . . . ,mt} and the set of examples of use Et =
{etj |j = 1, . . . , nt}, each of them containing mul-
tiple words. While most of the senses are ac-
companied by a definition, only a smaller subset
also include an example of use, as it appears from
the four last columns of Table 1. Less frequently,
some senses contain examples without definitions.

Each definition dtj and example etj is repre-
sented by a vector, which is the average of the
word embeddings over all the words constitut-
ing them (except stopwords). Formally, these are
~dtj = (

∑
wl∈dtj ~wl)/mt and respectively ~etj =

(
∑

wl∈e′tj ~wl)/nt. While the entire definition dtj
is used to build the vector, we do not consider
all words in the example etj , but limit the sum to

1www.cs.york.ac.uk/semeval2010_WSI
2http://nlp.stanford.edu/software/
3https://wordnet.princeton.edu/
4See www.nltk.org/howto/wordnet.html
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e′tj i.e. we consider only a window of size c cen-
tered around the noun or verb of type Wt (simi-
larly to the window used for context representation
below) to avoid noise from long examples.

All the word vectors ~wl above are word2vec
pre-trained embeddings from Google5 (Mikolov
et al., 2013). If d is the dimensionality of the word
vector space, then all vectors ~wl, ~dtj , and ~etj are
in Rd. Each definition vector ~dtj or example vec-
tor ~etj for a word type Wt will be considered as a
center vector for each sense during the clustering
procedure.

Similarly, each word token wi in a source sen-
tence is represented by the average vector ~ui of the
words in its context, which is defined as a window
of c words centered in wi. The value c of the con-
text size is even, since we calculate the vector ~ui
forwi by averaging vectors from c/2 words before
wi and from c/2 words after it. We stop neverthe-
less at the sentence boundaries, and filter out stop
words before averaging.

We will now explain how to cluster according to
their senses all vectors ~ui for the occurrences wi

of a given word type Wt, using as initial centers
either the definition or the example vectors.

3.2 Clustering Word Occurrences According
to their Senses

We aim to group all occurrences wi of a given
word type Wt into clusters according to the sim-
ilarity of their senses, which we will model as the
similarity of their context vectors. The correctness
of this hypothesis will be supported by the empiri-
cal results. We will modify the k-means algorithm
in several ways to achieve an optimal clustering of
word senses for MT.

The original k-means algorithm (MacQueen,
1967) aims to partition a set of items, which
are here tokens w1, w2, . . . , wn of a same word
type Wt, represented through their embeddings
~u1, ~u2, . . . , ~un where ~ui ∈ Rd. The goal of
k-means is to partition (or cluster) them into k
sets S = {S1, S2, . . . , Sk} so as to minimize the
within-cluster sum of squares, as follows:

S = argmin
S

k∑

i=1

∑

~u∈Si

||~u− ~µi||2, (1)

where ~µi is the centroid of each set Si. At the
first iteration, when there are no clusters yet, the

5code.google.com/archive/p/word2vec/

algorithm selects k random points to be the cen-
troids of the k clusters. Then, at each subsequent
iteration t, k-means calculates for each candidate
cluster a new point to be the centroid of the obser-
vations, defined as their average vector, as follows:

~µ t+1
i =

1

|St
i |
∑

~uj∈St
i

~uj (2)

We make the following modifications to the
original k-means algorithm, to make it adaptive to
the word senses observed in the training data.

1. We define the initial number of clusters kt
for each ambiguous word type Wt in the
data as the number of its senses in Word-
Net (but this number may be reduced by the
final re-clustering described below at point
3). Specifically, we run two series of experi-
ments (the results of which will be compared
in Section 5.1.1): one in which each kt is set
to mt, i.e. the number of senses that possess
a definition in WordNet, and another one in
which we consider only senses that are illus-
trated with an example, hence setting each kt
to nt. These settings avoid fixing the number
of clusters kt arbitrarily for each ambiguous
word type.

2. We initialize the centroids of the clusters
to the vectors representing the senses from
WordNet, either using their definition vectors
~dtj in one series of experiments, or their ex-
ample vectors ~etj in the other one. This sec-
ond modification attempts to provide a rea-
sonably accurate starting point for the clus-
tering process.

3. After running the k-means algorithm, we re-
duce the number of clusters for each word
type by merging the clusters which contain
fewer than 10 tokens with the nearest larger
cluster. This is done by calculating the co-
sine similarity between each token vector ~ui
and the centroids of the larger clusters and
assigning the tokens to the closest large clus-
ter. This re-clustering adapts the final number
of clusters to the observed occurrences in the
training data. Indeed, when there are few oc-
currences of a sense for a given ambiguous
word type in the data, the SMT is likely not
able to translate them properly due to the lack
of training samples.
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Finally, after clustering the training data, we use
the centroids to assign each new token from the
test data to a cluster, i.e. an abstract sense label,
by selecting the closest centroid to it in terms of
cosine distance in the embedding space.

3.3 Integration with Machine Translation

Our adaptive WSD system assigns a sense number
for each ambiguous word token in the source-side
of a parallel corpus. To pass this information to
an SMT system, we use a factored phrase-based
translation model (Koehn and Hoang, 2007). The
factored model offers a principled way to supple-
ment words with additional information – such as,
traditionally, part-of-speech tags – without requir-
ing any intervention in the translation tables. The
features are combined in a log-linear way with
those of a standard phrase-based decoder, and the
goal remains to find the most probable target sen-
tence for a given source sentence. To each source
noun or verb token, we add a sense label obtained
from our adaptive WSD system. To all the other
words, we add a NULL label.6 The translation sys-
tem will thus take the source-side sense labels into
consideration during the training and the decoding
processes.

4 Datasets, Preparation and Settings

We evaluate our sense-aware SMT on the UN Cor-
pus7 (Rafalovitch and Dale, 2009) and on the Eu-
roparl Corpus8 (Koehn, 2005). We select 0.5 mil-
lion parallel sentences for each language pair from
Europarl, as shown in Table 1. We also use the
smaller WIT3 Corpus9 (Cettolo et al., 2012), a col-
lection of transcripts of TED talks, to evaluate the
impact of costly model choices, namely the type of
the resource (definition vs. examples), the length
of the context window, and the k-means method
(adaptive vs. original).

Before assigning sense labels, we first tokenize
all the texts and identify the parts of speech (POS)
using the Stanford POS tagger10. Then, we fil-
ter out the stopwords and the nouns which are
proper names according to the Stanford Name En-
tity Recognizer10. Furthermore, we convert the

6In practice, these labels are simply appended to the to-
kens in the data following a vertical bar, e.g. ‘rock|1’ or
‘great|NULL’.

7http://www.uncorpora.org/
8http://www.statmt.org/europarl/
9http://wit3.fbk.eu/

10http://nlp.stanford.edu/software/

plural forms of nouns to their singular form and
the verb forms to infinitive using the stemmer and
lemmatizer from NLTK11, which is essential be-
cause WordNet has description entries only for
singular nouns and infinitive form of verbs. The
pre-processed text is used for assigning sense la-
bels to each occurrence of a noun or verb which
has more than one sense in WordNet.

For translation, we train and tune baseline
and factored phrase-based models with Moses12

(Koehn et al., 2007). We also carried out pilot ex-
periments with neural machine translation (NMT).
However, due to the large datasets NMT requires
for training, its performance was below SMT on
the datasets above, and sense labels did not im-
prove it. We thus focus on SMT in what follows,
and leave WSD for NMT for future studies.

We select the optimal model configuration
based on the MT performance, measured with the
traditional BLEU score (Papineni et al., 2002), on
the WIT3 corpus for EN/ZH and EN/DE. Unless
otherwise stated, we use the following settings
in the k-means algorithm, starting from the im-
plementation provided in Scikit-learn (Pedregosa
et al., 2011):

• we use the definition of each sense for initial-
izing the centroids in the adaptive k-means
methods (and compare this later with using
the examples);

• we set kt equal to mt, i.e. the number of
senses of an ambiguous word type Wt;

• the window size for the context surrounding
each occurrence is set to c = 8.

For the evaluation of intrinsic WSD perfor-
mance, we use the V -metric, the F1-metric, and
their average, as used for instance at SemEval
2010 (Manandhar et al., 2010). To measure the
impact of WSD on MT, besides BLEU, we also
measure the actual impact on the nouns and verbs
that appear in WordNet with several senses, by
comparing how many of them are translated as
in the reference translation, by our system vs. the
baseline. For a certain set of tokens in the source
data, we note as Nimproved the number of tokens
which are translated by our system as in the ref-
erence translation, but whose baseline translation
differs from it. Conversely, we note as Ndegraded

the number of tokens which are translated by the
11http://www.nltk.org/
12http://www.statmt.org/moses/
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Training Development Testing Definitions Examples
# lines # tokens # lines # tokens # lines # tokens # nouns # verbs # nouns # verbs

EN/ZH WIT3 150,000 3M 10,000 0.3M 50,000 1M 6,052 2,435 2,049 1,932
UN 500,000 13M 5,000 0.14M 50,000 1.5M 8,165 3,382 2,810 2,716

EN/DE WIT3 140,000 2.8M 5,000 0.16M 50,000 1M 8,308 2,384 3,662 2,042
Europarl 500,000 14M 5,000 0.14M 50,000 1.4M 6,373 3,323 2,608 2,668

EN/FR Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,279 4,022 2,276 2,054
EN/ES Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,716 4,048 2,478 2,359
EN/NL Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,667 4,023 2,439 2,318

Table 1: Statistics of the corpora used for machine translation: ‘∼’ indicates a similar size, though
not identical texts, because the English source texts for the different language pairs from Europarl are
different. Hence, the number of words found in WordNet differ as well.

baseline system as in the reference, but differently
by our system. We will use the normalized coef-
ficient ρ = (Nimproved − Ndegraded)/T , where T
is the total number of tokens, as a metric focusing
explicitly on the words submitted to WSD.13

5 Results

Using the data, settings, and metrics above, we
investigate first the impact of two model choices
on the performance: centroid initialization for k-
means (definition or examples vs. random), and
the length of the context window for each word.
Then, we evaluate our adaptive clustering method
on the WSD task, to estimate its intrinsic quality,
and finally measure WSD+MT performance.

5.1 Optimal Values of the Parameters
5.1.1 Initialization of Adaptive k-means
We examine first the impact of the initialization
of the sense clusters, on the WIT3 Corpus. In
Table 2, we present the BLEU scores of our
WSD+MT system in two conditions: when the k-
means clusters are initialized with vectors from the
definitions vs. from the examples provided in the
WordNet synsets of ambiguous words. Moreover,
we provide BLEU scores of baseline systems and
oracle ones (i.e. using correct senses as factors),
as well as the ρ score indicating the relative im-
provement of ambiguous words in our system wrt.
the baseline. The use of definitions outperforms
the use of examples, probably because there are
more words with definitions than with examples
in WordNet (twice as many, as shown in Table 1 in
Section 4), but also because definitions may pro-
vide more helpful words to build the initial vec-
tors, as they are more explicit than the examples.

13The values of Nimproved and Ndegraded are obtained
using automatic word alignment. They do not capture, of
course, the absolute correctness of a candidate translation, but
only its identity or not with one reference translation.

All the values of ρ show clear improvements over
the baseline, with up to 4% for DE/EN. As for the
oracle scores, they outperform the baseline by a
factor of 2–3 compared to our system.

Pair Resource BLEU
ρ (%)Baseline Factored Oracle

EN/ZH Definitions 15.23 15.54 16.24 +2.25
Examples 15.41 15.85 +1.60

EN/DE Definitions 19.72 20.23 20.99 +3.96
Examples 19.98 20.45 +2.15

Table 2: Performance of our WSD+MT factored
system for two language pairs from WIT3, with
two initialization conditions for the k-means clus-
ters, i.e. definitions or examples for each sense.

In addition, we compare the two initialization
options above with random initializations of k-
means clusters, in Table 3. To offer a fair compar-
ison, we set the number of clusters, in the case of
random initializations, respectively to the number
of synsets with definitions or examples, for each
word type. Clearly, our adaptive, informed initial-
izations of clusters are beneficial to MT.

Resource k-means initialization
Specific Random

Definitions 15.54 15.34
Examples 15.41 15.27

Table 3: Performance of our WSD+MT factored
system for EN-ZH from WIT3, comparing the two
initialization conditions for the k-means clusters,
i.e. definitions or examples for each sense, with
random initializations.

5.1.2 Length of the Context Window
We investigate the effect of the size of the context
window surrounding each ambiguous token, i.e.
the number of words surrounding it that are con-
sidered for building its vector representation. Fig-
ure 3 displays the BLEU score of our WSD+MT
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System V-score F1-score Average
All Nouns Verbs All Nouns Verbs All Nouns Verbs #clusters

B
as

e. MFS 0 0 0 64.85 57.00 72.70 32.42 29.50 25.40 1.00
Random 4.40 4.60 4.20 32.35 30.60 34.10 18.45 17.60 19.30 4.00
1ClusterPerIns 31.70 35.80 25.60 0.12 0.11 0.12 15.40 17.90 12.90 89.15

To
p

sy
st

em
s

Hermit (Jurgens and Stevens, 2010) 16.20 16.70 15.60 25.55 26.70 24.40 20.85 21.70 20.00 10.78
UoY (Korkontzelos and Manandhar, 2010) 15.70 20.60 8.50 49.80 38.20 66.60 32.75 29.40 37.50 11.54
KSU KDD (Elshamy et al., 2010) 15.70 18.00 12.40 36.90 24.60 54.70 26.30 21.30 33.50 17.50
Duluth-WSI (Pedersen, 2010) 9.00 11.40 5.70 41.10 37.10 46.70 25.05 24.20 26.20 4.15
Duluth-WSI-SVD-Gap (Pedersen, 2010) 0.00 0.00 0.10 63.30 57.00 72.40 31.65 28.50 36.20 1.02
KCDC-PT (Kern et al., 2010) 1.90 1.00 3.10 61.80 56.40 69.70 31.85 28.70 36.40 1.50
KCDC-GD (Kern et al., 2010) 6.90 5.90 8.50 59.20 51.60 70.00 33.05 28.70 39.20 2.78
Duluth-Mix-Gap (Pedersen, 2010) 3.00 2.90 3.00 59.10 54.50 65.80 31.05 29.70 34.40 1.61

O
ur

s Adaptive k-means + definition 13.65 14.70 12.60 56.70 53.70 59.60 35.20 34.20 36.10 4.45
Adaptive k-means + example 11.35 11.00 11.70 53.25 47.70 58.80 32.28 29.30 35.25 3.58

Table 4: WSD results from the SemEval 2010 shared task in terms of V -score, F1 score and their
average. Our adaptive k-means using definitions (last but one line) outperforms all the other systems on
the average of V and F1, when considering both nouns and verbs, or nouns only.

factored system when varying this size, on EN/ZH
translation in the WIT3 Corpus, along with the
(constant) score of the baseline. The performance
of our system improves with the size of the win-
dow, reaching a peak around 8–10. This result
highlights the importance of a longer context com-
pared to the typical settings of SMT systems,
which generally do not go beyond 6. It also sug-
gests that MT systems which exploit effectively
longer context, as we show here with a sense-
aware factored MT system for ambiguous nouns
and verbs, can significantly improve their lexical
choice and their overall translation quality.

Figure 3: BLEU scores of our WSD+MT factored
system on EN/ZH WIT3 data, along with the base-
line score (constant), when the size of the context
window around each ambiguous token (for build-
ing its context vector) varies from 2 to 14.

5.2 Word Sense Disambiguation Results

We evaluate in this section our WSD system on the
dataset from the SemEval 2010 shared task (Man-

andhar et al., 2010), to assess how competitive it
is, while acknowledging that our system uses ex-
ternal knowledge not available to SemEval partic-
ipants.

Table 4 shows the WSD results in terms of V -
score and F1-score, comparing our method (bot-
tom two lines) with other WSD systems that par-
ticipated in SemEval 2010 (top four systems for
each metric). We add three baselines provided
by the task organizers for comparison: (1) Most
Frequent Sense (MFS), which groups all occur-
rences of a word into one cluster, (2) 1Cluster-
PerInstance, which produces one cluster for each
occurrence of a word, and (3) Random, which ran-
domly assigns an occurrence to 1 out of 4 clus-
ters (4 is the average number of senses from the
ground-truth).

The V-score is biased towards systems generat-
ing a higher number of clusters than the number
of gold standard senses. F1-score measures the
classification performance, i.e. how well a method
assigns two occurrences of a word belonging to
the same gold standard class. Hence, this metric
favors systems that generate fewer clusters (for in-
stance, if all instances were grouped into 1 cluster,
the F1-score would be high). As these two metrics
are biased towards either small or large numbers
of clusters, their average is a useful metric as well.

Table 4 shows that k-means initialized with
definitions achieves high performance and ranks
among the top systems for each metric individu-
ally, outperforming all other systems on the aver-
aged metric (especially over nouns or all words).
Moreover, the adaptive k-means method finds an
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Language pair Corpus BLEU
ρ (%)Baseline Factored Oracle

EN/ZH UN 23.25 23.69 24.44 +2.26
EN/DE Europarl 20.78 21.32 21.95 +1.57
EN/FR Europarl 31.96 32.20 32.98 +1.21
EN/ES Europarl 39.95 40.37 41.06 +1.04
EN/NL Europarl 23.56 23.84 24.79 +1.38

Table 5: BLEU scores of our WSD+MT factored system, with both noun and verb senses, along with
baseline MT and oracle WSD+MT, on five language pairs.

Language pair Baseline
Factored (Nouns) Factored (Verbs)

nouns nouns + verbs Oracle verbs nouns + verbs OracleBLEU ρ (%) ρ (%) BLEU ρ (%) ρ (%)
EN/ZH 23.25 23.61 +1.78 +1.93 24.05 23.35 +3.30 +3.14 24.17
EN/DE 20.78 21.31 +1.65 +1.48 21.45 21.30 +1.81 +1.79 21.87
EN/FR 31.96 32.08 +0.90 +0.82 32.36 32.15 +2.03 +2.13 32.98
EN/ES 39.95 40.28 +1.05 +0.96 40.59 40.24 +2.08 +1.15 41.06
EN/NL 23.56 23.79 +1.13 +0.87 24.05 23.70 +2.58 +2.71 24.46

Table 6: BLEU scores of our WSD+MT factored system, trained separately on disambiguated nouns vs.
verbs, and tested separately or jointly, along with baseline MT and oracle WSD+MT, on five language
pairs.

average number of senses of 4, which is close
to the ground-truth value provided by SemEval
(4.46). These results show that our method,
despite its simplicity, is effective and provides
competitive performance against prior art, partly
thanks to additional knowledge not available to the
shared task systems.

5.3 Machine Translation Results

Table 5 displays the performance of our factored
MT systems trained with noun and verb senses
on five language pairs by using the dataset men-
tioned in Table 1. Our system performs consis-
tently better than the MT baseline on all pairs, with
the largest improvements achieved on EN/ZH and
EN/DE. To better understand the improvements
over the baseline MT, we also provide the BLEU
score of an oracle system which has access to
the reference translation of the ambiguous words
through the alignment provided by GIZA++. Ac-
cording to the results, our factored MT system
bridges around 40% of the gap between the base-
line MT system and the oracle system on EN/DE
and 30% on EN/ZH.

As shown in Table 6, the translation quality of
our factored MT outperforms the baseline when
trained with either noun senses or verb senses sep-
arately. However, in some cases, our factored MT
system trained with both noun and verb senses per-
forms worse than with noun and verb senses sep-
arately. This may be due to the lack of sufficient
training data to learn reliably using all the addi-

tional factors – as we observed when training on
the smaller WIT3 Corpus.

Lastly, Table 7 shows the confusion matrix for
our factored MT and the baseline MT systems
when comparing the reference translation of nouns
and verbs separately, using GIZA++ alignment. In
particular, the confusion matrix displays the num-
ber of labeled tokens which are translated as in
the reference or not (‘Correct’ vs. ‘Incorrect’). As
we can observe, the number of tokens that our
factored MT system translates correctly while the
baseline MT does not, is two times largers than
the number of tokens that the baseline MT system
finds correctly while our factored MT does not.

6 Conclusion

We presented a sense-aware statistical MT system
which uses a larger context than standard ones,
through an adaptive context-dependent k-means
clustering algorithm for WSD. The algorithm uti-
lizes semantic information from WordNet to iden-
tify the dominant clusters, which correspond to
senses in the source side of a parallel corpus. The
proposed adaptive k-means method is straightfor-
ward, yet it provides competitive WSD perfor-
mance on data from the SemEval 2010 shared
task. For MT, our experiments with five language
pairs show that our sense-aware MT system con-
sistently improves over the baseline. As future
work, we plan to integrate sense information for
ambiguous words to neural MT and investigate
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Factored (Nouns) Factored (Verbs)
nouns nouns + verbs verbs nouns + verbs

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect
EN/ZH
Baseline

Correct 138,876 4,402 138,264 5,075 37,132 1,166 36,647 1,527
Incorrect 8,454 75,690 9,472 74,541 3,939 41,728 4,149 41,077

EN/DE
Baseline

Correct 91,966 1,473 91,376 2,035 18,370 664 18,214 812
Incorrect 4,268 71,037 4,525 69,931 1,892 47,105 2,029 46,795

Table 7: Detailed confusion matrix of our factored MT system and the baseline MT system with respect
to the reference on the EN/DE pair from Europarl corpus and the EN/ZH from UN corpus.

other effective ways to enable access to longer
context.
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Abstract

Word sense disambiguation is necessary in
translation because different word senses
often have different translations. Neural
machine translation models learn differ-
ent senses of words as part of an end-
to-end translation task, and their capabil-
ity to perform word sense disambiguation
has so far not been quantified. We ex-
ploit the fact that neural translation models
can score arbitrary translations to design
a novel cross-lingual word sense disam-
biguation task that is tailored towards eval-
uating neural machine translation models.
We present a test set of 7,200 lexical am-
biguities for German→English, and 6,700
for German→French, and report baseline
results. With 70% of lexical ambiguities
correctly disambiguated, we find that word
sense disambiguation remains a challeng-
ing problem for neural machine transla-
tion, especially for rare word senses. To
improve word sense disambiguation in
neural machine translation, we experiment
with two methods to integrate sense em-
beddings. In a first approach we pass
sense embeddings as additional input to
the neural machine translation system. For
the second experiment, we extract lexical
chains based on sense embeddings from
the document and integrate this informa-
tion into the NMT model. While a base-
line NMT system disambiguates frequent
word senses quite reliably, the annotation
with both sense labels and lexical chains
improves the neural models’ performance
on rare word senses.

1 Introduction

Semantically ambiguous words present a special
challenge to machine translation systems: in or-
der to produce a correct sentence in the target lan-
guage, the system has to decide which meaning
is accurate in the given context. Errors in lexical
choice can lead to wrong or even incomprehensi-
ble translations. However, quantitatively assessing
errors of this type is challenging, since automatic
metrics such as BLEU (Papineni et al., 2002) do
not provide a sufficiently detailed analysis.

Several ways of evaluating lexical choice for
machine translation have been proposed in pre-
vious work. Cross-lingual lexical choice tasks
have been created for the evaluation of word sense
disambiguation (WSD) systems (Mihalcea et al.,
2010; Lefever and Hoste, 2013), and have been ap-
plied to the evaluation of MT systems (Carpuat,
2013). Vickrey et al. (2005) evaluate lexical
choice in a blank-filling task, where the translation
of an ambiguous source word is blanked from the
reference translation, and an MT system is tested
as to whether it can predict it. In all these tasks,
a word-level translation (or set of translations) is
defined as the gold label. A major problem is that
an MT system will be punished for producing a
synonym, paraphrase, or inflected variant of the
predefined gold label. We thus propose a more
constrained task where an MT system has to se-
lect one out of a predefined set of translations.

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has recently
emerged as the new state of the art in machine
translation, producing top-ranked systems in re-
cent shared tasks (Luong and Manning, 2015; Sen-
nrich et al., 2016a; Neubig, 2016). The strengths
and weaknesses of NMT have been the subject of
recent research, and previous studies involving hu-
man analysis have consistently found NMT to be
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more fluent than phrase-based SMT (Neubig et al.,
2015; Bojar et al., 2016; Bentivogli et al., 2016),
but results in terms of adequacy are more mixed.
Bentivogli et al. (2016) report improvements in
lexical choice based on HTER matches on the
lemma-level, while Bojar et al. (2016) found no
clear improvement in a direct assessment of ade-
quacy. Neubig et al. (2015) perform an error an-
notation in which the number of lexical choice er-
rors even increases slightly by reranking a syntax-
based statistical machine translation system with
an NMT model.

We aim to allow for a large-scale, reproducible
method of assessing the capability of an NMT
model to perform lexical disambiguation. NMT
systems can not only be used to generate trans-
lations of a source sentence, but also to assign a
probability P (T |S) for any given pair of a source
sentence S and a target sentence T . We use this
feature to create a test set with artificially intro-
duced lexical disambiguation errors. Comparing
the scores of an NMT model on these contrastive
translations to the score of the reference allows us
to assess how well the model can distinguish dif-
ferent senses in ambiguous words.

We have created two test sets for the lan-
guage pairs German-English and German-French
with about 6,500 and 6,700 sentence pairs respec-
tively.1 Based on the performance of state-of-the-
art NMT systems on these test sets, we discuss the
capability of NMT to perform lexical disambigua-
tion.

Furthermore, we present two methods to im-
prove word sense disambiguation in neural ma-
chine translation by allowing the model to learn
sense-specific word embeddings. Both methods
are based on an external word sense disambigua-
tion. While the first method passes sense labels as
additional input to an NMT system, the second is
motivated by the hypothesis that document-level
context is valuable for disambiguation. We model
this context via lexical chains, i.e. sequences of
semantically-similar words in a given text that ex-
press the topic of the segment they cover in a con-
densed form. Our method is inspired by Galley
and McKeown (2003), who present an approach
to build English lexical chains automatically us-
ing WordNet (Miller, 1995) and evaluate its per-
formance on a sense disambiguation task. Instead

1The test set is available from https://github.
com/a-rios/ContraWSD.

of WordNet, we use sense embeddings in order to
determine the similarity between the words in a
document and thus find and annotate the lexical
chains. Experimental results show the potential of
lexical chains at disambiguating word senses.

2 Contrastive Translations

The test set consists of sentence pairs that contain
at least one ambiguous German word. In order
to produce contrastive translation pairs, we create
an automatically modified version of the reference
translation where we replace the original transla-
tion of a given ambiguous word with the transla-
tion of one of its other meanings. We cluster dif-
ferent translations that overlap in meaning, i.e. that
are (at least sometimes) used interchangeably. We
do not produce any contrastive translations that be-
long to the same cluster as the reference transla-
tion.

As an example, we show the sense clusters that
we consider for two ambiguous German words:

Schlange:
serpent, snake
line, queue

Abzug:
withdrawal, departure rétraction, sortie
trigger gâchette
discount, subtraction déduction, soustraction

Table 1 shows an example of source, reference,
and contrastive sentences.

Our approach is inspired by Sennrich (2017),
who use contrastive translation pairs to evaluate
various error types, including morpho-syntactic
agreement and polarity errors. Apart from focus-
ing on another error type, namely word sense er-
rors, our approach differs in that we pair a human
reference translation not just with one contrastive
example, but a set of contrastive examples, i.e.
a set of incorrect translations of the semantically
ambiguous source word. The model is considered
correct if it scores the human reference translation
higher than all of the contrastive translations. Note
that this evaluation does not directly assess the
translation output of a system, which might be dif-
ferent from the set of translations that are scored,
or the search performance of a system. Instead, its
focus is to identify specific model errors.

3 Lexical Choice Errors

In a first step, we compile a list of German nouns
that have semantically distinct translations in En-
glish and French from the lexical translation tables
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of existing German-English and German-French
phrase-based MT systems, and we clean these lists
manually. We then extract sentence pairs from par-
allel corpora for all ambiguous words in our lists.
Since for most ambiguous words, one or more of
their meanings are relatively rare, a large amount
of parallel text is necessary to extract a sufficiently
balanced number of examples.2

When creating the test set, our goal is to pro-
duce contrastive translations that cannot be eas-
ily identified as wrong based on grammatical or
phonological features. We do not consider ambi-
guities across word classes (Flucht - ’flight, es-
cape’ vs. flucht - ’he/she curses’). Furthermore,
we do not consider German words with different
meanings distinguished by gender (der Leiter (m.)
- ’leader’ vs. die Leiter (f.) - ’ladder’).

Contrastive translations are produced automat-
ically based on a replacement of the target word
with the specified contrastive variants. We en-
sure that contrastive translations match the orig-
inal translation in number; in French, we also
limit replacements to those that match the original
translation in gender, and take into account elision
for vowel-initial words.

We consider both plural and singular forms in
German, but exclude word forms that are unam-
biguous. For instance, the German singular word
Schuld can refer to debt or guilt, however, the plu-
ral form Schulden can only be translated as debts.

Furthermore, we exclude a small number of
cases where the context in either source or tar-
get sentence clearly indicates the meaning: For in-
stance, if the German word Absatz (’heel’, ’sales’,
’paragraph’) is followed by a number, the transla-

2Sentence pairs have been extracted from the following
corpora:

• WMT test and development sets 2006-2016 (de-en) and
2006-2013 (de-fr)

• Crédit Suisse News Corpus https://pub.cl.
uzh.ch/projects/b4c/de/

• corpora from OPUS ((Tiedemann, 2012)):

– Global Voices (http://opus.lingfil.
uu.se/GlobalVoices.php)

– Books (http://opus.lingfil.uu.se/
Books.php)

– EU Bookshop Corpus (http://opus.
lingfil.uu.se/EUbookshop.php)

– OpenSubtitles 2016 (German-French)
(http://opus.lingfil.uu.se/
OpenSubtitles2016.php)

• MultiUN (Ziemski et al., 2016)

tion is in all likelihood ’paragraph’ and contrastive
sentences with ’heel’ or ’sales’ will not present a
challenge for the model.

Following our strategy of focusing on diffi-
cult cases, we oversample the less frequent word
senses for the test set to reduce the performance
of a simple most frequent sense baseline to that
of random guessing. Specifically, we include 100
test instances per word sense, or the total amount
of available sentence pairs if less than 100 were
found in the parallel data.

For German-English, the test set contains 84
word senses, with on average 3.5 contrastive trans-
lations per reference; for German-French, it con-
tains 71 word senses, with an average of 2.2 con-
trastive translations per reference. A full list of
word senses can be found in the appendix.

We include the location of the sentence in the
original corpus in our metadata to allow future ex-
periments with document-level information.3

4 Sense Embeddings in Neural Machine
Translation

In addition to the evaluation of a standard
NMT model on the word sense disambigua-
tion task detailed in the previous section, we
present two experiments on German→English and
German→French to improve lexical choice using
methods from WSD. In a first approach, we com-
pute sense embeddings and include the resulting
sense labels into the NMT model as additional in-
put features (Alexandrescu and Kirchhoff, 2006;
Sennrich and Haddow, 2016). For our second
experiment, instead of adding the labels directly
to the input, we use them to build lexical chains
of similar words in the given document. These
lexical chains contain information about the topic
and/or domain of the document, and we include
them as additional features into our NMT model.

4.1 Sense Embeddings

Sense embeddings are vector representations of
word senses in a vector space, but unlike word em-
beddings, where every word form receives a vector
representation, with sense embeddings we obtain
separate vector representations for each sense of a
given word. To compute the sense embeddings we

3A snapshot of the corpora used to extract the ex-
amples can be found at http://data.statmt.org/
ContraWSD/.
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source: Also nahm ich meinen amerikanischen Reisepass und stellte mich in die Schlange für Extranjeros.
reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive: So I took my U.S. passport and got in the snake for Extranjeros.
contrastive: So I took my U.S. passport and got in the serpent for Extranjeros.

source: Er hat zwar schnell den Finger am Abzug, aber er ist eben neu.
reference: Il a la gâchette facile mais c’est parce qu’il débute.

contrastive: Il a la soustraction facile mais c’est parce qu’il débute.
contrastive: Il a la déduction facile mais c’est parce qu’il débute.
contrastive: Il a la sortie facile mais c’est parce qu’il débute.
contrastive: Il a la rétraction facile mais c’est parce qu’il débute.

Table 1: Contrastive Translations

use SenseGram4 (Pelevina et al., 2016), which
has been shown to perform as good as stat-of-the-
art unsupervised WSD systems.

The method to learn the sense embeddings
using SenseGram consists of four steps that
we briefly summarise here. First, the method
learns word embeddings using the word2vec
toolkit (Mikolov et al., 2013).5 It then uses these
word embeddings to build a word similarity graph,
where each word is linked to its 200 nearest neigh-
bours. Next, it induces a sense inventory, where
each sense is represented by a cluster of words
(e.g. the sense of table-furniture is represented
with the word cluster desk, bench, dining ta-
ble, surface, and board). The sense inventory of
each word is obtained through clustering the ego-
networks of its related words. Finally, the method
computes the sense embedding of each word sense
by averaging the vectors of the words in the corre-
sponding cluster.

Once the sense embeddings are learned, we la-
bel all content words in the data with their cor-
responding sense and include this information as
additional features.

4.2 Lexical Chains

As described above, SenseGram allows us to dis-
ambiguate a word based on the context in which
it occurs. Based on the disambiguated words,
we can detect the lexical chains, i.e. chains of

4https://github.com/tudarmstadt-lt/
sensegram

5Embeddings for our models were learned on the follow-
ing corpora:

• SdeWaC (Faaß and Eckart, 2013) (∼768M words)

• Common Crawls (∼775M words)

• Europarl (∼47M words)

• News Commentary (∼6M words)

semantically similar words within a given docu-
ment. To compute the semantic similarity between
two word senses, we calculate the cosine similar-
ity between their sense embeddings.6 The closer
to 1.0 the resulting value is, the higher their se-
mantic similarity. To distinguish between simi-
lar and non-similar senses, we set a threshold of
0.85 that we manually picked by looking at how
different values affect the resulting lexical chains:
a lower threshold builds lexical chains contain-
ing sense words that are not sufficiently related,
whereas a higher threshold results in semantically
strong, but possibly incomplete lexical chains that
do not cover all words belonging to the chain.

We use the method proposed by Mascarell
(2017) to detect lexical chains in a document. This
method is inspired by Morris and Hirst (1991)’s
approach, which manually finds lexical chains in
a document using a thesaurus to obtain the simi-
larity between words. As detailed in Section 4.1,
we use sense embeddings instead of a dictionary
to compute the semantic similarity.

Given a document as input, our method pro-
cesses sentences and their content words sequen-
tially. For each sentence, it computes the semantic
similarity between the current content word c and
each previous content word c’ in the previous five
sentences, based on the approach by Morris and
Hirst (1991). If c and c’ are semantically similar,
our method proceeds as follows:

• If c and c’ are not part of a chain, create a new
chain with c and c’.

• If c’ is in a chain chi, append c to chi.

6Using sense embeddings instead of word embeddings for
this task ensures that we can recognize similar words even
if they are polysemic and not all of their senses are related.
For instance, mouse and rat are related if mouse refers to the
animal, but not if mouse refers to the computer device.
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• If c and c’ are in two different chains, merge
both chains.

Since every linked word in the chain provides
context for disambiguation, the method creates
as many links as possible between similar words.
Therefore, it also preserves one-transitive links:
ci links to ci+l by transitivity if ci links to ci+k

and ci+k to ci+l, where i<k<l (Morris and Hirst,
1991).

As Morris and Hirst (1991) indicate, words
linked by one-transitive links are semantically re-
lated, but words further apart in the chain might
not be: In their paper, they point to the lexical
chain {cow, sheep, wool, scarf, boots, hat, snow}.
While consecutive words in the chain such as wool
and scarf are semantically related, cow and snow
are not.

To provide the NMT model with the detected
lexical chains in the source, we represent this dis-
course knowledge in the input as a combination
of features. Accordingly, each word in the lex-
ical chain is annotated with its linked words as
factors. For example, if the German word Ab-
satz is linked in the lexical chain to Wirtschaft
(’economy’) and Verkauf (’sale’), it is represented
as Absatz|Wirtschaft|Verkauf. The resulting vector
representation of Absatz is the vector concatena-
tion of each individual feature’s embeddings.

Since all words in the input must have the same
number of factors, each word that is not part of
a lexical chain is annotated with itself as factors.
Similarly, words linked to only one word are an-
notated with the corresponding linked word in the
chain and the word itself.

5 Evaluation

We present an evaluation with two basic neu-
ral MT systems, trained with Nematus (Sennrich
et al., 2017), using byte pair encoding (BPE)
on both source and target side (Sennrich et al.,
2016b). For both the German-English and the
German-French experiments, we train a model on
2.1 million sentence pairs from Europarl (v7) and
News Commentary (v11).7 We use these corpora
because they contain document boundaries, which
is a requirement for the lexical chains experiments.

We present further results for models that use
additional source-side features, a) the sense labels
themselves and b) lexical chains. The feature is

7
http://opus.lingfil.uu.se/News-Commentary11.php

system accuracy
de-en (N = 7243)
NMT baseline 0.7095
NMT sense labels 0.7138
NMT lexical chains 0.7034
human ≈0.96
de-fr (N = 6746)
NMT baseline 0.7023
NMT sense labels 0.6998
NMT lexical chains 0.7083
human ≈0.93

Table 2: Word sense disambiguation accuracy

German Sehen Sie die Muster?
reference Do you see the patterns?
contrastive Do you see the examples?

Table 4: Ambiguous sentence pair

given its own embedding space, and the model can
thus learn sense-specific embeddings. If a word is
segmented into multiple subword units by BPE,
the additional input feature of the word is repeated
for each unit. Vocabulary size for all models is
90,000.

We train the models for a week, using
Adam (Kingma and Ba, 2015) to update the model
parameters on minibatches of the size 80. Every
10,000 minibatches, we validate our model on a
held out development set via BLEU and perplex-
ity. The maximum length of the sentences is 50.
The total size of the embedding layer is 500 for
both the baseline and the system trained with addi-
tional input features, and the dimension of the hid-
den layer is 1024. For the experiments with addi-
tional input features, we divide the embedding size
equally among the features. Conceivably, keeping
the dimensionality of the word embedding con-
stant and adding more parameters for additional
features would result in better performance, but
we wanted to rule out that any performance im-
provements are solely due to an increase in model
size.

To assess a model’s capability to distinguish dif-
ferent meanings of ambiguous words, we let it as-
sign a score to the reference translation and to the
artificially created contrastive translations. If the
score of the reference translation is higher than the
scores of all contrastive translations, this counts as
a correct decision.
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Figure 1: Word sense disambiguation accuracy by word sense frequency in training set (absolute, or
relative to source word frequency).

de-en de-fr
baseline sense labels lexical chains baseline sense labels lexical chains

frequency senses∗ accuracy accuracy accuracy senses∗ accuracy accuracy accuracy
>10000 2 0.9840 0.9840 0.9840 2 0.9900 0.9900 0.9900
>5000 7 0.9639 0.9534 0.9459 1 1.0000 1.0000 0.9900
>2000 4 0.9386 0.9284 0.9284 3 0.7375 0.7725 0.7150
>1000 6 0.8598 0.8632 0.8427 3 0.9333 0.9367 0.9167
>500 8 0.7410 0.7308 0.7090 6 0.8260 0.8260 0.8361
>200 17 0.7800 0.7734 0.7900 16 0.8444 0.8475 0.8406
>100 9 0.6058 0.6095 0.6156 9 0.7544 0.7456 0.6933
>50 8 0.7899 0.7645 0.7630 6 0.5160 0.5200 0.6420
>20 9 0.4055 0.4521 0.3945 8 0.5276 0.5430 0.5469
0-20 14 0.3127 0.3664 0.3237 17 0.4924 0.4611 0.5156

Table 3: Accuracy of word sense prediction by frequency of word sense in training set (∗ number of senses

in frequency range).

baseline sense labels lexical chains
de-en 17.1 16.9 17.1
de-fr 14.6 14.6 14.7

Table 5: Average BLEU scores on newstest 2009-
2013

As Table 2 shows, both the German→French
and the German→English baseline model achieve
an accuracy of 0.70 on the test set. We also re-
port accuracy of a smaller-scale human evaluation,
in which two human annotators (one per language
pair) were asked to identify the correct translation
for a random sample of the test set (N=100–150).
The annotation was performed purely on sentence-
level, without any document context, and shows
that some ambiguities are even hard for a human
to resolve without context. Consider the sentence
pairs in Table 4 for such an example. We specu-
late that both humans and MT systems should be
able to resolve more ambiguities with wider con-

text. Even with only sentence-level information,
the gap between human and NMT performance is
sizeable, between 23 and 26 percentage points.

An important indicator of how well a word
sense is translated by NMT is its frequency in
the training data. Figure 1 illustrates the relation-
ship between the frequency of a word sense in the
training data (both absolute and relative to the fre-
quency of the source word) and the accuracy the
model achieves on the test set.

There is a high correlation between word sense
frequency and accuracy: for German→English,
Spearman’s ρ is 0.75 for the correlation between
accuracy and absolute frequency, and 0.77 for
the correlation between accuracy and relative fre-
quency. For German→French, ρ is 0.58 for both.
It is unsurprising that the most frequent word sense
is preferred by the model, and that accuracy for it
is high. We hence want to highlight performance
on rarer word senses. Table 3 shows the word
sense accuracy of the NMT models grouped by
frequency classes and the number of senses in each
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class. All models achieve close to 100% accu-
racy on words that occur more than 10,000 times
in the training data. For the rare senses however,
the NMT models are much less reliable: for word
senses seen 0-20 times in training, the baseline ac-
curacy is between 31-49%.

The annotation of the source side with sense
labels improves the accuracy on the test set by
0.43% for German→English, while the lexical
chains does not improve the model on average.
On the other hand for German→French, the lex-
ical chains result in an improvement of 0.6%, but
the annotation with sense labels does not lead to a
better score on the test set on average. As shown
in Table 3, there is little room for improvement for
frequent word senses, and sense labels and lexical
chains show the strongest improvements over the
baseline for the less frequent word senses. Table 5
contains the average BLEU scores on the newstest
2009-2013 test sets.

6 Conclusions

This paper introduces a novel lexical decision task
for the evaluation of NMT models, and presents
test sets for German-English and German-French.
This task allows for the automatic and quantitative
analysis of the ability of NMT models to perform
lexical disambiguation, a phenomenon that has
previously been remarked to be challenging for
NMT. First evaluations with NMT models show
that lexical choice is resolved well for frequent
word senses, but not for infrequent word senses.
Additional experiments to add a) sense labels to
content words and b) topic knowledge in the form
of lexical chains to the NMT model shows that se-
mantic information improves lexical choice espe-
cially for word senses that do not occur frequently
in the training data. We find that the inclusion of
sense labels improves lexical choice on our test
set 0.43% for German→English. Furthermore, we
gain a small increase of 0.6% in accuracy with lex-
ical chains for German→French.

We consider the performance of the baseline
NMT systems respectable, given that the test set
was created to be challenging, and has a strong fo-
cus on difficult cases. Our experiments indicate
that NMT models perform poorly for rare word
senses, and we observe moderate improvements
for these rare word senses by using methods from
WSD to complement the disambiguation capabil-
ity of the main NMT model. Still, the problem is

far from solved, and there is a sizeable difference
of 23-26 percentage points between NMT perfor-
mance and human performance. We hope that the
release of our test set will inspire and support fu-
ture research on the problem of word sense disam-
biguation for machine translation. In our human
experiments, we also found evidence that wider
document context is necessary to solve this task.
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Abstract

Translation into a morphologically rich
language requires a large output vocabu-
lary to model various morphological phe-
nomena, which is a challenge for neu-
ral machine translation architectures. To
address this issue, the present paper in-
vestigates the impact of having two out-
put factors with a system able to generate
separately two distinct representations of
the target words. Within this framework,
we investigate several word representa-
tions that correspond to different distri-
butions of morpho-syntactic information
across both factors. We report experiments
for translation from English into two mor-
phologically rich languages, Czech and
Latvian, and show the importance of ex-
plicitly modeling target morphology.

1 Introduction

Open vocabularies remain a challenge for Neu-
ral Machine Translation (NMT) (Cho et al., 2014;
Bahdanau et al., 2015), both for linguistic and
computational reasons. From a linguistic stand-
point, morphological variation and lexical produc-
tivity cause word forms unseen in training to oc-
cur in source texts, which may also require to gen-
erate novel target word forms. Using very large
input/output vocabularies partially mitigates these
issues, yet may cause serious instability (when
computing embeddings of rare or unseen words)
and complexity issues (when dealing with large
softmax layers).

Several proposals have been put forward to ad-
dress these problems, which are particularly harm-
ful when one language is a morphologically rich

∗Both authors have contributed equally to this work.

language (MRL), exhibiting larger token/type ra-
tio than is observed for English. One strategy is to
improve NMT’s internal procedures: for instance
by using a structured output layer (Mnih and Hin-
ton, 2008) or by altering the training or decoding
criteria (Jean et al., 2015). An alternative approach
is to work with representations designed to remove
some variations via source-side or target-side nor-
malization procedures; or more radically to con-
sider character-based representations (Ling et al.,
2015; Luong and Manning, 2016; Costa-jussà and
Fonollosa, 2016), which are however much more
costly to train, and make long distance dependen-
cies even longer.

None has however been as successful as the re-
cent proposal of Sennrich et al. (2016b) which
seems to achieve a right balance between a lim-
ited vocabulary size and an ability to translate a
fully open vocabulary. In a nutshell, this approach
decomposes source and target tokens into smaller
units of variable length (using what is now termed
as a “Byte Pair Encoding” or BPE in short): this
means that (a) all source tokens can be represented
as a sequence of such units, which crucially are all
seen in training; (b) all possible target words can
also be generated; (c) the size of the output layer
can be set to remain within tractable limits; (d)
most frequent words are kept as BPE units, which
preserves the locality of many dependencies.

In this work, we consider possible ways to ex-
tend this approach by also supplying target-side
linguistic information in order to help the system
generate correct target word forms. Our proposal
relies on two distinct components (a) linguistically
or data-driven normalization procedures manipu-
lating various source and target word segmenta-
tions, as well as eg. multiple factors on the tar-
get side (see § 4), and (b) a neural architecture
equipped with a dual output layer to predict the
target in two simpler tasks generating the lexi-
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cal unit and the morphological information (§ 3).
These components are assessed separately and in
conjunction using translation from English into
two MRLs: Czech and Latvian. Our experiments
show improvement over a strong (Denkowski and
Neubig, 2017) BPE-to-BPE baseline, incorporat-
ing ensemble of models and backtranslated data
(§ 5). Overall, they suggest that BPE repre-
sentations, which loosely simulates concatena-
tive morphological processes, is complementary to
feature-based morphological representations.

2 Related Work

Translating from and into MRLs has recently at-
tracted some attention from the research commu-
nity, as these languages compound a number of
difficulties for automatic translation, such as the
need to analyze or generate word forms unseen in
training, or to handle variation in word order.

To mitigate the unknown word problem, a first
approach consists in translating into target stems
(Minkov et al., 2007; Toutanova et al., 2008); the
right form is then selected from the full paradigms
in a second step using a classifier. Target words
may also be represented as lemmas complemented
with side information. Bojar (2007); Bojar and
Kos (2010); Bojar et al. (2012) use such a rep-
resentation for two statistical MT systems: the
first one translates from English into Czech lem-
mas decorated with source-side information and
the second one performs a monotone translation
into fully inflected Czech.

Fraser et al. (2012) propose a target morphol-
ogy normalization for German words represented
as lemmas followed by a sequence of morpholog-
ical tags and introduce a linguistically motivated
selection of these when translating from English.
The selection step consists in predicting the tags
that have been removed during normalization, us-
ing a specific Conditional Random Field (CRF)
model for each morphological attribute to predict.
Finally, word forms are produced via look-up in
a morphological dictionary. This approach is ex-
tended by Weller et al. (2013), who takes verbal
subcategorization frames into account, thus en-
abling the CRFs to make better predictions. Note
that Burlot et al. (2016) and El Kholy and Habash
(2012b,a) propose related approaches respectively
for translating into Czech and Arabic.

Factored word representations have also been
considered in neural language models (Niehues

et al., 2016; Alexandrescu and Kirchhoff, 2006;
Wu et al., 2012), and more recently in a neural
machine translation architecture as input features
(Sennrich and Haddow, 2016) and in the output
by separating the lemma and morphological fac-
tors (Garcı́a-Martı́nez et al., 2016). One contri-
bution of the current paper is the investigation of
new variants of the latter architecture. There have
been other attempts with dual training objectives
in NMT. In (Chen et al., 2016), a guided alignment
training using topic information of the sentence as
a second objective helps the decoder to improve
the translation. Multi-task and multilingual learn-
ing in NMT have also been considered in several
papers (Luong et al., 2015; Dong et al., 2015; Firat
et al., 2016), where training batches have to care-
fully balance tasks and language pairs. In contrast
to these approaches, our factored NMT (FNMT)
system produces several outputs simultaneously.

3 Model Architectures

The baseline NMT system used in this paper
is an implementation of a standard NMT model
with attention mechanism (Bahdanau et al., 2015).
It consists of a sequence to sequence encoder-
decoder of two recurrent neural networks (RNN),
one used by the encoder and the other by the de-
coder. This architecture integrates a bidirectional
RNN encoder (see bottom left part with green
background of Figure 1). Each input sentence
word xi (i ∈ 1 . . . N with N the source sequence
length) is encoded into an annotation ai by con-
catenating the hidden states of a forward and a
backward RNN. Each annotation a1 . . . aN thus
represents the whole sentence with a focus on the
word(s) being processed. The decoder is based on
a conditional gated recurrent unit (GRU) (Firat and
Cho, 2016) made of two GRUs interleaved with
the attention mechanism. The attention mech-
anism computes a context vector Cj as a con-
vex combination of annotation vectors, where the
weights of each annotation are computed locally
using a feed-forward network. The decoder RNN
takes as input the embedding of the previous out-
put word in the first GRU, the context vector Cj in
the second GRU and its hidden state. The softmax
output layer is connected to the network through a
non-linear layer which takes as input the embed-
ding of the previous output word as well as the
context vector and the output of the decoder from
the second GRU (both adapted with a linear trans-
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formation, respectively, LC and LR). Finally, the
output probabilities for each word in the target vo-
cabulary are computed with a softmax. The word
with the highest probability is the translation out-
put at each time step. The encoder and the de-
coder are trained jointly to maximize the condi-
tional probability of the reference translation.

The Factored NMT system of Garcı́a-Martı́nez
et al. (2016) is an extension of the standard NMT
architecture that allows the system to generate sev-
eral output symbols at the same time, as presented
in Figure 1.

DECODER

ENCODER

Attention 
Mechanism

x1 x2 xN· · ·

x1x2xN ···
· · ·

AnnotationsBidirectional RNN
GRU1 GRU2

a1 aN

Cj

LCLR

Softmax

h2o
(F2)

Softmax

Predicted
Factor 2

Predicted
Factor 1

FEEDBACK

Previous
Factor 1

embedding

Previous
Factor 2

embedding

Context
vector

+

h2o
(F1)

Figure 1: Factored NMT system.

The encoder and the attention mechanism of the
Factored NMT are the same as the standard NMT
model. However, the decoder has been modified
to produce multiple outputs. The two outputs are
constrained to have the same length. The decoder
feedback is also modified to use information from
the multiple output streams. The concatenation of
the embeddings of the pair of generated symbols is
used to feed the decoder’s cGRU at each timestep.

Two types of FNMT models have been used for
this work. Their architecture differ after the gener-
ation of the decoder state. The first model contains
a single hidden-to-output (h2o) layer which is used
by the two separate softmax. This layer uses the
context vector, the decoder’s hidden state and the
concatenation of the embeddings of the previous
generated tokens. The second model is one contri-
bution of the current work. As shown in Figure 1),
it contains two separated h2o layers. They are sim-
ilar to the h2o layer in the first model except that
instead of using the concatenation of the embed-
dings of the previously generated factors, each h2o
layer receives only the embedding of the factor it
is generating. The two separated h2o layers allow
the system to have more weights specialized for
each output.

4 Word Representations

This paper focuses on the question of word repre-
sentations, which we understand not only in terms
of word segmentation, but also as the quantity of
morpho-syntactic information encoded in a word.
We introduce three representations varying in the
quantity of grammatical information they contain:

• fully inflected words: this is a baseline setup
where all the lexical and grammatical infor-
mation is encoded in a single factor.

• normalized words: only a well chosen sub-
set of morphological features is kept in the
first factor; the second factor corresponds to
the Part of Speech (PoS).

• lemmas: the output splits the lexical con-
tent of the word (first factor: lemma) and its
grammatical content (second factor: PoS).

These differences are illustrated in Table 1.

4.1 Normalizing Word Forms

Translating from English into a MRL is made dif-
ficult by linguistic divergences, as English lacks
many of the morphological contrasts that exist in
the MRL. Normalization is needed to reduce the
morphological variability on the MRL side so as
to limit the number of types in the target, and to
mitigate sparsity issues. This strategy is used for
instance by Burlot et al. (2016) who remove the
case mark from Czech nouns, which is not pre-
dictable from their English counterpart(s).

Normalization is usually performed using hand-
crafted rules and requires expert knowledge for
each language pair. In this paper, normalized
words are obtained with an automatic data-driven
method1 introduced in (Burlot and Yvon, 2017b).

In a nutshell, this method performs a cluster-
ing of the MRL vocabulary by grouping together
words that tend to share the same translation(s) in
English. This translational similarity is based on
the conditional entropy of lexical translation mod-
els estimated, for each MRL word form, using
automatic word alignments. The clustering pro-
cedure merges two words whenever the resulting
cluster does not increase the conditional entropy,
which ensures a minimal loss of information dur-
ing the whole process.

1The source code is available at github.com/
franckbrl/bilingual_morph_normalizer
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The actual normalization algorithm is delexi-
calized and operates at the level of PoS. Each
word is represented as a lemma, a coarse PoS
and a sequence of morphological tags (e.g.
kočka+Noun+Sing+Accusative). Translational
similarities are computed on such words and are
combined to provide a PoS-level similarity be-
tween two tag sequences. Successive merge op-
erations group into one cluster different such tag
sequences. As a result of this procedure, we rep-
resent words as a lemma and a cluster identifica-
tor (ID) taking the form of a coarse PoS and an
arbitrary integer, such as kočka+Noun+7 in Ta-
ble 1. In this example, the cluster ID Noun+7
stands for a set of fine-grained PoS, such as
{Sing+Nominative, Sing+Accusative, . . .}.

This representation introduces a direct corre-
spondence between the first and the second factor
in our architecture, since the former (the cluster
ID) constraints the set of possible values of the lat-
ter (the fine-grained PoS), which is notably used in
our constrained decoding procedure (§ 5.4).

4.2 Word Representation Setup

The example of Table 1 shows that words are also
varying along a second dimension: in addition to
considering unsegmented lexical units (be it fully
inflected words, normalized words or lemmas), we
also investigate the impact of a segmentation of
these units using BPE (Sennrich et al., 2016b).

In this scenario, BPE segmentation is performed
on fully inflected words and lemmas. For its ap-
plication to normalized words, the cluster ID was
considered as a minimal unit that cannot be seg-
mented (just like any other character), in order to
avoid segmentations like kočka+No- un+7. For
these setups, the PoS information (second factor)
is replicated for all subparts of a word.

We finally use an alternative representation with
normalized words to which BPE segmentation is
applied and cluster IDs are systematically split
from the lemma. Whenever the FNMT system
predicts a lemma in the first factor, it is forced to
predict a null PoS in the second factor. On the
other hand, when a split cluster ID is predicted, the
second factor should output an actual PoS. This
specific treatment of the second factor is expected
to give the system a better ability to map a word
to a compatible PoS, thus avoiding, for instance,
the prediction of a verbal PoS for the Czech noun
kočka (cat).

These different word representations imply a
progressive reduction of the target vocabulary. We
computed the vocabulary size of Czech on the par-
allel data used to train the systems (§ 5.1) over
unsegmented words. We thus have 2.1M fully
inflected words, 1.9M normalized words, 1.5M
normalized words with split clusters (lemmas and
clusters), and 1.4M lemmas.

5 Experiments

We introduce here the experimental setup for all
the reported systems translating from English into
Czech and Latvian.

5.1 Data and Preprocessing

Our experimental setting follows the guidelines
of the WMT’172 news translation task. The pre-
processing of English data relies on in-house tools
(Déchelotte et al., 2008). All the Czech data
were tokenized and truecased the Moses toolkit
(Koehn et al., 2007). PoS-tagging was performed
with Morphodita (Straková et al., 2014). The
pre-processing of Latvian was provided by Tilde.3

Latvian PoS-tags were obtained with the LU MII
Tagger (Paikens et al., 2013).

For English-to-Czech, the parallel data used
consisted in nearly 20M sentences from a subset
of WMT data relevant to the news domain: News-
commentary, Europarl and specific categories of
the Czeng corpus (news, paraweb, EU, fiction).
Newstest-2015 was used for validation and the
systems are tested on Newstest-2016 and 2017.
The normalization of the Czech data was trained
on the parallel data used to train the MT sys-
tems, except Czeng fiction and paraweb subcor-
pora, which amounts to over 10M sentences.

A part of these systems was also trained on syn-
thetic parallel data (Sennrich et al., 2016a) (see
§ 6). The Czech monolingual corpus News-2016
was backtranslated to English using the single best
system provided by the University of Edinburgh
from WMT’16.4 In order to prevent learning from
being too biased towards the synthetic source of
this set, we used initial bitext parallel data as well.
We added five copies5 of News-commentary and

2www.statmt.org/wmt17
3www.tilde.com
4http://data.statmt.org/rsennrich/

wmt16_systems/
5Adding multiple copies of the same corpus into the train-

ing set can be seen as a coarse way to weight different corpora
and favor in-domain bibtext.
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fully infl. norm. words lemmas
Single factor factor 1 factor 2 factor 1 factor 2

plain kočky kočka+N+7 N+Pl+Nom kočka N+Pl+Nom
BPE ko- čky ko- čka+N+7 N+Pl+Nom N+Pl+Nom ko- čka N+Pl+Nom N+Pl+Nom
+ split cls ko- čka- N+7 null null N+Pl+Nom

Table 1: Multiple representations for the Czech word kočky (cats). N stands for noun, Pl for plural and
Nom for nominative case.

the news subcorpus from Czeng, as well as 5M
sentences from the Czeng EU corpus randomly se-
lected after running modified Moore-Lewis filter-
ing with XenC (Rousseau, 2013).

The English-to-Latvian systems used all the
parallel data provided at WMT’17. The DCEP
corpus was filtered with the Microsoft sentence
aligner6 and using modified Moore-Lewis. We
kept the best 1M sentences, which led to a to-
tal of almost 2M parallel sentences. The systems
were validated on 2k sentences held out from the
LETA corpus and we report results on Newsdev-
2017 and newstest-2017. The normalization of
Latvian data was trained on the same parallel sen-
tences used to train the MT systems.

Training was carried out for a part of these sys-
tems on synthetic parallel data. We used a back-
translation of the monolingual corpora news-2015
and 2016 provided by the University of Edinburgh
(Moses system). To these corpora were added 10
copies of the LETA corpus, as well as 2 copies of
Europarl and Rapid.

Bilingual BPE models for each language pair
and system setup were learned on the bitext paral-
lel data. 90k merge operations were performed to
obtain the final vocabularies. For (F)NMT models,
the vocabulary size of the second factors is only
1.5k for Czech and 376 for Latvian. The num-
ber of parameters in (F)NMT systems increases
around 2.5% for Czech and 7% in Latvian.

5.2 System Setup

Only sentences with a maximum length of 50 were
kept in the training data, except for the setup where
cluster IDs were split in normalized words. In this
case, we set the maximum length to 100. For the
training of all models, we used NMTPY, a Python
toolkit based on Theano (Caglayan et al., 2017)
and available as free software7. We used the stan-
dard NMT system on fully inflected words and the

6https://www.microsoft.com/en-us/
download/details.aspx?id=52608

7https://github.com/lium-lst/nmtpy

FNMT architecture described in § 3 on all other
word representations.

All systems (F)NMT systems have an embed-
ding dimension of 512 and hidden states of di-
mension 1024 for both the encoder and the de-
coder. Dropout is enabled on source embeddings,
context vector, as well as output layers. When
training starts, all parameters are initialized with
Xavier (Glorot and Bengio, 2010). In order to
slightly speed up the training on the actual parallel
data, the learning rate was set to 0.0004, patience
to 30 with validation every 20k updates. On the
synthetic data, we finally set the learning rate to
0.0001 and performed validation every 5k updates.
These systems were tuned with Adam optimizer
(Kingma and Ba, 2014) and have been training for
approximately 1 month.

5.3 Reinflection

The factored systems predict at each time step a
lexical unit and a PoS-tag, which requires a non-
trivial additional step producing sentences in a
fully inflected language. We refer to this process
as reinflection.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary look-up. In the
context of MRL, deterministic mappings from a
lemma and a PoS to a form are very rare. Instead,
the dictionary often contains several word forms
corresponding to the same lexical unit and mor-
phological analysis.

A first way to solve this ambiguity is to simply
compute unigram frequencies of each word form,
which was done over all the monolingual data
available at WMT’17 for both Czech and Latvian.
During a dictionary look-up, ambiguities can then
be solved by taking the most frequent word form.
The downside of this procedure is that it ignores
important information given by the target mono-
lingual context. For instance, the Czech preposi-
tion s (with) will have different forms according
to the right-side context: s tebou (with you), but se
mnou (with me). A solution is to let an inflected-
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word-based system select the correct word form
from the dictionary. To this end, k-best hypotheses
from the dictionary are generated. Given a sen-
tence containing lemmas and PoS, we perform a
beam search going through each word and keep-
ing at each step the k-best reinflection hypotheses
according to the unigram model mentioned above.

For Czech reinflection, we used the Morphodita
generator (Straková et al., 2014). Since we had no
such tool for Latvian, all monolingual data avail-
able at WMT’17 were automatically tagged using
the LU MII Tagger (Paikens et al., 2013) and we
gathered the result in a look-up table. As one could
expect, we obtained a large table (nearly 2.5M
forms) in which we observed a lot of noise.

5.4 Constrained Decoding

The factored system described in § 3 outputs a
lexical unit and a PoS-tag at each time step. A
peculiarity of this system is that the predictions
of both factors are independent. There is only a
weak dependency due to the fact that both share
the same decoder state and context vector. As a
consequence, the best hypothesis for the first fac-
tor can well be incompatible with the best hypoth-
esis for the second factor, and the risks of such
mismatches only get worse when top-n hypothe-
ses are considered, as in beam search.

Our constrained decoding procedure aims at
enforcing a strong consistency between factors.
Each word in the target vocabulary is first associ-
ated with a specific set of PoS-tags. The decoding
procedure is modified as follows: for each can-
didate target word, we only retain the compatible
PoS tags, and select the top-n hypotheses to be
kept in the beam from this filtered list. This con-
straint ensures that the beam search does not eval-
uate incompatible pairs of factors. (e.g. the PoS
Preposition and the word cat).

With a dictionary, creating such a mapping is
trivial for full lemmas, but less obvious in the case
of BPE units. Since the latter can be generated
from different words having different grammati-
cal classes, the size of the set of possible PoS can
grow quickly. For normalized words, things are
much easier and do not even require a dictionary,
as the mapping between cluster IDs and compati-
ble PoS is learnt during the normalization process
(see § 4.1). Thus constrained decoding was only
performed for (a) unsegmented lemmas, and (b)
unsegmented and segmented normalized words.

6 Automatic Evaluation

Results are reported using the following automatic
metrics: BLEU (Papineni et al., 2002), BEER
(Stanojević and Sima’an, 2014) which tunes a
large number of features to maximize the human
ranking correlation at sentence level and Charac-
TER (Wang et al., 2016), a character-level version
of TER which has shown a high correlation with
human rankings (Bojar et al., 2016). Each score on
fully inflected word systems is averaged from two
independent runs (for both single and ensembled
models).

6.1 Experiments with Bitext

The results using the bitext provided at the
WMT’17 the evaluation campaign are presented
in Table 2 for English-to-Czech 8 and in Table 3
for English-to-Latvian.

We can observe that using the constrained de-
coding consistently improves the results, except
when using split clusters. In this last case, the
system is forced to predict a PoS in the second
factor whenever it has generated a cluster ID in
the first factor. Since there is a reduced quantity
of such cluster IDs, the model has no difficulty to
learn the constraints by itself and therefore to map
a cluster ID exclusively to a specific subset of PoS.
In the Latvian lemma setup, we observe that the
improvement using constrained decoding is lower
than for Czech (see Table 3), which is probably
due to the quality of the noisy look-up table we
have created for Latvian (see § 5.1). Note that we
have no such dependency on the lexical resources
at decoding time for the normalized word setups,
where improvements are comparable across both
language pairs.

The systems using BPE tokens significantly
outperform word-level systems, which confirms
the analysis of Sennrich et al. (2016b). The results
show that BPE units are even more efficient when
applied to normalized words, providing significant
improvements over segmented inflected words of
1.79 and 1.85 BLEU points for Czech, and 0.78
and 1.06 for Latvian.

The lemma representation was tested with the
two FNMT models presented in § 3, one model
using a single hidden-to-output layer (single h2o
layer) and the other model using two separated
hidden-to-output layers (separated h2o layers).

8At decoding time, Czech systems performed better with
a beam size of 2, which was used to provide these results.
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

word-to-word
fully inflected w. 15.74 47.29 74.79 12.76 44.81 78.90
factored norm
sep. h2o layers 16.63 49.78 68.02 13.70 47.13 72.81
+ constrained dec. 17.71 50.38 66.94 14.88 47.81 71.44
factored lemmas
single h2o layer 16.73 50.50 65.51 14.09 48.15 69.85
+ constrained dec. 17.42 50.94 64.95 14.93 48.76 69.26
sep. h2o layers 16.54 50.12 66.35 13.89 47.78 70.63
+ constrained dec. 17.56 50.73 65.48 14.66 48.26 69.96

BPE-to-BPE
fully inflected w. 18.24 52.29 60.05 15.08 49.54 65.38
factored norm
sep. h2o layers 18.59 53.01 59.95 15.89 50.49 66.75
+ constrained dec. 20.03 53.96 58.90 16.93 51.14 64.13
split clusters 19.74 53.90 59.95 16.31 50.73 64.49
+ constrained dec. 19.71 53.96 59.85 16.38 50.83 64.35
factored lemmas
single h2o layer 17.30 51.82 61.19 14.19 48.98 66.28
sep. h2o layers 17.34 52.22 60.62 14.73 49.61 65.34

Table 2: Scores for English-to-Czech systems trained on official bitext data

We observe mixed results, here: the system with
the single h2o layer has slightly better results for
the word-to-word systems, but the BPE-to-BPE
factored lemma system obtains better performance
with the separated h2o layers architecture. For
that reason, we decided to only use the separated
h2o layers architecture for the next set of experi-
ments involving synthetic data which is the aim of
the next section.

6.1.1 Experiments with Selected Bitext and
Synthetic Data

Table 4 and 5 show the results of using selected
parts of bitext and synthetic parallel data (see sec-
tion 5.1) for both language pairs. Each model
trained with a selection of bitext and synthetic data
was initialized with the parameters of its counter-
part trained on bitext. The BPE vocabulary used
was the same as in the model used for initializa-
tion, which led the systems to generate unknown
words. In our experiments, we forced the decoder
to avoid unknown token generation.

By using synthetic data, we are able to obtain
a large improvement for all systems, which is in
line with (Sennrich et al., 2016a). We notice that
the contrasts present in the previous section be-
tween the various word representations are less
clear now. The baseline system (first two rows) is
the system which benefits the most from the addi-
tional data with +5.7 and +6.9 BLEU for Czech
and Latvian. The performance of factored sys-
tems has also increased, but to a lesser extent,

leading to slightly worse results compared to the
baseline system. This situation changes when the
reinflected hypotheses are rescored. We are then
able to surpass the baseline system with normal-
ized words.

The two language pairs react differently to k-
best hypotheses rescoring (+k-best rescored in the
tables). For Czech, this has nearly no impact
on translation quality according to the metrics,
whereas it provides an important improvement in
Latvian: +2.03 and +0.84 BLEU in the split clus-
ter setup. Note that this specific setup gives the
best score we could achieve on newsdev-2017,
without n-best rescoring or model ensembling. We
interpret this situation as a result of the differ-
ence in quality observed for the Czech and Latvian
dictionaries used for reinflection. Indeed, since
Morphodita contains exclusively useful Czech re-
inflection candidates, a simple unigram model is
sufficient to select the right word forms, making
the generation of 10-best reinflection hypotheses
useless.9 On the other hand, the hypotheses re-
turned by the look-up table we have used to gen-
erate Latvian word forms were noisy and required
a rescoring from an MT system based on fully in-
flected words.10 We obtained the best results for

9Our experiments with 50-best and 100-best reinflections
did not show any improvement.

10We assume that the word form generation at this step re-
quires information from the monolingual context only, and
could be modeled with a simple target language model, al-
though this needs to be confirmed empirically.
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Newsdev-2017 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

words-to-words
fully inflected w. 15.15 48.18 76.97 10.61 43.44 85.67
factored norm
sep. h2o layers 14.91 50.56 69.49 10.42 45.94 78.83
+ constrained dec. 15.57 50.78 69.65 11.38 46.28 78.93
factored lemmas
single h2o layer 13.96 49.53 68.36 9.68 45.24 77.07
+ constrained dec. 14.02 49.48 69.97 9.94 45.21 78.11
sep. h2o layers 13.92 49.93 68.45 9.71 45.10 77.51
+ constrained dec. 14.38 49.74 70.04 10.07 45.26 78.08

BPEs-to-BPEs
fully inflected w. 16.22 51.63 64.44 11.29 47.02 71.95
factored norm
sep. h2o layers 15.69 52.35 64.14 10.94 47.80 73.51
+ constrained dec. 16.81 52.72 64.02 12.16 48.25 72.93
split clusters 16.99 52.95 64.65 12.35 48.64 72.40
+ constrained dec. 17.00 52.96 64.61 12.35 48.65 72.32
factored lemmas
single h2o layer 14.45 50.86 67.14 10.45 46.36 72.25
sep. h2o layers 14.39 50.72 66.05 10.69 46.44 72.96

Table 3: Scores for English-to-Latvian systems trained on official bitext.

Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

fully inflected w. 23.94 57.30 52.77 20.00 54.45 58.40
+ ensemble 24.34 57.51 52.48 20.16 54.62 58.22
factored norm
sep. h2o layers 22.26 56.49 53.43 18.74 53.76 59.18
+ constrained dec. 23.02 56.76 53.29 19.34 54.03 58.67
split clusters 23.37 57.44 52.66 19.77 54.58 58.44
+ constrained dec. 23.39 57.43 52.71 19.76 54.59 58.51
+ k-best rescored 23.43 57.45 52.64 19.79 54.60 58.49
+ n-best rescored 24.19 57.88 52.19 20.56 54.99 57.96
+ ensemble 24.55 58.00 51.97 20.68 55.08 57.93
factored lemmas
sep. h2o layers 22.30 56.63 53.46 19.34 54.16 58.76
+ k-best rescored 22.35 56.60 53.49 19.36 54.17 58.71
+ n-best rescored 23.39 57.25 52.73 19.83 54.57 58.35
+ ensemble 24.05 57.59 52.27 20.22 54.80 57.89

Table 4: Scores for English-to-Czech systems (BPE-to-BPE) trained on selected bitext and synthetic
parallel data.

this Latvian setup by generating the 100-best re-
inflection hypotheses, which provides less depen-
dency on the quality of the dictionary and relies
more on the knowledge learned by a word-form-
aware system. Despite the fact that such a rescor-
ing procedure is costly in terms of computational
time, we observe that it can be a helpful solution
when no resources of quality are available.

Czech n-best reinflection, as opposed to k-
best, turned out to be efficient, bringing the
lemma-based systems to the level of the baselines
and even above for the normalized word setups.
Whereas it does not improve with Latvian normal-
ized words, we observe a positive impact on the
lemma-based systems. We assume that rescoring

the n-best list is a way to rely on an inflected-
word-based system to make important decisions
related to translation, as opposed to the much
simpler monolingual process of reinflection men-
tioned above. Latvian split-cluster models seem to
have nothing to learn from such systems.

Factored norm performs best among all the
presented models, showing consistent BLEU im-
provements over the baselines of 0.25 and 0.56
for Czech, and 0.57 and 0.89 for Latvian. We fi-
nally notice that ensembling two models slightly
reduces those contrasts, and lemma-based systems
are the ones that benefit the most from model en-
sembling. Conclusions are not easy to draw, since
across the different setups, the level of indepen-
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Newsdev-2017 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

fully inflected w. 22.05 57.34 53.32 14.84 51.78 63.08
+ ensemble 22.41 57.78 52.67 15.12 52.11 62.64
factored norm
sep. h2o layers 18.81 55.65 56.07 13.57 50.94 64.24
+ constrained dec. 20.05 56.14 56.13 14.44 51.26 63.60
split clusters 20.85 56.77 54.13 14.50 51.84 63.04
+ constrained dec. 20.86 56.80 54.02 14.57 51.87 62.96
+ k-best rescored 22.89 57.88 52.77 15.41 52.39 62.40
+ n-best rescored 22.62 57.43 53.66 15.73 52.77 61.78
+ ensemble 22.69 57.61 52.91 16.04 52.99 61.41
factored lemmas
sep. h2o layers 18.93 56.01 54.36 13.98 51.26 63.9
+ k-best rescored 20.56 56.94 53.42 14.80 51.78 63.19
+ n-best rescored 21.59 57.62 52.83 15.31 52.34 62.64
+ ensemble 21.90 57.83 52.38 15.35 52.31 62.46

Table 5: Scores for English-to-Latvian systems (BPEs-to-BPEs) trained on selected bitext and synthetic
parallel data.

dence of the two ensembled models is suspected
to be quite different. 11

It is important to note that automatic metrics
may not do justice to the lexical and grammatical
choices made by the factored systems. In an at-
tempt to focus on the grammaticality of the FNMT
systems, we conducted a qualitative analysis of the
outputs.

7 Qualitative Evaluation

7.1 Attention in Factored Systems

In a factored NMT setup, the attention mechanism
distributes weights across all positions in the input
sentence in order to make two predictions, one for
each factor, which is an important difference from
single-objective NMT. An illustration of the im-
pact of this difference is shown in Figure 2 for the
ensembles of two English-to-Czech models intro-
duced in § 6.

In this sentence, the system based on fully in-
flected words (translation on the top) erroneously
predicts the verbal present tense in nevyhýbá (does
not avoid). We can see that the target subword unit
nevy@@ is rather strongly linked to the source
didn’t, which allowed the system to correctly pre-
dict negative polarity. On the other hand, the end-
ing of the verb á is not linked by attention to this
same source word, from which the morphological
feature of past should have been conveyed. We ob-
serve in (a) that the lemma-based system attention
aligns the target position to both the source auxil-

11Performing independently two system runs for ensem-
bling would have given results easier to analyze, which we
were not able to provide due to the cost of such practice.

iary didn’t and the lexical verb’s first subword unit
shir@@, which enables the successful prediction
of the right lemma and morphology, i.e. negation
(N) and past (R). The normalized word based sys-
tem in (b) shows an even more explicit modeliza-
tion of this morphological phenomenon. While
the lemma nevyhýbat@@ is strongly related to the
same English segment shir@@, it is only slightly
linked to the English auxiliary. didn’t is instead
clearly associated to the cluster ID V+20 that gath-
ers negative past tense PoS-tags, enabling the right
prediction in the second factor. In this last setup,
the system has to deal, at each time step in the out-
put sentence, with either a lexical phenomenon or
a grammatical one.

Target-side grammatical phenomena being
more explicitly modeled in factored NMT, it is
generally easier for the attention mechanism to
spot an English grammatical word (auxiliary,
preposition, negative particle, etc.), which enables
a better prediction in the second factor output.
We assume that this peculiarity ensures a better
source-to-target grammatical adequacy.

7.2 Measuring Morphological Consistency

We provide here an attempt to understand more
systematically whether an a priori intuition of fac-
tored NMT systems is verified. The intuition is
that dividing the task of translating a sentence into
two easier joint tasks, namely the prediction of a
lexical unit and of a set of morphological features,
should encourage the system to produce a higher
level of grammaticality.

To this end, we have used a part of the test suite
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nouns adjectives verbs mean
target system case gender number case number person tense polarity

Czech
fully inflected w. .208 .295 .272 .310 .125 .070 .086 .061 .178
factored norm. .165 .308 .236 .273 .105 .059 .067 .042 .157

factored lemmas .206 .278 .240 .269 .125 .074 .090 .067 .169

Latvian
fully inflected w. .263 .640 .623 .669 .140 .233 .142 .387
factored norm. .220 .580 .577 .617 .108 .170 .111 .340

factored lemmas .213 .608 .606 .643 .099 .163 .092 .346

Table 6: Morphological prediction consistency (Entropy).

(a) (b)
a nevy@@ hýb@@ á se jim ,

and didn't shir@@ k in getting

and didn't shir@@ k in getting

a vyhýbat se ten , aby
J^---------- VpYS---XR-NA P7-X4------- PDZS3------- Z:---------- J,----------

a nevy@@ hýb@@ á se jim ,

and didn't shir@@ k in getting

and didn't shir@@ k in getting

a@@ +J+3 vyhýbat@@ +V+20 se@@ +P+65 on@@ +P+71 ,@@ +Z+0 aby@@ +J+4
-- J^---------- -- VpMP---XR-NA -- P7-X4------- -- PPXP3--3---- -- Z:---------- -- J,----------

Figure 2: An example of attention weight distribution in FNMT (bottom) and fully inflected words (top)
output systems aligned to the source sentence (middle) for English-to-Czech. (a) corresponds to the
factored lemmas system and (b) factored norm system

provided by Burlot and Yvon (2017a), who pro-
pose an evaluation of the morphological compe-
tence of a machine translation system performed
on an automatically produced test suite. For each
source test sentence from a monolingual corpus
(the base), several variants are generated, contain-
ing exactly one difference with the base, and fo-
cusing on a specific target lexeme of the base. We
took the part of the test labeled as “C-set” that fo-
cuses on a word in the base sentence and produces
variants containing synonyms and antonyms of
this word. Thus the consistency of morphological
choices is tested over lexical variation (eg. syn-
onyms and antonyms all having the same tense)
and the success is measured based on the average
normalized entropy of morphological features in
the set of target sentences. The systems used are
the ensembles of two models introduced in § 6 (the
inflected word system is our best system for each
language pair).

The results of this procedure are shown in Ta-
ble 6. Entropy demonstrates how confident a sys-
tem is wrt. a specific morphological feature across
synonyms and antonyms. While NMT systems on
fully inflected words are well-known to produce
fluent outputs, we always observe a lower entropy
with the factored systems over all features, except
for the lemma-based system on Czech verbs. This
tends to show that the prediction of any morpho-
logical feature is more confident when it is explic-
itly modeled by a separate objective focused on

morphology, disregarding lexical variations.

8 Conclusion

In this paper, we have presented various mod-
els integrating factored word representations for
neural machine translation systems. Addition-
ally to results with automatic metrics reporting
significant improvements over a strong baseline,
we provided a qualitative analysis focusing on
the grammatical competence of FNTM systems
that showed the benefits of explicitly modeling
morpho-syntactic information.

Our experiments have shown that the cluster
ID from the morphological normalization of target
words brings useful information to the system by
enabling a better correspondence of both factors’
predictions. This specificity, as well as the im-
provements given by constrained decoding, brings
us to future work focusing on the modelization of a
stronger dependency of the second factor towards
the first one in the FNMT architecture.
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Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition.
In Proc. ACL: System Demos. Baltimore, MA, pages
13–18.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models
to machine translation. In Proc. ACL-08: HLT .
Columbus, OH, pages 514–522.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl,
and Hermann Ney. 2016. CharacTer: Translation
Edit Rate on Character Level. In Proc. WMT .
Berlin, Germany, pages 505–510.

Marion Weller, Alexander M. Fraser, and
Sabine Schulte im Walde. 2013. Using subcatego-
rization knowledge to improve case prediction for
translation to german. In ACL (1). The Association
for Computer Linguistics, pages 593–603.

Youzheng Wu, Hitoshi Yamamoto, Xugang Lu,
Shigeki Matsuda, Chiori Hori, and Hideki Kashioka.
2012. Factored recurrent neural network language
model in TED lecture transcription. In IWSLT .

31



Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 32–42
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Modeling Target-Side Inflection in Neural Machine Translation
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Abstract

NMT systems have problems with large
vocabulary sizes. Byte-pair encoding
(BPE) is a popular approach to solving
this problem, but while BPE allows the
system to generate any target-side word,
it does not enable effective generalization
over the rich vocabulary in morpholog-
ically rich languages with strong inflec-
tional phenomena. We introduce a sim-
ple approach to overcome this problem by
training a system to produce the lemma of
a word and its morphologically rich POS
tag, which is then followed by a deter-
ministic generation step. We apply this
strategy for English–Czech and English–
German translation scenarios, obtaining
improvements in both settings. We fur-
thermore show that the improvement is not
due to only adding explicit morphological
information.

1 Introduction

Neural machine translation (NMT) has recently
become the new state of the art. Despite a large
body of recent research, NMT still remains a rela-
tively unexplored territory.

In this work, we focus on one of these less stud-
ied areas, namely target-side morphology. NMT
systems typically produce outputs word-by-word
and at each step, they evaluate the probability of
all possible target words. When translating to
morphologically rich languages, due to the large
size of target-side vocabularies, NMT systems run
into scalability issues and struggle with vocabu-
lary coverage.

Byte-pair encoding (BPE, Sennrich et al.
(2016b)) is currently perhaps the most success-
ful approach to addressing these problems. How-

ever, while BPE allows the system to generate
any target-side word (possibly as a concatenation
of smaller segments), it does not enable effec-
tive generalization over the many different surface
forms possible for a single lemma, which had been
shown to be useful in phrase-based SMT (Bojar
and Kos, 2010).

We see three main problems associated with
rich target-side morphology in NMT: (i) NMT sys-
tems have no explicit connection between differ-
ent surface forms of a single target-side lexeme
(lemma), leading to data sparsity, (ii) there is no
explicit information about morphological features
of target-side words, and (iii) NMT systems can-
not systematically generate unseen surface forms
of known lemmas: while the combination of sub-
word segments obtained with BPE splitting can
technically generate new forms, this is not a lin-
guistically informed way to generate new words,
and is furthermore restricted to “simple” concate-
native word formation processes.

We propose a simple two-step approach to
achieve morphological generalization in NMT. In
the first step, we use an encoder-decoder NMT
system with attention and BPE (Bahdanau et al.,
2014; Sennrich et al., 2016b) to generate a se-
quence of interleaving morphological tags and
lemmas. In the second step, we use a morpholog-
ical generator to produce the final inflected out-
put. This decomposition addresses all three of the
problems outlined above:

• the presence of lemmas allows the system to
model different inflections jointly and bet-
ter capture lexical correspondence with the
source,

• morphological information is explicit and al-
lows the system to easily learn target-side
morpho-syntactic patterns including agree-
ment,
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• unseen surface forms can be generated sim-
ply by combining a known lemma and a
known tag.

While simple, the approach is very effective and
leads to significant improvements in translation
quality in a medium-resource setting for English-
Czech translation. Similarly, experiments in an
English–German setting lead to improved transla-
tion results and also show that the proposed strat-
egy can be applied to other language pairs.

2 Two-Step NMT

We work within the standard encoder-decoder
framework with an attention mechanism as pro-
posed by Bahdanau et al. (2014), using the Ne-
matus implementation (Sennrich et al., 2017).
To model target-side morphology, the system is
trained on an intermediate representation consist-
ing of interleaved lemmas and morphological tags
providing the full set of relevant inflection fea-
tures. Decoding is followed by a second step
which is fully deterministic. We use the predicted
pairs of (tag+features, lemma) as input to a mor-
phological generator which outputs the final in-
flected surface forms. In the rare cases where the
generator fails to output any surface form, we sim-
ply output the lemma.

Our approach is inspired by the successful re-
sults of Nadejde et al. (2017), where the authors
interleave target-side words and CCG supertags
and observe improvements by learning to also pre-
dict the target-side syntax. Our experiments in
the English–Czech translation task will, however,
show that the improvement we obtain is not a
similar effect, but instead requires the improved
generalization obtained through mapping inflected
forms to their lemmas and the ability to generate
correct surface forms.

In this paper, we first apply our tag lemma strat-
egy to an English–Czech translation setting. We
show that it is effective and also investigate po-
tential effects of tag prediction interacting with
morphological generalization. A second set of ex-
periments concerns English–German translation:
here, the focus is rather put on modeling linguis-
tic phenomena, including German word forma-
tion. While Czech has a more complex morphol-
ogy than German, German has the additional prob-
lem of compounds that make translation challeng-
ing; one system variant thus includes simple com-
pound handling.

3 Modeling Czech Morphology

Czech is a Slavic language with a rich inflectional
morphology. There are seven cases for nouns
and adjectives, four genders and two grammatical
numbers. Surface forms of verbs follow complex
rules as well, as they encode number, person, tense
and several other phenomena. Due to its fusional
nature, there is a degree of syncretism in Czech –
words with different morphological features may
share the same surface form.

As such, Czech is a suitable example for evalu-
ating our approach. We use the Czech positional
tagset in our work (Hajič and Vidová-Hladká,
1998). Figure 1 illustrates the input and output to
our network and the baseline. Figure 2 illustrates
the tagset on an example. For Czech morpho-
logical analysis, tagging and generation, we use
the MorphoDiTa toolkit (Straková et al., 2014),
which achieves state-of-the-art results in lemmati-
zation and tagging and its coverage in morpholog-
ical generation is very high. Morphological gen-
eration is based on a lexicon of lemmas and their
paradigms and it is fully deterministic.

4 Modeling German Morphology

To obtain the representation of interleaved lemmas
and tag+feature sequences for German, we apply
a slightly different pipeline than for the English–
Czech setting. Instead of representing a word by a
simple lemma and a morphological tag, we use a
morphological analyzer covering also productive
formation processes – the morphologically com-
plex analyses of the lemma (“stem”) allow us to
easily handle compounds, which pose a consider-
able challenge when translating into German.

4.1 Linguistic Resources
The key linguistic knowledge sources to model
German morphology are the constituency parser
BitPar (Schmid, 2004) to obtain morphological
analyses in the sentence context, and the morpho-
logical tool SMOR (Schmid et al., 2004) to ana-
lyze and generate inflected German surface forms.

SMOR is a a morphological analyzer for Ger-
man inflection and word formation processes im-
plemented in finite state technology. In particu-
lar, it also covers productive word formation pro-
cesses such as compounding or derivation. SMOR
functions in two directions: surface form →
stem+features and stem+features→ surface form.
Thus, when preparing the target-side training data,
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input: there are a million different kinds of pizza .
baseline: existujı́ miliony druhů piz@@ zy .

morphgen: VB-P—3P-AA— existovat NNIP1—–A—- milión NNIP2—–A—- druh NNFS2—–A—- pizza Z:————- .

Figure 1: Examples of input and output training sequences for the baseline and the proposed system.
BPE splits are denoted by “@@”.

Category Value Description
POS A adjective

sub-POS A adjective, general
gender I masculine inanimate

number P plural
case 7 instrumental

possgender – (possessor’s gender)
possnumber – (possessor’s number)

person – (person, verbs)
tense – (tense, verbs)
grade 2 comparative degree

negation A affirmative (not negated)
voice – (voice, verbs)

reserve1 – (unused)
reserve2 – (unused)

var – (style, variant)

Figure 2: Czech positional tagset. Fea-
ture values for the word kulatějšı́mi, tag
AAIP7----2A----.

each inflected surface form is analyzed, and then
replaced by its stem and respective morphological
features, as illustrated for the verb trifft below:

surface trifft
stem treffen<+V><3><Sg><Pres><Ind>

For the inflection process after translation, SMOR
is used in the reverse direction to output an in-
flected form when given a stem+feature sequence.

4.2 German Inflectional Features

German has a rich nominal and verbal morphol-
ogy, and even though it exhibits a relatively high
degree of syncretism, it has a high lemma–to–
inflected forms ratio. For example, adjectives can
have up to 6 different inflected forms, such as blau,
blaue, blaues, blauer, blauen, blauem (’blue’).

Nominal Inflection Unlike in English, where
only the feature number is expressed for nouns,
German nominal inflection is applied to determin-
ers, adjectives and nouns. The following four fea-
tures are relevant for nominal inflection:

case nominative, accusative, dative, genitive
gender feminine, masculine, neuter
number singular, plural
str/wk strong, weak

To efficiently handle syncretism, SMOR has the
artificial value NoGend, that is used when a sur-
face form is the same for all three values of gen-
der; this is typical for plural forms. Similarly, the
feature strong/weak1 does not need to be specified
if the surface forms are the same; we thus add the
dummy-value <NA> to always have a sequence of
four values. Words that are subject to nominal in-
flection are replaced by their SMOR analysis that
is split into stem and the tag-feature sequence:

STEM <+Tag><Gend><Case><Num><St/Wk>

Verbal Morphology German verbal morphol-
ogy requires the modeling of these features:

person 1,2,3
number singular, plural
tense present, past
mood indicative, subjunctive

These features refer to morphologically expressed
properties in a single word; further instances of the
feature tense, in particular future tense, are real-
ized as compound tenses. Our modeling of verbal
inflection, is restricted to the word-level, and the
decision how to combine auxiliaries and full verbs
is left to the translation model. Verb forms are rep-
resented as follows in the stemmed format:

finite STEM <+V><Pers><Num><Tense><Mood>

participle STEM <+V><PPast>

infinitive STEM <+V><Inf>

4.3 Building the stemmed representation

Table 1 illustrates the process of deriving the fully
specified stemmed representation by combining
morphological analyses and rich parse tags; the
column infl indicates whether a word is inflected.
As a German surface form can have many possible
analyses (cf. below), the parse tags are needed to

1Strong/weak inflection is determined by the setting of
definite/indefinite articles in combination with the other fea-
ture: for example, the NP das blaue Auto (’the blue car’) is
inflected differently when occurring with an indefinite article
(ein blaues Auto) in the function of subject or direct object.
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English and what you ’re seeing here is a cloud of densely packed , hydrogen-sulfide-rich water coming
sentence out of a volcanic axis on the sea floor

EN gloss DE surface parse-tags infl. fully specified stemmed representation
and und KON 0 und[KON]

here hier ADV 1 hier[ADV]

sees sieht VVFIN-Sg 1 sehen||<+V><3><Sg><Pres><Ind>
one man PIS-Nom.Sg 0 man[PIS]

a eine ART-Acc.Sg.Fem 1 eine<Indef>||<+ART><Fem><Acc><Sg><St>
cloud Wolke NN-Acc.Sg.Fem 1 Wolke||<+NN><Fem><Acc><Sg><NA>
of von APPR-Dat 0 von[APPR-Dat]

dense dichtem ADJA-Dat.Sg.Neut 1 dicht<Pos>||<+ADJ><Neut><Dat><Sg><St>
hydrogen- hydrogensulfid- ADJA-Dat.Sg.Neut 1 Hydrogen<NN>Sulfid<NN>

sulfide-rich reichem reich<Pos>||<+ADJ><Neut><Dat><Sg><St>
water Wasser NN-Dat.Sg.Neut 1 Wasser||<+NN><Neut><Dat><Sg><NA>
, , $, 0 ,[$]

that das PRELS-Nom.Sg.Neut 0 das[PRELS]

from aus APPR-Dat 0 aus[APPR-Dat]

a einer ART-Dat.Sg.Fem 1 eine<Indef>||<+ART><Fem><Dat><Sg><St>
volcanic vulkanischen ADJA-Dat.Sg.Fem 1 vulkanisch||<+ADJ><Pos>

<NoGend><Dat><Sg><Wk>

longitudinal Längsachse NN-Dat.Sg.Fem 1 längs<ADJ>Achse||<+NN><Fem><Dat><Sg><NA>
axis
on an APPR-Dat 0 an[APPR-Dat]

the dem ART-Dat.Sg.Masc 1 die<Def>||<+ART><Masc><Dat><Sg><St>
sea floor Meeresboden NN-Dat.Sg.Masc 1 Meer<NN>Boden||<+NN><Masc><Dat><Sg><NA>
oozes tritt VVFIN-Sg 1 treten||<+V><3><Sg><Pres><Ind>
. . $. 0 .[$]

Table 1: Example for the fully specified representation used in the NMT system. The double-pipe symbol
|| indicates the boundary between the word(stem) and the tag with the full set of inflectional features.

disambiguate the morphological analyses.

vulkanischen
vulkanisch<+ADJ><Pos><Neut><Gen><Sg>

vulkanisch<+ADJ><Pos><Masc><Acc><Sg>

vulkanisch<+ADJ><Pos><Masc><Gen><Sg>

vulkanisch<+ADJ><Pos><NoGend><Acc><Pl><Wk>

vulkanisch<+ADJ><Pos><NoGend><Dat><Pl>

vulkanisch<+ADJ><Pos><NoGend><Dat><Sg><Wk>

vulkanisch<+ADJ><Pos><NoGend><Gen><Pl><Wk>

vulkanisch<+ADJ><Pos><NoGend><Nom><Pl><Wk>

vulkanisch<+ADJ><Pos><Fem><Gen><Sg><Wk>

The stem and the tag-feature sequence (or the bare
tag for non-inflected words) are separated, allow-
ing the model to learn lexical relations between
source- and target-side separately from target-
side morpho-syntactic patterns. As the addition
of tags effectively doubles the length of German
sentences, we also add tags (obtained with tree-
tagger, Schmid (1994)) on the source-side to bal-
ance the source/target side sentence lengths.

4.4 Reduction of Vocabulary Size

One of the main objectives of the two-step ap-
proach is to reduce the target-side vocabulary size.
Table 2 shows the most frequent fragments on the
end of words obtained through BPE splitting on
the German surface data – while it is difficult to
generalize without the actual context, most tend to
be inflectional suffixes. While this type of split-
ting does make sense, it also seems that there is
some redundancy, and a systematic generalization
is impossible. Furthermore, a mere segmentation
of surface forms does not cover non-concatenative
phenomena such as “Umlautung”: for example,
the concatenation of Haus- (lemma: ’house’) and
-er (typical plural suffix) does not result in the
correct plural form (Häuser) – thus, two “lem-
mas” are required to guarantee correct inflections
of words that undergo Umlautung when working
with surface forms. Table 3 shows the reduction
of vocabulary in the stemmed representation: re-
placing inflected forms with their stems leads to
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freq part freq part freq part
2469 ten 1257 sten 1077 ern
2157 te 1214 es 1077 -
1738 en 1169 ter 1058 den
1607 er 1148 gen 1040 s
1474 ung 1 078 ischen 1015 ungen

Table 2: The most frequent fragments on word
ends after BPE from the German surface data.

vocabulary vocabulary
size size w/ BPE

DE surface data 121.892 22.712
DE morph 97.587 21.663
DE morph-split 68.533 21.892

Table 3: Overview of vocabulary size in the Ger-
man TED data (BPE: Byte Pair Encoding).

a considerable reduction of the vocabulary size;
compound splitting leads to a further reduction.

4.5 Simple Compound Handling

Another factor contributing to a high vocabu-
lary size is the productivity of German com-
pounds; in SMT, compound handling has been
found to improve translation quality, e.g. Stymne
et al. (2011) and Cap et al. (2014). In addi-
tion to inflectional morphology, SMOR also pro-
vides a derivational analysis, including splitting
into compound parts: for example, the com-
pound Häuser|markt (’house market’) is analyzed
as Haus<NN>Markt<+NN><...>. In particular, the
modifier is represented by its base form Haus, cov-
ering the non-concatenative process of “Umlau-
tung” (Haus↔ Häuser).

In the stemmed representation, this may already
present an indirect advantage, as compounds frag-
mented through BPE splitting can match other
stemmed occurrences of that word. An obvious
idea at this point is to go a step further and add
compound splitting to the pre-processing of the
German data. Using the SMOR annotation, com-
pounds are split at mid-word adjective and noun
borders. For example, the word Meeres|boden
(’sea bottom’) from table 1 is split into two sub-
words separated by the modifier’s tag:

Meer §§<NN>§§ Boden <+NN><...>

This notation separates lexical parts from SMOR
markup, thus allowing the model to learn com-
pound patterns. After translation, the compound

corpus sents src tokens tgt tokens
train 114k 2309k 1908k

test2012 1385 25150 20682
test2013 1327 28454 24107

Table 4: Sizes of English-Czech corpora.

stems are concatenated and then inflected.
On the English side, it is assumed that the

equivalents of compounds are already separate
words. For this system variant, however, the En-
glish side was slightly simplified by aggressive hy-
phen splitting, and replacing nouns and verbs by
their lemma form, accompanied by a tag indicat-
ing the type of inflection. Our hope is that this rep-
resentation will be more parallel to the compound-
split representation in German.

5 Experimental Evaluation

In this section, we describe our experiments with
English-Czech and English-German translation.

5.1 Czech

We use the IWSLT training and test sets in
English-Czech experiments2. The training set
consists of transcribed TED talks as collected in
the WIT3 corpus (Cettolo et al., 2012). We use
IWSLT test set 2012 as the held-out set and the
2013 test set for evaluation. Table 4 summarizes
the basic data statistics.

We use the Nematus toolkit for training the
NMT systems (Sennrich et al., 2017). We run
BPE training on both sides of the training data
with 49500 splits. We set the vocabulary size to
50000 word types. The embedding size is set to
500, the dimension of the hidden layer is 1024.
We optimize the model using Adam (Kingma and
Ba, 2014) and we use the default early stopping
criterion in Nematus. We do not apply drop-out
anywhere in the model. Following Nadejde et al.
(2017), we set the maximum sequence length to
50 for the baseline and to 100 for systems which
produce interleaved outputs.

Our baseline system is a standard Nematus
setup with the parameters described above. We re-
fer to our two-step setup as morphgen from now
on. For comparison, we also evaluate a third set-
ting where we train the system to output sequences
of morphological tags interleaved with the surface

2http://workshop2016.iwslt.org
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system BLEU (dev) BLEU (test)
baseline 12.60 12.89

morphgen 14.05 14.57
serialization 11.49 12.07

Table 5: English-Czech: BLEU scores of NMT
system variants.

forms. We refer to this contrastive experiment as
serialization – our aim is to tease apart the possible
benefit of explicitly predicting target-side morpho-
logical tags from the improvements due to mor-
phological generalization.

Note that BPE is applied in all system variants.
However, due to a reduced vocabulary size in the
morphgen setting, the splits are uncommon and
morphological tags are never split (this is an effect
of BPE, not a hard constraint).

Because NMT system results can vary signif-
icantly due to randomness in initialization and
training, we run system training end-to-end for
each variant three times. We then select the best
run based on BLEU as measured on the develop-
ment set (test2012) and then evaluate it on the final
test set (test2013).

Importantly, the network was able to learn the
correct structure for both morphgen and serial-
ization systems. The outputs are well-formed se-
quences of interleaving tags and lemmas/forms.

Table 5 shows the obtained results. In our main
experiment, our two-step system achieves a sub-
stantial improvement of roughly 1.7 BLEU points,
showing that two-step in the neural context works
for English to Czech translation for this data size.

In the serialization experiment, we see that, sur-
prisingly, the serialization system does not out-
perform the baseline setup. This stands in con-
trast to the use of CCG supertags by Nadejde et al.
(2017), which was effective in this framework.
The result there showed that using CCG supertags
which handle syntactic generalization helps pro-
duce a better sequence of surface forms. We at-
tribute our result to the trade-off between provid-
ing the system with explicit morpho-syntactic in-
formation (which is weaker information than CCG
supertags) and increasing the sequence length
(which complicates training). It is possible that
with larger training data, serialization might still
outperform the baseline, but our main result has
shown that morphological generalization on this
data size is beneficial.

baseline morphgen ∆

IWSLT 12.89 14.57 1.68
250k 14.87 17.51 2.64
500k 16.96 20.05 3.09

1M 18.07 20.95 2.88
2M 20.04 22.31 2.27

Table 6: English-Czech: BLEU scores of systems
with larger parallel training data.

Scaling to Larger Data The observed im-
provements are certainly at least partially due to
reduced data sparsity: because Czech is a morpho-
logically rich language, there is a high number of
distinct surface forms. We help the system gener-
alize by essentially dividing the information that
surface forms carry into two different “streams”:
one for morpho-syntax (tags) and the other for se-
mantics (lemmas).

One possible concern with the proposed ap-
proach is the ability to scale to larger training data.
Data sparsity could be such a major issue only
when training data are small and once we scale up,
the observed benefits might disappear as the sys-
tem gets more robust statistical estimates for the
individual surface forms.

We run a targeted experiment with larger sizes
of parallel training data to determine whether the
improvements hold. We always use the main train-
ing set described above but additionally, we add a
random sample from the CzEng 1.0 parallel cor-
pus (Bojar et al., 2012) to achieve training data
sizes of 250 thousand up to 2 million parallel sen-
tences (total).

Table 6 shows the results. We observe the high-
est difference in the 500k setting (over 3 BLEU
points absolute) and while the improvement de-
creases slightly as we add more data, the differ-
ence is still around 2.3 BLEU points even in the
largest evaluated setting, which is an encouraging
result.

Note that due to the increased computational
cost, scores for larger system variants are only
based on a single training run.

Analysis and Discussion We now further
analyze our two-step system, morphgen, in the
IWSLT data setting. We first look at cases where
the generator failed to produce the surface form.
We found only a handful of cases; these mostly in-
volved unknown proper names (Braper, Hvanda).
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In just four cases, the tag proposed by the network
was not compatible with the lemma (i.e., the net-
work made an error).

In order to determine where the improvement
comes from, we analyze the number of novel sur-
face forms produced by the system. We find that
indeed, unseen word forms are generated by the
system but not nearly as many as we expected:
only 125 novel tokens were found in the test set
(114 word types). Out of these, 14 forms are con-
firmed by the reference sentences (note that the
unconfirmed words may still be correct within the
system output).

It seems that the system mostly benefits from
the decomposition that we proposed – Czech lem-
mas are more easily mapped to source-side En-
glish words than the many inflected forms associ-
ated with each lemma. The interleaving tags then
help explicitly train the morpho-syntactic structure
of the sentences and allow the second step to deter-
ministically generate the final translations. While
morphological generalization does indeed occur, it
is not the source of most of the observed improve-
ment. When we use surface forms together with
the annotations (in our serialization experiment),
we see no improvement.

Finally, we report the results of a blind man-
ual annotation contrasting outputs of baseline and
morphgen. For each instance, the annotator had
access to the reference translation and both out-
puts. The task was to rank which translation is
better or to mark both as equal quality. The an-
notator analyzed 200 sentences. In 130 cases, the
translations were judged as equal. Out of the re-
maining 70 sentences, the morphgen system was
marked as better in 48 cases and the baseline won
in 22 cases.

5.2 German

The initial English–German experiments are eval-
uated on IWSLT training and test data, which con-
sists of transcribed TED talks. The system is op-
timized on the 2012 dev-set (1165 sentences), and
tested on the 2013 test-set (1363 sentences) and
the 2014 test-set (1305 sentences). The training
data consists of 184.879 parallel sentences, after
filtering out sentences shorter than 5 or longer than
50 words, as well as sentences that could not be
parsed. Prior to training the NMT system, the
(stemmed) source- and target-data undergo BPE
splitting (29500 splits), in order to keep the vo-

TED’13 run-1 run-2 avg.
baseline 19.87 20.15 20.01
morph-gen 20.73 20.98 20.86
morph-gen-split 20.88 21.18 21.03

TED’14 run-1 run-2 avg.
baseline 19.02 18.68 18.85
morph-gen 20.01 19.93 19.97
morph-gen-split 20.07 20.76 20.42

Table 7: English–German: lowercased BLEU for
two test sests (1363 and 1305 sentences).

baseline morph-gen morph-gen-split
250k 18.75 20.55 20.51
500k 21.39 22.79 23.00

Table 8: English–German: lowercased BLEU for
newstest’16 (2169 sentences) trained on 250k and
500k sentences news-mix data.

cabulary within the predefined limit.
The translation experiments are carried out with

the Nematus toolkit (Sennrich et al., 2017), us-
ing the training parameters as displayed below, in
combination with the default early stopping crite-
rion in Nematus:

vocab 30k dropout yes
dim word 500 dropout emb 0.2
dim 1024 dropout hid 0.2
lrate 0.0001 dropout src 0.1
opt adam dropout trg 0.1
maxlen 50(100)

The sentence length is set to 50 for the baseline
system, and extended to 100 for the morph-gen
systems, because the addition of the morpholog-
ical tags doubles the sentence length.

Table 7 shows the results for the English–
German translation experiments, averaged over
two training runs: on both test sets, the system
generating inflected forms based on stems and fea-
tures is better than the baseline.

Despite SMOR’s complicated structure, the re-
sulting stems are generally well-formed; for un-
inflectable stems (mostly made-up words such
as Parunelogramm<+NN><Neut><Gen><Sg>), the
markup is simply removed.

The addition of compound splitting leads to a
minor further improvement. We consider this a
promising result, indicating that segmentation us-
ing the rich information provided by SMOR can
be helpful; we plan to explore this further in fu-
ture work.
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Generation of novel words A closer look at the
translation output reveals that there are indeed new
word forms generated by the morph-gen system.
For the TED’13 set, for example, the morph-gen
system output a total of 261 words that are not in
the training data or the English input sentence. Of
these, 112 are names or nonsense words produced
by concatenating BPE segments3. The other 149
words are morphologically well-formed, though
not necessarily semantically sound (e.g. Schoko-
ladenredakteur: ’chocolate editor’ as proposed
translation for ’smart-ass editor’) or appropriate in
the translation context. Thus, we compared the
novel words with the reference translations: 23
words (21 nouns, 2 adjectives) were found in the
reference of the respective sentence. Of course,
this under-estimates the number of useful new cre-
ations, as a valid translation does not necessarily
need to match exactly with the reference. For the
morph-gen-split system, only 27 matches with the
reference were found in a set of 328 unseen forms.

Different Domain and Larger Corpus To as-
sess the influence of domain and corpus size, we
also evaluate the approach to model German mor-
phology in a larger news corpus setting. To obtain
a training corpus that is diverse, but still restricted
in size, we combined randomly selected sentences
(between 5-50 words) from the 4 parallel corpora
provided for EN–DE translation at the WMT’17
shared task4 (selected in equal parts from Eu-
roparl, CommonCrawl, News-Commentary and
RapidCorpus), resulting in a set of 250k and
500k sentences The model is optimized on new-
stest’15 and evaluated on newstest’16; table 8
shows the results for the surface form baseline and
the morphological generation systems with and
without compound handling. As for the TED data
set, the morphological generation systems outper-
forms the systems trained on surface data, but the
improvement for the system trained on 500k sen-
tences is slightly lower than for the system trained
on 250k sentences. The systems with additional
compound splitting obtained the same result as the
basis morphological generation system (250k), or
were slightly better (500k). With regard to the ef-
fectiveness of compound handling, it is difficult to
draw a clear conclusion, but, looking also at the

3Into this category, we also count non-wellformed gener-
ations by SMOR caused by incorrect transitional elements
in compounds, e.g. Oszillationengenerator vs. Oszilla-
tionsgenerator.

4http://www.statmt.org/wmt17/translation-task.html

results obtained in the TED setting, it seems that
there is a tendency that compound handling leads
to a slight improvement. As compounding is a pro-
ductive word formation process that is challenging
to cover even in large corpora, compound handling
might be useful also when using larger data train-
ing corpora.

6 Related Work

Generation of unseen morphological variants has
been tackled in various ways in the context of
phrase-based models and other SMT approaches.
Notably, two-step SMT was proposed to address
this problem (Toutanova et al., 2008; Bojar and
Kos, 2010; Fraser et al., 2012). In two-step SMT,
a separate prediction model (such as a linear-chain
CRF) is used to either directly predict the surface
form (as in Toutanova et al. (2008)) or used to
predict the grammatical features, following which
morphological generation is performed (as in Bo-
jar and Kos (2010); Fraser et al. (2012)). Our work
differs from their work in that we do not use a sep-
arate prediction model, but instead rely on predict-
ing the lemmas and surface-forms as a single se-
quence in a neural machine translation model.

Huck et al. (2017b) recently proposed an ap-
proach related to two-step MT where the unseen
surface forms are added as synthetic phrases di-
rectly in the system phrase table and a context-
aware discriminative model is applied to score the
unseen variants. Unlike our work, the authors re-
port diminishing improvements as training data
grows larger. Our approach learns a more robust
underlying model thanks to the reduced data spar-
sity. Unlike Huck et al. (2017b), our improve-
ments are therefore not only due to the ability to
generate words which were not seen in the train-
ing data.

Factored translation models (Koehn and Hoang,
2007) can deal with unseen word forms thanks to
generation steps. One of the original goals of fac-
tored MT was in fact the scenario where the sys-
tem produces lemmas and tags and then a gener-
ation step could be used to produce the inflected
forms. Factored models failed to achieve this goal
due to lemmas and tags being predicted indepen-
dently, leading to many invalid combinations, and
due to the involved combinatorial explosion.

Garcı́a-Martı́nez et al. (2016) attempt to include
target-side factors in neural MT. Unlike our simple
technique, their approach requires modifications
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to the network architecture. The authors work with
English-French translation and they report mixed
results.

Another successful attempt to learn novel in-
flections in SMT is back-translation (Bojar and
Tamchyna, 2011). By using an MT system trained
to translate lemmas in the opposite direction, it
is possible to create synthetic parallel data which
contain unseen word forms of known lemmas on
the target side. There are two main downsides to
this approach. The first is that the source language
contains translation errors, which may affect trans-
lation quality. The second is that the substitu-
tion of different surface forms for the same target
language lemma may result in incoherent trans-
lations, where the context no longer agrees with
the chosen surface form. Sennrich et al. (2016a)
propose to use back-translation in NMT to include
language modeling data, but the “inverse” NMT
system is not able to translate unseen target word
forms (no lemmatization is done) and therefore
this method does not learn novel inflections. Ap-
plying BPE splitting can technically lead to new
inflected word forms, but this requires an appro-
priate segmentation into base form and inflectional
suffixes which might not always be the case, in
particular for infrequent words.

A very similar method to our two-step setting
was independently proposed for use in a natural
language generation (NLG) pipeline for morpho-
logically rich languages (Dušek, 2017). However,
in this scenario, the approach was not better than a
baseline which operated on surface forms.

Finally, there has been further more recent work
on alternatives to using BPE segmentation for
NMT. Ataman et al. (2017) looked at segmenta-
tion for Turkish, which is an agglutinative lan-
guage. Huck et al. (2017a) presents an approach
for segmenting German with a focus on compound
splitting and splitting suffixes off of stems using
a stemmer, which may allow generalization in a
similar way to our work. It would be interesting to
compare with these approaches in future work.

7 Conclusion

In this work we showed that a simple setup, inter-
spersing lemmas and rich morphological tags, fol-
lowed by deterministic generation of the resulting
surface form, results in impressive gains in NMT
of English to Czech. Applying the technique to an
English to German system also resulted in consid-

erable improvements. For English–German, the
addition of compound handling yielded promis-
ing results. Furthermore, among the novel word
forms for German, most were compounds – as
compounding is a very productive process, this is
also a challenging problem when using larger cor-
pora. Exploring strategies for better segmentation
and compound handling is an interesting task that
we plan to investigate further.

We believe that while simple, this technique ef-
fectively addresses the fundamental problems of
rich target-side morphology: (i) sparse data and
lack of connection between different forms of a
single target lexeme, (ii) lack of explicit morpho-
logical information, and (iii) inability to generate
unseen forms of known lexemes. Our results indi-
cate that most of the improvement comes from the
first two properties.

Perhaps a modified training criterion could be
used to encourage the system to generalize more;
in the standard setting, the system probably learns
to strongly condition the lemma on the tag and
avoids the risk of generating new pairs. In the sit-
uations where a novel form is required, the sys-
tem may either bypass this by producing a syn-
onymous word or paraphrase, or it might sim-
ply produce an ungrammatical form of the correct
lemma. This phenomenon deserves more exami-
nation which we leave to future work.

We further analyzed the serialization scenario,
showing that the effect here is not due to train-
ing the system to also predict morphological tags,
which is in contrast with the result of Nadejde
et al. (2017). It is likely that the two approaches
are complementary, the rich information in CCG
supertags could bring additional benefit to the
morphological generalization that we perform. We
plan to investigate this in future work.
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Abstract

While recent changes in Machine Trans-
lation state-of-the-art brought translation
quality a step further, it is regularly ac-
knowledged that the standard automatic
metrics do not provide enough insights to
fully measure the impact of neural models.
This paper proposes a new type of evalu-
ation focused specifically on the morpho-
logical competence of a system with re-
spect to various grammatical phenomena.
Our approach uses automatically gener-
ated pairs of source sentences, where each
pair tests one morphological contrast. This
methodology is used to compare several
systems submitted at WMT’17 for English
into Czech and Latvian.

1 Introduction

It is nowadays unanimously recognized that Ma-
chine Translation (MT) engines based on the neu-
ral encoder-decoder architecture with attention
(Cho et al., 2014; Bahdanau et al., 2014) constitute
the new state-of-the-art in statistical MT, at least
for open-domain tasks (Sennrich et al., 2016a).
The previous phrase-based (PBMT) architectures
were complex (Koehn, 2010) and hard to diag-
nose, and Neural MT (NMT) systems, which dis-
pense with any sort of symbolic representation of
the learned knowledge, are probably worse in this
respect. Furthermore, the steady progress of MT
engines makes automatic metrics such as BLEU
(Papineni et al., 2002) or METEOR (Banerjee and
Lavie, 2005) less appropriate to evaluate and com-
pare modern NMT systems. To better understand
the strength and weaknesses of these new architec-
tures, it is thus necessary to investigate new, more
focused, evaluation procedures.

Error analysis protocols, as proposed eg. by

Vilar et al. (2006); Popović and Ney (2011) for
PBMT, are obvious candidates for such studies
and have been used eg. in (Bentivogli et al., 2016).
Recently, various new proposals have been put for-
ward to better diagnose neural models, notably by
Linzen et al. (2016); Sennrich (2017), who focus
respectively on the syntactic competence of Neu-
ral Language Models (NLMs) or of NMT; and by
Isabelle et al. (2017); Burchardt et al. (2017), who
resuscitate an old tradition of designing test suites.

Inspired by these (and other) works (see § 4),
we propose in this paper a new evaluation scheme
aimed at specifically assessing the morphologi-
cal competence of MT engines translating from
English into a Morphologically Rich Language
(MRL). Morphology poses two main types of
problems in MT: (a) morphological variation in
the source increases the occurrence of Out-of-
Vocabulary (OOV) source tokens, the translation
of which is difficult to coin; (b) morphological
variation in the target forces the MT to generate
forms that have not been seen in training. Morpho-
logical complexity is alo often associated to more
flexible word orderings, which is mostly a prob-
lem when translating from a MRL (Bisazza and
Federico, 2016). Reducing these issues is a legiti-
mate and important goal for many language pairs.

Our method for measuring the morphological
competence of MT systems (detailed in § 2) is
mainly based on the analysis of minimal pairs,
each representing a contrast that is expressed syn-
tactically in English and morphologically in the
MRL. By comparing the automatic translations of
these pairs, it is then possible to approximately as-
sess whether a given MT system has succeeded
in generating the correct word form, carrying the
proper morphological marks. In § 3, we illus-
trate the potential of our evaluation protocol in
a large-scale comparison of multiple MT engines
having participated to the WMT’17 News Transla-
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tion tasks for the pairs English-Czech and English-
Latvian.1 We finally relate our protocol to conven-
tional metrics (§ 4), and conclude in § 5 by dis-
cussing possible extensions of this methodology,
for instance to other (sets of) language pairs.

2 Evaluation Protocol

2.1 Morphological competence and its
assessment

In traditional linguistics, morphology is “the
branch of the grammar that deals with the inter-
nal structure of words” (Matthews, 1974, p. 9);
the “structure of words” being further subdivided
into inflections, derivations (word formation) and
compounds. Languages exhibit a large variety of
formal processes to express morphological/lexical
relatedness of a set of word forms: alternations
in suffix/prefix are the most common processes in
Indo-European languages, where other language
families recourse to circumfixation, reduplication,
transfixation, or tonal alternations. They also
greatly differ in the phenomena that are expressed
through morphological alternations versus gram-
matical constructions.

Our evaluation protocol is designed to assess the
robustness of MT in the presence of morphologi-
cal variation in the source and target, looking how
source alternations (possibly implying to translate
source OOVs) are reproduced in the target (possi-
bly implying to generate target OOVs).

The general principle is as follows: for each
source test sentence (the base), we generate one
(or several) variant(s) containing exactly one dif-
ference with the base, focusing on a specific target
lexeme of the base; the variant differs on a fea-
ture that is expressed morphologically in the tar-
get, such as the person, number or tense of a verb;
or the number or case of a noun or an adjective.
This configuration is illustrated in Table 1, where
the first pair is an example of the tense contrast and
the second pair an instance of the polarity contrast.

We consider that a system behaves correctly
with respect to a given contrast if the translation
of the base and the variant reproduce the targeted
contrast: for the first example in Table 1, we ex-
pect to see in the translation of (1.a) and (1.b) dif-
ferent word forms accounting for the difference of
verb tense: the translation of the variant should
have a past form and any other case is considered
as an error. Other modifications between the two

1http://statmt.org/wmt17/.

translations, such as the selection of different lem-
mas for both forms or any modification of the con-
text, are considered irrelevant with respect to the
specific morphological feature at study, and are
therefore ignored. In the following sections, we
detail and justify our strategy for generating con-
trastive pairs.

2.2 Sentence selection and morphological
contrasts

We consider the set of contrasts listed in Table 2.
We distinguish three subsets (denoted A, B, and
C), which slightly differ in their generation and
scoring procedures.

Our choice for selecting this particular set of
tests was dictated by a mixture of linguistic and
also more practical reasons. From a linguistic
standpoint, we were looking to cover a large vari-
ety of morphological phenomena in the target lan-
guage, in particular we wished to include test in-
stances for all open domain word classes (noun,
verbs, adjectives). Our first set of tests (set A)
is akin to paradigm completion tasks, adopting
here a rather loose sense of “paradigm” which also
includes simple derivational phenomena such as
the formation of comparative for adjectives and
mostly checks whether the morphological feature
inserted in the source sentence has been translated.
Tests in the set B look at various agreement phe-
nomena, while tests in set C are more focused on
the consistency of morphological choices. These
three categories of tests slightly differ in their gen-
eration and scoring procedures.

For each contrast in the A and B sets, sentence
generation takes the following steps:2

1. collect a sufficiently large number of short
sentences (length < 15) containing a source
word of interest for at least one morphologi-
cal variation;

2. generate a variant as prescribed by the con-
trast (see below);

3. compute an average language model (LM)
score for the pair (base, variant);

4. remove the 33% worst pairs based on their
LM score;

5. randomly select 500 pairs for inclusion into
the final test.

2Examples of test pairs are given as supplementary mate-
rial in the appendix.
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base (1.a) The thing that horrifies me is the forgetfulness.
variant (1.b) The thing that horrified me is the forgetfulness.
base (2.a) Traffic deaths fall as gas prices climb.
variant (2.b) Traffic deaths do not fall as gas prices climb.

Table 1: Generating minimal contrastive pairs

name contrast target description
A-1 number noun base contains a singular noun, variant contains the plural form
A-2 number pronoun base contains a singular pronoun, variant contains the plural

form
A-3 gender pronoun base contains a masculine pronoun, variant contains the femi-

nine form
A-4 tense:future verb base and variant only differ in the tense of the main verb -

present in the base, future in the variant
A-5 tense:past verb base and variant only differ in the tense of the main verb -

present in the base, past in the variant
A-6 comparative adjective base contains the bare adjective, variant the comparative form
A-7 polarity verb base and variant only differ in the polarity of the main verb -

affirmative in the base, negative in the variant
B-1 complex NP pronoun base contains a pronoun, variant contains a complex NP of the

form adj noun
B-2 coordinated noun pronoun base contains a pronoun, variant contains a coordinated NP of

the form noun and noun
B-3 coordinated verbs verbs base contain a simple verb, variant contains a coordinated VP

of the form verb and verb
B-4 prep-case preposition base and variant differ in one preposition which implies a dif-

ferent case in the target (eg. during vs. before, with vs. without)
C-1 hyponyms adjective base contains an adjective, (4) variants with hyponyms
C-2 hyponyms noun base contains a noun, (4) variants with hyponyms
C-3 hyponyms verb base contains a verb, (4) variants with hyponyms

Table 2: A set of morphological contrasts. See text for details.

For set A, the creation of the variant (step 2)
consists in replacing a word according to the mor-
phological phenomenon to evaluate (see examples
Table 1). This word is selected in such a way that
its modification does not require a modification of
any other word in the sentence. For instance, a
singular subject noun is not replaced by its plural
form, since the verb agreeing with it would also
need to be replaced accordingly. Indeed, more
than one modification would go against our initial
idea of generating minimal pairs reflecting exactly
one single contrast.

For B-1 (complex NPs), we spot a personal pro-
noun that we changed into an NP consisting in an
adjective and a noun. Both words are generated
randomly with the only constraint that the noun
should refer to a human subject and the adjective
to a psychological state, yielding NPs such as “the

happy linguist” or “the gloomy philosopher”. In
order to ensure that the context corresponds to a
human subject, we selected pronouns that unam-
biguously refer to humans, such as “him”, “her”,
“we” (avoiding “them”). For B-2 (coordinated
NPs) the pronoun in the base sentence is trans-
formed into a complex NP consisting of two co-
ordinated nouns. Note that adjectives associated
to these nouns, as well as adverbs, have been ran-
domly inserted in order to produce some varia-
tion in the constructions. The B-3 contrasts are
produced in a similar fashion, targeting verbs in-
stead of nouns, with an additional random genera-
tion of a discourse marker that should not interfere
with the translation, yielding variants like “he said
and, as a matter of fact, shouted”.3 Those inser-

3The coordinated verbs are in bold, the discourse marker
is underlined.
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tions were performed in order to increase the dis-
tance between the two verbs, making agreement
between them harder. Finally, the B-4 contrasts
are produced in the same way as for the A-set and
simply consist in modifying a preposition.

The C-set variants select a noun, an adjective
or a verb and replace it with a random hyponym,
producing an arbitrary number of sentences. Sen-
tence selection slightly differs from the description
above: during step 2, we generate as many vari-
ants as possible. Each variant is then scored with a
language model and only the top four variants are
kept, leading to buckets of five sentences. Those
buckets are finally filtered in the same way as for
the A and B sets, removing the 33% worst buckets
based on their LM score (step 3).

All the sentences were selected from the En-
glish News-2008 corpus provided at WMT. The
choice of the news domain was dictated by our in-
tention to evaluate systems submitted at WMT’174

News Translation task. Sentences longer than 15
tokens were removed in order to ensure a bet-
ter focus on a specific part of the sentence in the
MT output. The modifications of English sen-
tences were based on a morpho-syntactic analy-
sis produced with the TreeTagger (Schmid, 1994)
and using the Pymorphy morphological genera-
tor5 to change the inflection of a word. Hy-
ponyms (synonyms and/or antonyms) were gen-
erated with WordNet (Miller, 1995). The 5-gram
language model used for sentence selection was
learned with KenLM (Heafield, 2011) on all En-
glish monolingual data available at WMT’15.

2.3 Scoring Procedures
Regarding the scoring procedure, we again distin-
guish three cases (examples are in Table 3).

• set A: we compare the translations of base
and variant and search for the word(s) in vari-
ant that are not in base. If one of these
words contains the morphological feature as-
sociated with the source sentence modifica-
tion, we report a success. Accuracy of each
morphological feature is averaged over all the
samples. In this set, we thus evaluate mor-
phological information that should be con-
veyed from the source sentence, which leads
to an assessment on the grammatical ade-
quacy of the output towards the source.

4www.statmt.org/wmt17/
5http://pymorphy.readthedocs.io/

• set B: we compare the translations of base
and variant and check that (a) a pronoun in
the former is replaced by a NP in the latter (b)
the adjective and the noun in the NP share the
same gender, number and case. A distinct ac-
curacy rate per feature can then be reported;
note that the situation is different in the com-
plex and coordinated tests, as in the latter
case some agreement properties may differ
in the base and variant (eg. the NP gender
agreement depends on the noun gender that
may be different from the pronoun gender in
base). For the test triggered by prepositions
(B-4), we check whether the first noun on the
right of a preposition carries the required case
mark. Moreover, since we have prepositions
associated to nouns in both base and vari-
ant, we performed this test on both sentences.
This evaluation set checks for agreement and
provides an insight about the morphological
fluency of the produced translations.

• set C : in this set of tests, we wish to as-
sess the consistency of morphological fea-
tures with respect to lexical variation in a
fixed context; accordingly, we measure the
success based on the average normalized en-
tropy of morphological features in the set of
target sentences. Such scores can be com-
puted either globally or on a per feature ba-
sis. The entropy is null when all variants
have the same morphological features, the
highest possible consistency; conversely, the
normalized entropy is 1 when the five sen-
tences contain different morphological fea-
tures. For each set C-1, C-2 and C-3, we re-
port average scores over 500 samples. In this
setup, we measure the degree of certainty to
which a system predicts morphological fea-
tures across small lexical variations.

Our scoring procedure needs access to morpho-
logical information in the target. For A and B sets,
the translated sentences are passed through a mor-
phological analysis, where several PoS can be as-
sociated with a word. This makes the evaluation
less dependent on the tagger’s accuracy. There-
fore, when checking whether a specific morpho-
logical feature appears in the output (eg. negation
of a verb), we look for at least one PoS tag indi-
cating negation, ignoring all the others.

For Czech, we used the Morphodita analyzer
(Straková et al., 2014). We had no such resource
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Base&Variant(s) Output Result
A-set

I am hungry mám hlad
I am not hungry nemám hlad negation found

B-set
I see him vidı́m ho noun and adjective both
I see a crazy researcher vidı́m bláznivého výzkumnı́ka have accusative form

C-set
I agree with the president souhlası́m s prezidentem all nouns bear
I agree with the director souhlası́m s ředitelem the same
I agree with the minister souhlası́m s ministrem intrumental case
I agree with the driver souhlası́m s řidičem
I agree with the painter souhlası́m s malı́řem (Entropy = 0.0)

Table 3: Examples of sentences that pass the tests.

for Latvian and therefore used the LU MII Tagger
(Paikens et al., 2013) to parse all Latvian monolin-
gual data available at WMT’17. We then extracted
a dictionary consisting of words and associated
PoS from the automatic parses. We finally per-
formed a coarse cleaning of this dictionary by re-
moving the PoS that were predicted less than 100
times for a specific word. To run the morpholog-
ical analysis of Latvian, we parsed the translated
sentences with the tagger, then augmented the tag-
ger predictions with our dictionary, producing the
desired ambiguous analysis of the Latvian outputs.

For the C-set, the translated sentence analyses
are disambiguated: each word is mapped to a sin-
gle PoS. This was required to compute the entropy.
Indeed, we need to select only one morphologi-
cal value for each base and variant sentence, given
that the entropy is normalized according the total
number of sentences in the bucket.

3 Experiments

We have run the presented morphological evalua-
tion6 on several systems among which some were
submitted at WMT’17. The description of the lat-
ter can be found in the proceedings of the Second
Conference on Machine Translation (2017a). We
briefly summarize the types of systems included in
the English-to-Czech study:

• Phrase-based systems: The Moses baseline
was trained on WMT’17 data and was not
submitted at WMT’17. UFAL Chimera7

was submitted at WMT’16 and is described
in (Tamchyna et al., 2016).

6The test suite and the scripts used for evaluation can be
downloaded at github.com/franckbrl/morpheval.

7Chimera (Bojar et al., 2013) consists in a phrase-based
factored system (Moses), a deep-syntactic transfer-based sys-
tem (TectoMT) and a rule-based post-processing system.

• Word based NMT: NMT words is a system
trained on WMT’17 parallel data with a tar-
get vocabulary of 80k tokens. It was not sub-
mitted at WMT’17 and is used for contrast.

• BPE-based NMT: LIMSI NMT (Burlot
et al., 2017) is based on NMTPY (Caglayan
et al., 2017), UEDIN NMT (Sennrich et al.,
2017a) on Nematus (Sennrich et al., 2017b)
and UFAL NMT (Bojar et al., 2017b) on
Neural Monkey (Helcl and Libovický, 2017).

• NMT modeling target morphology: LIMSI
FNMT (Burlot et al., 2017) and LIUM
FNMT (Garcı́a-Martı́nez et al., 2017) use a
factored output predicting words and PoS,
and UFAL NMT Chim. (Bojar et al., 2017b)
uses Chimera (Bojar et al., 2013). All these
models also use BPE segmentation.

These systems are representative of different
models across statistical MT history. Phrase-based
systems are a former state of the art that word-
based NMT struggled to improve. The new state
of the art is an NMT setup with an open vocab-
ulary provided by byte pair encoding (BPE) seg-
mentation (Sennrich et al., 2016b). Finally, we
have a set of systems that are optimized in order to
improve target morphology. The automatic scores
of the systems submitted at WMT’178 are in Ta-
ble 4 where we report BLEU, BEER (Stanojević
and Sima’an, 2014) and CharacTER (Wang et al.,
2016).9 We also computed a morphology accu-
racy for these systems. Using output-to-reference
alignments produced by METEOR on lemmas, we

8We were not able to provide such scores for the other
systems, since we did not have access to their translations of
WMT’17 official test sets.

9Outputs were taken from matrix.statmt.org. The
scores are computed on tokenized and truecased outputs.
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System BLEU ↑ BEER ↑ CTER ↓ Acc.
LIMSI NMT 19.81 54.50 58.40 85.59
UFAL NMT 19.78 54.52 57.62 85.31
UEDIN NMT 23.06 56.52 56.04 86.98
LIMSI FNMT 20.45 54.98 58.09 85.42
LIUM FNTM 20.14 54.81 57.91 84.98
UFAL NMT Chim. 21.00 55.04 59.39 85.28

Table 4: Scores of the English-to-Czech WMT’17
submissions on the official test set.

checked whether aligned words shared the same
form. Our assumption is that two different forms
associated to the same lemma correspond to two
different inflections of the same lexeme, which al-
lows us to locate positions that likely correspond
to morphological errors.

Table 5 lists the results for the A-set tests, which
evaluate the morphological adequacy of the out-
put wrt. the source sentence. The last column pro-
vides the mean of all scores for one system. We
can note that all BPE-based NMT systems have
a much higher performance than the phrase-based
systems.10 We explain the poor performance of
the word-based NMT system by the use of a too
small closed vocabulary: over the 18,500 sen-
tences of the test suite, 12,016 unknown words
were produced by this system. However, when
it comes to predicting the morphology of closed
class words, this systems performs much better:
the accuracy computed for pronoun gender and
number is similar to the ones of best BPE-based
systems. As opposed to nouns and verbs (open
classes), the set of pronouns in Czech is quite
small; having observed all their inflections, the
word-based system is in a better position to con-
vey the target form.

Despite important differences in automatic met-
ric scores between UEDIN NMT system and
LIMSI FNMT, we see that the latter always out-
performs the former, except for the feminine pro-
noun prediction. The overall morphological ac-
curacies (Table 4) show that UEDIN NMT pro-
vides more similar word forms with the reference
translation, but these global scores fail to show the
higher adequacy performance of LIMSI FNMT
highlighted in the A-set.

The results of the B-set evaluation for Czech are
in Table 6 and are an estimate of the morpholog-
ical fluency of the output. We observe here again

10The prediction quality of future tense by PBMT systems
is however comparable to that of NMT systems. We assume
that this is due to the possibility to generate an analytic form
of this tense (auxiliary + infinitive) that is easier to form well
than its synthetic form (morphological phenomenon).

that morphological phenomena such as agreement
are better modeled by sequence-to-sequence mod-
els using BPE segmentation than phrase-based or
word-based NMT systems. The overall best per-
formance of UEDIN and UFAL NMT has to be
noted, since both outperform systems that explic-
itly model target morphology.

The results for the C-set for English-to-Czech
are shown in Table 7. We now observe that fac-
tored systems are less sensitive to lexical varia-
tions and make more stable morphological pre-
dictions. The differences with the entropy values
computed for the phrase-based systems are spec-
tacular, especially for verbal morphology. We un-
derstand this poor performance for phrase-based
systems as a consequence of the initial assump-
tion those systems rely on: the concatenation of
phrases to constitute an output sentence does not
help to provide a single morphological prediction
in slightly various contexts.

As an attempt to evaluate the error margin of our
evaluation results, we have run a manual check of
our evaluation measures. For this, we have taken
all 500 sentence pairs reflecting past tense (A-set),
as well as case (pronouns to nouns in B-set), and
took translations from different systems randomly.
We report on cases where the modification of the
source created a “bad” (meaningless or ungram-
matical) variant, as well as sample translations er-
roneously considered successful or unsuccessful.
For past tense, we observe a low quantity of false
positive (1.6%) and false negative (0.4%). The ra-
tio of bad sources is quite low as well (3%), and is
mostly related to cases where a word was given the
wrong analysis in the first place, such as a noun la-
beled by the PoS-tagger as a verb, which was then
turned into a past form. For pronouns to nouns,
there are nearly no bad source sentences (0.2%):
the transformation of pronouns into noun phrases
is quite easy and safe. While false positive la-
bels are lower (0.2%), there is a higher amount of
false positive (4.4%), which was mainly due to our
word-based NMT system that generates many un-
known words and presents important differences
between base and variant: several adjectives and
nouns, not corresponding to the ones we generated
in the source sentence, could then be considered
during the evaluation.

For English-to-Latvian, we have represented
the same types of systems as for Czech, with an
additional hybrid system. The scores and mor-
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verbs pronouns others mean
System past future neg. fem. plur. noun nb. compar.
Moses baseline 61.0% 87.2% 73.8% 91.6% 78.0% 72.6% 70.9% 76.4%
UFAL PBMT 92.2% 88.6% 78.8% 75.6% 79.8% 86.0% 72.2% 81.9%
NMT words 74.6% 60.6% 91.6% 89.2% 71.6% 44.0% 47.8% 68.5%
UFAL NMT 91.0% 90.4% 95.0% 92.4% 80.8% 96.6% 70.6% 88.1%
LIMSI NMT 92.6% 86.2% 96.0% 91.4% 79.2% 94.6% 76.2% 88.0%
UEDIN NMT 92.4% 87.0% 94.2% 93.0% 78.0% 95.8% 73.8% 87.7%
LIMSI FNMT 94.2% 88.0% 95.4% 91.2% 80.0% 96.2% 75.0% 88.6%
LIUM FNTM 93.4% 84.0% 94.6% 91.6% 80.2% 96.2% 73.4% 87.6%
UFAL NMT Chim. 92.6% 86.6% 88.2% 85.4% 80.2% 89.2% 70.6% 84.7%

Table 5: Sentence pair evaluation for English-to-Czech (A-set).

coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Moses baseline 53.2% 53.6% 47.6% 92.6% 68.0% 69.4% 69.4% 86.2% 67.5%
UFAL PBMT 67.4% 69.2% 59.2% 93.2% 92.4% 92.4% 91.8% 89.6% 81.9%
NMT words 60.0% 58.8% 51.8% 64.0% 22.8% 23.2% 22.6% 62.2% 45.7%
LIMSI NMT 76.6% 77.0% 69.2% 90.4% 90.8% 92.6% 92.2% 95.3% 85.5%
UFAL NMT 81.4% 80.0% 74.0% 94.2% 94.4% 94.6% 94.8% 97.0% 88.8%
UEDIN NMT 83.6% 84.2% 77.6% 92.8% 93.6% 94.4% 94.0% 95.8% 89.5%
LIMSI FNMT 77.6% 77.4% 70.6% 89.0% 91.4% 90.8% 91.6% 96.1% 85.6%
LIUM FNTM 80.8% 79.6% 71.8% 89.6% 90.6% 90.4% 90.8% 95.8% 86.2%
UFAL NMT Chim. 75.8% 74.6% 68.0% 92.6% 87.8% 87.8% 88.2% 92.9% 83.5%

Table 6: Sentence pair evaluation for English-to-Czech (B-set).

phological accuracies of the systems submitted at
WMT’17 are in Table 8.

• Phrase-based systems: The Moses baseline
was trained on WMT’17 data and TILDE
PBMT was provided by TILDE11 and is de-
scribed in (Peter et al., 2017). These systems
did not take part in the official WMT’17 eval-
uation campaign.

• Word-based NMT: NMT words is a system
trained on WMT’17 parallel data with a 80K
target vocabulary. It was not submitted at
WMT’17 and is used here as a contrast.

• BPE-based NMT: LIMSI NMT (Burlot
et al., 2017) is based on NMTPY and UEDIN
NMT (Sennrich et al., 2017a) on Nematus.

• NMT modeling target morphology: LIMSI
FNMT (Burlot et al., 2017) and LIUM
FNMT (Garcı́a-Martı́nez et al., 2017) use a
factored output predicting words and PoS.

• Hybrid system: TILDE hybrid is an ensem-
ble of NMT models using a PBMT to process
rare and unknown words. It was submitted at
WMT’17 (Pinnis et al., 2017).

11http://www.tilde.com/mt

The results for the A-set evaluation are in Ta-
ble 9. Compared to the previous Czech eval-
uation, there is a less clear difference between
phrase-based and NMT systems based on BPE.
Indeed, TILDE hybrid has the best mean per-
formance and is only 5 points above our Moses
baseline. A possible reason for that situation is
the lower amount of parallel data available for
English-Latvian, compared to English-Czech. We
notice that there is no significant difference be-
tween the two NMT systems and LIMSI FNMT.
With this language pair, word-based NMT per-
forms significantly worse than all other systems
on all morphological features, which is confirmed
by the fluency evaluation in Table 10. Here, the
factored systems tend to have a better verbal flu-
ency, whereas NMT systems perform better on
nominal agreement: LIMSI FNMT has the best
mean score, but is only 0.2 points above UEDIN
NMT. The best system, TILDE hybrid, is now
21.1 points above the Moses baseline, which again
seems to be the main reason for such high overall
morphological accuracy in Table 8.

Table 11 confirms the higher performance of
NMT and factored NMT systems, with a clear ad-
vantage for TILDE hybrid, which has the best ac-
curacy in terms of fluency, like in the previous Ta-
ble 10, which tends to show some correlation be-
tween both types of tests.
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nouns adjectives verbs mean
System case gender number case number person tense negation
Moses baseline .381 .482 .420 .453 .415 .300 .354 .269 .384
UFAL PBMT .272 .376 .331 .376 .198 .134 .150 .105 .243
NMT words .419 .561 .537 .460 .513 .477 .491 .467 .491
UFAL NMT .193 .325 .271 .317 .154 .084 .105 .075 .191
LIMSI NMT .205 .303 .262 .301 .138 .068 .082 .054 .177
UEDIN NMT .217 .302 .276 .300 .124 .065 .086 .054 .178
LIMSI FNMT .197 .287 .255 .292 .110 .062 .081 .056 .168
LIUM FNTM .206 .278 .240 .269 .125 .074 .090 .067 .169
UFAL NMT Chim. .214 .353 .302 .359 .185 .114 .129 .097 .219

Table 7: Sentence group evaluation for English-to-Czech with Entropy (C-set).

System BLEU ↑ BEER ↑ CTER ↓ Acc.
LIMSI NMT 15.91 52.91 61.56 85.36
UEDIN NMT 17.20 53.77 65.60 85.99
LIMSI FNMT 16.93 53.73 60.57 85.57
LIUM FNTM 16.13 52.81 61.90 84.05
TILDE hybrid 20.28 55.46 57.46 87.95

Table 8: Scores of the English-to-Latvian
WMT’17 submissions on the official test
set.

verbs pronouns nouns mean
System past future fem. plur. number
Moses baseline 67.0% 83.2% 68.6% 83.6% 63.6% 73.2%
TILDE PBMT 68.8% 70.4% 56.0% 71.8% 65.0% 66.4%
NMT words 56.8% 64.0% 38.6% 71.4% 59.2% 58.0%
UEDIN NMT 74.6% 83.6% 57.0% 88.6% 69.4% 74.6%
LIMSI NMT 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
LIMSI FNMT 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%
LIUM FNMT 73.0% 81.2% 76.8% 86.6% 73.2% 78.2%
TILDE hybrid 79.6% 92.0% 49.4% 87.2% 71.2% 75.9%

Table 9: Sentence pair evaluation for English-to-Latvian
(A-set).

When it comes to morphological correction of
the output, our evaluation clearly shows the supe-
riority of BPE-based NMT systems over phrase-
based ones. On the other hand, while we observed
that factored models obtain a higher performance
in terms of adequacy, NMT models are still very
close to them in terms of fluency. Finally, factored
models, as well as TILDE hybrid, clearly showed
more confidence in their predictions through slight
lexical variations.

4 Related work: evaluating morphology

Automatic metrics Despite their well-known
flaws, “general purpose” automatic metrics such
as BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) or METEOR (Banerjee and Lavie,
2005) remain the preferred way to measure
progress in Machine Translation. Evaluation cam-
paigns aimed at comparing systems have long
abandoned these measures and resort to human
judgments, such as ranking (Callison-Burch et al.,
2007) or direct assessment (Bojar et al., 2016). To
compensate for the inability of eg. BLEU to de-
tect improvements targeting specific difficulties of
MT, several problem-specific measures have been
introduced over the years such as the LR-Score
(Birch and Osborne, 2010) to measure the cor-
rectness of reordering decisions, MEANT (Lo and
Wu, 2011) to measure the transfer of entailment
relationships, or CharacTER (Wang et al., 2016)

to better assess the success of translation into a
MRL. Stanojević and Sima’an (2014)’s BEER is
a nice example of a sophisticated metric, based
on a trainable mixture of multiple metrics: for
MRLs, the inclusion of character n-gram matches
and of reordering scores proves critical to reach
good correlation with human judgments. In com-
parison, the proposal of Wang et al. (2016) simply
computes a TER-like score at the character level,
thereby partially crediting a system for predicting
the right lemma with the wrong morphology.

Error typologies Error analysis protocols, as
proposed by Vilar et al. (2006); Popović and Ney
(2011); Stymne (2011) for PBMT systems are ob-
vious candidates for running diagnosis studies and
have been used eg. by Bentivogli et al. (2016);
Toral Ruiz and Sánchez-Cartagena (2017); Costa-
jussà (2017); Klubička et al. (2017). These works
differ in the language pairs and in the error ty-
pology considered. Bentivogli et al. (2016) only
recognizes three main error types which are au-
tomatically recognized based on aligning the hy-
potheses and references – for instance a morpho-
logical error is detected when the word form is
wrong, whereas the lemma is correct; this defini-
tion is also adopted in (Toral Ruiz and Sánchez-
Cartagena, 2017), and decomposed at the level
of morphological features in (Peter et al., 2016);
(Klubička et al., 2017) use a more detailed ty-
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coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Moses baseline 50.2% 37.4% 50.6% 42.2% 21.4% 24.0% 14.8% 45.1% 35.7%
TILDE PBMT 49.6% 32.8% 50.2% 47.6% 24.0% 25.4% 19.0% 48.5% 37.1%
NMT words 43.0% 36.0% 43.6% 15.6% 7.8% 8.0% 7.8% 44.1% 25.7%
UEDIN NMT 70.6% 60.8% 72.0% 30.2% 46.4% 44.8% 43.4% 56.7% 53.1%
LIMSI NMT 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
LIMSI FNMT 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%
LIUM FNMT 78.0% 67.0% 78.6% 37.2% 38.6% 38.0% 35.6% 56.1% 53.6%
TILDE hybrid 69.0% 61.8% 69.4% 35.4% 54.6% 53.0% 53.2% 58.3% 56.8%

Table 10: Sentence pair evaluation for English-to-Latvian (B-set).

nouns adjectives verbs mean
System case gender number case number person tense
Moses baseline .467 .738 .717 .753 .271 .352 .285 .512
TILDE PBMT .436 .755 .735 .768 .254 .337 .258 .506
NMT words .385 .751 .732 .764 .329 .353 .337 .522
UEDIN NMT .234 .598 .596 .628 .115 .190 .114 .354
LIMSI NMT .255 .616 .610 .644 .139 .221 .134 .374
LIMSI FNMT .233 .587 .582 .612 .117 .182 .113 .346
LIUM FNMT .213 .608 .606 .643 .099 .163 .092 .346
TILDE hybrid .198 .587 .581 .608 .088 .123 .090 .325

Table 11: Sentence group evaluation for English-to-Latvian with Entropy (C-set).

pology derived from the MQM proposal12 and
adapted to the English:Croatian pair – morpho-
logical errors mostly correspond to “word form”
errors and are too subtle to be automatically de-
tected. A common finding of these studies is that
NMT generates better agreements than alterna-
tives such as PBMT or Hierarchical MT.

Test suites The work of Isabelle et al. (2017);
Burchardt et al. (2017) resuscitates an old tradi-
tion of using carefully designed test suites King
and Falkedal (1990); Lehmann et al. (1996) to
explore the ability of NMT to handle specific
classes of difficulties. Test suites typically in-
clude a small set of handcrafted sentences for
each targeted type of difficulty. For instance, Is-
abelle et al. (2017) focuses on translating from
English into French and is based on a set of 108
short sentences illustrating situations of morpho-
syntactic, lexico-syntactic and syntactical diver-
gences between these two languages. Assessing
a system’s ability to handle these difficulties re-
quires a human judge to decide whether the au-
tomated translation has successfully “crossed” the
bridge between languages.13 A similar methodol-
ogy is used in the work of Burchardt et al. (2017),
who use a test suite of approximately 800 seg-
ments covering a wide array of translation diffi-

12http://www.qt21.eu/mqm-definition
13Note that this is a local evaluation – a system can produce

a bad overall translation, yet pass the test.

culties for the pair English-German. Test suites
enable to directly evaluate and compare specific
abilities of MT Engines, including morphological
competences: again, both studies found that NMT
is markedly better than PBMT when it comes to
phenomena such as word agreement. The down-
side is the requirement to have expert linguists pre-
pare the data as well as evaluate the success of the
MT system, which is a rather expensive price to
pay to get a diagnostic evaluation.

Automatic test suites The work by Linzen et al.
(2016) specifically looks at the prediction of the
correct agreement features in increasingly com-
plex contexts generated by augmenting the dis-
tance between the head and its dependent and the
number of intervening distractors. A language
model is deemed correct if it scores the correct
agreement higher than any wrong one. One in-
triguing finding of this study is the very good per-
formance of RNNs, provided that they receive the
right kind of feedback in training. A similar ap-
proach is adapted for MT by Sennrich (2017), who
looks at a wider range of phenomena. Contrastive
pairs as automatically produced as follows: given
a correct (source, target) pair p = (f , e), intro-
duce one error in e yielding an alternative couple
p′ = (f , e′). A system is deemed to perform cor-
rectly wrt. this contrastive pair if it scores p higher
than p′. This approach is fully automatic, looks
at a wide range of contexts and phenomena and
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also enables to focus on specific errors types; a
downside is the fact that the evaluation never con-
siders whether e is the system’s best choice given
source f . Regarding specifically morphology, this
study mostly considers (subject-verb, as well as
modifier-head noun) agreement errors, but only
compares error rates of variants of NMT systems.

A typology of evaluation protocols The variety
of evaluation protocols found in the literature can
be categorized along the following dimensions:

• holistic vs analytic: a holistic metric provides
a global sentence- or document-level score,
of which the morphological ability is only
one part; an analytic metric focuses on spe-
cific difficulties;

• coarse vs fine-grain: a coarse (analytic) met-
ric only provides global appreciation of mor-
phological competence; while a fine-grain
metric distinguishes various types of errors;

• natural vs hand-crafted vs artificial: for the
sake of this study, this distinction relates to
the design of the test sentences – were they
invented for the purpose of the evaluation or
found in a corpus, or even generated using
automatic processing ?

• automatic vs human-judgment: is scoring
fully automatic or is a human judge in-
volved ?

• scores can be distance-based, such as a global
comparison with a reference translation, or a
Boolean value that denotes success or failure
wrt. a local test, or based on a comparison of
model scores;

Based on this analysis, the work reported here
is analytic/fine-grain, uses artificial data, and com-
putes automatic scores based on a local compari-
son with an expected value (mostly). This is the
only one of that kind we are aware of.

5 Conclusion and Outlook

In this paper, we have presented a new proto-
col for evaluating the morphological competence
of a Machine Translation system, with the aim
to measure progresses in handling complex mor-
phological phenomena in the source or the target
language. We have presented preliminary exper-
iments for two language pairs, which show that

NMT systems with BPE outperform in many ways
the phrase-based MT systems. Interestingly, they
also reveal subtle differences among NMT sys-
tems and indicate specific areas where improve-
ments are still needed. This work will be devel-
oped in three main directions:

• improve the generation and scoring algo-
rithms: our procedure for generating sen-
tences relies on automatic morphological
analysis, which can be error prone, and on
crude heuristics. While these two sources of
noise likely have a small impact on the fi-
nal results, which represent an average over a
large number of sentences, we would like to
better evaluate these effects, and, if needed,
apply the necessary fixes;

• refine our analysis of automatic scores: the
numbers reported in § 3 are averages over
multiple sentences, and could be subjected
to more analyses such as looking more pre-
cisely at OOVs, or taking frequency effects
in considerations. This would allow to as-
sess a system’s ability to generate the right
form for frequent vs rare vs unseen lemmas
or morphological features. Frequency is also
often correlated with regularity, and we also
would like to assess morphological compe-
tence along those lines. Likewise, analyz-
ing performance in agreement tests with re-
spect to the distance between two coordi-
nated nouns or verbs might also be revealing.

• increase the set of tests: we have focused
on translating English into two MRLs having
similar properties. Future work includes the
generation of additional inflectional contrasts
(introducing for instance mood or aspect,
which are morphologically marked in many
languages) as well as derivational contrasts
(such as diminutives for nouns, or antonyms
for adjectives). Again, this implies to im-
prove our scoring and generation algorithms,
and to adapt them to new languages.
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Neves, Matt Post, Stefan Riezler, Artem Sokolov,
Lucia Specia, Marco Turchi, and Karin Verspoor.
2017a. Proceedings of the second conference on
machine translation, WMT 2017. The Association
for Computational Linguistics, Copenhagen, Den-
mark.
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Ondřej Bojar, Rudolf Rosa, and Tamchyna Aleš. 2013.
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Ngoc-Quan Pham, Jan Niehues, Alex Waibel,
Franck Burlot, François Yvon, Mārcis Pinnis, Val-
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Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition.
In Proc. ACL: System Demos. Baltimore, MA, pages
13–18.

Sara Stymne. 2011. Blast: A tool for error analy-
sis of machine translation output. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: Systems Demonstrations. Association for
Computational Linguistics, HLT ’11, pages 56–61.
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Abstract

For efficiency considerations, state-of-the-
art neural machine translation (NMT) re-
quires the vocabulary to be restricted to a
limited-size set of several thousand sym-
bols. This is highly problematic when
translating into inflected or compounding
languages. A typical remedy is the use
of subword units, where words are seg-
mented into smaller components. Byte
pair encoding, a purely corpus-based ap-
proach, has proved effective recently.

In this paper, we investigate word segmen-
tation strategies that incorporate more lin-
guistic knowledge. We demonstrate that
linguistically informed target word seg-
mentation is better suited for NMT, lead-
ing to improved translation quality on
the order of magnitude of +0.5 BLEU

and −0.9 TER for a medium-scale
English→German translation task.

Our work is important in that it shows that
linguistic knowledge can be used to im-
prove NMT results over results based only
on the language-agnostic byte pair encod-
ing vocabulary reduction technique.

1 Introduction

Inflection and nominal composition are morpho-
logical processes which exist in many natural lan-
guages. Machine translation into an inflected lan-
guage or into a compounding language must be
capable of generating words from a large vocabu-
lary of valid word surface forms, or ideally even be
open-vocabulary. In NMT, though, dealing with a
very large number of target symbols is expensive
in practice.

While, for instance, a standard dictionary of
German, a compounding language, may cover

140 000 vocabulary entries,1 NMT on off-the-
shelf GPU hardware is nowadays typically only
tractable with target vocabularies below 100 000
symbols.

This issue is made worse by the fact that com-
pound words are not a closed set. More frequently
occurring compound words may be covered in
a standard dictionary (e.g., “Finanztransaktions-
steuer”, English: “financial transaction tax”), but
the compounding process allows for words to be
freely joined to form new ones (e.g., “Finanztrans-
aktionssteuerzahler”, English: “financial transac-
tion tax payer”), and compounding is highly pro-
ductive in a language like German.

Furthermore, a dictionary lists canonical word
forms, many of which can have many inflected
variants, with morphological variation depending
on case, number, gender, tense, aspect, mood, and
so on. The German language has four cases, three
grammatical genders, and two numbers. Ger-
man exhibits a rich amount of morphological word
variations also in the verbal system. A machine
translation system should ideally be able to pro-
duce any permissible compound word, and all in-
flections for each canonical form of all words (in-
cluding compound words).

Previous work has drawn on byte pair encod-
ing to obtain a fixed-sized vocabulary of subword
units. In this paper, we investigate word segmen-
tation strategies for NMT which are linguistically
more informed. Specifically, we explore and em-
pirically compare:

• Compound splitting.
• Suffix splitting.
• Prefix splitting.
• Byte pair encoding (BPE).
• Cascaded applications of the above.
1Duden, 26th ed., 2013, cf. http://www.duden.de/

ueber_duden/auflagengeschichte.
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Our empirical evaluation focuses on
target-language side segmentation, with
English→German translation as the applica-
tion task. Our proposed approaches improve
machine translation quality by up to +0.5 BLEU

and −0.9 TER, respectively, compared with using
plain BPE.

Advantages of linguistically-informed target
word segmentation in NMT are:

1. Better vocabulary reduction for practical
tractability of NMT, as motivated above.

2. Reduction of data sparsity. Learning lexi-
cal choice is more difficult for rare words
that appear in few training samples (e.g., rare
compounds), or when a single form from a
source language with little inflection (such
as English) has many target-side translation
options which are morphological variants.
Splitting compounds and separating affixes
from stems can ease lexical selection.

3. Better open vocabulary translation. With
target-side word segmentation, the NMT sys-
tem can generate sequences of word pieces
at test time that have not been seen in this
combination in training. It may produce new
compounds, or valid morphological variants
that were not present in the training corpus,
e.g. by piecing together a stem with an inflec-
tional suffix in a new, but linguistically ad-
missible way. Using a linguistically informed
segmentation should better allow the system
to try to learn the linguistic processes of word
formation.

2 Word Segmentation Strategies

2.1 Byte Pair Encoding

A technique in the manner of the Byte Pair Encod-
ing (BPE) compression algorithm (Gage, 1994)
can be adopted in order to segment words into
smaller subword units, as suggested by Sennrich
et al. (2016b). The BPE word segmenter con-
ceptionally proceeds by first splitting all words in
the whole corpus into individual characters. The
most frequent adjacent pairs of symbols are then
consecutively merged, until a specified limit of
merge operations has been reached. Merge opera-
tions are not applied across word boundaries. The
merge operations learned on a training corpus can
be stored and applied to other data, such as test
sets.

suffixes
-e, -em, -en, -end, -enheit, -enlich, -er, -erheit, -erlich,
-ern, -es, -est, -heit, -ig, -igend, -igkeit, -igung, -ik, -isch,
-keit, -lich, -lichkeit, -s, -se, -sen, -ses, -st, -ung

prefixes
ab-, an-, anti-, auf-, aus-, auseinander-, außer-, be-,
bei-, binnen-, bitter-, blut-, brand-, dar-, des-, dis-,
durch-, ein-, empor-, endo-, ent-, entgegen-, entlang-,
entzwei-, epi-, er-, extra-, fehl-, fern-, fest-, fort-, frei-,
für-, ge-, gegen-, gegenüber-, grund-, heim-, her-, hetero-,
hin-, hinter-, hinterher-, hoch-, homo-, homöo-, hyper-,
hypo-, inter-, intra-, iso-, kreuz-, los-, miss-, mit-, mono-,
multi-, nach-, neben-, nieder-, non-, pan-, para-, peri-,
poly-, post-, pro-, prä-, pseudo-, quasi-, schein-, semi-,
stock-, sub-, super-, supra-, tief-, tod-, trans-, ultra-,
um-, un-, unab-, unan-, unauf-, unaus-, unbe-, unbei-,
undar-, undis-, undurch-, unein-, unent-, uner-, unfehl-,
unfort-, unfrei-, unge-, unher-, unhin-, unhinter-, unhoch-,
unmiss-, unmit-, unnach-, unter-, untief-, unum-, ununter-,
unver-, unvor-, unweg-, unwider-, unzer-, unzu-, unüber-,
ur-, ver-, voll-, vor-, voran-, voraus-, vorüber-, weg-,
weiter-, wider-, wieder-, zer-, zu-, zurecht-, zurück-,
zusammen-, zuwider-, über-

Table 1: German affixes which our suffix splitter
and prefix splitter separate from the word stem.

An advantage of BPE word segmentation is that
it allows for a reduction of the amount of distinct
symbols to a desired order of magnitude. The
technique is purely frequency-based. Frequent se-
quences of characters will be joined through the
merge operations, resulting in common words not
being segmented. Words containing rare combina-
tions of characters will not be fully merged from
the character splitting all the way back to their
original form. They will remain split into two or
more subword units in the BPE-segmented data.
On the downside, the BPE algorithm has no no-
tion of morphosyntax, narrowing down its capa-
bilities at modeling inflection and compounding.
BPE also has no guidelines for splitting words into
syllables. This way no phonetic or semantic sub-
structures are taken into account. Therefore BPE
splits often appear arbitrary to the human reader,
since it appears frequently that subword units ig-
nore syllable boundaries entirely.

Nevertheless, NMT systems incorporating BPE
word segmentation have achieved top translation
quality in recent shared tasks (Sennrich et al.,
2016a; Bojar et al., 2016). We designed our
linguistically-informed segmentation techniques
by looking at the shortcomings of BPE segmen-
tations.
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2.2 Compound Splitting

BPE word segmentation operates bottom-up from
characters to larger units. Koehn and Knight
(2003) have proposed a frequency-based word
segmentation method that starts from the other
end, top-down inspecting full words and looking
into whether they are composed of parts which are
proper words themselves. Any composed word is
segmented into parts such that the geometric mean
of word frequencies of its parts (counted in the
original corpus) is maximized. This technique rep-
resents a suitable approach for compound splitting
in natural language processing applications. It has
been successfully applied in numerous statistical
machine translation systems, mostly on the source
language side, but sometimes also on the target
side (Sennrich et al., 2015).

The difference in nature between BPE word
segmentation and frequency-based compound
splitting (bottom-up and top-down) leads to quite
different results. While BPE tends to generate un-
intuitive splits, compound splitting nearly always
comes up with reasonable word splits. On the
other hand there are many possible intuitive word
splits that compound splitting does not catch.

2.3 Suffix Splitting

Morphological variation in natural languages is of-
ten realized to a large extent through affixation.
In the German language there are several suf-
fixes that unambiguously mark a word as an adjec-
tive, noun, or verb. By splitting these telling suf-
fixes, we can automatically include syntactic in-
formation. Even though this underlying relation-
ship between suffix and morphological function
is sometimes ambiguous—especially for verbs—
reasonable guesses about the POS of a word with
which we are not familiar are only possible by
considering its suffix.

Information retrieval systems take advantage
of this observation and reduce search queries to
stemmed forms by means of simply removing
common suffixes, prefixes, or both. The Porter
stemming algorithm is a well-known affix strip-
ping method (Porter, 1980). In such algorithms,
some basic linguistic knowledge about the mor-
phology of a particular language is taken into
account in order to come up with a few hand-
written rules which would detect common affixes
and delete them. We can benefit from the same
idea for the segmentation of word surface forms.

We have modified the Python implementation
of the German Snowball stemming algorithm from
NLTK2 for our purposes. The Snowball stem-
mer removes German suffixes via some language-
specific heuristics. In order to obtain a segmenter,
we have altered the code to not drop suffixes, but
to write them out separately from the stem. Our
Snowball segmenter splits off the German suffixes
that are shown in Table 1. Some of them are in-
flectional, others are used for nominalization or
adjectivization. The suffix segmenter also splits
sequential appearances of suffixes into multiple
parts according to the Snowball algorithm’s split-
ting steps, but always retaining a stem with a min-
imum length of at least three characters.

Table 2 shows some relationships between Ger-
man suffixes and their English translations. Espe-
cially nominalizations and participles are partic-
ularly consistent, which makes translation rather
unambiguous. Even though an exact translation
from every German suffix to one specific English
suffix cannot be established, this shows that a set
of German suffixes translates into a set of English
suffixes. Some suffixes indeed have an unambigu-
ous translation like German -los to English -less or
German -end to English -ing. These relationships
might be due to the shared roots of the German and
English language. Especially for other Germanic
languages this promises transferability of our re-
sults.

It seems to be a reasonable assumption that
other languages also have a certain set of possible
suffixes which correspond to each type of word.
For these relationships our approach may be able
to automatically and cheaply add (weak) POS in-
formation, which might improve translation qual-
ity, but this will require further investigation in fu-
ture work.

We would also like to study the relationship be-
tween stemming quality and resulting NMT trans-
lation quality. Weissweiler and Fraser (2017) have
introduced a new stemmer of German and showed
that it performs better than Snowball using com-
parison with gold standards. This may serve as an
interesting starting point.

2.4 Prefix Splitting

Similarly to our Snowball suffix segmenter, we
have written a small script to split off prefixes.

2http://www.nltk.org/_modules/nltk/
stem/snowball.html
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German suffixes unambiguously marking
nouns
-ung, -heit, -nis, -keit, -sal, -schaft, -ling, -tum
English nominalizations with -ness are trans-
lated consistently by adding one of these suf-
fixes
busyness – Geschäftigkeit
abstractness – Abstraktheit
kindness – Freundlichkeit
coziness – Behaglichkeit
giftedness – Begabung
sadness – Traurigkeit
tiredness – Müdigkeit
laziness – Faulheit
But a simple mapping between German and En-
glish noun suffixes does not exist
Abholzung – deforestation
Segmentierung – segmentation
Trockenheit – aridity
Obrigkeit – autority
Genauigkeit – precision
Bündnis – alliance
Gefängnis – prison
Verhältnis – relationship
German suffixes typical for adjectives
-ig, -lig, -isch, -sam, -bar, -haft, -los
Adjective derivation using these suffixes
achtsam – mindful
wendig – agile
begehbar – accessible
sichtbar – visible
nahrhaft – nutricious
essbar – edible
fettig – greasy
ethisch – ethical
moralisch – morally
laienhaft – unprofessional
-los with consistent English counterpart -less
taktlos – tactless
reglos – motionless
rastlos – restless
schamlos – shameless
German participles ending with -end
hängend – hanging
stehend – standing
schlafend – sleeping
lachend – laughing

Table 2: Examples illustrating the use of German
suffixes.

The common German verb prefix ver- shows no
obvious pattern in English translations
verstehen – to understand
sich verirren – to get lost
vergehen – to vanish
sich versprechen – to misspeak oneself
verfehlen – to miss
aus Versehen – unintentionally
verbieten – to prohibit
vergessen – to forget
Another common German verb prefix, be-, also
shows no obvious pattern
behaupten – to claim
beschuldigen – to accuse
bewerben – to apply for
beladen – to load
betonen – to emphasize
bewahren – to preserve
The common German prefix auf- (English: on,
up) has relatively consistent pattern in English
translation
aufstellen – to put up
aufsetzen – to sit up
aufgehen – to give up
aufstehen – to stand up
aufblasen – to blow up
aufgeben – to give up
aufbauen – to set up
aufhören – to stop
German verb setzen (English: to sit down) with
different prefixes
absetzen – to drop off
besetzen – to occupy
ersetzen – to replace
zersetzen – to decompose
umsetzen – to realize
widersetzen – to defy

Table 3: Examples illustrating the use of German
prefixes.
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Here, we specifically target verb and adjective pre-
fixes and thus only segment lowercase words, ex-
cluding nouns which are written in uppercase in
German text. We consider the prefixes as shown
in Table 1. We sort them descending by length,
checking for longer prefix matches first. Nega-
tional prefixes (beginning with un-, but not unter-)
are additionally segmented after un-; e.g., unab-
becomes un- ab-. In case the remaining part starts
with either of the two verb infixes -zu- or -ge-, we
also segment after that infix. We require the final
stem to be at least three characters long.

While suffixes tend to contain morpholog-
ical information, German prefixes change—
sometimes radically—the semantics of the word
stem. Some prefixes, especially those indicating
local relationships, have a relatively clear and con-
sistent translation. On the other hand, certain pre-
fixes change the meaning more subtly and also
more ambiguously. Therefore some prefixes lead
to a simple translation while others change the
meaning too radically.

Table 3 shows how the meaning of German
verbs can change by adding different prefixes to
a common stem. The example for setzen – to sit
down illustrates that each of the combinations is
semantically so different from the others that their
translations have to be learned separately. This
also means that splitting the prefix might not ben-
efit the machine translation system, since general-
ization is hardly possible.

The examples given in Table 3 also suggest that
a single verb prefix may affect the semantics of the
word in ambiguous ways when applied to differ-
ent verb stems. The very common German prefix
ver-, for instance, which often indicates an incor-
rectly performed action (like sich versprechen – to
misspeak oneself or verfehlen – to miss), still has
a lot of different applications. This variety shows
that prefixes clearly carry information, but still it is
highly ambiguous and therefore might not benefit
the translation process.

The German prefix auf – up, on has a rela-
tively unambiguous translation, though, and hence
splitting it might support the machine transla-
tion system. A possible improvement might be
only splitting these unambiguously translatable
prefixes (which in general are prepositions indi-
cating the direction of the altered verb), but this
remains to be investigated in future research.

2.5 Cascaded Application of Segmenters

Affix splitting and compound splitting can be ap-
plied in combination, by cascading the segmenters
and preprocessing the data first with the suffix
splitter, then optionally with the prefix splitter, and
then with the compound splitter. In a cascaded ap-
plication, the compound splitter is applied to word
stems only, and the counts for computing the ge-
ometric means of word frequencies for compound
splitting are collected after affix splitting.

When cascading the compound splitter with af-
fix splitting, we introduce a minor modification.
Our standalone compound splitter takes the filler
letter “s” and “es” into account, which often ap-
pear in between word parts in German noun com-
pounding. For better consistency of the compound
splitting component with affix splitting, we addi-
tionally allow for more fillers, namely: suffixes,
suffixes followed by “s”, and “zu”.

The methods for compound splitting, suffix
splitting, and prefix splitting provide linguistically
more sound approaches for word segmentation,
but they do not arbitrarily reduce the amount of
distinct symbols. For a further reduction of the
number of target-side symbols, we may want to
apply a final BPE segmentation step on top of the
other segmenters. BPE will not re-merge words
that have been segmented before. It can ben-
efit from the prior segmentation provided to it
and come up with a potentially better sequence
of merge operations. Affixes will be learned as
subwords but not joined with the stem. This im-
proves the quality of resulting BPE splits. BPE
no longer combines arbitrary second to last sylla-
bles with their suffixes, which makes learning the
other—non affix—syllables easier.

We deliberately decided against joint/bilingual
BPE, for multiple reasons. (1.) In cascaded
segmentations, BPE operations are learned from
training data after previous splitters in the pipeline
have been applied. With joint BPE, the source
would be affected, being preprocessed slightly dif-
ferently in different setups. Instead, we opted
for conducting BPE-50K separately over English.
The source is hence equal in all setups, which we
believe renders the evaluation more sound. (2.)

When tying source+target in joint-BPE, vocabu-
lary sizes cannot be controlled independently on
each side. Joint-BPE with 59500 operations for
instance yields 46K German types in the data,
but an English corpus containing only 26K types.
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BPE sie alle versch ## icken vorsätzlich irreführende Dokumente an
Kleinunternehmen in ganz Europa .

compound + BPE sie alle verschicken vorsätzlich #L irre @@ führende Doku-
mente an #U klein @@ unter @@ nehmen in ganz Europa .

suffix + BPE sie all $$e verschick $$en vorsätz $$lich irreführ $$end $$e
Dokument $$e an Kleinunternehm $$en in ganz Europa .

suffix + compound + BPE sie all $$e verschick $$en vorsätz $$lich #L Irre @@ führ $$end
$$e Dokument $$e an #U klein @@ Unternehm $$en in ganz
Europa .

suffix + prefix + compound + BPE sie all $$e ver§§ schick $$en vor§§ sätz $$lich #L Irre @@ führ
$$end $$e Dokument $$e an #U klein @@ Unternehm $$en in
ganz Europa .

English they all mail deliberately deceptive documents to small busi-
nesses across Europe .

Table 4: Different word segmentation strategies applied to a training sentence. ## is a BPE split-point,
ver§§ is prefix ver, $$en is the suffix en, #U and #L are upper and lower case indicators for compounds,
@@ indicates a compound merge-point, @s@ would indicate a compound merged with the letter s
between the parts, etc.

(3.) Joint-BPE may boost transliteration capabili-
ties. Generally, we would however recommend
to extract BPE operations monolingually to bet-
ter capture the properties of the individual lan-
guage. We argue that well justified segmentation
cannot be language-independent. (4.) We would
not expect fundamentally different findings when
switching to joint-BPE everywhere.

2.6 Reversibility

Target-side word segmentation needs to be re-
versible in postprocessing. We introduce special
markers to enable reversibility of word splits. For
suffixes, we attach a marker to the beginning of
each suffix token; for prefixes to the end of each
split prefix.

Fillers within segmented compounds receive at-
tached markers on either side. When a compound
is segmented into parts with no filler between
them, we place a separate special marker token
in the middle which is not attached to any of the
parts. It indicates the segmentation and has two
advantages over attaching it to any of the parts:
(1.) The tokens of the parts are exactly the same
as when they appear as words outside of a com-
pound. The NMT system does not perceive them
as different symbols. (2.) There is more flexibility
at producing new compounds that have not been

seen in the training corpus. The NMT system can
decide to place any symbol into a token sequence
that would form a compound, even the ones which
were never part of a compound in training. The
vocabulary is more open in that respect.

We adhere to the same rationale for split mark-
ers in BPE word segmentation. A special marker
token is placed separately between subword units,
with whitespace around it. In our experience, at-
taching the marker to BPE subword units does not
improve translation quality over our practice.

The compound splitter alters the casing of com-
pound parts to the variants that appears most fre-
quently in the corpus. When merging compounds
in postprocessing, we need to know whether to
lowercase or to uppercase the compound. We let
the translation system decide and introduce an-
other special annotation in order to allow for this.
When we segment compounds, we always place
an indicator symbol before the initial part of the
split compound token sequence, which can be ei-
ther #L or #U. It specifies the original casing of the
compound (lower or upper).

The effect of different segmentation strategies
on the word splits in an example sentence is shown
in Table 4.
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Preprocessing #types #tokens
tokenized 303 K 39 M
compound 139 K 45 M
suffix 217 K 54 M
suffix + compound 98 K 60 M
suffix + prefix + compound 88 K 63 M
BPE 46 K 42 M
compound + BPE 46 K 46 M
suffix + BPE 45 K 56 M
suffix + compound + BPE 43 K 60 M
suffix + prefix + compound + BPE 43 K 64 M

Table 5: Target-side training corpus statistics.

System test2007 test2008
BLEU TER BLEU TER

top 50K voc. (source & target) 25.5 60.9 25.2 60.9
BPE 25.8 60.7 25.6 60.9
compound + BPE 25.9 60.3 25.5 60.6
suffix + BPE 26.3 60.0 26.0 60.1
suffix + compound + BPE 26.2 59.8 25.8 60.2
suffix + prefix + compound + BPE 26.1 59.8 25.9 60.6
suffix + prefix + compound, 50K 25.9 59.9 25.5 60.3

phrase-based (Huck et al., 2015) 22.6 – 22.1 –

Table 6: English→German experimental results
on Europarl (case-sensitive BLEU and TER).

3 Machine Translation Experiments

3.1 Experimental Setup

We conduct an empirical evaluation using
encoder-decoder NMT with attention and gated
recurrent units as implemented in Nematus
(Sennrich et al., 2017). We train and test on
English–German Europarl data (Koehn, 2005).
The data is tokenized and frequent-cased using
scripts from the Moses toolkit (Koehn et al.,
2007). Sentences with length >50 after tokeniza-
tion are excluded from the training corpus, all
other sentences (1.7 M) are considered in training
under every word segmentation scheme. We
set the amount of merge operations for BPE to
50K. Corpus statistics of the German data after
different preprocessings are given in Table 5. On
the English source side, we apply BPE separately,
also with 50K merge operations.

For comparison, we build a setup denoted as top
50K voc. (source & target) where we train on the
tokenized corpus without any segmentation, limit-
ing the vocabulary to the 50K most frequent words
on each side and replacing rare words by “UNK”.
In a setup denoted as suffix + prefix + compound,
50K, we furthermore examine whether BPE can be

omitted in a cascaded application of target word
segmenters. Here, we use the top 50K target sym-
bols after suffix, prefix, and compound splitting,
but still apply BPE to the English source.

It is important to note that the amount of dis-
tinct target symbols in the setups ranges between
43K-46K; 50K for top-50K-voc systems. There
are no massive vocabulary size differences. We
always apply 50K BPE operations. Minor di-
vergences in the number of types naturally occur
amongst the various cascaded segmentations. The
linguistically-informed splitters segment more, re-
sulting in more tokens. We chose BPE-50K be-
cause the vocabulary is reasonably large while
training fits onto GPUs with 8 GB of RAM. Larger
vocabularies come at the cost of either more RAM
or adjustment of other parameters (e.g., batch size
or sentence length limit). From hyperparameter
search over reduced vocabulary sizes we would
not expect important insights, so we do not do this.

In all setups the training samples are always
the same. We removed long sentences after to-
kenization but before segmentation, which affects
all setups equally. No sentences are discarded after
that stage (Nematus’ maxlen > longest sequence in
data).

We configure dimensions of 500 for the embed-
dings and 1024 for the hidden layer. We train
with the Adam optimizer (Kingma and Ba, 2015),
a learning rate of 0.0001, batch size of 50, and
dropout with probability 0.2 applied to the hidden
layer.3 We validate on the test2006 set after ev-
ery 10 000 updates and do early stopping when the
validation cost has not decreased for ten epochs.

We evaluate case-sensitive with BLEU (Pa-
pineni et al., 2002) and TER (Snover et al.,
2006), computed over postprocessed hypotheses
against the raw references with mteval-v13a
and tercom.7.25, respectively.

3.2 Experimental Results

The translation results are reported in Table 6.
Cascading compound splitting and BPE slightly
improves translation quality as measured in TER.
Cascading suffix splitting with BPE or with
compound splitting plus BPE considerably im-
proves translation quality by up to +0.5 BLEU or
−0.9 TER over pure BPE. Adding in prefix split-
ting is less effective. We conjecture that prefix

3In preliminary experiments, we found dropout for
source, target, and embeddings did not yield additional gains.
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System
Words in output BPE-merged

tokens types
compound-merged

tokens types
suffix-merged

tokens types
prefix-merged
tokens types

BPE 1 075 1 032 – – – – – –
(1.9 %) (13.4 %) – – – – – –

compound + BPE 271 255 2 766 1 738 – – – –
(0.5 %) (3.3 %) (4.9 %) (22.6 %) – – – –

suffix + BPE 443 427 – – 19 152 4 915 – –
(0.8 %) (5.6 %) – – (33.7 %) (64.0 %) – –

suffix + compound + BPE 111 106 2 568 1 597 19 028 5 022 – –
(0.2 %) (1.4 %) (4.5 %) (20.4 %) (33.7 %) (64.1 %) – –

suffix + prefix + compound + BPE 100 95 2 566 1 577 19 063 4 990 4 601 1 667
(0.2 %) (1.2 %) (4.5 %) (20.2 %) (33.5 %) (64.0 %) (8.1 %) (21.4 %)

Table 7: Statistics over words in system outputs for test2008, after desegmentation.

System
Words in output overall

tokens types ratio

BPE 57 334 7 700 0.134

compound + BPE 56 827 7 692 0.135

suffix + BPE 56 849 7 674 0.135

suffix + compound + BPE 56 461 7 839 0.139

suffix + prefix + compound + BPE 56 875 7 797 0.137

reference 57 073 8 975 0.157

Table 8: Overall types and tokens, measured on
test2008 after desegmentation (hypotheses trans-
lations) or after tokenization (reference).

System avg. sent. length
BPE 28.7

compound + BPE 28.4

suffix + BPE 28.4

suffix + compound + BPE 28.2

suffix + prefix + compound + BPE 28.4

reference 28.5

Table 9: Average sentence lengths on test2008.

System
Words in output unseen vocabulary

tokens types
BPE 197 194

(0.3 %) (2.5 %)

compound + BPE 280 257
(0.5 %) (3.3 %)

suffix + BPE 139 138
(0.2 %) (1.8 %)

suffix + compound + BPE 262 238
(0.5 %) (3.0 %)

suffix + prefix + compound + BPE 265 234
(0.5 %) (3.0 %)

Table 10: Productivity at open vocabulary transla-
tion, measured on test2008 system outputs (after
desegmentation) against the vocabulary of the to-
kenized training data.

splitting does not help because German verb pre-
fixes often radically modify the meaning. When
prefixes are split off, the decoder’s embeddings
layer may therefore become less effective (as the
stem may be confusable with a completely differ-
ent word).

We also evaluated casing manually. Manual
inspection of the first fifty #L / #U occurrences
in one of the hyptheses reveals that none is mis-
placed, and casing is always correctly indicated.

3.3 Analysis

In order to better understand the impact of the dif-
ferent target-side segmentation strategies, we an-
alyze and compare the output of our main setups.
Particularly, we turn our attention on the words in
the translation outputs for the test2008 set. For the
analysis, in order to achieve comparable vocabu-
laries in the various outputs, we apply desegmen-
tation to all of the plain hypotheses produced by
the systems. However, we do not run the full post-
processing pipeline: detruecasing and detokeniza-
tion are omitted.

First, we count the number of words in the de-
segmented translations that have been merged to-
gether from subword components in the plain sys-
tem outputs. Table 7 shows the statistics. The ta-
ble rows contain the absolute amounts and rela-
tive frequencies of words with subword unit parts
in the desegmented hypotheses, for running words
in the text (types) and in terms of the vocabulary
in the test2008 translation output. The frequen-
cies are relative to all words in the respective out-
put. Note that when cascaded word segmentation
was applied, a single desegmented word may be
composed of multiple subword units that originate
from different word splitters. We find that com-
pared to the pure BPE system, many more words
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OOV
types A B C D E

A 0 1621 1583 1584 1626
(21.1 %) (20.6 %) (20.6 %) (21.1 %)

B 1612 0 1589 1469 1434
(21.0 %) (20.7 %) (19.1 %) (18.7 %)

C 1559 1574 0 1451 1456
(20.3 %) (20.5 %) (18.9 %) (19.0 %)

D 1726 1620 1617 0 1435
(22.0 %) (20.7 %) (20.6 %) (18.3 %)

E 1725 1542 1579 1392 0
(22.1 %) (19.8 %) (20.3 %) (17.9 %)

R 3641 3676 3624 3604 3634
(40.6 %) (41.0 %) (40.4 %) (40.2 %) (40.5 %)

Table 11: Systems compared against each other in
terms of types found in test2008 hypothesis trans-
lations, after desegmentation. (OOV words of out-
put of vertical system wrt. vocabulary present in
output of horizontal system.) A: BPE. B: com-
pound + BPE. C: suffix + BPE. D: suffix + com-
pound + BPE. E: suffix + prefix + compound +
BPE. R: reference translation.

OOV
tokens A B C D E

A 0 1804 1763 1801 1826
(3.1 %) (3.1 %) (3.1 %) (3.2 %)

B 1814 0 1793 1663 1612
(3.2 %) (3.2 %) (2.9 %) (2.8 %)

C 1741 1768 0 1647 1648
(3.1 %) (3.1 %) (2.9 %) (2.9 %)

D 1942 1803 1801 0 1565
(3.4 %) (3.2 %) (3.2 %) (2.8 %)

E 1958 1734 1794 1554 0
(3.4 %) (3.0 %) (3.2 %) (2.7 %)

R 4506 4582 4484 4484 4520
(7.9 %) (8.0 %) (7.9 %) (7.9 %) (7.9 %)

Table 12: Systems compared against each other
in terms of tokens found in test2008 hypothesis
translations, after desegmentation.

Output
similarity A B C D E

A 100 61.6 61.3 60.4 60.1

B 61.6 100 61.4 62.0 62.1

C 61.3 61.4 100 62.5 62.9

D 60.5 62.0 62.5 100 63.0

E 60.1 62.1 62.9 63.0 100

Table 13: System outputs (after desegmenta-
tion) evaluated against each other with BLEU.
(Hypothesis translation of vertical system against
output of horizontal system as the reference in
multi-bleu.perl.)

are merged from subword unit parts in the other
systems.

Table 8 presents the overall amount of types and
tokens in the hypothesis translations and in the ref-
erence. The pure BPE system exhibits the low-
est type/token ratio, whereas the type/token ratio
in the reference is higher than in all the machine
translation outputs.

Average sentence lengths are given in Table 9.
The pure BPE system produces sentences that are
slightly longer than the ones in the reference. All
other setups tend to be below the average reference
sentence length, the shortest sentences being pro-
duced by the suffix + compound + BPE system.

Next, we look into how often the open vocab-
ulary capabilities of the systems lead to the gen-
eration of words which are not present in the to-
kenized training corpus. We denote these words
as “unseen”. Table 10 reveals that only small
fractions of the words formed from subword unit
parts (as counted before, Table 7) are unseen. The
relative frequency of produced unseen words is
smaller than—or equal to—half a percent in the
running text. The setups trained with compound-
split target data produce unseen words a bit more
often. While at first glance it might seem dis-
appointing that the systems’ open vocabulary ca-
pabilities do not come into effect more heavily,
this observation however emphasizes that we have
succeeded at training neural models that adhere
to word formation processes which lead to valid
forms.

A straightforward follow-up question is how
lexically dissimilar the various system outputs are.
In Tables 11 and 12, we compare all hypotheses
pairwise against each other, measuring the amount
of words in one hypothesis that does not appear
in the vocabulary present in a translation from
another system. We basically calculate cross-
hypothesis out-of-vocabulary (OOV) rates. Ta-
ble 11 shows the results on type level, Table 12 on
token level. We furthermore compare against the
reference. The system outputs are lexically quite
dissimilar, but much closer to each other than to
the reference.

We can finally follow the very same rationale by
evaluating the system outputs against each other
with BLEU, calculating the BLEU score of one
hypothesis against another hypothesis rather than
against a reference translation. The result, pre-
sented in Table 13, reaffirms that the different sys-
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tems have each learned to translate in different
ways, based on the respective segmentation of the
training data.

Our cascaded suffix + compound + BPE tar-
get word segmentation strategy was employed
for LMU Munich’s participation in the WMT17
shared tasks on machine translation of news and
of biomedical texts. We refer the reader to the sys-
tem description paper (Huck et al., 2017a), where
we include some interesting translation examples
from the news translation task. We note that our
system was ranked first in the human evaluation of
the news task, despite having a lower BLEU score
than Edinburgh’s submission. BLEU, which tries
to automatically predict how humans will evalu-
ate quality, may unfairly penalize approaches like
ours, but more study is needed.

4 Related Work

The SMT literature has a wide diversity of ap-
proaches in dealing with translation to morpholog-
ically rich languages. One common theme is mod-
eling the relationship between lemmas and sur-
face forms using morphological knowledge, e.g.,
(Toutanova and Suzuki, 2007; Koehn and Hoang,
2007; Bojar and Kos, 2010; Fraser et al., 2012;
Weller et al., 2013; Tamchyna et al., 2016; Huck
et al., 2017b). This problem has been studied for
NMT by Tamchyna et al. (2017), and it would be
interesting to compare with their approach.

Our work is closer in spirit to previous work
on integrating morphological segmentation into
SMT. Some examples of early work here in-
clude work on Arabic (Lee et al., 2003) and
Czech (Goldwater and McClosky, 2005). More
recent work includes work on Arabic, such as
(Habash, 2007), and work on Turkish (Oflazer and
Durgar El-Kahlout, 2007; Yeniterzi and Oflazer,
2010). Unsupervised morphological splitting, us-
ing, e.g., Morfessor has also been tried, particu-
larly for dealing with agglutinative languages (Vir-
pioja et al., 2007). Our work is motivated by the
same linguistic observations as theirs.

Other studies, e.g., (Popović et al., 2006;
Stymne, 2008; Cap et al., 2014), model German
compounds by splitting them into single simple
words in the SMT training data, and then pre-
dicting where to merge simple words as a post-
processing step (after SMT decoding). This has
similarities to our use of compound splitting and
markers in NMT.

There is also starting to be interest in alterna-
tives to BPE in NMT. The Google NMT system
(Wu et al., 2016) used wordpiece splitting, which
is similar to but different from BPE and would
be interesting to evaluate in future work. Ataman
et al. (2017) considered both supervised and unsu-
pervised splitting of agglutinative morphemes in
Turkish, which is closely related to our ideas. An
important difference here is that Turkish is an ag-
glutinative language, while German has fusional
inflection and very productive compounding.

We are also excited about early work on
character-based NMT such as (Lee et al., 2016),
which may eventually replace segmentation mod-
els like those in our work (or also replace BPE
when linguistically aware segmentation is not
available). However, at the current stage of re-
search character-based approaches require very
long training times and extensive optimization of
hyperparameters to make them work, and still
do not seem to be able to produce state-of-the-
art translation quality on a wide range of tasks.
More research is needed in making character-
based NMT robust and accessible to many re-
search groups.

5 Conclusion

Linguistically motivated target-side word segmen-
tation improves neural machine translation into an
inflected and compounding language. The sys-
tem can learn linguistic word formation processes
from the segmented data. For German, we have
shown that cascading of suffix splitting—or suf-
fix splitting and compound splitting—with BPE
yields the best results. In future work we will con-
sider alternative sources of linguistic knowledge
about morphological processes and also evaluate
high performance unsupervised segmentation.
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Abstract

Neural machine translation (NMT) mod-
els are able to partially learn syntactic in-
formation from sequential lexical informa-
tion. Still, some complex syntactic phe-
nomena such as prepositional phrase at-
tachment are poorly modeled. This work
aims to answer two questions: 1) Does
explicitly modeling target language syntax
help NMT? 2) Is tight integration of words
and syntax better than multitask training?
We introduce syntactic information in the
form of CCG supertags in the decoder,
by interleaving the target supertags with
the word sequence. Our results on WMT
data show that explicitly modeling target-
syntax improves machine translation qual-
ity for German→English, a high-resource
pair, and for Romanian→English, a low-
resource pair and also several syntactic
phenomena including prepositional phrase
attachment. Furthermore, a tight cou-
pling of words and syntax improves trans-
lation quality more than multitask training.
By combining target-syntax with adding
source-side dependency labels in the em-
bedding layer, we obtain a total improve-
ment of 0.9 BLEU for German→English
and 1.2 BLEU for Romanian→English.

1 Introduction

Sequence-to-sequence neural machine translation
(NMT) models (Sutskever et al., 2014; Cho et al.,
2014b; Bahdanau et al., 2015) are state-of-the-art
on a multitude of language-pairs (Sennrich et al.,
2016a; Junczys-Dowmunt et al., 2016). Part of the
appeal of neural models is that they can learn to
implicitly model phenomena which underlie high
quality output, and some syntax is indeed cap-

tured by these models. In a detailed analysis,
Bentivogli et al. (2016) show that NMT signifi-
cantly improves over phrase-based SMT, in par-
ticular with respect to morphology and word or-
der, but that results can still be improved for longer
sentences and complex syntactic phenomena such
as prepositional phrase (PP) attachment. Another
study by Shi et al. (2016) shows that the encoder
layer of NMT partially learns syntactic informa-
tion about the source language, however complex
syntactic phenomena such as coordination or PP
attachment are poorly modeled.

Recent work which incorporates additional
source-side linguistic information in NMT mod-
els (Luong et al., 2016; Sennrich and Haddow,
2016) show that even though neural models have
strong learning capabilities, explicit features can
still improve translation quality. In this work, we
examine the benefit of incorporating global syn-
tactic information on the target-side. We also ad-
dress the question of how best to incorporate this
information. For language pairs where syntac-
tic resources are available on both the source and
target-side, we show that approaches to incorpo-
rate source syntax and target syntax are comple-
mentary.

We propose a method for tightly coupling words
and syntax by interleaving the target syntactic rep-
resentation with the word sequence. We compare
this to loosely coupling words and syntax using a
multitask solution, where the shared parts of the
model are trained to produce either a target se-
quence of words or supertags in a similar fashion
to Luong et al. (2016).

We use CCG syntactic categories (Steedman,
2000), also known as supertags, to represent syn-
tax explicitly. Supertags provide global syntac-
tic information locally at the lexical level. They
encode subcategorization information, capturing
short and long range dependencies and attach-
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ments, and also tense and morphological as-
pects of the word in a given context. Consider
the sentence in Figure 1. This sentence con-
tains two PP attachments and could lead to sev-
eral disambiguation possibilities (“in” can attach
to “Netanyahu” or “receives”, and “of” can at-
tach to “capital”, “Netanyahu” or “receives” ).
These alternatives may lead to different trans-
lations in other languages. However the su-
pertag ((S[dcl]\NP)/PP)/NP of “receives” indi-
cates that the preposition “in” attaches to the verb,
and the supertag (NP\NP)/NP of “of” indicates
that it attaches to “capital”, thereby resolving the
ambiguity.

Our research contributions are as follows:

• We propose a novel approach to integrating tar-
get syntax at word level in the decoder, by in-
terleaving CCG supertags in the target word se-
quence.

• We show that the target language syntax im-
proves translation quality for German→English
and Romanian→English as measured by
BLEU. Our results suggest that a tight coupling
of target words and syntax (by interleaving)
improves translation quality more than the
decoupled signal from multitask training.

• We show that incorporating source-side linguis-
tic information is complimentary to our method,
further improving the translation quality.

• We present a fine-grained analysis of SNMT
and show consistent gains for different linguis-
tic phenomena and sentence lengths.

2 Related work

Syntax has helped in statistical machine trans-
lation (SMT) to capture dependencies between
distant words that impact morphological agree-
ment, subcategorisation and word order (Galley
et al., 2004; Menezes and Quirk, 2007; Williams
and Koehn, 2012; Nadejde et al., 2013; Sennrich,
2015; Nadejde et al., 2016a,b; Chiang, 2007).
There has been some work in NMT on modeling
source-side syntax implicitly or explicitly. Kalch-
brenner and Blunsom (2013); Cho et al. (2014a)
capture the hierarchical aspects of language im-
plicitly by using convolutional neural networks,
while Eriguchi et al. (2016) use the parse tree of
the source sentence to guide the recurrence and
attention model in tree-to-sequence NMT. Luong

et al. (2016) co-train a translation model and a
source-side syntactic parser which share the en-
coder. Our multitask models extend their work
to attention-based NMT models and to predict-
ing target-side syntax as the secondary task. Sen-
nrich and Haddow (2016) generalize the embed-
ding layer of NMT to include explicit linguistic
features such as dependency relations and part-of-
speech tags and we use their framework to show
source and target syntax provide complementary
information.

Applying more tightly coupled linguistic fac-
tors on the target for NMT has been previously
investigated. Niehues et al. (2016) proposed a fac-
tored RNN-based language model for re-scoring
an n-best list produced by a phrase-based MT sys-
tem. In recent work, Martı́nez et al. (2016) im-
plemented a factored NMT decoder which gener-
ated both lemmas and morphological tags. The
two factors were then post-processed to gener-
ate the word form. Unfortunately no real gain
was reported for these experiments. Concurrently
with our work, Aharoni and Goldberg (2017) pro-
posed serializing the target constituency trees and
Eriguchi et al. (2017) model target dependency re-
lations by augmenting the NMT decoder with a
RNN grammar (Dyer et al., 2016). In our work,
we use CCG supertags which are a more compact
representation of global syntax. Furthermore, we
do not focus on model architectures, and instead
we explore the more general problem of includ-
ing target syntax in NMT: comparing tightly and
loosely coupled syntactic information and show-
ing source and target syntax are complementary.

Previous work on integrating CCG supertags in
factored phrase-based models (Birch et al., 2007)
made strong independence assumptions between
the target word sequence and the CCG categories.
In this work we take advantage of the expressive
power of recurrent neural networks to learn repre-
sentations that generate both words and CCG su-
pertags, conditioned on the entire lexical and syn-
tactic target history.

3 Modeling Syntax in NMT

CCG is a lexicalised formalism in which words are
assigned with syntactic categories, i.e., supertags,
that indicate context-sensitive morpho-syntactic
properties of a word in a sentence. The com-
binators of CCG allow the supertags to capture
global syntactic constraints locally. Though NMT
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Source-side
BPE: Obama receives Net+ an+ yahu in the capital of USA
IOB: O O B I E O O O O O
CCG: NP ((S[dcl]\NP)/PP)/NP NP NP NP PP/NP NP/N N (NP\NP)/NP NP

Target-side
NP Obama ((S[dcl]\NP)/PP)/NP receives NP Net+ an+ yahu PP/NP in NP/N the N capital (NP\NP)/NP of NP USA

Figure 1: Source and target representation of syntactic information in syntax-aware NMT.

captures long range dependencies using long-term
memory, short-term memory is cheap and reliable.
Supertags can help by allowing the model to rely
more on local information (short-term) and not
having to rely heavily on long-term memory.

Consider a decoder that has to generate the fol-
lowing sentences:

1. What(S[wq]/(S[q]/NP ))/N city is(S[q]/PP )/NP

the Taj Mahal in?

2. WhereS[wq]/(S[q]/NP ) is(S[q]/NP )/NP the Taj
Mahal?

If the decoding starts with predicting “What”, it
is ungrammatical to omit the preposition “in”, and
if the decoding starts with predicting “Where”, it
is ungrammatical to predict the preposition. Here
the decision to predict “in” depends on the first
word, a long range dependency. However if we
rely on CCG supertags, the supertags of both
these sequences look very different. The supertag
(S[q]/PP)/NP for the verb “is” in the first sen-
tence indicates that a preposition is expected in fu-
ture context. Furthermore it is likely to see this
particular supertag of the verb in the context of
(S[wq]/(S[q]/NP))/N but it is unlikely in the con-
text of S[wq]/(S[q]/NP). Therefore a succession
of local decisions based on CCG supertags will
result in the correct prediction of the preposition
in the first sentence, and omitting the preposition
in the second sentence. Since the vocabulary of
CCG supertags is much smaller than that of possi-
ble words, the NMT model will do a better job at
generalizing over and predicting the correct CCG
supertags sequence.

CCG supertags also help during encoding if
they are given in the input, as we saw with the
case of PP attachment in Figure 1. Translation
of the correct verb form and agreement can be
improved with CCG since supertags also encode
tense, morphology and agreements. For exam-
ple, in the sentence “It is going to rain”, the su-
pertag (S[ng]\NP[expl])/(S[to]\NP) of “going”

indicates the current word is a verb in continuous
form looking for an infinitive construction on the
right, and an expletive pronoun on the left.

We explore the effect of target-side syntax by
using CCG supertags in the decoder and by com-
bining these with source-side syntax in the en-
coder, as follows.

Baseline decoder The baseline decoder archi-
tecture is a conditional GRU with attention
(cGRUattn) as implemented in the Nematus
toolkit (Sennrich et al., 2017). The decoder is a
recursive function computing a hidden state sj at
each time step j ∈ [1, T ] of the target recurrence.
This function takes as input the previous hidden
state sj−1, the embedding of the previous target
word yj−1 and the output of the attention model
cj . The attention model computes a weighted sum
over the hidden states hi = [

−→
hi ;
←−
hi ] of the bi-

directional RNN encoder. The function g com-
putes the intermediate representation tj and passes
this to a softmax layer which first applies a linear
transformation (Wo) and then computes the prob-
ability distribution over the target vocabulary. The
training objective for the entire architecture is min-
imizing the discrete cross-entropy, therefore the
loss l is the negative log-probability of the refer-
ence sentence.

s′j = GRU1(yj−1, sj−1) (1)

cj = ATT ([h1; ...;h|x|], s
′
j) (2)

sj = cGRUattn(yj−1, sj−1, cj) (3)

tj = g(yj−1, sj , cj) (4)

py =

T∏

j=1

p(yj |x, y1:j−1) =
T∏

j=1

softmax(tjWo)

(5)

l = −log(py) (6)

Target-side syntax When modeling the target-
side syntactic information we consider different
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st-3 st-2 st-1 st

NP Obama ((S\NP)/PP)/NP receives

h1 h2 hTh3 ….

αt,1 αt,2
αt,3

αt,T

x1 x2 x3 x4

＋

s't-1 s't

NP ((S\NP)/PP)/NP

h1 h2 hTh3 ….

αt,1

x1 x2 x3

st-1 st

Obama receives

αt,2 αt,3

αt,T
＋ βt,1

＋

βt,2
βt,3 βt,T

x4

a) b)

Figure 2: Integrating target syntax in the NMT decoder: a) interleaving and b) multitasking.

strategies of coupling the CCG supertags with the
translated words in the decoder: interleaving and
multitasking with shared encoder. In Figure 2 we
represent graphically the differences between the
two strategies and in the next paragraphs we for-
malize them.

• Interleaving In this paper we propose a tight
integration in the decoder of the syntactic rep-
resentation and the surface forms. Before each
word of the target sequence we include its su-
pertag as an extra token. The new target se-
quence y′ will have the length 2T , where T is
the number of target words. With this represen-
tation, a single decoder learns to predict both
the target supertags and the target words con-
ditioned on previous syntactic and lexical con-
text. We do not make changes to the baseline
NMT decoder architecture, keeping equations
(1) - (6) and the corresponding set of parame-
ters unchanged. Instead, we augment the tar-
get vocabulary to include both words and CCG
supertags. This results in a shared embedding
space and the following probability of the target
sequence y′, where y′j can be either a word or a
tag:

y′ = ytag1 , yword
1 , ...., ytagT , yword

T (7)

py′ =
2T∏

j

p(y′j |x, y′1:j−1) (8)

At training time we pre-process the target se-
quence to add the syntactic annotation and then
split only the words into byte-pair-encoding
(BPE) (Sennrich et al., 2016b) sub-units. At

testing time we delete the predicted CCG su-
pertags to obtain the final translation. Figure 1
gives an example of the target-side representa-
tion in the case of interleaving. The supertag
NP corresponding to the word Netanyahu is in-
cluded only once before the three BPE subunits
Net+ an+ yahu.

• Multitasking – shared encoder A loose cou-
pling of the syntactic representation and the sur-
face forms can be achieved by co-training a
translation model with a secondary prediction
task, in our case CCG supertagging. In the mul-
titask framework (Luong et al., 2016) the en-
coder part is shared while the decoder is dif-
ferent for each of the prediction tasks: transla-
tion and tagging. In contrast to Luong et al.,
we train a separate attention model for each
task and perform multitask learning with tar-
get syntax. The two decoders take as input
the same source context, represented by the en-
coder’s hidden states hi = [

−→
hi ;
←−
hi ]. However,

each task has its own set of parameters associ-
ated with the five components of the decoder:
GRU1, ATT , cGRUatt, g, softmax. Further-
more, the two decoders may predict a different
number of target symbols, resulting in target se-
quences of different lengths T1 and T2. This re-
sults in two probability distributions over sep-
arate target vocabularies for the words and the
tags:

pword
y =

T1∏

j

p(yword
j |x, yword

1:j−1) (9)

ptagy =

T2∏

k

p(ytagk |x, y
tag
1:k−1) (10)
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The final loss is the sum of the losses for the two
decoders:

l = −(log(pword
y ) + log(ptagy )) (11)

We use EasySRL to label the English side of
the parallel corpus with CCG supertags1 instead
of using a corpus with gold annotations as in
Luong et al. (2016).

Source-side syntax – shared embedding While
our focus is on target-side syntax, we also exper-
iment with including source-side syntax to show
that the two approaches are complementary.

Sennrich and Haddow propose a framework for
including source-side syntax as extra features in
the NMT encoder. They extend the model of Bah-
danau et al. by learning a separate embedding for
several source-side features such as the word itself
or its part-of-speech. All feature embeddings are
concatenated into one embedding vector which is
used in all parts of the encoder model instead of
the word embedding. When modeling the source-
side syntactic information, we include the CCG
supertags or dependency labels as extra features.
The baseline features are the subword units ob-
tained using BPE together with the annotation of
the subword structure using IOB format by mark-
ing if a symbol in the text forms the beginning (B),
inside (I), or end (E) of a word. A separate tag (O)
is used if a symbol corresponds to the full word.
The word level supertag is replicated for each BPE
unit. Figure 1 gives an example of the source-side
feature representation.

4 Experimental Setup and Evaluation

4.1 Data and methods
We train the neural MT systems on all the parallel
data available at WMT16 (Bojar et al., 2016) for
the German↔English and Romanian↔English
language pairs. The English side of the train-
ing data is annotated with CCG lexical tags2 us-
ing EasySRL (Lewis et al., 2015) and the avail-
able pre-trained model3. Some longer sentences
cannot be processed by the parser and therefore
we eliminate them from our training and test data.
We report the sentence counts for the filtered data

1We use the same data and annotations for the interleav-
ing approach.

2The CCG tags include features such as the verb tense
(e.g. [ng] for continuous form) or the sentence type (e.g. [pss]
for passive).

3https://github.com/uwnlp/EasySRL

train dev test
DE-EN 4,468,314 2,986 2,994
RO-EN 605,885 1,984 1,984

Table 1: Number of sentences in the training, de-
velopment and test sets.

sets in Table 1. Dependency labels are annotated
with ParZU (Sennrich et al., 2013) for German and
SyntaxNet (Andor et al., 2016) for Romanian.

All the neural MT systems are attentional
encoder-decoder networks (Bahdanau et al., 2015)
as implemented in the Nematus toolkit (Sennrich
et al., 2017).4 We use similar hyper-parameters to
those reported by (Sennrich et al., 2016a; Sennrich
and Haddow, 2016) with minor modifications: we
used mini-batches of size 60 and Adam optimizer
(Kingma and Ba, 2014). We select the best single
models according to BLEU on the development set
and use the four best single models for the ensem-
bles.

To show that we report results over strong base-
lines, table 2 compares the scores obtained by our
baseline system to the ones reported in Sennrich
et al. (2016a). We normalize diacritics5 for the
English→Romanian test set. We did not remove
or normalize Romanian diacritics for the other ex-
periments reported in this paper. Our baseline sys-
tems are generally stronger than Sennrich et al.
(2016a) due to training with a different optimizer
for more iterations.

This work Sennrich et. al
DE→EN 31.0 28.5
EN→DE 27.8 26.8
RO→EN 28.0 27.8
EN→RO1 25.6 23.9

Table 2: Comparison of baseline systems in
this work and in Sennrich et al. (2016a). Case-
sensitive BLEU scores reported over newstest2016
with mteval-13a.perl. 1Normalized diacritics.

During training we validate our models with
BLEU (Papineni et al., 2002) on development sets:
newstest2013 for German↔English and news-
dev2016 for Romanian↔English. We evaluate the
systems on newstest2016 test sets for both lan-

4https://github.com/rsennrich/nematus
5There are different encodings for letters with

cedilla (ş,ţ) used interchangeably throughout the corpus.
https://en.wikipedia.org/wiki/Romanian_
alphabet#ISO_8859
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guage pairs and use bootstrap resampling (Riezler
and Maxwell, 2005) to test statistical significance.
We compute BLEU with multi-bleu.perl over tok-
enized sentences both on the development sets, for
early stopping, and on the test sets for evaluating
our systems.

Words are segmented into sub-units that are
learned jointly for source and target using BPE
(Sennrich et al., 2016b), resulting in a vocabulary
size of 85,000. The vocabulary size for CCG su-
pertags was 500.

For the experiments with source-side features
we use the BPE sub-units and the IOB tags as
baseline features. We keep the total word em-
bedding size fixed to 500 dimensions. We allo-
cate 10 dimensions for dependency labels when
using these as source-side features and when us-
ing source-side CCG supertags we allocate 135 di-
mensions.

The interleaving approach to integrating target
syntax increases the length of the target sequence.
Therefore, at training time, when adding the CCG
supertags in the target sequence we increase the
maximum length of sentences from 50 to 100. On
average, the length of English sentences for new-
stest2013 in BPE representation is 22.7, while the
average length when adding the CCG supertags is
44. Increasing the length of the target recurrence
results in larger memory consumption and slower
training.6. At test time, we obtain the final trans-
lation by post-processing the predicted target se-
quence to remove the CCG supertags.

4.2 Results

In this section, we first evaluate the syntax-aware
NMT model (SNMT) with target-side CCG su-
pertags as compared to the baseline NMT model
described in the previous section (Bahdanau et al.,
2015; Sennrich et al., 2016a). We show that our
proposed method for tightly coupling target syn-
tax via interleaving, improves translation for both
German→English and Romanian→English while
the multitasking framework does not. Next, we
show that SNMT with target-side CCG supertags
can be complemented with source-side dependen-
cies, and that combining both types of syntax
brings the most improvement. Finally, our exper-
iments with source-side CCG supertags confirm
that global syntax can improve translation either

6Roughly 10h30 per 100,000 sentences (20,000 batches)
for SNMT compared to 6h for NMT.

as extra information in the encoder or in the de-
coder.

Target-side syntax We first evaluate the impact
of target-side CCG supertags on overall transla-
tion quality. In Table 3 we report results for
German→English, a high-resource language pair,
and for Romanian→English, a low-resource lan-
guage pair. We report BLEU scores for both the
best single models and ensemble models. How-
ever, we will only refer to the results with ensem-
ble models since these are generally better.

The SNMT system with target-side
syntax improves BLEU scores by 0.9
for Romanian→English and by 0.6 for
German→English. Although the training data for
German→English is large, the CCG supertags
still improve translation quality. These results
suggest that the baseline NMT decoder benefits
from modeling the global syntactic information
locally via supertags.

Next, we evaluate whether there is a benefit to
tight coupling between the target word sequence
and syntax, as apposed to loose coupling. We
compare our method of interleaving the CCG su-
pertags with multitasking, which predicts target
CCG supertags as a secondary task. The results
in Table 3 show that the multitask approach does
not improve BLEU scores for German→English,
which exhibits long distance word reordering. For
Romanian→English, which exhibits more local
word reordering, multitasking improves BLEU by
0.6 relative to the baseline. In contrast, the inter-
leaving approach improves translation quality for
both language pairs and to a larger extent. There-
fore, we conclude that a tight integration of the tar-
get syntax and word sequence is important. Con-
ditioning the prediction of words on their corre-
sponding CCG supertags is what sets SNMT apart
from the multitasking approach.

Source-side and target-side syntax We now
show that our method for integrating target-side
syntax can be combined with the framework
of Sennrich and Haddow (2016) for integrating
source-side linguistic information, leading to fur-
ther improvement in translation quality. We evalu-
ate the syntax-aware NMT system, with CCG su-
pertags as target-syntax and dependency labels as
source-syntax. While the dependency labels do
not encode global syntactic information, they dis-
ambiguate the grammatical function of words. Ini-
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German→English Romanian→English
model syntax strategy single ensemble single ensemble
NMT - - 31.0 32.1 28.1 28.4
SNMT target – CCG interleaving 32.0 32.7* 29.2 29.3**
Multitasking target – CCG shared encoder 31.4 32.0 28.4 29.0*
SNMT source – dep shared embedding 31.4 32.2 28.2 28.9

+ target – CCG + interleaving 32.1 33.0** 29.1 29.6**

Table 3: Experiments with target-side syntax for German→English and Romanian→English. BLEU

scores reported for baseline NMT, syntax-aware NMT (SNMT) and multitasking. The SNMT system is
also combined with source dependencies. Statistical significance is indicated with * p < 0.05 and **
p < 0.01, when comparing against the NMT baseline.

tially, we had intended to use global syntax on the
source-side as well for German→English, how-
ever the German CCG tree-bank is still under de-
velopment.

From the results in Table 3 we first ob-
serve that for German→English the source-side
dependency labels improve BLEU by only 0.1,
while Romanian→English sees an improvement
of 0.5. Source-syntax may help more for
Romanian→English because the training data is
smaller and the word order is more similar be-
tween the source and target languages than it is
for German→English.

For both language pairs, target-syntax im-
proves translation quality more than source-
syntax. However, target-syntax is complemented
by source-syntax when used together, leading
to a final improvement of 0.9 BLEU points
for German→English and 1.2 BLEU points for
Romanian→English.

Finally, we show that CCG supertags are also
an effective representation of global-syntax when
used in the encoder. In Table 4 we present re-
sults for using CCG supertags as source-syntax
in the embedding layer. Because we have CCG
annotations only for English, we reverse the
translation directions and report BLEU scores for
English→German and English→Romanian. The
BLEU scores reported are for the ensemble models
over newstest2016.

For English→German BLEU increases by 0.7
points and for English→Romanian by 0.5 points.
In contrast, Sennrich and Haddow (2016) obtain
an improvement of only 0.2 for English→German
using dependency labels which encode only the
grammatical function of words. These results con-
firm that representing global syntax in the en-
coder provides complementary information that

model syntax EN→DE EN→RO
NMT - 28.3 25.6
SNMT source – CCG 29.0* 26.1*

Table 4: Results for English→German and
English→Romanian with source-side syntax. The
SNMT system uses the CCG supertags of the
source words in the embedding layer. *p < 0.05.

the baseline NMT model is not able to learn from
the source word sequence alone.

4.3 Analyses by sentence type
In this section, we make a finer grained analysis
of the impact of target-side syntax by looking at a
breakdown of BLEU scores with respect to differ-
ent linguistic constructions and sentence lengths7.

We classify sentences into different linguis-
tic constructions based on the CCG supertags
that appear in them, e.g., the presence of cate-
gory (NP\NP)/(S/NP) indicates a subordinate
construction. Figure 3 a) shows the difference
in BLEU points between the syntax-aware NMT
system and the baseline NMT system for the
following linguistic constructions: coordination
(conj), control and raising (control), prepositional
phrase attachment (pp), questions and subordinate
clauses (subordinate). In the figure we use the
symbol “*” to indicate that syntactic information
is used on the target (eg. de-en*), or both on the
source and target (eg. *de-en*). We report the
number of sentences for each category in Table 5.

With target-syntax, we see consistent im-
provements across all linguistic constructions for
Romanian→English and across all but control and
raising for German→English. In particular, the in-

7Document-level BLEU is computed over each subset of
sentences.
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a) b)

Figure 3: Difference in BLEU points between SNMT and NMT, relative to baseline NMT scores, with
respect to a) linguistic constructs and b) sentence lengths. The numbers attached to the bars represent
the BLEU score for the baseline NMT system. The symbol * indicates that syntactic information is used
on the target (eg. de-en*), or both on the source and target (eg. *de-en*)

sub. qu. pp contr. conj
RO↔EN 742 90 1,572 415 845
DE↔EN 936 114 2,321 546 1,129

Table 5: Sentence counts for different linguistic
constructions.

crease in BLEU scores for the prepositional phrase
and subordinate constructions suggests that target
word order is improved.

For German→English, there is a small de-
crease in BLEU for the control and raising con-
structions when using target-syntax alone. How-
ever, source-syntax adds complementary informa-
tion to target-syntax, resulting in a small improve-
ment for this category as well. Moreover, com-
bining source and target-syntax increases trans-
lation quality across all linguistic constructions
as compared to NMT and SNMT with target-
syntax alone. For Romanian→English, combin-
ing source and target-syntax brings an additional
improvement of 0.7 for subordinate constructs
and 0.4 for prepositional phrase attachment. For
German→English, on the same categories, there is
an additional improvement of 0.4 and 0.3 respec-
tively. Overall, BLEU scores improve by more than
1 BLEU point for most linguistic constructs and for

both language pairs.
Next, we compare the systems with respect to

sentence length. Figure 3 b) shows the difference
in BLEU points between the syntax-aware NMT
system and the baseline NMT system with respect
to the length of the source sentence measured in
BPE sub-units. We report the number of sentences
for each category in Table 6.

<15 15-25 25-35 >35
RO↔EN 491 540 433 520
DE↔EN 918 934 582 560

Table 6: Sentence counts for different sentence
lengths.

With target-syntax, we see consistent
improvements across all sentence lengths
for Romanian→English and across all but
short sentences for German→English. For
German→English there is a decrease in BLEU

for sentences up to 15 words. Since the
German→English training data is large, the base-
line NMT system learns a good model for short
sentences with local dependencies and without
subordinate or coordinate clauses. Including extra
CCG supertags increases the target sequence
without adding information about complex lin-
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DE - EN Question
Source Oder wollen Sie herausfinden , über was andere reden ?
Ref. Or do you want to find out what others are talking about ?
NMT Or would you like to find out about what others are talking about ?
SNMT Or do you want to find out whatNP/(S[dcl]/NP ) others are(S[dcl]\NP )/(S[ng]\NP ) talking(S[ng]\NP )/PP aboutPP/NP ?

DE - EN Subordinate
Source ...dass die Polizei jetzt sagt , ..., und dass Lamb in seinem Notruf Prentiss zwar als seine Frau bezeichnete ...
Ref. ...that police are now saying ..., and that while Lamb referred to Prentiss as his wife in the 911 call ...
NMT ...police are now saying ..., and that in his emergency call Prentiss he called his wife ...
SNMT ...police are now saying ..., and that lamb , in his emergency call , described((S[dcl]\NP )/PP )/NP Prentiss as his wife ....

Figure 4: Comparison of baseline NMT and SNMT with target syntax for German→English.

guistic phenomena. However, when using both
source and target syntax, the effect on short sen-
tences disappears. For Romanian→English there
is also a large improvement on short sentences
when combining source and target syntax: 2.9
BLEU points compared to the NMT baseline
and 1.2 BLEU points compared to SNMT with
target-syntax alone.

With both source and target-syntax, translation
quality increases across all sentence lengths as
compared to NMT and SNMT with target-syntax
alone. For German→English sentences that are
more than 35 words, we see again the effect of
increasing the target sequence by adding CCG
supertags. Target-syntax helps, however BLEU

improves by only 0.4, compared to 0.9 for sen-
tences between 15 and 35 words. With both
source and target syntax, BLEU improves by 0.8
for sentences with more than 35 words. For
Romanian→English we see a similar result for
sentences with more than 35 words: target-syntax
improves BLEU by 0.6, while combining source
and target syntax improves BLEU by 0.8. These
results confirm as well that source-syntax adds
complementary information to target-syntax and
mitigates the problem of increasing the target se-
quence.

4.4 Discussion

Our experiments demonstrate that target-syntax
improves translation for two translation directions:
German→English and Romanian→English. Our
proposed method predicts the target words to-
gether with their CCG supertags.

Although the focus of this paper is not im-
proving CCG tagging, we can also measure that
SNMT is accurate at predicting CCG supertags.
We compare the CCG sequence predicted by the
SNMT models with that predicted by EasySRL

and obtain the following accuracies: 93.2 for
Romanian→English, 95.6 for German→English,
95.8 for German→English with both source and
target syntax.8

We conclude by giving a couple of examples in
Figure 4 for which the SNMT system with tar-
get syntax produced more grammatical transla-
tions than the baseline NMT system.

In the example DE-EN Question the baseline
NMT system translates the preposition “über”
twice as “about”. The SNMT system with tar-
get syntax predicts the correct CCG supertag for
“what” which expects to be followed by a sen-
tence and not a preposition: NP/(S[dcl]/NP).
Therefore the SNMT correctly re-orders the
preposition “about” at the end of the question.

In the example DE-EN Subordinate the base-
line NMT system fails to correctly attach “Pren-
tiss” as an object and “his wife” as a modifier
to the verb “called (bezeichnete)” in the subor-
dinate clause. In contrast the SNMT system pre-
dicts the correct sub-categorization frame of the
verb “described” and correctly translates the en-
tire predicate-argument structure.

5 Conclusions

This work introduces a method for modeling ex-
plicit target-syntax in a neural machine transla-
tion system, by interleaving target words with their
corresponding CCG supertags. Earlier work on
syntax-aware NMT mainly modeled syntax in the
encoder, while our experiments suggest model-
ing syntax in the decoder is also useful. Our re-
sults show that a tight integration of syntax in
the decoder improves translation quality for both

8The multitasking model predicts a different number of
CCG supertags than the number of target words. For the sen-
tences where these numbers match, the CCG supetagging ac-
curacy is 73.2.
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German→English and Romanian→English lan-
guage pairs, more so than a loose coupling of tar-
get words and syntax as in multitask learning. Fi-
nally, by combining our method for integrating
target-syntax with the framework of Sennrich and
Haddow (2016) for source-syntax we obtain the
most improvement over the baseline NMT system:
0.9 BLEU for German→English and 1.2 BLEU for
Romanian→English. In particular, we see large
improvements for longer sentences involving syn-
tactic phenomena such as subordinate and coordi-
nate clauses and prepositional phrase attachment.
In future work, we plan to evaluate the impact
of target-syntax when translating into a morpho-
logically rich language, for example by using the
Hindi CCGBank (Ambati et al., 2016).
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Abstract

Linguistic resources such as part-of-
speech (POS) tags have been extensively
used in statistical machine translation
(SMT) frameworks and have yielded bet-
ter performances. However, usage of such
linguistic annotations in neural machine
translation (NMT) systems has been left
under-explored.

In this work, we show that multi-task
learning is a successful and a easy ap-
proach to introduce an additional knowl-
edge into an end-to-end neural attentional
model. By jointly training several natu-
ral language processing (NLP) tasks in one
system, we are able to leverage common
information and improve the performance
of the individual task.

We analyze the impact of three design de-
cisions in multi-task learning: the tasks
used in training, the training schedule, and
the degree of parameter sharing across the
tasks, which is defined by the network ar-
chitecture. The experiments are conducted
for an German to English translation task.
As additional linguistic resources, we ex-
ploit POS information and named-entities
(NE). Experiments show that the transla-
tion quality can be improved by up to 1.5
BLEU points under the low-resource con-
dition. The performance of the POS tag-
ger is also improved using the multi-task
learning scheme.

1 Introduction

Recently, there has been a dramatic change in the
state-of-the-art techniques for machine translation
(MT). In a traditional method, often the best per-

formance is achieved by using a complicated com-
bination of several statistical models, which are in-
dividually trained. For example, POS information
was shown to be very helpful to model word re-
ordering between languages, as shown in Niehues
and Kolss (2009). While the recent development
of end-to-end trained neural models (Bahdanau
et al., 2014) showed significant gains over tradi-
tional approaches, they are often trained only on
the parallel data in an end-to-end fashion. In most
cases, therefore, they do not facilitate other knowl-
edge sources.

When parallel data is sparse, exploiting other
knowledge sources can be crucial for perfor-
mance. Two techniques to integrate the additional
resources are well studied. In one technique, we
train a tool on the additional resources (e.g. POS
tagger) and then annotate the parallel data using
this tool. This technique has been applied exten-
sively in SMT systems (e.g. Niehues and Kolss
(2009)) as well as in some NMT systems (e.g.
Sennrich and Haddow (2016)). The second tech-
nique would be to use the annotated data directly
to train the model.

The goal of this work is to integrate the ad-
ditional linguistic resources directly into neural
models, in order to achieve better performance. To
do so, we build a multi-task model and train sev-
eral NLP tasks jointly.

We use an attention-based sequence-to-
sequence model for all tasks. Experiments show
that we are able to improve the performance on
the German to English machine translation task
measured in BLEU, BEER and CharacTER. Fur-
thermore, we analyze three important decisions
when designing multi-task models. First, we in-
vestigated the influence of secondary tasks. Also,
we analyze the influence of training schedule, e.g.
whether we need to adjust it in order to get the
best performance on the target task. And finally,
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we evaluated the amount of parameter sharing
enforced by different model architectures.

The main contributions of this paper are
(1) that we show multi-task learning is possi-
ble within attention-based sequence-to-sequence
models, which are state-of-the-art in machine
translation and (2) that we analyze the influence
of three main design decisions.

2 Related Work

Motivated by the success of using features learned
from linguistic resources in various NLP tasks,
there have been several approaches including ex-
ternal information into neural network-based sys-
tems.

The POS-based information has been integrated
for language models in Wu et al. (2012); Niehues
et al. (2016). In the neural machine translation,
using additional word factors like POS-tags has
shown to be beneficial (Sennrich and Haddow,
2016).

The initial approach for multi-task learning for
neural networks was presented in Collobert et al.
(2011). The authors used convolutional and feed
forward networks for several tasks such as seman-
tic parsing and POS tagging. This idea was ex-
tended to sequence to sequence models in Luong
et al. (2015).

A special case of multi-task learning for atten-
tion based models has been explored. In multi-
lingual machine translation, for example, the tasks
are still machine translation tasks but they need
to consider different language pairs. In this case,
a system with an individual encoder and decoder
(Firat et al., 2016b) as well as a system with a
shared encoder-decoder (Ha et al., 2016; Johnson
et al., 2016) has been proposed.

2.1 Attention Models

Recently, state-of-the art performance in machine
translation was significantly improved by using
neural machine translation. In this approach, a
recurrent neural network (RNN)-based encoder-
decoder architecture is used to transform the
source sentence into the target sentence.

In the encoder, an RNN is used to encode
the source sentence into a fixed size of continu-
ous space representation by inserting the source
sentence word-by-word into the network. First,
source words are encoded into a one-hot encoding.
Then a linear transformation of this into a con-

tinuous space, referred to as word embeddings, is
learned. An RNN model will learn the source sen-
tence representation over these word embeddings.
In a second step, the decoder is initialized by the
representation of the source sentence and is then
generating the target sequence one word after the
other using the last generated word as input for the
RNN. In order to get the output probability at each
target position, a softmax layer that get the hidden
state of the RNN as input is used (Sutskever et al.,
2014).

The main drawback of this approach is that the
whole source sentence has to be stored in a fixed-
size context vector. To overcome this problem,
Bahdanau et al. (2014) introduced the soft atten-
tion mechanism. Instead of only considering the
last state of the encoder RNN, they use a weighted
sum of all hidden states. Using these weights, the
model is able to put attention on different parts of
the source sentence depending on the current sta-
tus of the decoder RNN. In addition, they extended
the encoder RNN to a bi-directional one to be able
to get information from the whole sentence at ev-
ery position of the encoder RNN. A detailed de-
scription of the NMT framework can be found in
Bahdanau et al. (2014).

3 Multi-task Learning

In a traditional NLP pipeline, a named entity
recognition or machine translation system employ
POS information by using the POS tags as addi-
tional features. For example, the system will learn
that the probability of a word being a named en-
tity is higher if the word is marked as a noun.
First, a POS tagger is used to annotate the input
data. Combining the statistical models used for
POS tagging and named entity recognition might
not be straightforward.

Recent advances in deep learning approaches,
e.g. CNN or RNN-based models (Labeau and
Löser K., 2015), made it straightforward to use
very similar techniques throughout different NLP
tasks. Therefore, there are new methods to com-
bine the tasks. Instead of using the output of a
model as input for another one, for example, we
can build one model for all tasks. The model is
then automatically able to learn to share as much
information across the tasks as necessary.

For building a model that can learn three NLP
tasks, we use the attention-based encoder-decoder
model, which is a standard in state-of-the-art ma-
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chine translation systems. The two non-MT tasks
can also be modeled by converting them into a
translation problem. Instead of translating the
source words into the target language, we trans-
late the words into labels, either POS-tags or NE-
labels.

In this work, we study several crucial design
aspects when applying attention-based encoder-
decoder model for a multi-task learning scenario.
First, we consider different architectures of the
network in order to assess how much parameter
sharing is useful between the tasks. In general,
sharing more information across the tasks is pre-
ferred. However, if the tasks differ from each other
greatly, it might be helpful to restrict the degree of
sharing. In addition, the training schedule of each
task has to be addressed. While all three tasks are
handled as a form of translation, certain distinc-
tions and special processes needed to be asserted.
In Section 3.3 we address this issue.

3.1 Architecture

The general attentional encoder-decoder model
consists of three main parts: the encoder E, the
attention model A and the decoder D. Figure 1
gives an overview of this layout.

Our baseline considers the scenario where we
have separate models for each task. Therefore,
all three parts (encoder, attention model, and de-
coder) stand separately for each task. We will
have nine components EMT , EPOS , ENE , AMT ,
APOS , ANE , DMT , DPOS , DNE in total.

The one main design decision for a multi-
task learning architecture is the degree of sharing
across the tasks. Motivated by architectures pro-
posed for multi-lingual machine translation (Dong
et al., 2015; Firat et al., 2016a; Ha et al., 2016), we
analyze the impact of different degrees of sharing
in the output quality. When sharing more parame-
ters between the tasks, the models are able to learn
more from the training data of other tasks. If the
tasks are very distant, on the other hand, it might
be harmful to share the parameters.

Shared encoder (shrd Enc) One promising way
is to share components that handle the same type
of data. Since all our tasks share English as input
here is the encoder.

In this architecture, we therefore use one en-
coder for all tasks. This is the minimal degree of
sharing we consider in our experiments. A com-
mon encoder EALL is used for all tasks, but sepa-

rate attention models AMT , APOS , ANE and de-
coders DMT , DPOS , DNE are used.

Shared attention (shrd Att) The next compo-
nent is the attention model which connects the en-
coder and decoder. While the output should be
different for the addressed tasks, the type of input
is the same. Therefore, it might be helpful to share
more information between the models.

In a second architecture, we also share the at-
tention model in addition to the encoder. So in
this setup, we have one encoder EALL, one atten-
tion model AALL and three decoder DMT , DPOS ,
DNE .

Shared decoder (shrd Dec) Finally, we explore
whether it is possible to share all information
across the tasks and let the model learn how to rep-
resent the different tasks. Thus, in this scheme, we
aim to share the decoder partially. The only thing
that is not shared is the final softmax layer.

In this architecture, the decoder RNN has to
model the generation of target words as well as
that of labels. Therefore, we have only one en-
coder EALL, one attention model AALL and one
decoder DALL. In the decoder, however, we have
separated output layers for each task.

Figure 1 depicts which layers are shared de-
pending on the architecture.

3.2 Training Schedule

In this section, we discuss the influence of the
training schedule on the quality of the model.

Throughout our experiments we used a mini-
batch size of 512 tokens. The weight updates were
determined using the Adam algorithm.

The training has to be adapted to the multi-task
scenario. The main decision is how to present the
training examples to the training algorithm. We
only consider one task in each mini-batch. Al-
though the model structure is the same for all
tasks, the models for the individual tasks have dif-
ferent weights. Therefore, parallelization on the
GPU would be less efficient when using different
tasks within one batch. In order to train our model
on all tasks in parallel, we randomly shuffle the
mini-batches from all tasks. This is our default
training schedule. One issue in the multi-task sce-
nario is that the data size might vary. In this case,
the model will mainly concentrate on the task with
the most data and not achieve the best performance
on each task.
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Figure 1: Overview on the different architectures used for multi-task learning

This challenge is strongly related with the prob-
lem of domain adaptation in machine translation,
where a large out-of-domain data is available but
only a small amount of in-domain data. For this
scenario, first training on all data and then fine-
tuning on the in-domain data was very successful
(Lavergne et al., 2011; Cho et al., 2016). There-
fore, we adapt this approach to the multi-task sce-
nario. In this case, we first trained the model on
all tasks and then continued training only on the
main task. We will refer to this training schedule
as adapted.

3.3 Target Length

While all tasks are modeled as a translation prob-
lem in this work, the nature of each task is largely
different. One main difference between the trans-
lation task and the other two tasks is the length of
the target sequence. While it is unknown in the
translation task, it is known and fixed for the other
two cases. During training this does not matter as
the target sequence is given. For testing the sys-
tem, however, this issue is crucial to address.

In our initial experiment, it was shown that
the POS tagger was able to learn the correct tar-
get length in most of the cases. For some sen-
tences, however, the estimated target length was
not correct. Therefore, the prior knowledge of se-
quence length is used during decoding so that la-
bel sequences are generated with the correct tar-
get length. It is worth to mention that the desired

length of the labels is not exactly the length of the
input to the model itself. Our model uses inputs
with subwords units generated by byte-pair encod-
ing (Sennrich et al., 2016).

4 Experimental Setup

We conduct experiments using the multi-task ap-
proach on three different tasks: machine trans-
lation from German to English, German fine-
grained POS tagging and German NE tagging.
As briefly mentioned in Section 1, multi-task ap-
proach can be helpful when data is sparse. In or-
der to simulate this, we deploy only German to
English TED data for the translation task.

4.1 Data

For the translation task, we used 4M tokens of the
WIT corpus (Cettolo et al., 2012) for German to
English as training data. We used dev2010 for val-
idation and tst2013 and tst2014 for testing, pro-
vided by the IWSLT. We only used training exam-
ples shorter than 60 words per sentence.

The POS tagger was trained on 720K tokens the
Tiger Corpus (Brants et al., 2004). This corpus
contains German newspaper text. Consequently, it
is out-of-domain data for the machine translation
task. The development and the test data are also
from this corpus. The POS tag set consists of 54
tags and the fine-grained POS tags with morpho-
logical annotations has 774 labels.

Finally, we trained the German named-entity
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tagger on 450K tokens of the GermEval 2014 NER
Shared Task data (Benikova et al., 2014). The cor-
pus is extracted from Wikipedia and the training
data consists of 24K sentences.

We preprocess the parallel data by tokenizing
and true-casing. In addition, we trained a byte-pair
encoding (Sennrich et al., 2016) with 40K sub-
words on the source and target side of the TED
corpus jointly. We then applied the subwords to
all German and English corpora.

4.2 System Architecture

For all our experiments, we use an attentional
encoder-decoder model. The baseline systems use
this architecture as well. The encoder uses word
embeddings of size 256 and a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) with 256 hidden layers for each di-
rection. For the attention, we use a multi-layer
perceptron with 512 hidden units and tanh activa-
tion function. The decoder uses conditional GRU
units with 512 hidden units. The models are all
trained with Adam, where we restarted the algo-
rithm twice and early stopping is applied using
log-likelihood of the concatenated validation sets
from the considered tasks. For the adapted sched-
ule, Adam is started once again when training only
on the target task. The model is implemented in
lamtram (Neubig, 2015)1.

4.3 Evaluation

The machine translation output is evaluated with
BLEU (Papineni et al., 2002), BEER (Stanojevic
and Sima’an, 2014) and CharacTER (Wang et al.,
2016). For the POS tags, we report error rates on
the small label set as well as on the large label set.

5 Results

In this section, we present the results from our ex-
periments and analysis.

5.1 Initial experiments on the architecture

The results of the initial experiments on the ma-
chine translation tasks are shown in Table 1. The
table displays the performance on the validation
set and on both test sets. For all experiments, we
first show the BLEU score, then the BEER score
and finally the characTER.

1The extension to handle multi-task training can be down-
loaded https://github.com/isl-mt/lamtram

First, we show the results of the baseline neu-
ral MT system trained on the parallel data (single
task). As mentioned in the beginning, we sim-
ulated a low-resource condition in these experi-
ments by only using the data from TED, which are
roughly 185K sentences.

We evaluated models that are trained both on
the translation and POS tagging task. Although
the POS data is out-of-domain and significantly
smaller than the parallel training data for the trans-
lation task (ca. 20% of the size), we see improve-
ments for all three architectures consistently in
three metrics. The BLEU scores is improved by
more than 1 point and the characTER is reduced
by more than 1.5 points. The BEER metric score
is improved by more than a half point on both sets.

In a more detailed look at this task, we see that
the model sharing the most (shrd Dec) performs
better than the baseline, but worse than the other
two. Therefore, we can conclude that it is helpful
to separate the tasks when the components work
on different types of data. Whether it is helpful
to share the attention layer (shrd Att) or not (shrd
Enc) is not clear from this experiment. Therefore,
we concentrate on these two architectures in the
following experiments.

5.2 Impact of design decisions
Following the initial experiment, we address the
following three design questions:

• What kind of influence does the secondary
task have?

• How do the different architectures perform?

• Do we need to adapt the training schedule?

In order to clarify the impact of the three hyper-
parameters (the architectures, the tasks and the
training) we performed experiments based on pos-
sible combinations. We used two most promising
architectures, shrd Enc and shrd Att as discussed
in Section 5.1. We use three task combinations,
POS+MT, NE+MT and NE+POS+MT. Two train-
ing strategies are applied with and without adapta-
tion as described in Section 3.2. These 12 systems
are evaluated on the two test sets using three dif-
ferent metrics. Consequently, in total we have 72
measurements for the 12 systems.

Since a first view on the results did not clearly
reveal a best performing system, we conducted
a more detailed analysis by averaging the results
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Task(s) Arch. Valid Test
dev 2010 tst2013 tst2014

MT - 29.91/62.16/51.06 30.85/62.27/51.16 26.12/58.73/55.17

POS + MT
shrd Enc 30.62/62.77/48.35 31.97/62.72/49.69 27.08/58.99/54.50
shrd Att 30.51/62.27/49.09 31.76/62.68/49.59 26.86/58.84/53.88
shrd Dec 30.36/62.34/49.28 31.26/62.31/50.35 26.52/58.48/54.00

Adapted NE + POS + MT shrd Enc 30.70/62.96/48.60 32.30/63.25/49.22 27.78/59.74/53.49

Table 1: Results of multi-task learning architectures on the machine translation task
(BLEU/BEER/characTER)

over several configurations. First, we analyze the
influence of adapting the training schedule by fine-
tuning on the MT task. Out of the 12 systems, six
systems used an adapted training schedule.

As shown in the first line of Table 2 (All), when
averaging over the six systems using the adapted
training schedule and tested both test sets, we see
improvements in all considered metrics compare
to the systems using the default training schedule.
The BLEU score improved by 0.4 BLEU points,
BEER by 0.2 and characTER by 0.4. Further-
more, we compared each of the 36 measurements
using the adapted schedule with the correspond-
ing measurement using the default training sched-
ule. Thus, the scores are calculated on same test
set, based on the same metric. The model differs
whether it is trained using the default or adapted
training schedule. How often the system with an
adapted schedule performs better is shown in the
last column of Table 2. When directly comparing
these systems, in 25 out of 36 cases the ones with
the adapted schedule perform better.

We analyzed the influence of the architecture as
well as tasks considered in training in the same
way. The influence of both aspects, however, was
not as clear as the one from the training schedule.
In order to get a deeper understanding, we ana-
lyzed in which cases it is more helpful to adapt the
training schedule. As a first step, we looked at the
correlation between the training schedule and the
two different architectures. The results are shown
in the next lines of Table 2.

Compared to the systems using the shrd Enc
layout, we observe even bigger improvements
when applying the adapted schedule. The av-
eraged BLEU score is improved by 0.7 BLEU
points. Furthermore, the system with the adapted
training schedule performs better, in almost all
cases. For the shrd Att model, in contrast, we gain
nearly no improvements from the adapted sched-

ule. We also observed that the system with the
default schedule performs better in 10 out of 18
cases.

One reason for this can be that the default train-
ing schedule may not perform as well any more
when only a few parameters are observed in every
batch. In this case, continuing and concentrating
on one task seems to be very important.

In addition, we evaluate the correlation between
the tasks involved and the training schedule. The
results are shown in the same table. The adapted
training schedule has no effect when training on
named entities and machine translation. The ef-
fect when training on POS tagging and MT is also
relatively small. When training the three tasks
together, however, the system with an adapted
schedule performs always better than the system
with the default one. The average BLEU is im-
proved by 0.7. The BEER score and characTER
are also improved by 0.5 and 1.2 points.

Inspired by the results, we build the adapted
shrd Enc model trained on all three tasks, as shown
in Table 1. This model improved the performance
by 1.5 BLEU points over the baseline system.
Also the BEER score is improved by 1 and the
characTER score reduced by 1.8 to 2 points.

5.3 POS Tagging Performance

In addition to the results on the task of translation,
we also evaluated the performance on the task of
POS tagging. The results are shown in Table 3.

For the validation and test data, we show the
error rate on the small tag sets as well as the error
rate on the morpho-syntactic tag set. In the table,
we always first show the results for the small test
set.

The baseline system trained only on the Tiger
corpus achieves an error rate of 5.49, for the POS
tags in the validation set. For the morpho-syntactic
tag of the validation set, it achieves 11.36. The
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Systems Default Schedule Adapted Schedule Adapted better
All 29.48/60.89/52.05 29.89/61.08/51.64 25/36
shrd Enc 29.34/60.85/52.31 30.00/61.25/51.50 17/18
shrd Att 29.62/61.93/51.78 29.78/60.93/51.79 8/18
POS + MT 29.41/60.81/51.92 29.78/61.00/51.90 8/12
NE + MT 29.60/61.00/51.76 29.79/60.96/51.77 5/12
NE + POS + MT 29.42/60.87/52.46 30.09/61.46/51.25 12/12

Table 2: Impact of the training schedule in the machine translation task (BLEU/BEER/characTER)

Task(s) Model Default schedule Adaptation schedule
Valid Test Valid Test

POS - 5.49/11.36 10.13/17.27 - -

POS + MT
shrd Enc 3.99/9.98 7.55/14.98 3.57/8.82 6.24/13.24
shrd Att 3.86/9.55 6.98/14.17 3.16/8.23 5.52/12.25
shrd Dec 3.57/9.28 7.40/14.62 3.53/8.94 5.81/12.56

NE + POS + MT
shrd Enc 3.42/9.00 5.86/12.87 3.00/8.00 5.06/11.62
shrd Att 3.08/8.45 6.23/13.28 2.78/7.87 5.49/12.10

Table 3: Results of different multi-task architectures on the POS task

performance on the test data is 10.13 and 17.27
for both tag sets. In all systems we used one sys-
tem the generate the both tag sets. The small tags
were evaluated by removing the morhpo-syntactic
information from the output

It is clear that all models outperform the base-
line. It seems to be very helpful for the POS task
to jointly train the model along with the translation
task. The MT data is significantly larger than the
POS data, which is beneficial for this task.

A more detailed look shows that model adap-
tation is beneficial for a good performance. In all
cases the performance is improved by adapting the
model to the POS task. Therefore, when the data
of the main task is small compared to the overall
training data, adapting on the main task is even
more important.

Furthermore, we see improvements when using
a third task in all cases. Facilitating this combina-
tion of tasks is also helpful for POS tagging.

As we observed in the MT task, the impact and
differences brought from each architecture are not
huge. The architectures considered in this work
perform similar. Even the system sharing all com-
ponents achieves a comparable performance on
this task.

The best performing model, however, is the
shred Enc model, trained on all three tasks and
adapted to the task. This model achieved an er-
ror of 5.06 on the small tag set. Compared to the

baseline performance of 10.13, we can see that the
error rate is halved. On the fine-grained tag set, we
see an improvement from 17.27 to 11.62, which is
a more than 30% reduction in error rate.

5.4 Analysis and Examples

In order to show the influence of the other tasks,
we show translation examples in Table 4. For the
examples we use the multi-task system trained on
all three tasks with the shrd Enc architecture.

A common problem of many neural MT sys-
tems is that they do not translate parts of the source
sentence, or that parts of the source sentence are
translated twice. The baseline system suffers from
this, as shown in the first two examples. The trans-
lation of the multi-task system is improved com-
pared to the baseline in several aspects. In the first
example, the baseline system is not translating the
German compound Geburtsfehler into birth defect
correctly, but into birth. Although the multi-task
system does not generate the translation that ex-
actly matches the reference the translation is un-
derstandable. In the second example, the phrase of
10 is not repeated. One explanation for this could
be that the additional information from the POS
data leads to a better encoding of the structure of
the source sentence.

The influence of the named-entity training ex-
amples on the translation quality is clearer. In sev-
eral cases, the model is able to handle named enti-
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German sie ist kein Geburtsfehler.
Reference it’s not a birth defect.
Baseline she’s not born.
Multi-task it’s not a birth error.
German das bedeutet, dass 8 von 10 Entscheidungen...
Reference that means that eight out of 10 of the decisions...
Baseline that means that eight of 10 of 10 choices...
Multi-task that means that eight of 10 decisions...
German ...[“Benjamin Franklin” von Walter Isaacson][“John Adams” von David McCullough]...
Reference ...[“Benjamin Franklin” by Walter Isaacson][“John Adams” by David McCullough]...
Baseline ...[Benjamin Franklin, from Walter Franklin”][The “John Adams”]...
Multi-task ...[“Benjamin Franklin” from Walter Isaacson],[“John Adams” from David McCul-

lough...
German darum habe ich infantile Zerebralparese, ...
Reference as a result, I have cerebral palsy,
Baseline that’s why I have the infantile,
Multi-task I have infantile cerebral palsy,
German Prousts Freunde hätten das Land verlassen müssen, ..
Reference you know, Proust’s boyfriends would have to leave the country ...
Baseline Prolled friends had to have left the country ...
Multi-task Prouless friends have to leave the country ...

Table 4: Translation examples

ties better. As shown in the third and fourth exam-
ple, the NMT system is not able to copy a named
entity from the source to the target, nor to translate
rare words. In the third example, the baseline sys-
tem is not able to generate the correct last name of
the first author Isaacson, but is generating the last
name from the book title. In the second part of the
example, the baseline system completely deletes
the author. In contrast, the multi-task system is
able to generate the correct sequence. In the fourth
example the multi-task example is able to translate
Zerebralparese (cerebral palsy), while the base-
line system is not able to do it.

We would like to note that as shown in the last
example, there are also several cases where the
NMT system is not able to translate names or rare
words correctly.

6 Conclusion

In this paper we proposed the use of multi-
task learning for attention-based encoder-decoder
models in order to exploit linguistic resourced for
NMT. By training the models not only on the
machine translation task, but also on other NLP
tasks, we yielded clear improvements on the trans-
lation performance. Results show that multi-task
learning improves the translation up to 1.5 BLEU

points and 2 characTER points. As a by product,
we were also able to improved the performance of
the POS tagging by 30% to 50% relatively. This is
especially helpful since data annotation for many
NLP tasks is very time-consuming and expensive.
It suggests that multi-task learning is a promising
approach to exploit any linguistic annotated data,
which is especially important if we have a low-
resource condition.

We addressed the influence of three design de-
cisions: the involved tasks, the training schedule
and the architecture of the model. The largest in-
fluence on the final performance was given by the
training schedule . By adapting the system on the
individual tasks, we were able to make most use
of available additional resources. In this case, we
showed that both additional resources, the data for
POS tagging as well as the named entity-annotated
corpus, were beneficial for the translation qual-
ity. It is worth mentioning that this was achieved
using corpora from a different domain, i.g. spo-
ken TED talks versus written style. Furthermore,
these corpora were significantly smaller than the
available parallel data. Finally, the amount of pa-
rameter sharing defined by the architecture of the
model has less influence on the final performance.
Although, the best performance on both tasks was
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achieved with a model sharing only the encoder
between the tasks.

In this work, the performance of machine trans-
lation task was improved by adopting multi-task
training with other source language NLP tasks. In
future work, we will also investigate methods to
include target-language NLP tasks into the joint
framework.
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Abstract

Pivot translation is a useful method for
translating between languages with little or
no parallel data by utilizing parallel data
in an intermediate language such as En-
glish. A popular approach for pivot trans-
lation used in phrase-based or tree-based
translation models combines source-pivot
and pivot-target translation models into a
source-target model, as known as triangu-
lation. However, this combination is based
on the constituent words’ surface forms
and often produces incorrect source-target
phrase pairs due to semantic ambiguity in
the pivot language, and interlingual differ-
ences. This degrades translation accuracy.
In this paper, we propose a approach for
the triangulation using syntactic subtrees
in the pivot language to distinguish pivot
language words by their syntactic roles to
avoid incorrect phrase combinations. Ex-
perimental results on the United Nations
Parallel Corpus show the proposed method
gains in all tested combinations of lan-
guage, up to 2.3 BLEU points.1

1 Introduction

In statistical machine translation (SMT) (Brown
et al., 1993), it is known that translation with mod-
els trained on larger parallel corpora can achieve
greater accuracy (Dyer et al., 2008). Unfor-
tunately, large bilingual corpora are not readily
available for many language pairs, particularly
those that do not include English. One effective so-
lution to overcome the scarceness of bilingual data
is to introduce a pivot language for which paral-

1Code to replicate the experiments can be found at
https://github.com/akivajp/wmt2017

[X1] dossier [X2]�

[X1] enregistrer [X2]�

[X2] [X1] 记录�

[X1] 记录 [X2]�

[X1] record [X2]�

(a) Standard triangulation method matching phrases

NP�

NP�

DT�

record�

NP�NN�

[X1]� [X2]�

[X1] dossier [X2]�

VP�

VP�

TO�

record�

NP�VB�

[X1]� [X2]�

[X1] enregistrer [X2]�

[X2] [X1] 记录�

[X1] 记录 [X2]�

(b) Proposed triangulation method matching subtrees

Figure 1: Example of disambiguation by parse
subtree matching (Fr-En-Zh), [X1] and [X2] are
non-terminals for sub-phrases.

lel data with the source and target languages exists
(de Gispert and Mariño, 2006).
Among various methods using pivot languages,

one popular and effective method is the triangu-
lation method (Utiyama and Isahara, 2007; Cohn
and Lapata, 2007), which first combines source-
pivot and pivot-target translation models (TMs)
into a source-target model, then translates using
this combined model. The procedure of triangu-
lating two TMs into one has been examined for
different frameworks of SMT and its effectiveness
has been confirmed both in Phrase-Based SMT
(PBMT) (Koehn et al., 2003; Utiyama and Isahara,
2007) and in Hierarchical Phrase-Based SMT (Hi-
ero) (Chiang, 2007; Miura et al., 2015). How-
ever, word sense ambiguity and interlingual dif-
ferences of word usage cause difficulty in accu-
rately learning correspondences between source
and target phrases, and thus the accuracy obtained
by triangulated models lags behind that of models
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trained on direct parallel corpora.
In the triangulation method, source-pivot and

pivot-target phrase pairs are connected as a source-
target phrase pair when a common pivot-side
phrase exists. In Figure 1 (a), we show an example
of standard triangulation on Hiero TMs that com-
bines hierarchical rules of phrase pairs by match-
ing pivot phrases with equivalent surface forms.
This example also demonstrates problems of am-
biguity: the English word “record” can corre-
spond to several different parts-of-speech accord-
ing to the context. More broadly, phrases includ-
ing this word also have different possible gram-
matical structures, but it is impossible to uniquely
identify this structure unless information about the
surrounding context is given.
This varying syntactic structure will affect trans-

lation. For example, the French verb “enreg-
istrer” corresponds to the English verb “record”,
but the French noun “dossier” also corresponds to
“record” — as a noun. As a more extreme ex-
ample, Chinese is a languages that does not have
inflections according to the part-of-speech of the
word. As a result, even in the contexts where
“record” is used with different parts-of-speech, the
Chinese word “记录” will be used, although the
word order will change. These facts might result in
an incorrect connection of “[X1] enregistrer [X2]”
and “[X2] [X1] 记录” even though proper corre-
spondence of “[X1] enregistrer [X2]” and “[X1]
dossier [X2]” would be “[X1] 记录 [X2]” and
“[X2] [X1] 记录”. Hence a superficial phrase
matching method based solely on the surface form
of the pivot will often combine incorrect phrase
pairs, causing translation errors if their translation
scores are estimated to be higher than the proper
correspondences.
Given this background, we hypothesize that dis-

ambiguation of these cases would be easier if the
necessary syntactic information such as phrase
structures are considered during pivoting. To in-
corporate this intuition into our models, we pro-
pose a method that considers syntactic information
of the pivot phrase, as shown in Figure 1 (b). In this
way, the model will distinguish translation rules
extracted in contexts in which the English sym-
bol string “[X1] record [X2]” behaves as a verbal
phrase, from contexts in which the same string acts
as nominal phrase.
Specifically, we propose a method based on

Synchronous Context-Free Grammars (SCFGs)

(Aho and Ullman, 1969; Chiang, 2007), which
are widely used in tree-based machine translation
frameworks (§2). After describing the baseline tri-
angulation method (§3), which uses only the sur-
face forms for performing triangulation, we pro-
pose two methods for triangulation based on syn-
tactic matching (§4). The first places a hard re-
striction on exact matching of parse trees (§4.1)
included in translation rules, while the second
places a softer restriction allowing partial matches
(§4.2). To investigate the effect of our proposed
method on pivot translation quality, we perform
experiments of pivot translation on the United Na-
tions Parallel Corpus (Ziemski et al., 2016), which
shows that our method indeed provide significant
gains in accuracy (of up to 2.3 BLEU points), in al-
most all combinations of 5 languages with English
as a pivot language (§5). In addition, as an auxil-
iary result, we compare pivot translation using the
proposed method with zero-shot neural machine
translation, and find that triangulation of symbolic
translation models still significantly outperforms
neural MT in the zero-resource scenario.

2 Translation Framework

2.1 Synchronous Context-Free Grammars
In this section, first we cover SCFGs, which are
widely used inmachine translation, particularly hi-
erarchical phrase-based translation (Hiero) (Chi-
ang, 2007). In SCFGs, the elementary structures
used in translation are synchronous rewrite rules
with aligned pairs of source and target symbols on
the right-hand side:

X →
⟨
s, t

⟩
(1)

where X is the head symbol of the rewrite rule,
and s and t are both strings of terminals and non-
terminals on the source and target side respec-
tively. Each string in the right side pair has the
same number of indexed non-terminals, and iden-
tically indexed non-terminals correspond to each-
other. For example, a synchronous rule could take
the form of:

X → ⟨X0 of X1, X1的 X0⟩ . (2)

Synchronous rules can be extracted based on
parallel sentences and automatically obtained
word alignments. Each extracted rule is scored
with phrase translation probabilities in both direc-
tions ϕ(s|t) and ϕ(t|s), lexical translation proba-
bilities in both directions ϕlex(s|t) and ϕlex(t|s),
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a word penalty counting the terminals in t, and a
constant phrase penalty of 1.
At translation time, the decoder searches for the

target sentence that maximizes the derivation prob-
ability, which is defined as the sum of the scores of
the rules used in the derivation, and the log of the
language model (LM) probability over the target
strings. When not considering an LM, it is possi-
ble to efficiently find the best translation for an in-
put sentence using the CKY+ algorithm (Chappe-
lier et al., 1998). When using an LM, the expanded
search space is further reduced based on a limit on
expanded edges, or total states per span, through a
procedure such as cube pruning (Chiang, 2007).

2.2 Hierarchical Rules

In this section, we specifically cover the rules used
in Hiero. Hierarchical rules are composed of initial
head symbol S, and synchronous rules containing
terminals and single kind of non-terminalsX .2 Hi-
erarchical rules are extracted using the same phrase
extraction procedure used in phrase-based trans-
lation (Koehn et al., 2003) based on word align-
ments, followed by a step that performs recursive
extraction of hierarchical phrases (Chiang, 2007).
For example, hierarchical rules could take the

form of:

X → ⟨Officers, 主席团成員⟩ (3)
X → ⟨the Committee, 委员会⟩ (4)
X → ⟨X0 of X1, X1的 X0⟩ . (5)

From these rules, we can translate the input sen-
tence by derivation:

S → ⟨X0, X0⟩
⇒ ⟨X1 of X2, X2的 X1⟩
⇒ ⟨Officers of X2, X2主席团成員⟩
⇒ ⟨Officers of the Committee,

委员会的主席团成員⟩

The advantage of Hiero is that it is able to
achieve relatively high word re-ordering accu-
racy (compared to other symbolic SMT alterna-
tives such as standard phrase-based MT) with-
out language-dependent processing. On the other
hand, since it does not use syntactic information
and tries to extract all possible combinations of

2It is also standard to include a glue rule S → ⟨X0, X0⟩,
S → ⟨S0 X1, S0 X1⟩, S → ⟨S0 X1, X1 S0⟩ to fall back
on when standard rules cannot result in a proper derivation.

rules, it has the tendency to extract very large trans-
lation rule tables and also tends to be less syntac-
tically faithful in its derivations.

2.3 Explicitly Syntactic Rules
An alternative to Hiero rules is the use of syn-
chronous context-free grammar or synchronous
tree-substitution grammar (Graehl and Knight,
2004) rules that explicitly take into account the
syntax of the source side (tree-to-string rules), tar-
get side (string-to-tree rules), or both (tree-to-tree
rules). Taking the example of tree-to-string (T2S)
rules, these use parse trees on the source language
side, and the head symbols of the synchronous
rules are not limited to S or X , but instead use
non-terminal symbols corresponding to the phrase
structure tags of a given parse tree. For example,
T2S rules could take the form of:

XNP → ⟨(NP (NNS Officers)), 主席团成員⟩ (6)
XNP → ⟨(NP (DT the) (NNP Committee)), 委员会⟩ (7)

XPP →
⟨
(PP (IN of)XNP,0), X0 的

⟩
(8)

XNP →
⟨
(NPXNP,0 XPP,1), X1 X0

⟩
(9)

.
Here, parse subtrees of the source language rules
are given in the form of S-expressions.
From these rules, we can translate from the parse

tree of the input sentence by derivation:

XROOT →
⟨

XNP,0, X0

⟩

⇒
⟨
(NP XNP,1 XPP,2), X2 X1

⟩

⇒
⟨
(NP (NP (NNS Officers) XPP,2)), X2 主席团成員

⟩

∗⇒ ⟨ (NP
(NP (NNS Officers))
(PP (IN of)
(NP (DT the)
(NNP Committee))))

, 委员会的主席团成員⟩
In this way, it is possible in T2S translation to

obtain a result conforming to the source language’s
grammar. This method also has the advantage the
number of less-useful synchronous rules extracted
by syntax-agnostic methods such as Hiero are re-
duced, making it possible to learn more compact
rule tables and allowing for faster translation.

3 Standard Triangulation Method

In the triangulation method by Cohn and Lapata
(2007), we first train source-pivot and pivot-target
rule tables as TSP and TPT respectively. Then we
search TSP and TPT for source-pivot and pivot-
target rules having a common pivot phrase, and
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synthesize them into source-target rules to create
rule table TST :

X →
⟨
s, t

⟩
∈ TST

s.t. X → ⟨s, p⟩ ∈ TSP ∧ X →
⟨
p, t

⟩
∈ TPT .

(10)

For all the combined source-target rules, phrase
translation probability ϕ(·) and lexical translation
probability ϕlex(·) are estimated according to the
following equations:

ϕ
(
t|s

)
=

∑

p∈TSP ∩TP T

ϕ
(
t|p

)
ϕ (p|s) , (11)

ϕ
(
s|t

)
=

∑

p∈TSP ∩TP T

ϕ (s|p)ϕ
(
p|t

)
, (12)

ϕlex

(
t|s

)
=

∑

p∈TSP ∩TP T

ϕlex

(
t|p

)
ϕlex (p|s) , (13)

ϕlex

(
s|t

)
=

∑

p∈TSP ∩TP T

ϕlex (s|p)ϕlex

(
p|t

)
. (14)

The equations (11)-(14) are based on the mem-
oryless channel model, which assumes:

ϕ
(
t|p, s

)
= ϕ

(
t|p

)
, (15)

ϕ
(
s|p, t

)
= ϕ (s|p) (16)

. For example, in equation (15), it is assumed that
the translation probability of target phrase given
pivot and source phrases is never affected by the
source phrase. However, it is easy to come up with
examples where this assumption does not hold.
Specifically, if there are multiple interpretations of
the pivot phrase as shown in the example of Figure
1, source and target phrases that do not correspond
to each other semantically might be connected, and
over-estimation by summing products of the trans-
lation probabilities is likely to cause failed transla-
tions.

4 Triangulation with Syntactic Matching

In the previous section, we explained about the
standard triangulation method and mentioned that
the pivot-side ambiguity causes incorrect estima-
tion of translation probability and the translation
accuracy might decrease. To address this prob-
lem, it is desirable to be able to distinguish pivot-
side phrases that have different syntactic roles or
meanings, even if the symbol strings are exactly
equivalent. In the following two sections, we de-
scribe two methods to distinguish pivot phrases
that have syntactically different roles, one based
on exact matching of parse trees, and one based on
soft matching.

4.1 Exact Matching of Parse Subtrees
In the exact matching method, we first train pivot-
source and pivot-target T2S TMs by parsing the
pivot side of parallel corpora, and store them into
rule tables as TPS and TPT respectively. Syn-
chronous rules of TPS and TPT take the form of
X → ⟨p̂, s⟩ and X →

⟨
p̂, t

⟩
respectively, where

p̂ is a symbol string that expresses pivot-side parse
subtree (S-expression), s and t express source and
target symbol strings. The procedure of synthesiz-
ing source-target synchronous rules essentially fol-
lows equations (11)-(14), except usingTPS instead
of TSP (direction of probability features is re-
versed) and pivot subtree p̂ instead of pivot phrase
p. Here s and t do not have syntactic information,
therefore the synthesized synchronous rules should
be hierarchical rules explained in §2.2.
The matching condition of this method has

harder constraints than matching of superficial
symbols in standard triangulation, and has the po-
tential to reduce incorrect connections of phrase
pairs, resulting in a more reliable triangulated TM.
On the other hand, the number of connected rules
decreases as well in this restricted triangulation,
and the coverage of the triangulated model might
be reduced. Therefore it is important to create TMs
that are both reliabile and have high coverage.

4.2 Partial Matching of Parse Subtrees
To prevent the problem of the reduction of cover-
age in the exact matching method, we also propose
a partial matching method that keeps coverage just
like standard triangulation by allowing connection
of incompletely equivalent pivot subtrees. To esti-
mate translation probabilities in partial matching,
we first define weighted triangulation generaliz-
ing the equations (11)-(14) of standard triangula-
tion with weight function ψ(·):

ϕ
(
t|s

)
=

∑

p̂T

∑

p̂S

ϕ
(
t|p̂T

)
ψ (p̂T |p̂S)ϕ (p̂S |s) , (17)

ϕ
(
s|t

)
=

∑

p̂S

∑

p̂T

ϕ (s|p̂S)ψ (p̂S |p̂T )ϕ
(
p̂T |t

)
, (18)

ϕlex

(
t|s

)
=

∑

p̂T

∑

p̂S

ϕlex

(
t|p̂T

)
ψ (p̂T |p̂S)ϕlex (p̂S |s) , (19)

ϕlex

(
s|t

)
=

∑

p̂S

∑

p̂T

ϕlex (s|p̂S)ψ (p̂S |p̂T )ϕlex

(
p̂T |t

)
(20)

where p̂S ∈ TSP and p̂T ∈ PPT are pivot
parse subtrees of source-pivot and pivot-target
synchronous rules respectively. By adjusting ψ(·),
we can control the magnitude of the penalty for the
case of incompletely matched connections. If we
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define ψ(p̂T |p̂S) = 1 when p̂T is equal to p̂S and
ψ(p̂T |p̂S) = 0 otherwise, equations (17)-(20) are
equivalent with equations (11)-(14).
Better estimating ψ(·) is not trivial, and co-

occurrence counts of p̂S and p̂T are not avail-
able. Thereforewe introduce a heuristic estimation
method as follows:

ψ(p̂T |p̂S) =
w(p̂S , p̂T )∑

p̂∈TP T
w(p̂S , p̂)

· max
p̂∈TP T

w(p̂S , p̂) (21)

ψ(p̂S |p̂T ) =
w(p̂S , p̂T )∑

p̂∈TSP
w(p̂, p̂T )

· max
p̂∈TSP

w(p̂, p̂T ) (22)

w(p̂S , p̂T ) =





0 (flat(p̂S) ̸= flat(p̂T ))

exp (−d (p̂S , p̂T )) (otherwise)
(23)

d(p̂S , p̂T ) = TreeEditDistance(p̂S , p̂T ) (24)

where flat(p̂) returns the symbol
string of p̂ keeping non-terminals, and
TreeEditDistance(p̂S , p̂T ) is minimum cost
of a sequence of operations (contract an edge,
uncontract an edge, modify the label of an edge)
needed to transform p̂S into p̂T (Klein, 1998).
According to equations (21)-(24), we can as-

sure that incomplete match of pivot subtrees leads
d(·) ≥ 1 and penalizes such that ψ(·) ≤ 1/ed ≤
1/e, while exact match of subtrees leads to a value
of ψ(·) at least e ≈ 2.718 times larger than when
using partially matched subtrees.

5 Experiments

5.1 Experimental Set-Up

To investigate the effect of our proposed approach,
we evaluate the translation accuracy through pivot
translation experiments on the United Nations Par-
allel Corpus (UN6Way) (Ziemski et al., 2016).
UN6Way is a line-aligned multilingual parallel
corpus that includes data in English (En), Arabic
(Ar), Spanish (Es), French (Fr), Russian (Ru) and
Chinese (Zh), covering different families of lan-
guages. It contains more than 11M sentences for
each language pair, and is therefore suitable for
multilingual translation tasks such as pivot transla-
tion. In these experiments, we fixed English as the
pivot language considering that it is the language
most frequently used as a pivot language. This has
the positive side-effect that accurate phrase struc-
ture parsers are available in the pivot language,
which is good for our proposed method. We per-
form pivot translation on all the combinations of
the other 5 languages, and compared the accuracy

of each method. For tokenization, we adopt Sen-
tencePiece,3 an unsupervised text tokenizer and
detokenizer, that is although designed mainly for
neural MT, we confirmed that it also helps to re-
duce training time and even improves translation
accuracy in our Hiero model as well. We first
trained a single shared tokenization model by feed-
ing a total of 10M sentences from the data of all
the 6 languages, set the maximum shared vocabu-
lary size to be 16k, and tokenized all available text
with the trained model. We used English raw text
without tokenization for phrase structure analysis
and for training Hiero and T2S TMs on the pivot
side. To generate parse trees, we used the Cky-
lark PCFG-LA parser (Oda et al., 2015), and fil-
tered out lines of length over 60 tokens from all
the parallel data to ensure accuracy of parsing and
alignment. About 7.6M lines remained. Since Hi-
ero requires a large amount of computational re-
sources for training and decoding, so we decided
not to use all available training data but first 1M
lines for training each TM. As a decoder, we use
Travatar (Neubig, 2013), and train Hiero and T2S
TMs with its rule extraction code. We train 5-gram
LMs over the target side of the same parallel data
used for training TMs using KenLM (Heafield,
2011). For testing and parameter tuning, we used
the first 1,000 lines of the 4,000 lines test and dev
sets respectively. For the evaluation of transla-
tion results, we first detokenize with the Senten-
cePiece model and re-tokenized with the tokenizer
of the Moses toolkit (Koehn et al., 2007) for Ara-
bic, Spanish, French and Russian and re-tokenized
Chinese text with Kytea tokenizer (Neubig et al.,
2011), then evaluated using case-sensitive BLEU-
4 (Papineni et al., 2002).
We evaluate 6 translation methods:

Direct:
Translating with a Hiero TM directly trained
on the source-target parallel corpus without
using pivot language (as an oracle).

Tri. Hiero:
Triangulating source-pivot and pivot-target
Hiero TMs into a source-target Hiero TM us-
ing the traditional method (baseline, §3).

Tri. TreeExact
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using

3https://github.com/google/sentencepiece
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Source Target
BLEU Score [%]

Direct Tri. Hiero Tri. TreeExact Tri. TreePartial
(baseline) (proposed 1) (proposed 2)

Ar

Es 38.49 34.20 ‡ 34.97 ‡ 35.94
Fr 33.34 29.93 ‡ 30.68 ‡ 30.83
Ru 24.63 22.94 ‡ 23.94 ‡ 24.15
Zh 27.27 22.78 ‡ 25.17 ‡ 25.07

Es

Ar 27.18 22.97 ‡ 24.09 ‡ 24.45
Fr 43.24 38.74 ‡ 39.62 ‡ 40.12
Ru 28.83 26.35 ‡ 27.25 ‡ 27.41
Zh 27.08 24.54 25.00 † 25.16

Fr

Ar 25.10 21.65 21.40 † 22.13
Es 45.20 40.16 ‡ 41.03 ‡ 41.99
Ru 27.42 24.71 † 25.24 ‡ 25.64
Zh 25.84 23.16 23.56 23.53

Ru

Ar 22.53 19.82 19.86 20.35
Es 37.60 34.56 34.96 ‡ 35.62
Fr 34.05 30.75 † 31.43 ‡ 31.67
Zh 28.03 24.88 25.07 25.12

Zh

Ar 20.09 16.66 17.01 ‡ 17.73
Es 30.66 27.84 27.99 28.05
Fr 25.97 23.82 24.34 † 24.35
Ru 21.16 18.63 ‡ 19.58 ‡ 19.59

Table 1: Comparison of each triangulation methods. Bold face indicates the highest BLEU score in pivot
translation, and daggers indicate statistically significant gains over Tri. Hiero († : p < 0.05, ‡ : p < 0.01).

the proposed exact matching of pivot subtrees
(proposed 1, §4.1).

Tri. TreePartial
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using
the proposed partial matching of pivot sub-
trees (proposed 2, §4.2).

5.2 Experimental Results
The result of experiments using all combinations
of pivot translation tasks for 5 languages via En-
glish is shown in Table 1. From the results,
we can see that the proposed partial matching
method of pivot subtrees in triangulation outper-
forms the standard triangulationmethod for all lan-
guage pairs and achieves higher or almost equal
scores than proposed exact matching method. The
exact matching method also outperforms the stan-
dard triangulation method in the majority of the
language pairs, but has a lesser improvement than
partial matching method. In Table 2 we show the
comparison of coverage of each proposed triangu-
lated method. From this table, we can see that the

exact matching method reduces several percent in
number of unique phrases while the partial match-
ing method keeps the same coverage with surface-
form matching. We can consider that it is one of
the reasons of the difference in improvement sta-
bility between the partial and exactmatchingmeth-
ods.
We show an example of a translated sentences

for which pivot-side ambiguity is resolved in the
the syntactic matching methods:

Source Sentence in French:
La Suisse encourage tous les États parties
:
à

::::::::
soutenir

:::
le

::::::::
travail

::::::::::
conceptuel

:::::
que

::::
fait

:::::::::::
actuellement

::
le

::::::::::
Secrétariat .

Corresponding Sentence in English:
Switzerland encourages all parties to support
the current conceptual work of the secretariat.

Reference in Spanish:
Suiza alienta a todos los Estados partes

:
a

:::
que

:::::::
apoyen

:::
la

::::::
actual

:::::
labor

::::::::::
conceptual

:::
de

::
la

:::::::::
Secretaría .
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Source Target Number of source-side unique phrases/words
Tri. TreeExact Tri. TreePartial

Ar

Es 2.580M / 5,072 2.646M / 5,077
Fr 2.589M / 5,067 2.658M / 5,071
Ru 2.347M / 5,085 2.406M / 5,088
Zh 2.324M / 5,034 2.386M / 5,040

Es

Ar 1.942M / 5,182 2.013M / 5,188
Fr 2.062M / 5,205 2.129M / 5,210
Ru 1,978M / 5,191 2.037M / 5,197
Zh 1,920M / 5,175 1.986M / 5,180

Fr

Ar 2.176M / 5,310 2.233M / 5,316
Es 2.302M / 5,337 2.366M / 5,342
Ru 2.203M / 5.311 2.266M / 5,318
Zh 2.162M / 5.313 2.215M / 5,321

Ru

Ar 2.437M / 5,637 2.505M / 5,644
Es 2.478M / 5.677 2.536M / 5,682
Fr 2.479M / 5,661 2.531M / 5,665
Zh 2.466M / 5,682 2.515M / 5,688

Zh

Ar 1.480M / 9,428 1.556M / 9,474
Es 1.504M / 9,523 1.570M / 9,555
Fr 1.499M / 9,490 1,568M / 9,520
Ru 1.518M / 9,457 1.593M / 9,487

Table 2: Comparison of rule table coverage in proposed triangulation methods.

Direct:
Suiza alienta a todos los Estados partes a que
apoyen el trabajo conceptual que se examinan
en la Secretaría . (BLEU+1: 55.99)

Tri. Hiero:
Suiza

:::::::::::
conceptuales

::::
para

:::::::
apoyar

::
la

::::::
labor

:::
que

::
en

::::::
estos

::::::::::
momentos

:::
la

:::::::::
Secretaría alienta a

todos los Estados Partes . (BLEU+1: 29.74)

Tri. TreeExact:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaría . (BLEU+1: 43.08)

Tri. TreePartial:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaría . (BLEU+1: 43.08)

The results of Tri.TreeExact and Tri.TreePartial
are same in this example. We find that
the derivation in Tri.Hiero uses rule
X → ⟨X0 _parties X1, X1 X0 _Partes⟩4

4The words emphasized with underline and wavy-
underline in the example correspond to X0 and X1 respec-
tively.

causing incorrect re-ordering of phrases
followed by steps of incorrect word se-
lection.5 On the other hand, derivation in
Tri.TreeExact and Tri.TreePartial uses rule X →
⟨_tous _les X0 _parties, _todos X0 _Partes⟩6
synthesized from T2S rules with common pivot
subtree (NP (DT all) (NP’XNNP (NNS parties)).
We can confirm that the derivation improves
word-selection and word-reordering by using this
rule.

5.3 Comparison with Neural MT:
Recent results (Firat et al., 2016; Johnson et al.,
2016) have found that neural machine translation
systems can gain the ability to perform translation
with zero parallel resources by training onmultiple
sets of bilingual data. However, previous work has
not examined the competitiveness of these meth-
ods with pivot-based symbolic SMT frameworks
such as PBMT or Hiero. In this section, we com-
pare a zero-shot NMT model (detailed parameters
in Table 3) with our pivot-based Hiero models.

5For example, the word “conceptuales” with italic face in
Tri.Hiero takes the wrong form and position.

6The words emphasized in bold face in the example cor-
respond to the rule.
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vocabulary size: 16k (shared)
source embedding size: 512
target embedding size: 512
output embedding size: 512
encoder hidden size: 512
decoder hidden size: 512

LSTM layers: 1
attention type: MLP

attention hidden size: 512
optimizer type: Adam

loss integration type: mean
batch size: 2048

max iteration: 200k
dropout rate: 0.3
decoder type: Luong+ 2015

Table 3: Main parameters of NMT training

Direct NMT is trained with the same data of Di-
rect Hiero, Cascade NMT translates by bridging
source-pivot and pivot-target NMT models, and
Zero-Shot NMT is trained on single shared model
with pvt ↔ {src,target} parallel data according to
Johnson et al. (2016). To train and evaluate NMT
models, we adopt NMTKit.7 From the results
we see the tendency of NMT that directly trained
model achieves high translation accuracy even for
translation between languages of different fami-
lies, on the other hand, the accuracy is drastically
reduced in the situation when there is no source-
target parallel corpora for training. Cascade is
one immediate method connecting two TMs, and
NMT cascade translation shows the medium per-
formance in this experiment. In our setting, while
bilingually trained NMT systems were competi-
tive or outperformed Hiero-based models, zero-
shot translation is uniformly weaker. This may
be because we used only 1 LSTM layer for en-
coder/decoder, or because the amount of paral-
lel corpora or language pairs were not sufficient.
Thus, we can posit that while zero-shot translation
has demonstrated reasonable results in some set-
tings, successful zero-shot translation systems are
far from trivial to build, and pivot-based symbolic
MT systems such as PBMT or Hiero may still be a
competitive alternative.

7https://github.com/odashi/nmtkit

6 Conclusion

In this paper, we have proposed a method of pivot
translation using triangulation with exact or par-
tial matching method of pivot-side parse subtrees.
In experiments, we found that these triangulated
models are effective in particular when allowing
partial matching. To estimate translation probabil-
ities, we introduced heuristic that has no guarantee
to be optimal. Therefore in the future, we plan to
explore more refined estimation methods that uti-
lize machine learning.
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Barry Haddow† Alexandra Birch†

†School of Informatics, University of Edinburgh
?Faculty of Mathematics and Physics, Charles University

{amiceli, bhaddow}@inf.ed.ac.uk
{rico.sennrich, a.birch}@ed.ac.uk

helcl@ufal.mff.cuni.cz

Abstract

It has been shown that increasing model
depth improves the quality of neural ma-
chine translation. However, different
architectural variants to increase model
depth have been proposed, and so far, there
has been no thorough comparative study.

In this work, we describe and evaluate
several existing approaches to introduce
depth in neural machine translation. Ad-
ditionally, we explore novel architectural
variants, including deep transition RNNs,
and we vary how attention is used in
the deep decoder. We introduce a novel
"BiDeep" RNN architecture that combines
deep transition RNNs and stacked RNNs.

Our evaluation is carried out on the En-
glish to German WMT news translation
dataset, using a single-GPU machine for
both training and inference. We find that
several of our proposed architectures im-
prove upon existing approaches in terms
of speed and translation quality. We obtain
best improvements with a BiDeep RNN of
combined depth 8, obtaining an average
improvement of 1.5 BLEU over a strong
shallow baseline.

We release our code for ease of adoption.

1 Introduction

Neural machine translation (NMT) is a well-
established approach that yields the best results
on most language pairs (Bojar et al., 2016; Cet-
tolo et al., 2016). Most systems are based on the
sequence-to-sequence model with attention (Bah-
danau et al., 2015) which employs single-layer re-
current neural networks both in the encoder and in
the decoder.

Unlike feed-forward networks where depth is
straightforwardly defined as the number of non-
input layers, recurrent neural network architec-
tures with multiple layers allow different connec-
tion schemes (Pascanu et al., 2014) that give rise to
different, orthogonal, definitions of depth (Zhang
et al., 2016) which can affect the model perfor-
mance depending on a given task. This is fur-
ther complicated in sequence-to-sequence models
as they contain multiple sub-networks, recurrent
or feed-forward, each of which can be deep in dif-
ferent ways, giving rise to a large number of pos-
sible configurations.

In this work we focus on stacked and deep tran-
sition recurrent architectures as defined by Pas-
canu et al. (2014). Different types of stacked ar-
chitectures have been successfully used for NMT
(Zhou et al., 2016; Wu et al., 2016). However,
there is a lack of empirical comparisons of dif-
ferent deep architectures. Deep transition archi-
tectures have been successfully used for language
modeling (Zilly et al., 2016), but not for NMT
so far. We evaluate these architectures, both
alone and in combination, varying the connec-
tion scheme between the different components and
their depth over the different dimensions, measur-
ing the performance of the different configurations
on the WMT news translation task.1

Related work includes that of Britz et al. (2017),
who have performed an exploration of NMT ar-
chitectures in parallel to our work. Their ex-
periments, which are largely orthogonal to ours,
focus on embedding size, RNN cell type (GRU
vs. LSTM), network depth (defined according
to the architecture of Wu et al. (2016)), atten-
tion mechanism and beam size. Gehring et al.
(2017) recently proposed a NMT architecture
based on convolutions over fixed-sized windows

1http://www.statmt.org/wmt17/
translation-task.html
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rather than RNNs, and they reported results for
different model depths and attention mechanism
configurations. A similar feedforward architec-
ture which uses multiple pervasive attention mech-
anisms rather than convolutions was proposed by
Vaswani et al. (2017), who also report results for
different model depths.

2 NMT Architectures

All the architectures that we consider in this work
are GRU (Cho et al., 2014a) sequence-to-sequence
transducers (Sutskever et al., 2014; Cho et al.,
2014b) with attention (Bahdanau et al., 2015). In
this section we describe the baseline system and
the variants that we evaluated.

2.1 Baseline Architecture
As our baseline, we use the NMT architecture im-
plemented in Nematus, which is described in more
depth by Sennrich et al. (2017b). We augment it
with layer normalization (Ba et al., 2016), which
we have found to both improve translation quality
and make training considerably faster.

For our discussion, it is relevant that the base-
line architecture already exhibits two types of
depth:

• recurrence transition depth in the decoder
RNN which consists of two GRU transitions
per output word with an attention mechanism
in between, as described in Firat and Cho
(2016).

• feed-forward depth in the attention network
that computes the alignment scores and in the
output network that predicts the target words.
Both these networks are multi-layer percep-
trons with one tanh hidden layer.

2.2 Deep Transition Architectures
In a deep transition RNN (DT-RNN), at each time
step the next state is computed by the sequen-
tial application of multiple transition layers, effec-
tively using a feed-forward network embedded in-
side the recurrent cell. In our experiments, these
layers are GRU transition blocks with indepen-
dently trainable parameters, connected such that
the "state" output of one of them is used as the
"state" input of the next one. Note that each of
these GRU transition is not individually recurrent,
recurrence only occurs at the level of the whole
multi-layer cell, as the "state" output of the last

. . .

. . .

. . .

Figure 1: Deep transition decoder

GRU transition for the current time step is carried
over as the "state" input of the first GRU transition
for the next time step.

Applying this architecture to NMT is a novel
contribution.

2.2.1 Deep Transition Encoder
As in a baseline shallow Nematus system, the en-
coder is a bidirectional recurrent neural network.
Let Ls be the encoder recurrence depth, then for
the i-th source word in the forward direction the
forward source word state

−→
h i ≡

−→
h i,Ls is com-

puted as:

−→
h i,1 = GRU1

(
xi,
−→
h i−1,Ls

)

−→
h i,k = GRUk

(
0,
−→
h i,k−1

)
for 1 < k ≤ Ls

where the input to the first GRU transition is the
word embedding xi, while the other GRU transi-
tions have no external inputs. Recurrence occurs
as the previous word state

−→
h i−1,Ls enters the com-

putation in the first GRU transition for the current
word.
The reverse source word states are computed sim-
ilarly and concatenated to the forward ones to
form the bidirectional source word states C ≡{[−→

h i,Ls

←−
h i,Ls

]}
.

2.2.2 Deep Transition Decoder
The deep transition decoder is obtained by extend-
ing the baseline decoder in a similar way. Recall
that the baseline decoder of Nematus already has
a transition depth of two, with the first GRU tran-
sition receiving as input the embedding of the pre-
vious target word and the second GRU transition
receiving as input a context vector computed by
the attention mechanism. We extend this decoder
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architecture to an arbitrary transition depth Lt as
follows:

sj,1 = GRU1 (yj−1, sj−1,Lt)

sj,2 = GRU2 (ATT(C, sj,1), sj,1)

sj,k = GRUk (0, sj,k−1) for 2 < k ≤ Lt

where yj−1 is the embedding of the previous target
word and ATT(C, si,1) is the context vector com-
puted by the attention mechanism. GRU transi-
tions other than the first two do not have external
inputs. The target word state vector sj ≡ sj,Lt is
then used by the feed-forward output network to
predict the current target word. A diagram of this
architecture is shown in Figure 1.

The output network can be also made deeper by
adding more feed-forward hidden layers.

2.3 Stacked architectures

A stacked RNN is obtained by having multiple
RNNs (GRUs in our experiments) run for the same
number of time steps, connected such that at each
step the bottom RNN takes "external" inputs from
the outside, while each of the higher RNN takes
as its "external" input the "state" output of the one
below it. Residual connections between states at
different depth (He et al., 2016) are also used to
improve information flow. Note that unlike deep
transition GRUs, here each GRU transition block
constitutes a cell that is individually recurrent, as it
has its own state that is carried over between time
steps.

2.3.1 Stacked Encoder

In this work we consider two types of bidirectional
stacked encoders: an architecture similar to Zhou
et al. (2016) which we denote here as alternating
encoder (Figure 2), and one similar to Wu et al.
(2016) which we denote as biunidirectional en-
coder (Figure 3).

Our contribution is the empirical comparison of
these architectures, both in isolation and in combi-
nation with the deep transition architecture.

We do not consider stacked unidirectional en-
coders (Sutskever et al., 2014) as bidirectional en-
coders have been shown to outperform them (e.g.
Britz et al. (2017)).

Alternating Stacked Encoder The forward part
of the encoder consists of a stack of GRU recurrent
neural networks, the first one processing words in

. . . . . .

. . . . . .

. . . . . .

. . .

Figure 2: Alternating stacked encoder (Zhou et al.,
2016).

the forward direction, the second one in the back-
ward direction, and so on, in alternating direc-
tions. For an encoder stack depth Ds, and a source
sentence length N , the forward source word state
−→w i ≡ −→w i,Ds is computed as:

−→w i,1 =
−→
h i,1 = GRU1

(
xi,
−→
h i−1,1

)

−→
h i,2k = GRU2k

(−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = GRU2k+1

(−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1
for 1 < j ≤ Ds

where we assume that
−→
h 0,k and

−→
h N+1,k are zero

vectors. Note the residual connections: at each
level above the first one, the word state of the pre-
vious level −→w i,j−1 is added to the recurrent state
of the GRU cell

−→
h i,j to compute the the word state

for the current level −→w i,j .
The backward part of the encoder has the same

structure, except that the first level of the stack
processes the words in the backward direction and
the subsequent levels alternate directions.

The forward and backward word states are then
concatenated to form bidirectional word states
C ≡ {[−→w i,Ds

←−w i,Ds ]}. A diagram of this archi-
tecture is shown in Figure 2.

Biunidirectional Stacked Encoder In this en-
coder the forward and backward parts are shal-
low, as in the baseline architecture. Their word
states are concatenated to form shallow bidirec-
tional word states wi ≡ [−→w i,1

←−w i,1] that are then
used as inputs for subsequent stacked GRUs which
operate only in the forward sentence direction,
hence the name "biunidirectional". Since resid-
ual connections are also present, the higher depth
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. . . . . .

. . .

. . .

. . .

Figure 3: Biunidirectional stacked encoder (Wu
et al., 2016).

. . .

. . .

. . .

Figure 4: Stacked RNN decoder

GRUs have a state size twice that of the base
ones. This architecture has shorter maximum in-
formation propagation paths than the alternating
encoder, suggesting that it may be less expressive,
but it has the advantage of enabling implementa-
tions with higher model parallelism. A diagram of
this architecture is shown in Figure 3.

In principle, alternating and biunidirectional
stacked encoders can be combined by having Dsa

alternating layers followed by Dsb unidirectional
layers.

2.3.2 Stacked Decoder

A stacked decoder can be obtained by stacking
RNNs which operate in the forward sentence di-
rection. A diagram of this architecture is shown in
Figure 4.

Note that the base RNN is always a conditional
GRU (cGRU, Firat and Cho, 2016) which has tran-
sition depth at least two due to the way that the
context vectors generated by the attention mecha-
nism are used in Nematus. This opens up the pos-
sibility of several architectural variants which we
evaluated in this work:

Stacked GRU The higher RNNs are simple
GRUs which receive as input the state from the
previous level of the stack, with residual connec-

tions between the levels.

sj,1,1 = GRU1,1 (yj−1, sj−1,1,2)

cj,1 = ATT(C, sj,1,1)

sj,1,2 = GRU1,2 (cj,1, sj,1,1)

rj,1 = sj,1,2

sj,k,1 = GRUk (rj,k−1, sj−1,k,1)

rj,k = sj,k,1 + rj,k−1
for 1 < k ≤ Dt

Note that the higher levels have transition depth
one, unlike the base level which has two.

Stacked rGRU The higher RNNs are GRUs
whose "external" input is the concatenation of the
state below and the context vector from the base
RNN. Formally, the states sj,k,1 of the higher
RNNs are computed as:

sj,k,1 = GRUk ([rj,k−1, cj,1] , sj−1,k,1)

for 1 < k ≤ Dt

This is similar to the deep decoder by Wu et al.
(2016).

Stacked cGRU The higher RNNs are condi-
tional GRUs, each with an independent attention
mechanism. Each level has two GRU transitions
per step j, with a new context vector cj,k computed
in between:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

cj,k = ATT(C, sj,k,1)

sj,k,2 = GRUk,2 (cj,k, sj,1,1)

for 1 < k ≤ Dt

Note that unlike the stacked GRU and rGRU, the
higher levels have transition depth two.

Stacked crGRU The higher RNNs are condi-
tional GRUs but they reuse the context vectors
from the base RNN. Like the cGRU there are two
GRU transition per step, but they reuse the context
vector cj,1 computed at the first level of the stack:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

sj,k,2 = GRUk,2 (cj,1, sj,1,1)

for 1 < k ≤ Dt
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2.4 BiDeep architectures

We introduce the BiDeep RNN, a novel architec-
ture obtained by combining deep transitions with
stacking.

A BiDeep encoder is obtained by replacing the
Ds individually recurrent GRU cells of a stacked
encoder with multi-layer deep transition cells each
composed by Ls GRU transition blocks.

For instance, the BiDeep alternating encoder is
defined as follows:

−→w i,1 =
−→
h i,1 = DTGRU1

(
xi,
−→
h i−1,1

)

−→
h i,2k = DTGRU2k

(−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = DTGRU2k+1

(−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1
for 1 < j ≤ Ds

where each multi-layer cell DTGRUk is defined
as:

vk,1 = GRUk,1 (ink, statek)

vk,t = GRUk,t (0, vkt−1) for 1 < k ≤ Ls

DTGRUk (ink, statek) = vk,Ls

It is also possible to have different transition
depths at each stacking level.

BiDeep decoders are similarly defined, replac-
ing the recurrent cells (GRU, rGRU, cGRU or cr-
GRU) with deep transition multi-layer cells.

3 Experiments

All experiments were performed with Nematus
(Sennrich et al., 2017b), following Sennrich et al.
(2017a) in their choice of preprocessing and hy-
perparameters. For experiments with deep mod-
els, we increase the depth by a factor of 4 com-
pared to the baseline for most experiments; in pre-
liminary experiments, we observed diminishing
returns for deeper models.

We trained on the parallel English–German
training data of WMT-2017 news translation task,
using newstest2013 as validation set. We used
early-stopping on the validation cross-entropy and
selected the best model based on validation BLEU.

We report cross-entropy (CE) on newstest2013,
training speed (on a single Titan X (Pascal) GPU),

and the number of parameters. For transla-
tion quality, we report case-sensitive, detokenized
BLEU, measured with mteval-v13a.pl, on new-
stest2014, newstest2015, and newstest2016.

We release the code under an open source li-
cense, including it in the official Nematus reposi-
tory.2 The configuration files needed to replicate
our experiments are available in a separate reposi-
tory.3

3.1 Layer Normalization

Our first experiment is concerned with layer nor-
malization. We are interested to see how essen-
tial layer normalization is for our deep architec-
tures, and compare the effect of layer normaliza-
tion on a baseline system, and a system with an
alternating encoder with stacked depth 4. Results
are shown in Table 1. We find that layer normal-
ization is similarly effective for both the shallow
baseline model and the deep encoder, yielding an
average improvement of 0.8–1 BLEU, and reduc-
ing training time substantially. Therefore we use
it for all the subsequent experiments.

3.2 Deep Encoders

In Table 2 we report experimental results for dif-
ferent architectures of deep encoders, while the
decoder is kept shallow.

We find that all the deep encoders perform sub-
stantially better than baseline (+0.5–+1.2 BLEU),
with no consistent quality differences between
each other. In terms of number of parameters and
training speed, the deep transition encoder per-
forms best, followed by the alternating stacked
encoder and finally the biunidirectional encoder
(note that we trained on a single GPU, the biu-
nidirectional encoder may be comparatively faster
on multiple GPUs due to its higher model paral-
lelism).

3.3 Deep Decoders

Table 3 shows results for different decoder archi-
tectures, while the encoder is shallow. We find that
the deep decoders all improve the cross-entropy,
but the BLEU results are more varied: deep output4

decreases BLEU scores (but note that the baseline

2https://github.com/EdinburghNLP/
nematus

3https://github.com/Avmb/
deep-nmt-architectures

4deep feed-forward output with shallow RNNs in both the
encoder and decoder
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encoder CE BLEU parameters (M) training speed early stop
2014 2015 2016 (words/s) (104 minibatches)

baseline 49.98 21.2 23.8 28.4 98.0 3350 44
+layer normalization 47.53 21.9 24.7 29.3 98.1 2900 29
alternating (depth 4) 49.25 21.8 24.6 28.9 135.8 2150 46
+layer normalization 46.29 22.6 25.2 30.5 135.9 1600 29

Table 1: Layer normalization results. English→German WMT17 data.

encoder depth CE BLEU parameters (M) training speed
s. bidir. s. forw. trans. 2014 2015 2016 (words/s)

shallow 1 - 1 47.53 21.9 24.7 29.3 98.1 2900
alternating 4 - 1 46.29 22.6 25.2 30.5 135.9 1600
biunidirectional 1 3 1 46.79 22.4 25.4 30.0 173.7 1500
deep transition 1 - 4 46.54 22.9 25.4 30.2 117.0 1900

Table 2: Deep encoder results. English→German WMT17 data. Parameters and speed are highlighted
for the deep recurrent models.

has already some depth), stacked GRU performs
similarly to the baseline (-0.1–+0.2 BLEU) and
stacked rGRU possibly slightly better (+0.1–+0.2
BLEU).

Other deep RNN decoders achieve higher gains.
The best results (+0.6 BLEU on average) are
achieved by the stacked conditional GRU with in-
dependent multi-step attention (cGRU). This de-
coder, however, is the slowest one and has the most
parameters.

The deep transition decoder performs well (+0.5
BLEU on average) in terms of quality and is the
fastest and smallest of all the deep decoders that
have shown quality improvements.

The stacked conditional GRU with reused at-
tention (crGRU) achieves smaller improvements
(+0.3 BLEU on average) and has speed and
size intermediate between the deep transition and
stacked cGRU decoders.

3.4 Deep Encoders and Decoders

Table 4 shows results for models where both the
encoder and the decoder are deep, in addition to
the results of the best deep encoder (the deep tran-
sition encoder) + shallow decoder reported here
for ease of comparison.

Compared to deep transition encoder alone, we
generally see improvements in cross-entropy, but
not in BLEU. We evaluate architectures similar to
Zhou et al. (2016) (alternating encoder + stacked
GRU decoder) and (Wu et al., 2016) (biunidirec-
tional encoder + stacked rGRU decoder), though
they are not straight replications since we used
GRU cells rather than LSTMs and the implemen-
tation details are different. We find that the for-
mer architecture performs better in terms of BLEU

scores, model size and training speed.
The other variants of alternating encoder +

stacked or deep transition decoder perform simi-
larly to alternating encoder + stacked rGRU de-
coder, but do not improve BLEU scores over the
best deep encoder with shallow decoder. Ap-
plying the BiDeep architecture while keeping the
total depth the same yields small improvements
over the best deep encoder (+0.2 BLEU on aver-
age), while the improvement in cross-entropy is
stronger. We conjecture that deep decoders may be
better at handling subtle target-side linguistic phe-
nomena that are not well captured by the 4-gram
precision-based BLEU evaluation.

Finally, we evaluate a subset of architectures
with a combined depth that is 8 times that of the
baseline. Among the large models, the BiDeep
model yields substantial improvements (average
+0.6 BLEU over the best deep encoder, +1.5
BLEU over the shallow baseline), in addition to
cross-entropy improvements. The stacked-only
model, on the other hand, performs similarly to the
smaller models, despite having even more param-
eters than the BiDeep model. This shows that it is
useful to combine deep transitions with stacking,
as they provide two orthogonal kinds of depth that
are both beneficial for neural machine translation.

3.5 Error Analysis

One theoretical difference between a stacked RNN
and a deep transition RNN is that the distance in
the computation graph between timesteps is in-
creased for deep transition RNNs. While this al-
lows for arguably more expressive computations
to be represented, in principle it could reduce the
ability to remember information over long dis-
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decoder high RNN decoder RNN depth output CE BLEU params. training speed
stacked trans. type depth 2014 2015 2016 (M) (words/s)

shallow - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900
stacked GRU 4 1 1 46.73 21.8 24.6 29.5 117.0 2250
stacked rGRU 4 1 1 46.72 22.1 25.0 29.4 135.9 2150
stacked cGRU 4 1 1 44.76 22.8 25.5 29.6 164.3 1300
stacked crGRU 4 1 1 45.88 22.5 24.7 29.7 145.4 1750
deep transition - 1 8 1 45.98 22.4 24.9 30.0 117.0 2200
deep output - 1 1 4 47.21 21.5 24.2 28.7 98.9 2850

Table 3: Deep decoder results. English→German WMT17 data. Parameters and speed are highlighted
for the deep recurrent models.

encoder decoder decoder high encoder depth decoder depth CE BLEU params. training speed
RNN type bidir. forw. trans. stacked trans. 2014 2015 2016 (M) (words/s)

shallow shallow - 1 - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900
deep tran. shallow - 1 - 4 1 1 46.54 22.9 25.4 30.2 117.0 1900

(Zhou et al., 2016) (ours)
alternating stacked GRU 4 - 1 4 1 45.89 22.9 25.3 30.1 154.9 1480

(Wu et al., 2016) (ours)
biunidir. stacked rGRU 1 3 1 4 1 46.15 22.4 24.7 29.6 211.5 1280
alternating stacked rGRU 4 - 1 4 1 46.00 23.0 25.7 30.5 173.7 1400
alternating stacked cGRU 4 - 1 4 1 44.32 22.9 25.7 29.8 202.1 970
deep tran. deep tran. - 1 - 4 1 8 45.52 22.7 25.7 30.1 136.0 1570
BiDeep altern. BiDeep rGRU 2 - 2 2 4/2 43.52 23.1 25.5 30.6 145.4 1480
BiDeep altern. BiDeep rGRU 4 - 2 4 4/2 43.26 23.4 26.0 31.0 214.7 980
alternating stacked rGRU 8 - 1 8 1 44.32 22.9 25.5 30.5 274.6 880

Table 4: Deep encoder–decoder results. English→German WMT17 data. Transition depth 4/2 means 4
in the base RNN of the stack and 2 in the higher RNNs. The last two models are large and their results
are highlighted separately.

tances, since each layer may lose information dur-
ing forward computation or backpropagation. This
may not be a significant issue in the encoder,
as the attention mechanism provides short paths
from any source word state to the decoder, but
the decoder contains no such shortcuts between its
states, therefore it might be possible that this nega-
tively affects its ability to model long-distance re-
lationships in the target text, such as subject–verb
agreement.

Here, we seek to answer this question by test-
ing our models on Lingeval97 (Sennrich, 2017),
a test set which provides contrastive translation
pairs for different types of errors. For the exam-
ple of subject-verb agreement, contrastive transla-
tions are created from a reference translation by
changing the grammatical number of the verb, and
we can measure how often the NMT model prefers
the correct reference over the contrastive variant.

In Figure 5, we show accuracy as a function of
the distance between subject and verb. We find
that information is successfully passed over long
distances by the deep recurrent transition network.
Even for decisions that require information to be
carried over 16 or more words, or at least 128 GRU
transitions5, the deep recurrent transition network

5some decisions may not require the information to be
passed on the target side because the decisions may be possi-
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Figure 5: Subject-verb agreement accuracy as a
function of distance between subject and verb.

achieves an accuracy of over 92.5% (N = 560),
higher than the shallow decoder (91.6%), and sim-
ilar to the stacked GRU (92.7%). The highest ac-
curacy (94.3%) is achieved by the BiDeep net-
work.

4 Conclusions

In this work we presented and evaluated multiple
architectures to increase the model depth of neural
machine translation systems.

We showed that alternating stacked encoders
(Zhou et al., 2016) outperform biunidirectional

ble based on source-side information.

105



stacked encoders (Wu et al., 2016), both in ac-
curacy and (single-GPU) speed. We showed that
deep transition architectures, which we first ap-
plied to NMT, perform comparably to the stacked
ones in terms of accuracy (BLEU, cross-entropy
and long-distance syntactic agreement), and better
in terms of speed and number of parameters.

We found that depth improves BLEU scores es-
pecially in the encoder. Decoder depth, however,
still improves cross-entropy if not strongly BLEU

scores.
The best results are obtained by our BiDeep

architecture which combines both stacked depth
and transition depth in both the (alternating) en-
coder and the decoder, yielding better accuracy for
the same number of parameters than systems with
only one kind of depth.

We recommend to use combined architectures
when maximum accuracy is the goal, or use deep
transition architectures when speed or model size
are a concern, as deep transition performs very
positively in the quality/speed and quality/size
trade-off.

While this paper only reports results for one
translation direction, the effectiveness of the pre-
sented architectures across different data condi-
tions and language pairs was confirmed in follow-
up work. For the shared news translation task
of this year’s Conference on Machine Translation
(WMT17), we built deep models for 12 transla-
tion directions, using a deep transition architecture
or a stacked architecture (alternating encoder and
rGRU decoder), and observe improvements for the
majority of translation directions (Sennrich et al.,
2017a).
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Abstract

This work explores extending attention-
based neural models to include alignment
information as input. We modify the at-
tention component to have dependence
on the current source position. The at-
tention model is then used as a lexical
model together with an additional align-
ment model to generate translation. The
attention model is trained using external
alignment information, and it is applied
in decoding by performing beam search
over the lexical and alignment hypothe-
ses. The alignment model is used to score
these alignment candidates. We demon-
strate that the attention layer is capable
of using the alignment information to im-
prove over the baseline attention model
that uses no such alignments. Our experi-
ments are performed on two tasks: WMT
2016 English→Romanian and WMT 2017
German→English.

1 Introduction

Neural machine translation (NMT) has emerged
recently as a successful end-to-end statistical ma-
chine translation approach. The best performing
NMT systems use an attention mechanism that fo-
cuses the attention of the decoder on parts of the
source sentence (Bahdanau et al., 2015). The at-
tention component is computed as an intermedi-
ate part of the model, and is trained jointly with
the rest of the model. The approach is appeal-
ing because (1) it is end-to-end, where the neural
model is trained from scratch without assistance
from other trained models, and (2) the attention
component is trained jointly with the rest of the
model, requiring no pre-computed alignments.

In this work, we raise the question whether the

attention component is self-sufficient to attend to
the source side, and if it can still benefit from ex-
plicit dependence on the alignment information.
To this end, we modify the attention model to bias
the attention layer towards the alignment informa-
tion, and evaluate the model in a generative frame-
work consisting of two steps: alignment prediction
followed by lexical translation.

Two decades ago, (Vogel et al., 1996) applied
hidden Markov models to machine translation.
The idea was based on introducing word align-
ments as hidden variables, while using the first-
order Markov assumption to simplify the depen-
dencies of the alignment sequence. The approach
decomposed the translation process using a lexi-
cal model and an alignment model. These mod-
els were simple tables enumerating all possible
translation and alignment combinations. Nowa-
days, HMM is used with IBM models to gener-
ate word alignments, which are needed to train
phrase-based systems.

Alkhouli et al. (2016) and Wang et al. (2017)
apply the hidden Markov model decomposition
using feedforward lexical and alignment neural
network models. In this work, we are interested in
using more expressive models. Namely, we lever-
age attention models as lexical models and use
them with bidirectional recurrent alignment mod-
els. These recurrent models are able to encode un-
bounded source and target context in comparison
to feedforward networks.

The attention-based translation model is condi-
tioned on the full source sentence, but it has no ex-
plicit dependence on alignments as input. We pro-
pose to bias the attention mechanism using align-
ment information, while still allowing the model
to compute attention weights dynamically. Condi-
tioning the model on the alignment information as
such makes it possible to combine with an align-
ment model in a generative story. We demonstrate
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that the attention model can benefit from such ex-
ternal alignment information on two WMT tasks:
the 2016 English→Romanian task and the 2017
German→English task.

2 Related Work

Alignment-based neural models have explicit de-
pendence on the alignment information either at
the input or at the output of the network. They
have been extensively and successfully applied in
the literature on top of conventional phrase-based
systems (Sundermeyer et al., 2014a; Tamura et al.,
2014; Devlin et al., 2014). In this work, we focus
on using the models directly to perform standalone
neural machine translation.

Alignment-based neural models were proposed
in (Alkhouli et al., 2016) to perform neural ma-
chine translation. They mainly used feedforward
alignment and lexical models in decoding. In this
work, we investigate recurrent models instead. We
use a modified attention model as a lexical model
and apply it together with a recurrent alignment
neural model.

Deriving neural models for translation based on
the HMM framework can also be found in (Yang
et al., 2013; Yu et al., 2017). Alignment-based
neural models were also applied to perform sum-
marization and morphological inflection (Yu et al.,
2016). The work used a monotonous alignment
model, where training was done by marginaliz-
ing over the alignment hidden variables, which is
computationally expensive. In this work, we use
non-monotonous alignment models. In addition,
we train using pre-computed Viterbi alignments
which speeds up neural training. In (Yu et al.,
2017), alignment-based neural models were used
to model alignment and translation from the tar-
get to the source side (inverse direction), and a
language model was included in addition. They
showed results on a small translation task. In this
work, we present results on translation tasks con-
taining tens of millions of words. We do not in-
clude a language model in any of our systems.

There is plenty of work on modifying attention
models to capture more complex dependencies.
(Cohn et al., 2016) introduces structural biases
from word-based alignment concepts like fertility
and Markov conditioning. These are internal mod-
ifications that leave the model self-contained. Our
modifications introduce alignments as external in-
formation to the model. (Arthur et al., 2016) in-

clude lexical probabilities to bias attention. (Chen
et al., 2016; Mi et al., 2016) add an extra term
dependent on the alignments to the training ob-
jective function to guide neural training. This is
only applied during training but not during decod-
ing. Our work modifies the attention component
directly, and we can choose whether to apply the
alignment bias during decoding or not. We show
that using alignment bias during search alongside
an alignment model improves translation.

3 Alignment-Based Translation

Given a source sentence fJ1 = f1...fj ...fJ , a tar-
get sentence eI1 = e1...ei...eI , and an alignment
sequence bI1 = b1...bi...bI , where j = bi is the
source position aligned to the target position i, we
model translation using an alignment model and a
lexical model:

p(eI1|fJ1 ) =
∑

bI1

p(eI1, b
I
1|fJ1 ) (1)

≈ max
bI1

I∏

i=1

p(ei|bi, bi−11 , ei−11 , fJ1 )︸ ︷︷ ︸
lexical model

·

p(bi|bi−11 , ei−11 , fJ1 )︸ ︷︷ ︸
alignment model

Both the lexical model and the alignment model
have rich dependencies including the full source
context fJ1 , the full alignment history bi−11 , and
the full target history ei−11 . The lexical model has
an extra dependence on the current source position
bi. First-order HMMs simplify the dependence
on the alignment history and limit it to the pre-
decessor alignment point bi−1. This allows an ef-
ficient computation of the sum over the alignment
sequence given in Eq. (1) using dynamic program-
ming. In this work, we stick to the maximum ap-
proximation, and keep the full dependence on the
alignment history bi−11 . We use recurrent neural
networks to model the unbounded source, target
and alignment context. Nevertheless, the models
we describe can be simplified easily to drop the
full dependence on the alignment history, in which
case integrated training using the sum can be per-
formed as suggested by Wang et al. (2017).

4 Attention-Based Translation Model

The standard attention-based translation model
has three main components: The encoder, the de-
coder, and the attention component. The model

109



fj
ei−1

didi−1

ti−1

oioi−1

embeddings

bidirectional encoder

target states

attention

p(ei|ei−1
1 , fJ

1 )

ri−1
mi

Figure 1: Attention model architecture.

architecture is illustrated in Fig. (1). We use
long short-term memory (LSTM) recurrent layers
throughout this work (Hochreiter and Schmidhu-
ber, 1997; Gers et al., 2000, 2003). We include a
bidirectional encoder where we sum the forward
and backward source state representations:

−→
hj = LSTM(

−→
hj−1, Ffj)

←−
hj = LSTM(

←−
hj+1, Ffj)

hj = Y
←−
hj + Z

−→
hj (2)

where Y and Z are weight matrices, F
is the source word embedding matrix, and
fj ∈ {0, 1}|Vf |×1 is the one-hot vector of the
source word at position j. |Vf | is the size of the
source vocabulary. The parameterization of the re-
current layer is abstracted away using the LSTM
notation for simplicity. We use an LSTM layer to
represent the state of the target sequence:

ti−1 = LSTM(ti−2, Eei−1) (3)

where E is the target word embedding matrix, and
ei−1 ∈ {0, 1}|Ve|×1 is the one-hot vector of the
target word at position i − 1. |Ve| is the size of
the target vocabulary. The attention weights are
normalized using the softmax function according

to the following equations:

αij =
exp(sij)∑J
j=1 exp(sij)

sij = vT tanh(Whj +Mri−1 + a)

ri−1 = Roi−1 + Lti−1 (4)

oi−1 = Adi−1 +Bti−2
di−1 = LSTM(di−2,mi−1) (5)

mi =
J∑

j=1

αijhj

where αij denotes the normalized attention
weights, sij denotes the unnormalized attention
scores, ri−1 is the translation state computed using
the decoder state at the previous step oi−1 and the
target state ti−1 which in turn is computed using
the target word ei−1. The decoder state di is com-
puted using an LSTM over the attended source po-
sitions mi. v and a are vectors, and A, B, W , M ,
R, and L are weight matrices.

The final target word probability is computed
as a softmax function of the decoder state oi ∈
R|Ve|×1:

p(ei = w|ei−11 , fJ1 ) =
exp(oiw)

∑|Ve|
v=1 exp(oiv)

5 Alignment-Biased Attention

In order to use the attention model as an
alignment-dependent lexical model, we introduce
a dependence on the alignment information bi. We
modify the attention mechanism according to the
following equation:

sij = vT tanh(Whj +Mri−1 + a+ δj,bi c) (6)

where c is a vector, and δj,bi is the Kronecker delta:

δj,bi =

{
1, if j = bi

0, otherwise.

We also experiment with a bias term that in-
cludes the aligned source state hbi :

sij = vT tanh(Whj +Mri−1 + a+ δj,biDhbi)
(7)

which we refer to as source alignment bias. D is
an additional weight matrix. Note that the model
will have full dependence on the alignment history
due to Eq. (5) and Eq. (4) (cf. Fig. (1)). This de-
pendency can be simplified by removing both the
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1 , ei−1

1 , fJ
1 )

Figure 2: Bidirectional alignment model (BAM).

recurrency in Eq. (5), and the recurrent input oi−1
that feeds ri−1 in Eq. (4). In this work, however,
we stick to the richer representation and keep the
full dependence on the alignment history.

If the alignment information is pre-computed,
e.g. through IBM/HMM training, using it as an
alignment bias might risk that the original at-
tention part will learn nothing and that it be-
comes completely dependent on the alignment in-
formation. To alleviate this problem, we include
the alignment bias term during training for some
batches and drop it for others. In our experiments,
we randomly include the bias term for 50% of the
training batches.

6 Recurrent Alignment Model

We use a recurrent alignment model to score
alignments. The model architecture is shown in
Fig. (2). Following (Alkhouli et al., 2016), the
alignment model predicts the relative jump ∆i =
bi − bi−1 from the previous source position bi−1
to the current source position bi. This model has a
bidirectional source encoder consisting of two re-
current layers (yellow), and a recurrent layer main-
taining the target state (red). The most recent tar-
get state computed including word ei−1 is paired
with the source states at position bi−1, which is a
hard alignment obtained externally and not com-
puted by the model. We pair the source state hj at
position j = bi−1 with the target state ti−1 at posi-
tion i−1 to predict the jump ∆i to the next source

position bi according to the following equations:

qi = Uti−1 + hbi−1

zi = LSTM(zi−1, qi) (8)

where U is a weight matrix, qi is the paired source
and target states, and zi is the decoder state used
to predict the jump from bi−1 to bi. hbi−1

and ti−1
are defined in Eq. (2), and Eq. (3), respectively.
Removing the recurrency in Eq. (8) results in a
first-order model over the alignment sequence.

7 Training

In this work, we train the attention and the align-
ment model separately. We obtain the alignments
using IBM/HMM training. While this breaks up
the simplicity of end-to-end training of attention
models, we want to note that this is not central to
the proposed approach. Integrated training using
the sum instead of the maximum approximation in
Eq. (1) can be performed using the Baum-Welch
algorithm similar to (Yu et al., 2017; Wang et al.,
2017), but the models need to give up the recur-
rency over the alignment information. Alterna-
tively, the maximum approximation can be used
to find the Viterbi alignments without changing
the models, where training proceeds by alternat-
ing between aligning the training data and model
estimation. In this work, however, we focus on
the modeling aspect and leave integrated training
to future work.

8 Alignment-Based Decoding

Similar to (Alkhouli et al., 2016), we combine the
lexical and alignment neural models in a beam-
based decoder. Since the models depend on the
alignment information, we also have to hypothe-
size alignments during decoding. In training, we
assume that each target position is aligned to ex-
actly one source position. During decoding, we
hypothesize all source positions for each target po-
sition. We assign the models separate weights and
obtain the best translation as follows:

eÎ1 = arg max
I,eI1

{
1

I
max
bI1

{
I∑

i=1

λ log p(ei|bi1, ei−1
1 , fJ

1 )

+(1− λ) log p(∆i|bi−1
1 , ei−1

1 , fJ
1 )

}}
(9)

where λ is the lexical model weight, which we
tune on the development set using grid search.

111



WMT 2016 WMT 2017
English Romanian German English

Sentences 604K 3.55M
Running Words 15.5M 15.8M 85M 86M
Vocabulary 92.3K 128.3K 671K 587K
Neural Network Vocabulary 56.1K 80.9K 188K 131K

Table 1: Corpora and NN statistics.

9 Experiments

9.1 Setup

This section presents experiments on two
WMT shared translation tasks: the 2016
English→Romanian task1 and the 2017
German→English task.2 The corpora statis-
tics are shown in Tab. (1). We use the full
bilingual data of the English→Romanian task.
For the German→English task, we choose the
common crawl, news commentary and European
parliament bilingual data. The data is filtered
by removing sentences longer than 100 words.
We also remove sentences where five or more
consecutive source words are unaligned according
to IBM1/HMM/IBM4 training. This is to remove
noisy sentence pairs that are frequent in the
common crawl corpus. We do not use any kind of
synthetic or back-translated data in this work.

We reduce the vocabulary size by replac-
ing singletons with the unknown token for
both English and Romanian corpora in the
English→Romanian task. Since we have more
data in the German→English task, we replace
words occurring less than 6 times in the German
corpus and less than 4 times in the English cor-
pus by the unknown token. The reduced vocabu-
laries are what we refer to as the neural network
vocabulary in Tab. (1). To handle the large out-
put vocabularies, all lexical models use a class-
factored output layer, with 1000 singleton classes
dedicated to the most frequent words, and 1000
classes shared among the rest of the words. The
classes are trained using a separate tool to opti-
mize the maximum likelihood training criterion
with the bigram assumption. The alignment model
uses a small output layer of 201 nodes, determined
by a maximum jump length of 100 (forward and
backward). We train using stochastic gradient de-
scent and halve the learning rate when the devel-
opment perplexity increases.

1http://www.statmt.org/wmt16/
2http://www.statmt.org/wmt17/

We train feedforward models to compare to
(Alkhouli et al., 2016). The models have two hid-
den layers, the first has 1000 nodes and the second
has 500 nodes. We use a 9-word source window,
and a 5-gram target history. 100 nodes are used
for word embeddings. The bidirectional alignment
models have 4 LSTM layers as shown in Fig. (2).
We use 200-node source and target word embed-
dings and 200 nodes in each LSTM layer.

The attention models also use 200-node LSTM
layers, and 200-node source and target embed-
dings. The internal dimension of the atten-
tion component is also set to 200 nodes, i.e.
v, a, c ∈ R200×1.

Each model is trained on 4-12 CPU cores using
the Intel MKL library, and takes about 2–4 days
on average to converge.

We apply attention models with alignment bias
and feedforward models in decoding using a de-
coder similar to that proposed in (Alkhouli et al.,
2016). The decoder hypothesizes each source po-
sition for every target position being translated.
Beam search is applied where the search nodes
consist of both lexical and alignment hypothe-
ses. When the attention model is applied with-
out the alignment bias term, the decoder simpli-
fies to hypothesizing lexical translations only. To
speed up decoding of long sentences, we limit
alignment hypotheses to the source positions j ∈
{i − 20, ..., i + 20}, where i is the current target
position being translated. We use a beam size of
16 in all experiments. The alignments used during
training are a result of IBM1/HMM/IBM4 training
using GIZA++ (Och and Ney, 2003).

We use grid search to optimize the lexical
model weights (cf. Eq. (9)). We find that
the attention model receives a weight of 0.8,
while the alignment model is assigned a weight
of 0.2. We tune this on the development set
of each task. We use 1000 sentence pairs of
newsdev2016 as the development set of the
English→Romanian task, and newstest2015
for tuning the German→English model weights.
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These same datasets are used to halve the learning
rate during model training.

All translation experiments are performed us-
ing an extension of the Jane toolkit (Vilar et al.,
2010; Wuebker et al., 2012). The neural net-
works are trained using an extension of the rwthlm
toolkit (Sundermeyer et al., 2014b). All results are
measured in case-insensitive BLEU [%] (Papineni
et al., 2002) using mteval from the Moses toolkit
(Koehn et al., 2007). Case-insensitive TER [%]
scores are computed with TERCom (Snover et al.,
2006). Word classes are trained using an in-house
tool (Botros et al., 2015) similar to mkcls.

9.2 Results

We compare our proposed system to three baseline
systems on the WMT 2016 English→Romanian
task and the WMT 2017 German→English task.
The results are shown in Tab. (2). We set up a
baseline system using a feedforward lexical model
and a feedforward alignment model, to compare to
the models used in (Alkhouli et al., 2016). This is
shown in row 1. We first check the effect of us-
ing a recurrent alignment model (row 2) instead of
the feedforward model. This brings an improve-
ment of up to 1.6% BLEU. The attention baseline
(row 3) performs much better in comparison, scor-
ing up to 3.1% BLEU better than the feedforward
system. This model has no alignment bias com-
ponent. We note here that the German→English
training data size is about 5.7 times more than that
of the English→Romanian task, which can explain
the small gap in performance between the systems
in row 2 and row 3 on the German→English task,
as the feeforward networks have large hidden lay-
ers of 1000 and 500 nodes, while the recurrent
models use hidden layers of size 200.

We train an attention model by adding the align-
ment bias term in Eq. (6). We bias the attention
model randomly during training for 50% of the
training batches. During decoding, we include a
bidirectional alignment model to score the align-
ment hypotheses (rows 4, 5). The combination of
the alignment-biased attention model and the bidi-
rectional alignment model (row 4) outperforms the
standard attention model (row 3). This shows that
the model learns to use the alignment information.
We also compare to adding source alignment bias
as given by Eq. (7) (row 5). We observe no differ-
ence to the case of constant alignment bias (row
4) on these tasks. Overall, we improve BLEU by

1.7% and 1.1% on the English→Romanian and
the German→English task, respectively.

9.3 Alignment Model
In Tab. (3), we analyze the effect of the alignment
model on the system. We observe that if the align-
ment model is dropped, the attention model is un-
able to score the alignments hypothesized during
decoding on its own (row 4). If we drop the align-
ment model in decoding, we also have to exclude
the alignment bias term when computing attention
weights during decoding (row 3) (the bias term is
still included in training). In this case, the transla-
tion degrades to the baseline performance.

9.4 Block out
In Tab. (3) we also investigate the effect of
block out. On the English→Romanian task
which has less training data in comparison to
German→English, we observe that block out
helps improve the system (row 2 vs. 5). This is
because it avoids overfitting the alignment infor-
mation, allowing the attention component to learn
to attend on its own. This can be verified when
comparing row 3 to row 6: When block out is
used in training, and the attention model is used
afterwards in decoding alone without an alignment
model, it is able to perform close to the baseline at-
tention performance if block out is used. Without
using block out, the model fails to attend to the
source side properly on its own.

9.5 Alignment Quality
We analyze the word alignment quality using 504
manually word-aligned German-English sentence
pairs that were extracted from the Europarl cor-
pus (Vilar et al., 2006). In Tab. (4), we com-
pare the baseline attention system to the proposed
alignment-based system. The alignments of the
baseline attention system are generated by align-
ing each target word to the source position hav-
ing the maximum attention weight. We observe
that the baseline attention system has a high AER
in comparison to the proposed system, which re-
duces AER from 44.9% to 29.7%. This corre-
sponds to 1.1% BLEU improvement. It is worth
noting that the high AER of the baseline system
is likely because the model is not trained to align,
and that the attention weights it produces are soft
alignments. In comparison, our system uses an
alignment model that explicitly learns to model
alignments.
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WMT En→Ro WMT De→En
newstest2016 newstest2017

lexical alignment bias
# model model term BLEU

[%]
TER

[%]
BLEU

[%]
TER

[%]

1 feedforward feedforward - 20.0 64.2 24.2 58.6
2 feedforward bidirectional - 21.6 62.7 25.5 57.6
3 attention - - 23.1 60.6 25.7 57.6
4 attention bidirectional δj,bi c 24.8 58.1 26.8 55.6
5 attention bidirectional δj,biDhbi 24.8 58.1 26.8 55.5

Table 2: Translation results on the WMT 2016 English→Romanian task and the WMT 2017
German→English task.

WMT En→Ro WMT De→En
newstest2016 newstest2017

lexical alignment decode w/ train w/
# model model align bias block out BLEU

[%]
TER

[%]
BLEU

[%]
TER

[%]

1 attention baseline - - - 23.1 60.6 25.7 57.6
2

+ alignment bias

bidirectional yes
yes

24.8 58.1 26.8 55.6
3 - no 23.1 60.6 25.7 59.4
4 - yes degenerate degenerate
5 bidirectional yes

no
23.7 59.2 26.7 55.8

6 - no degenerate degenerate

Table 3: The effect of using the alignment model in decoding and block out in training . The alignment
bias term used here is δj,bi c. Rows 1 and 2 are the same as rows 3 and 4 in Tab. (2). Block out means
including the alignment bias term for 50% of the training batches.

newstest2017 Europarl
BLEU

[%]
AER

[%]

attention baseline 25.7 44.9
proposed system 26.8 29.7

Table 4: A comparison between the WMT
German→English proposed system and the base-
line attention system in terms of the alignment er-
ror rate (AER). The attention baseline and the pro-
posed system are the same ones shown in Tab. (2),
rows 3 and 4, respectively.

To illustrate what happens when we include
the source alignment bias term, we take a
sample from the translation hypotheses of the
German→English system in Tab. (2, row 5), and
compare it to the output of the standard attention
model Tab. (2, row 3). The sample is chosen from
the development set newstest2015. The Ger-
man sentence “diese schreckliche Erfahrung wird
uns immer verfolgen .” has the reference transla-
tion “ this horrible experience will stay with us .”

In Fig. (3), we illustrate the best translation hy-
pothesis and the corresponding attention weights
produced by the standard attention model. Fig. (4)
shows the same thing for the attention model using
source alignment bias. We observe that the latter
is able to generate a good translation while being
able to attend to the source sentence in a proper
order. On the other hand, the standard attention
model has a problem in the first half of the hy-
pothesis, where it attends to the second half of the
source sentence instead. It ends up confusing the
object and the subject. A more acceptable, though
inaccurate, translation of ‘verfolgen’ under such
reordering would be ‘followed by’, but the system
fails to generate this translation.

Fig. (5) shows the curve of tuning the lexical
model weight. We observe that the weight is ro-
bust against small changes. The best results in
terms of BLEU are achieved when λ = 0.8.
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we
are

always
pursuing

this
terrible

experience

.
EOS

diese
schreckliche
Erfahrung
wird
uns
immer
verfolgen
. EOS

Figure 3: A translation example produced by the
standard attention system in Tab. (2), row 3. EOS
denotes the sentence end symbol. The shading de-
gree corresponds to the attention weight.

this
terrible

experience
will

always
follow

us

.
EOS

diese
schreckliche
Erfahrung
wird
uns
immer
verfolgen
. EOS

Figure 4: A translation example produced by our
best system using source alignment bias, given in
Tab. (2), row 5. EOS denotes the sentence end
symbol. The shading degree corresponds to the
attention weight.

10 Conclusion

We presented a modification of the attention
model to bias it using external alignment infor-
mation. We also presented a bidirectional recur-
rent neural network alignment model to be used
alongside the proposed attention model. We used
the two models in a generative scheme of align-
ment generation followed by lexical translation.
We demonstrated improvements over the standard
attention model on two WMT tasks. We provided
evidence that enabling the alignment bias term for
all training samples makes the attention mecha-
nism overfit the alignments on non-large datasets.
To remedy this, we proposed to apply the align-
ment bias on half of the training samples, which
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Figure 5: Grid search tuning of the lexical weight
of the system in Tab. (2, row 4). The re-
sults are computed on the development set of the
English→Romanian task.

yielded our best system.
While this work depends on pre-computed

alignments to train the attention and alignment
models, this is not central to our approach. In
future work, we plan to perform integrated train-
ing by alternating between alignment generation
and model estimation. Alignment generation can
be performed using forced alignment where beam
search is performed over the alignment positions,
while fixing the lexical translations to the refer-
ence translation. This can eliminate the need for
pre-computing alignments using ad hoc methods
like IBM1/ HMM/IBM4 training.
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Abstract

Neural Machine Translation (NMT)
models are often trained on hetero-
geneous mixtures of domains, from
news to parliamentary proceedings,
each with unique distributions and lan-
guage. In this work we show that train-
ing NMT systems on naively mixed
data can degrade performance versus
models fit to each constituent domain.
We demonstrate that this problem can
be circumvented, and propose three
models that do so by jointly learn-
ing domain discrimination and transla-
tion. We demonstrate the efficacy of
these techniques by merging pairs of
domains in three languages: Chinese,
French, and Japanese. After training
on composite data, each approach out-
performs its domain-specific counter-
parts, with a model based on a discrim-
inator network doing so most reliably.
We obtain consistent performance im-
provements and an average increase of
1.1 BLEU.

1 Introduction
Neural Machine Translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014) is an end-to-end ap-
proach for automated translation. NMT has
shown impressive results (Bahdanau et al.,
2015; Luong et al., 2015a; Wu et al., 2016)
often surpassing those of phrase-based sys-
tems while addressing shortcomings such as
the need for hand-engineered features.

In many translation settings (e.g. web
translation, assistant translators), input may

∗Equal Contribution.

come from more than one domain. Each do-
main has unique properties that could con-
found models not explicitly fitted to it. Thus,
an important problem is to effectively mix a
diversity of training data in a multi-domain
setting.

Our problem space is as follows: how can
we train a translation model on multi-domain
data to improve test-time performance in each
constituent domain? This setting differs from
the majority of work in domain adaptation,
which explores how models trained on some
source domain can be effectively applied to
outside target domains. This setting is impor-
tant, because previous research has shown that
both standard NMT and adaptation methods
degrade performance on the original source do-
main(s) (Farajian et al., 2017; Haddow and
Koehn, 2012). We seek to prove that this prob-
lem can be overcome, and hypothesize that
leveraging the heterogeneity of composite data
rather than dampening it will allow us to do
so.

To this extent, we propose three new models
for multi-domain machine translation. These
models are based on discriminator networks,
adversarial learning, and target-side domain
tokens. We evaluate on pairs of linguisti-
cally disparate corpora in three translation
tasks (EN-JA, EN-ZH, EN-FR), and observe
that unlike naively training on mixed data (as
per current best practices), the proposed tech-
niques consistently improve translation quality
in each individual setting. The most signifi-
cant of these tasks is EN-JA, where we obtain
state-of-the-art performance in the process of
examining the ASPEC corpus (Nakazawa
et al., 2016) of scientific papers and Sub-
Crawl, a new corpus based on an anonymous
manuscript (Anonymous, 2017). In summary,
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our contributions are as follows:

• We show that mixing data from heteroge-
nous domains leads to suboptimal re-
sults compared to the single-domain set-
ting, and that the more distant these do-
mains are, the more their merger degrades
downstream translation quality.

• We demonstrate that this problem can be
circumvented and propose novel, general-
purpose techniques that do so.

2 Neural Machine Translation

Neural machine translation (Sutskever et al.,
2014) directly models the conditional log prob-
ability log p(y|x) of producing some trans-
lation y = y1, ..., ym of a source sentence
x = x1, ..., xn. It models this probability
through the encoder-decoder framework. In
this approach, an encoder network encodes
the source into a series of vector representa-
tions H = h1, ..., hn. The decoder network
uses this encoding to generate a translation
one target token at a time. At each step, the
decoder casts an attentional distribution over
source encodings (Luong et al., 2015b; Bah-
danau et al., 2014). This allows the model to
focus on parts of the input before producing
each translated token. In this way the decoder
is decomposing the conditional log probability
into

log p(y|x) =

m∑

t=1

log p(yt|y<t, H) (1)

In practice, stacked networks with recurrent
Long Short-Term Memory (LSTM) units are
used for both the encoder and decoder. Such
units can effectively distill structure from se-
quential data (Elman, 1990).

The cross-entropy training objective in
NMT is formulated as,

Lgen =
∑

(x,y)∈D
− log p(y|x) (2)

Where D is a set of (source, target) sequence
pairs (x, y).

Figure 1: The novel mixing paradigms un-
der consideration. Discriminative mixing (A),
adversarial discriminative mixing (B), and
target-side token mixing (C) are depicted.

3 Models
We now describe three models we are propos-
ing that leverage the diversity of information
in heterogeneous corpora. They are summa-
rized in Figure 1. We assume dataset D con-
sists of source sequences X, target sequences
Y and domain class labels D that are only
known at training time.

3.1 Discriminative Mixing
In the Discriminative Mixing approach, we
add a discriminator network on top of the
source encoder that takes a single vector en-
coding of the source c as input. This network
maximizes P (d|H), the predicted probability
of the correct domain class label d conditioned
on the hidden states of the encoder H. It does
so by minimizing the negative cross-entropy
loss Ldisc = − log p(d|H). In other words, the
discriminator uses the encoded representation
of the source sequence to predict the correct
domain. Intuitively, this forces the encoder
to encode domain-related information into the
features it generates. We hypothesize that this
information will be useful during the decoding
process.
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The encoder can employ an arbitrary mech-
anism to distill the source into a single-vector
representation c. In this work, we use an at-
tention mechanism over the encoder states H,
followed by a fully connected layer. We set c
to be the attention context, and calculate it
according to Bahdanau et al. (2015):

c =
∑

j

ajhj

a = softmax(â)

âi = vT
a tanh(Wahi)

The discriminator can be an arbitrary neu-
ral network. For this work, we fed c into a fully
connected layer with a tanh nonlinearity, then
passed the result through a softmax to obtain
probabilities for each domain class label.

The discriminator is optimized jointly with
the rest of the Sequence-to-Sequence network.
If Lgen is the standard sequence generator loss
described in Section 2, then the final loss we
are optimizing is the sum of the generator and
discriminator loss L = Lgen + Ldisc.

3.2 Adversarial Discriminative Mixing
We also experiment with an adversarial ap-
proach to domain mixing. This approach is
similar to that of 3.1, except that when back-
propagating from the discriminator network to
the encoder, we reverse the gradients by multi-
plying them by −1. Though the discriminator
is still using ∇Ldisc to update its parameters,
with the inclusion of the reversal layer, we are
implicitly directing the encoder to optimize
with −∇Ldisc. This has the opposite effect
of what we described above. The discrimina-
tor still learns to distinguish between domains,
but the encoder is forced to compute domain-
invariant representations that are not useful to
the discriminator. We hope that such repre-
sentations lead to better generalization across
domains.

Note the connections between this tech-
nique and that of the Generative Adversarial
Network (GAN) paradigm (Goodfellow et al.,
2014). GANs optimize two networks with two
objective functions (one being the negation of
the other) and periodically freeze the param-
eters of each network during training. We are
training a single network without freezing any
of its components. Furthermore, we reverse

gradients in lieu of explicitly defining a sec-
ond, negated loss function. Last, the adver-
sarial parts of this model are trained jointly
with translation in a multitask setting.

Note also that the representations computed
by this model are likely to be applicable to un-
seen, outside domains. However, this setting
is outside the scope of this paper and we leave
its exploration to future work. For our setting,
we hypothesize that the domain-agnostic en-
codings encouraged by the discriminator may
yield improvements in mixed-domain settings
as well.

3.3 Target Token Mixing
A simpler alternative to adding a discrimina-
tor network is to prepend a domain token to
the target sequence. Such a technique can be
readily incorporated into any existing NMT
pipeline and does not require changes to the
model. In particular, we add a single special
vocabulary word such as “domain=subtitles”,
per domain and prepend this token to each
target sequence therein.

The decoder must learn, similar to the more
complex discriminator above, to predict the
correct domain token based on the source rep-
resentation at the first step of decoding. We
hypothesize that this technique has a similar
regularizing effect as adding a discriminator
network. During inference, we remove the first
predicted token corresponding to the domain.

The advantage of this approach verses the
similar techniques discussed in related work
(Section 5) is that in our proposed method,
the model must learn to predict the domain
based on the source sequence alone. It does
not need to know the domain a-priori.

4 Experiments

4.1 Datasets
For the Japanese translation task we eval-
uate our domain mixing techniques on the
standard ASPEC corpus (Nakazawa et al.,
2016) consisting of 3M scientific document
sentence pairs, and the SubCrawl corpus, con-
sisting of 3.2M colloquial sentence pairs har-
vested from freely available subtitle reposito-
ries on the World Wide Web. We use standard
train/dev/test splits (3M, 1.8k, and 1.8k ex-
amples, respectively) and preprocess the data
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using subword units1 (Sennrich et al., 2015) to
learn a shared English-Japanese vocabulary of
size 32,000. To allow for fair comparisons, we
use the same vocabulary and sentence segmen-
tation for all experiments, including single-
domain models.

To prove its generality, we also evaluate our
techniques on a small set of about 200k/1k/1k
training/dev/test examples of English Chinese
(EN-ZH) and English-French (EN-FR) lan-
guage pairs. For EN-ZH, we use a news com-
mentary corpus from WMT’172 and a 2012
database dump of TED talk subtitles (Tiede-
mann, 2012). For EN-FR, we use professional
translations of European Parliament Proceed-
ings (Koehn, 2005) and a 2016 dump of the
OpenSubtitles database (Lison and Tiede-
mann, 2016).

The premise of evaluating on mixed-domain
data is that the domains undergoing mixing
are in fact disparate. We need to quantifi-
ably measure the disparity therein to obtain
fair, valid, and explainable results. Thus,
we measured the distances between the do-
mains of each language pair with A-distance,
an important part of the upper generalization
bounds for domain adaptation (Ben-David
et al., 2007). Due to the intractability of
computing A-distances, we instead compute a
proxy for A-distance, d̂A, which is given theo-
retical justification in Ben-David et al. (2007)
and used to measure domain distance in Gani
et al. (2015); Glorot et al. (2011). The proxy
A-distance is obtained by measuring the gener-
alization error ϵ of a linear bag-of-words SVM
classifier trained to discriminate between the
two domains, and setting d̂A = 2(1−2ϵ). Note
that by nature of its formulation, d̂A is only
useful in comparative settings, and means lit-
tle in isolation (Ben-David et al., 2007). How-
ever, it has a minimum value of 1, implying
exact domain match, and a maximum of 2,
implying that domains are polar opposites.

4.2 Experimental Protocol

All models are implemented using the Tensor-
flow framework and based on the Sequence-
to-Sequence implementation of Britz et al.

1Using https://github.com/google/sentencepiece
2http://www.statmt.org/wmt17/translation-

task.html

(2017)3. We use a 4-layer bidirectional LSTM
encoder with 512 units, and a 4-layer LSTM
decoder. Recall from Section 3 that we use
Bahdanau-style attention Bahdanau et al.
(2015). Dropout of 0.2 (0.8 keep probability)
is applied to the input of each cell. We opti-
mize using Adam and a learning rate of 0.0001
(Kingma and Ba, 2014; Abadi et al., 2016).
Each model is trained on 8 Nvidia K40m
GPUs with a batch size of 128. The combined
Japanese dataset took approximately a week
to reach convergence.

During training, we save model checkpoints
every hour and choose the best one using the
BLEU score on the validation set. To cal-
culate BLEU scores for the EN-JA task, we
follow the instruction from WAT 4 and use
the KyTea tokenizer (Neubig et al., 2011).
For the EN-FR and EN-ZH tasks, we follow
the WMT ’16 guidlines and tokenize with the
Moses tokenizer.perl script (Koehn et al.,
2007).

4.3 Results
The results of our proxy-A distance experi-
ment are given in Table 1. d̂A is a purely
comparative metric that has little meaning in
isolation (Ben-David et al., 2007), so it is evi-
dent that the EN-JA and EN-ZH domains are
more disparate, while the EN-FR domains are
more similar.

Lanuage Domain 1 Domain 2 d̂A

Japanese ASPEC SubCrawl 1.89
Chinese News TED 1.73
French Europarl OpenSubs 1.23

Table 1: Proxy A-distances (d̂A) for each do-
main pair.

To understand the interactions between
these models and mixed-domain data, we train
and test on ASPEC, SubCrawl, and their con-
catenation. We do the same for the French
and Chinese baselines.

In general, our results support the hypoth-
esis that the naive concatenation of data from
disparate domains can degrade in-domain
translation quality (Table 2). In both the EN-
JA and EN-FR settings, the domains under-
going mixing are disparate enough to degrade

3https://github.com/google/seq2seq
4http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/
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(a) Comparing the mixed-domain
and individual-domain baselines
(BLEUmixed − BLEUindividual)
while varying domain distance.
The more different two domains
are, the more their mixture
degrades performance.

(b) Comparing the proposed dis-
criminator and individual-domain
baseline (BLEUdiscriminator −
BLEUindividual) while varying
domain distance. Compared
to Figure 2a, performance is
less degraded when using the
discriminator.

(c) Comparing the pro-
posed discriminator approach
and mixed-domain baseline
(BLEUdiscriminator − BLEUmixed)
while varying domain distance.
The discriminator always improves
over the baseline, and this is
accentuated when the merged
domains are more distant.

Figure 2: Comparative performance and domain distance. Trends corresponding to a least-
squares fit are indicated with dashed lines.

performance when mixed, and the proposed
techniques recover some of this performance
drop. In the EN-ZH setting, we observe that
even when similar domains are mixed perfor-
mance can drop. Notably, in this setting, the
proposed techniques successfully improve per-
formance over single-domain training.

For a more detailed perspective on
this result, Figure 2a depicts the mixed-
domain/individual-domain performance
differential as a function of domain distance.
The two share a negative association, suggest-
ing that the most distant two domains are,
the more their merger degrades performance.
This degradation is particularly strong in
Japanese due the vast structural differences
between formal and casual language. The
vocabularies, conjugational patterns, and
word attachments all follow different rules in
this case (Hori, 1986).

We then trained and tested our proposed
methods on the same mixed data (Table 2).
Our results generally agree with the hypoth-
esis that the diversity of information in het-
erogeneous data can be leveraged to improve
in-domain translation. Overall, we find that
all of the proposed methods outperform their
respective baselines in most settings, but that
the discriminator appears the most reliable. It
bested its counterparts in 4 of 6 trials, and was

EN-JA Model ASPEC SubCrawl
ASPEC 38.87 3.85
SubCrawl 2.74 16.91
ASPEC + SubCrawl 33.85 14.34
Discriminator 35.01 15.38
Adv. Discriminator 29.87 13.31
Target Token 35.05 14.92

EN-FR Model Europarl OpenSubs
Europarl 34.51 13.36
OpenSubtitles 13.12 15.2
Europarl + OpenSubs 38.26 27.9
Discriminator 39.03 27.91
Adv. Discriminator 38.38 25.67
Target Token 39.1 25.32

EN-ZH Model News TED
News 12.75 3.12
TED 2.79 8.41
News + TED 11.36 6.67
Discriminator 12.88 8.64
Adv. Discriminator 12.15 8.16
Target Token 11.98 7.69

Table 2: BLEU scores for models trained on
various domains and languages (both mixed
and unmixed). Rows correspond to train-
ing domains and columns correspond to test
domains. Note that our single-domain AS-
PEC results are state-of-the-art, indicating the
strength of these baselines.

122



the only approach that outperformed both in-
dividually fit and naively mixed baselines in
every trial.

Figure 2c depicts the dynamics of the dis-
criminator approach. More specifically, this
figure shows the discriminator/naive-mixing
performance differential as a function of do-
main distance. The two share a positive asso-
ciation, suggesting that the more distant two
domains are, the more the discriminator helps
performance. This may be because it is easier
to classify distant domains, so the discrimina-
tor can fit the data better and its gradients en-
courage the upstream encoder to include more
useful domain-related structure.

The adversarial discriminator architecture
yielded improvements on the small datasets,
but underperformed on EN-JA. It is possible
that the grammatical differences inherent to
casual and polite domains are such that se-
mantic information was lost in the process of
forcing their encoded distributions to match.
Additionally, adversarial objective functions
are notoriously difficult to optimize on, and
this model was prone to falling into poor local
optimum during training.

The simpler target token approach also
yields improvement over the baselines, just
barely surpassing that of the Discriminator for
ASPEC. This approach has the practical ben-
efit of requiring no architectural changes to an
off-the-shelf NMT system.

Our EN-FR results are particularly interest-
ing. Though the data seem like they should
come from sufficiently distant domains (par-
liament proceedings and subtitles), the do-
mains are actually quite close according to d̂A

(Table 1). Since these domains are so close,
their merger is able to improve baseline per-
formance. Thus, if the source and target do-
main are sufficiently close, then their merger
does indeed help.

Next, we investigated the optimization dy-
namics of these models by examining their
learning curves. Curves for the baselines and
discriminative models trained on EN-JA data
are depicted in Figure 3a. Single-domain
training clearly outperforms mixed training,
and it appears that adding a discriminative
strategy provides additional gains. From Fig-
ure 3b we can see that the discriminator ap-

proach (not reversing gradients), learns to fit
the domain distribution quickly, implying that
the Japanese domains were in fact quite dis-
tant and easily classifiable.

5 Related Work

Our work builds on a recent literature on do-
main adaptation strategies in Neural Machine
Translation. Prior work in this space has pro-
posed two general categories of methods.

The first proposed method is to take mod-
els trained on the source domain and finetune
on target-domain data. Luong and Manning
(2015); Zoph et al. (2016) explores how to im-
prove transfer learning for a low-resource lan-
guage pair by finetuning only parts of the net-
work. Chu et al. (2017) empirically evalu-
ate domain adaptation methods and propose
mixing source and target domain data during
finetuning. Freitag and Al-Onaizan (2016)
explored finetuning using only a small subset
of target domain data. Note that we did not
compare directly against these techniques be-
cause they are intended to transfer knowledge
to a new domain and perform well on only
the target domain. We are concerned with
multi-domain settings, where performance on
all constituent domains is important.

A second strain of “multi-domain” thought
in NMT involves appending a domain indi-
cator token to each source sequence (Kobus
et al., 2016). Similarly, Johnson et al. (2016)
use a token for cross-lingual translation in-
stead of domain identification. This idea was
further refined by Chu et al. (2017), who in-
tegrated source-tokenization into the domain
finetuning paradigm. While it requires no
changes to the NMT architecture, these ap-
proaches are inherently limited because they
stipulate that domain information for unseen
test examples be known. For example, if us-
ing a trained model to translate user-generated
sentences, we do not know the domain a-priori,
and this approach cannot be used.

Apart from the recent progress in do-
main adaptation for NMT, we draw on work
that transfers knowledge between domains in
semisupervised settings. Our strongest influ-
ence is adversarial domain adaptation (Ganin
et al., 2015), where feature distributions in
the source and target domains are matched
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(a) Log perplexity evaluated on the ASPEC valida-
tion set. Single-domain training outperforms com-
bined training. The discriminator and target token
approaches improve over the naive combined data.
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(b) Discriminator training loss over time on the EN-JA
data. The discriminator learns to fit the data almost
perfectly after a few hundred thousand iterations

Figure 3: Training curves for domain mixing and discriminator loss.

with a Domain-Adversarial Neural Network
(DANN). Another approach to this problem is
that of Long et al. (2015), which measures and
minimizes the distance between domain distri-
bution means before training, thereby negat-
ing any unique properties.

There is some overlap between past research
in multi-domain statistical machine transla-
tion (SMT) and the ideas of this paper. (Fara-
jian et al., 2017) compared the efficacy of
phrase-based SMT and NMT on multiple-
domain data, observing similar performance
degradations as us in mixed-domain settings.
However, that study did not seek to under-
stand the issue and offered no explanation,
analysis, or solution to the problem. Another
line of work merged data by only selecting ex-
amples with a propensity for relevance in a
multi-domain setting (Mandal et al., 2008; Ax-
elrod et al., 2011). In a strategy that echos
NMT fine-tuning, Pecina et al. (2012) used
a variety of in-domain development sets to
tune hyperparameters to a generalized setting.
Similar to our domain discriminator network,
Clark et al. (2012) crafted domain-specific fea-
tures that are used by the decoder. How-
ever, some of these systems’ features are down-
stream of binary indicators for domain iden-
tity. This approach, then, faces the same in-
herent limitations as source-tokenization: do-
main knowledge is required for inference. Fur-
thermore, the domain features of this system

are integral to the decoding process, while our
discriminator network is an independent mod-
ule that can be detached during inference.

6 Conclusion

We presented three novel models for apply-
ing Neural Machine Translation to multi-
domain settings, and demonstrated their ef-
ficacy across six domains in three language
pairs, and in the process achieved a new state-
of-the-art in EN-JA translation. Unlike the
naive combining of training data, these mod-
els improve their translational ability on each
constituent domain. Furthermore, these mod-
els are the first of their kind to not require
knowledge of each example’s domain at in-
ference time. All the proposed approaches
outperform the naive combining of training
data, so we advise practitioners to imple-
ment whichever most easily fits into their pre-
existing pipelines, but an approach based on
a discriminator network offered the most reli-
able results.

In future work we hope to explore the dy-
namics of adversarial discriminative training
objectives, which force the model to learn
domain-agnostic features, in the related prob-
lem of adaptation to unseen test-time do-
mains.
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Abstract

We investigate the application of Neu-
ral Machine Translation (NMT) under the
following three conditions posed by real-
world application scenarios. First, we op-
erate with an input stream of sentences
coming from many different domains and
with no predefined order. Second, the sen-
tences are presented without domain in-
formation. Third, the input stream should
be processed by a single generic NMT
model. To tackle the weaknesses of cur-
rent NMT technology in this unsupervised
multi-domain setting, we explore an ef-
ficient instance-based adaptation method
that, by exploiting the similarity between
the training instances and each test sen-
tence, dynamically sets the hyperparame-
ters of the learning algorithm and updates
the generic model on-the-fly. The results
of our experiments with multi-domain data
show that local adaptation outperforms not
only the original generic NMT system,
but also a strong phrase-based system and
even single-domain NMT models specifi-
cally optimized on each domain and appli-
cable only by violating two of our afore-
mentioned assumptions.

1 Introduction

The progress towards a more pervasive integra-
tion of machine translation (MT) into industrial
translation workflows has to confront two inter-
connected problems. On one side, MT technology
should be able to guarantee a high level of flexibil-
ity to deliver good-quality output in a wide range
of use scenarios (language combinations, genres,
domains). On the other side, the infrastructures
required to reach this objective should be scalable

enough to enable the industrial deployment of MT
at reasonable cost.

The first problem is a well known one in (sta-
tistical) MT: regardless of the paradigm adopted,
performance is bounded by the similarity between
training and test data. The scenario addressed in
this paper, in which the input stream comes from a
variety of different domains, is a typical example
where models trained on generic parallel corpora
suffer from data diversity. Indeed, processing sen-
tences from diverse domains becomes more and
more difficult when the distance from the train-
ing instances increases. The more the domains a
system is exposed to, the higher the chance to ex-
perience drops in translation quality under unseen
conditions. To cope with this issue, MT systems
should be flexible enough to adapt to a variety of
linguistic differences (e.g. lexical, structural) be-
tween different data points.

The second problem is more practical: in ab-
sence of flexible models, multi-domain translation
scenarios call for infrastructures based on multi-
ple specialised systems, each of which is tuned to
maximise performance in a given domain. This
solution, however, has two evident drawbacks: i)
domain-specific models can only be invoked by
input sentences presented along with domain in-
formation, so that each instance is processed by
the right model, and ii) each time a new domain
has to be covered, a new dedicated model has
to be trained with domain-specific data. In real-
world application scenarios, however, translation
requests rarely come with domain information, the
notion of domain is per se fuzzy, domain-specific
data can be hard to acquire and, most importantly,
architectures’ costs and scalability are of utmost
concern. When maintenance costs and architec-
ture scalability come into play, a preferable solu-
tion would be to rely on one single model, capable
to adapt on-the-fly to input streams of diverse data,
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without any supervision.
Neural machine translation (Bahdanau et al.,

2014), which has recently become the dominant
approach in MT, is not immune to the aforemen-
tioned problems. Domain drifts are in fact hard
to manage by NMT, due to its inherent character-
istics. Different from the phrase-based paradigm,
in which training data is explicitly memorised and
used in the form of basic translation constituents
(phrases), NMT generates a more implicit rep-
resentation of the data, by compressing and dis-
tributing the information over its internal param-
eters. Moreover, given the amount of data and
time required for training, high flexibility and fast
adaptation capabilities of single generic models
become key requirements to unleash NMT’s po-
tential in industry applications.

To pursue these objectives, we investigate the
application of an unsupervised method to adapt
on-the-fly a generic NMT model (Mg) and im-
prove translation quality for an input stream of
diverse, multi-domain sentences presented in ran-
dom order. Our approach is based on a re-
trieval mechanism that, given an input sentence
q, extracts from the pool of parallel data the top
(source, target) pairs in terms of similarity be-
tween the source and q. The retrieved pairs are
then used to fine-tune the model (Mq), which is
then applied to translate q. Finally, the adapted
model is reset to the original parameters (Mg), the
next input sentence is read, and so on. In order to
learn more efficiently from the retrieved set, we
introduce a dynamic method that, based on the
similarity between the test sentence and the re-
trieved pairs, decides about the hyperparameters
to be used by the learning algorithm (i.e. learning
rate and number of epochs).

In our experiments with multi-domain data,
we observe significant improvements by our ap-
proach over the generic NMT system, a strong
generic phrase-based MT system, and also spe-
cialised NMT models fine-tuned on each domain
using domain-specific data. In particular, by dy-
namically setting the model hyperparameters, our
solution is able to outperform the strong pool
of domain-specific NMT systems by +2.8 BLEU
scores, in overall.

2 Related Works

Domain adaptation has been extensively studied
in machine translation. The existing works in this

field mostly rely on the assumption of knowing the
target domain in advance and having in-domain
training data of reasonable size. This dataset is
then used to train specific models that are interpo-
lated with generic ones using standard log-linear
methods (Koehn and Schroeder, 2007) or mixture
models (Foster and Kuhn, 2007).

In line with the work presented in this paper,
(Eck et al., 2004) and (Zhao et al., 2004) proposed
to perform an instance selection step in which for
each test document/sentence a small set of simi-
lar documents/sentences is retrieved from the pool
of training data and used to build more specific
language models. (Hildebrand et al., 2005) fur-
ther extended this approach and proposed to build
local translation models using the set of retrieved
sentence pairs.

As in SMT, recent works in domain adaptation
for neural MT share the assumption of knowing
the target domain in advance and report signifi-
cant improvements by adapting the generic system
to the target domain as an offline step (Luong and
Manning, 2015). More recently, (Li et al., 2016)1

proposed an instance-based adaptation technique
for NMT in which for each translation segment
a set of similar sentence pairs is retrieved. This
small training set is then used to update the model
before translating the given test sentence. In or-
der to reduce the cost of computing the similar-
ity of the test segment and all the sentences in the
pool, they suggest a three-step process in which,
as the first step, all the sentence pairs containing
at least one of the test words are retrieved. This
large set is then filtered by measuring the similar-
ity between the source sentences and the test us-
ing the Dice coefficient measure (Dice, 1945), and
keeping the top 1000. The remaining sentences are
then ranked based on their Levenshtein distance to
the test sentence. To cope with the risk of training
a model on sentence pairs with low similarity to
the test sentence, the first best retrieved sentence
pair is used only if its similarity is higher than a
threshold (i.e. 0.4), otherwise they use the top-128
training pairs. Moreover, to keep under control the
possibility of overfitting, they suggest to train the
system for only one epoch over the retrieved set.

To further investigate the potential of the in-
stance selection approach, we study if properly

1This work is a non-archival document that has not been
peer reviewed for publication. For the sake of completeness
we reported it in this paper and compared our results with our
reimplementation of this method.
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setting the hyperparameters in the learning algo-
rithm can boost NMT performance. For this pur-
pose, we take a different direction from (Li et al.,
2016) by proposing a strategy to dynamically se-
lect the number of epochs and learning rate based
on the similarity between the best retrieved sen-
tence pair and the test segment. We empirically
prove the effectiveness of this method in a multi-
domain application scenario and show that only
our adaptive approach is able to produce better
translation quality than the PBMT system and the
strong pool of specialised NMT systems.

3 Neural Machine Translation

We build our adaptive NMT approach on top of the
state-of-the-art sequence-to-sequence model pro-
posed by (Bahdanau et al., 2014). This model re-
lies on a two-step process: first, a recurrent neu-
ral network encodes the source sentence word by
word into a sequence of hidden states; then, an-
other recurrent neural network decodes the source
hidden sequence into the target string. Both the
encoder and decoder networks are implemented
with gated recurrent units (Cho et al., 2014). In
particular, the decoder network operates like a lan-
guage model: it predicts the next target word from
the last target word, the last hidden state of the de-
coder, and a convex combination of the encoder
hidden states. The weights of this convex combi-
nation are dynamically computed through a sim-
ple feed-forward network, called attention model.
Intuitively, similarly to a word alignment model,
the attention model informs the decoder about the
encoder hidden states corresponding to the next
target word. The decoder actually predicts a full
distribution over the target language vocabulary.
Thus, the generation of a translation requires sam-
pling at each step the most probable target word
from the distribution and then feeding it back to
the decoder as input for the next step. The decod-
ing phase is initialised with a conventional delim-
iter symbol and terminates when the same symbol
is output. Better translations are actually produced
by integrating the decoder generative process with
a beam search, that considers multiple input and
output word hypotheses at each step. Training
of the presented NMT architecture involves esti-
mating many parameters, such as word embedding
matrices, GRU layers in both the encoder and de-
coder networks, and the attention model weights.
Training is carried out via maximum-likelihood

estimation over a large collection of parallel sen-
tences. In particular, optimization is performed
via stochastic gradient descent (SGD), by iterat-
ing over batches of training data randomly shuffled
after each epoch (Goodfellow et al., 2016). More
formally, starting from a random initialisation of
the parameters, at each iteration a batch B is ex-
tracted and each parameter w is moved one step in
the opposite direction of the mean gradient of the
log-likelihood (L), evaluated on the entries of B:

∆w = −η 1

| B |
∑

(s,t)∈B

∂L(s, t)

∂w
(1)

The size of the step ∆w is moderated by a learning
rate η which can either be fixed for all parameters
and all iterations, or vary along one or both dimen-
sions (Goodfellow et al., 2016). During training,
the SGD procedure typically goes through several
so-called epochs, i.e. the number of times the
whole training data is processed.

The above presented training procedure is also
used to adapt an already trained NMT model to
a new task for which representative training data
is available (Luong and Manning, 2015). In this
paper, we investigate the application of the adap-
tation procedure under extreme conditions, that is
when the training data is made of few samples.

4 Unsupervised Instance-based
Adaptation

We consider the scenario in which translation re-
quests from a variety of domains are presented in
random order to a single generic system. We also
assume that each input sentence is presented with-
out information about the domain it comes from.
In this setting, the system needs to perform an un-
supervised adaptation step on-the-fly and produce
the translation.

To this aim, we experiment with an approach in
which, given a generic NMT model (Mg), the pool
of parallel data (Cp), and a sentence to be trans-
lated (q), the following three steps are performed:
(1) q is used as a query to retrieve from Cp a set of
(source, target) pairs (Cq) in which the source is
similar to q; (2) this set is used to locally adapt the
hyperparameters (HPq) of Mg; (3) the resulting
locally-tuned model (Mq) is applied to translate q.
If Cq is empty, the generic model is used to trans-
late q. The pseudo code of this approach is shown
in Algorithm 1.
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Algorithm 1 RetrieveAdaptTranslate
1: . Mg: generic NMT model
2: . S: stream of sentences to be translated
3: . RT : text retrieval module
4: . Cq: retrieved parallel sentences
5: . q∗: translated segment
6: procedure RAT(Mg , RT , S)
7: . For each segment to be translated
8: while pop q from S do
9: . Local copy of the generic model

10: Mq:=Mg

11: . Instance selection
12: Cq:=Retrieve(RT ,q)
13: if Cq 6= ∅ then
14: . Model optimization
15: HPq:=SetHP(Cq, q)
16: Mq:=Adapt(Mg, Cq, HPq)

17: . Translate the segment with Mq

18: q∗:=Translate(Mq, q)
19: . Post the translated segment
20: Post q∗

Instance selection and parameter optimization
are the two key steps of this algorithm. On one
hand, since instance selection aims to retrieve the
most relevant sentences from Cp, the similarity
measure plays an important role as the quality of
the material used for local tuning directly affects
the next processing steps. In this paper, we use
Lucene (McCandless et al., 2010), an open-source
information retrieval library that is highly opti-
mized for text search purposes. However, since the
similarity measure used in Lucene is based on tf-
idf counts (Baeza-Yates and Ribeiro-Neto, 2011),
it does not consider the order of the words and n-
grams in the query and in the retrieved sentences,
which is an important aspect for MT model train-
ing. In order to take advantage also of this infor-
mation, we first query Lucene to retrieve a large
set of candidates and then re-score them using the
sentence-level BLEU (Chen and Cherry, 2014),
so that the sentences with higher BLEU score are
ranked first. Finally, the top-n similar sentences
are used to update the model. This approach is rea-
sonably fast, since it takes advantage of Lucene in
searching in a large set of data and then computes
the BLEU scores on just few candidates.

The optimization phase, on the other hand,
needs to effectively adapt the model parameters
with a very small set of parallel data featuring dif-

ferent levels of similarity. In order to tune at best
its parameters with respect to the input sentence
q, the system has in fact to learn as much as pos-
sible from highly similar points in Cq, and keep
under control the risk of overfitting in the case of
instances with low similarity. The learning rate
and number of times the system iterates over the
retrieved sentence pairs hence become crucial as-
pects during optimization. Differently from (Li
et al., 2016), who keeps these factors fixed, in this
paper we propose a simple yet effective method
that dynamically decides about the hyperparam-
eters of the learning algorithm (i.e. HPq) based
on the relevance of the retrieved sentence pairs to
the input segment. To this aim, we define two
functions that for the retrieved samples with high
similarity to the test segment increase the learn-
ing rate and number of epochs, so that the system
can leverage more the information of the training
set and vice versa. The idea is to overfit more
the NMT system on sentences that are similar to
the test sentence while avoiding drastic changes in
case of tuning with low similarity sentence pairs.
In Section 6, we investigate the effect of dynami-
cally setting these parameters on the final perfor-
mance of the system. As the results show, our dy-
namic method significantly improves the perfor-
mance of the adaptive system, outperforming the
strong PBMT system and the oracle NMT systems
fine-tuned specifically to each domain.

5 Experimental Setup

5.1 Data
Our experiments are carried out on an English to
French translation task, where the training data is
a collection of publicly available corpora from dif-
ferent domains: European Central Bank (ECB),
Gnome, JRC-Acquis (JRC), KDE4, OpenOffice
(OOffice), PHP, Ubuntu, and translated UN doc-
uments (UN-TM).2 Since the size of these corpora
is relatively small for training robust MT systems,
in particular NMT solutions, we added the News
Commentary data from WMT’133(WMT nc), as
well as the CommonCrawl (CommonC.) and Eu-
roparl corpora as out-domain data, so to reach a
total of ∼5.8M sentence pairs.

From each specific domain a set of size 500 sen-
tence pairs is randomly selected as development
set, and 1,000 sentence pairs are used as held-

2All the corpora are available in http://opus.lingfil.uu.se
3http://www.statmt.org/wmt13/
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Segments Tok/Typ Avg. Len
ECB 142.4K 76.7 20.5
Gnome 236.1K 102.1 7.2
JRC 678.9K 146.3 15.4
KDE4 160.7K 25.3 6.4
OOffice 32.9K 40.8 11.2
PHP 36.7K 26.0 6.5
Ubuntu 7.5K 5.1 5.2
UN-TM 37.6K 69.6 21.9
WMT nc 189.1K 65.3 24.6
CommonC. 2.6M 80.3 20.9
Europarl 1.7M 364.3 22.9

Table 1: Statistics of the English side of the train-
ing corpora.

out test corpus. Duplicated sentence pairs are re-
moved from each corpus separately, resulting in a
total of 3,527 dev and 6,962 test corpora for all the
domains. To analyze the performance of the sys-
tem on generic data, two subsets of size 500 and
1000 sentence pairs are randomly selected from
the WMT’13 test data as dev and test corpora. The
statistics of the training and test corpora are re-
ported in Tables 1 and 2, respectively, showing
that the considered domains are extremely diverse
in terms of average sentence length and average
word frequency. The Avg. Sim column in Ta-
ble 2 reports the average similarity of the test sen-
tences and the source side of the most relevant sen-
tence pair retrieved from the pool of training data.
The scores are computed using the sentence-level
BLEU (Chen and Cherry, 2014). Since our adap-
tation approach updates the model by leveraging
these retrieved sentences, their average similarity
can be a reliable indicator for predicting the per-
formance gain after adaptation. In other words, the
system can learn more from the retrieved samples
in the case of corpora with higher sentence simi-
larity (e.g. Gnome) than the datasets with lower
average BLEU score (e.g. WMT). In Section 6 we
analyze these features and their impact on the sys-
tem performance.

Finally, the analysis of the characteristics of
Gnome, KDE4, OpenOffice, PHP, and Ubuntu,
which are often referred to as IT domain corpora,
evidences another important issue in developing
domain-specific MT systems. As the statistics of
Table 1 show, these corpora are extremely diverse
in terms of average sentence length and word fre-
quency, which are likely to correspond to different

Segments Tok/Typ Avg. Sim
ECB 1,000 5.5 50.5
Gnome 982 3.8 70.2
JRC 757 5.1 54.7
KDE4 988 7.0 34.8
OOffice 976 5.8 30.3
PHP 352 4.1 55.7
Ubuntu 997 2.7 27.7
UN-TM 910 7.1 65.1
WMT 1,000 2.2 11.9

Table 2: Statistics of the English side of the test
corpora.

levels of difficulty for MT and, in turn, to large
differences in final translation quality.

5.2 Neural MT System
All our experiments with NMT are conducted
with an in-house developed and maintained branch
of the Nematus toolkit4 which is an implemen-
tation of the attentional encoder-decoder archi-
tecture (Bahdanau et al., 2014). Since handling
large vocabularies is one of the main bottlenecks
for the existing NMT systems, state-of-the-art ap-
proaches are trained on corpora in which the less
frequent words are segmented into their sub-word
units (Sennrich et al., 2016) by applying a modi-
fied version of the byte pair encoding (BPE) com-
pression algorithm (Gage, 1994). This makes the
NMT systems capable of dealing with new and
rare words. As recommended in (Sennrich et al.,
2016), in order to increase the consistency in seg-
menting the source and target text, we combined
both sides of the training data, and set the number
of merge rules to 89,500, resulting in vocabular-
ies of size 78K and 86K tokens respectively for
English and French. We use mini-batches of size
100, word embeddings of size 500, and GRU lay-
ers of size 1,024. The maximum sentence length
is set to 50. The models are trained using Ada-
grad (Duchi et al., 2011) by reshuffling the training
set at each epoch, and are evaluated every 10,000
mini-batches with BLEU (Papineni et al., 2002).

5.3 Terms of Comparison
We compare our adaptive NMT system with a
generic NMT and a strong PBMT system trained
on the pool of all the training data. For training
the PBMT system we used the open source Moses

4https://github.com/rsennrich/nematus
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toolkit (Koehn et al., 2007). The word alignment
models were trained with FastAlign (Dyer et al.,
2013). We trained the 5-gram language models
with the KenLM toolkit (Heafield et al., 2013)
on the target side of the pooled corpora. Feature
weights were tuned with batch MIRA (Cherry and
Foster, 2012) to maximize BLEU on the dev set.
Details of the generic NMT system are described
in Section 5.2. In Table 3, the results on the dev
set are reported. Although trained on the same
dataset, it is interesting to note that, the perfor-
mance of the generic NMT system is by far lower
than the PBMT system. A possible explanation
is that the PBMT system can explicitly memorise
and use translation options learned from the train-
ing data, while the NMT system generates a more
implicit representation of the data. This might
have a fundamental role in domain-specific and
very repetitive datasets.

Similarly to (Luong and Manning, 2015), in
order to improve the performance of the generic
NMT system on the target domains, we separately
adapted multiple instances of the generic NMT
model to each specific domain (using only the cor-
responding training data). This is done by using
the same configurations and training criteria used
for the generic model, described in Section 5.2.
We refer to these strong systems as oracles, be-
cause they exploit knowledge of the domain labels
both at the training and test time. As we see in
Table 3, this offline adaptation significantly im-
proves the performance of the NMT system, re-
sulting in translations with higher quality than the
strong PBMT system. However, as mentioned ear-
lier, this approach requires information of the tar-
get domain and assumes having sufficient amount
of time and data to train domain-specific systems
for each test domain.

The recently proposed approach by (Li et al.,
2016) is the first attempt in this field that tries to
cope with these limitations. In this paper we im-
plement this method and compare it with our adap-
tive strategy (i.e. Adaptive Baseline), which dif-
fers in how the retrieved sentences are ranked (i.e.
sentence-level BLEU) and in using only the top-1
retrieved pair for updating the model. As shown
in Table 3, our method performs identically to the
Li et al. (2016) system that uses a larger number
of training samples in the case of low similarities.
So, for efficiency reasons, in all our experiments
we use our approach and we keep only the first

best sentence pair for updating the model.

6 Unsupervised Neural MT Adaptation

In this section we discuss the dynamic setting of
the hyperparameters of the learning algorithm and
their impact on the performance of the system.

6.1 Model Adaptation: Learning Rate

Once the set of relevant sentence pairs is extracted,
we need to update the generic model accordingly.
As described in Section 3, the learning rate con-
trols the contribution of the new information for
updating the model parameters by determining the
magnitude of the update steps. Deciding about the
learning rate value is very important for the SGD
algorithm in general, but becomes even more cru-
cial in our scenario where we need to adjust the
parameters by using only a small training set. In
order to approximate the optimal value, we per-
formed a set of experiments on our dev set in
which the learning rate is gradually increased un-
til the overall performance of the system starts to
degrade (Figure 2).

Figure 1: The effect of different learning rates on
the adaptive system performance on the dev set.
Darker cells show performance degradations or no
gain over the NMT generic, while brighter cells
represent larger gains over the generic system.

However, if the similarity between the retrieved
sentence and the test sentence is low, by apply-
ing larger learning rates we run the risk of making
drastic parameter changes in the wrong direction,
which can result in lower quality translations and
global performance degradations. The low results
of the system when using learning rate of 0.75 em-
pirically confirms this.
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PBMT NMT Li et al. Adaptive
Generic Oracle Baseline Dynamic

Lrate
Dynamic
Lrate-Epochs

Overall 54.6 45.7 55.9 53.2 53.2 53.6 57.5
ECB 56.1 46.3 56.3 50.9 51.1 51.0 53.7
Gnome 88.1 62.3 90.5 75.2 74.6 79.0 91.2
JRC 65.7 59.9 64.7 67.3 66.6 66.8 70.2
KDE4 50.1 45.7 54.3 50.5 50.4 50.4 53.1
OOffice 37.5 32.0 41.5 35.7 36.5 36.2 39.3
PHP 46.6 29.7 39.3 37.1 39.8 39.6 48.0
Ubuntu 50.1 47.9 47.7 49.1 49.5 51.5 53.1
UN-TM 72.8 54.4 78.4 70.0 70.3 70.3 77.6
WMT 26.7 30.5 26.8 29.0 29.7 30.6 30.3

Table 3: Comparison of the performance of generic PBMT and NMT, domain-specific oracles, and the
adaptive NMT systems on the dev corpora in terms of BLEU.

To further analyze the effect of different learn-
ing rates on sentences with different levels of sim-
ilarity, we measured the average performance gain
of the adaptive system (over NMT generic in terms
of sentence-level BLEU) in each similarity range
when using different learning rates (Figure 1). The
darker cells represent settings in which there is a
drop in performance or no gain over the generic
system, while brighter cells correspond to the con-
figurations where the performance of the adap-
tive system is higher. We observe that updating
the model with large learning rates on less rele-
vant samples results in performance degradation
(i.e. the darker cells in the top-right side of the
figure). This suggests to apply more conserva-
tive learning rates to less relevant training sam-
ples, while increasing it to larger values for higher
similarity levels. Based on this analysis, we devel-
oped a dynamic learning rate method that, for each
similarity range in Figure 1, selects the learning
rate that provides the largest gain over the generic
NMT model (i.e. Adaptive Dynamic-Lrate). For
instance, it uses the learning rate of 0.01 for the
sentences in the similarity range of [0.0-0.1], and
sets the learning rate to 0.5 for the samples with
the similarity between 0.9 and 1.0. The results of
this system are reported in Table 3. By comparing
these results against the best performing system
with fixed learning rate (i.e. Adaptive Baseline),
we see that dynamically setting the learning rate
improves the performance by +0.4 BLEU points5

in overall (53.6 vs 53.2), which further reduces the
gap between the generic and specialized NMTs.

5The difference is statistically significant with p < 0.05.

Figure 2: The effect of different learning rates on
the adaptive system performance on dev data.

6.2 Model Adaptation: Number of Epochs

As described in Section 3, during train-
ing/adaptation the training samples are processed
iteratively and the network parameters are up-
dated accordingly. The number of epochs plays
an important role in this process. Setting it to
a large value may result in overfitting, which
limits the generalization capability of the model,
while performing only few epochs results in
underfitting, where the system does not learn
effectively from the samples. In order to analyze
the effect of this factor on the final performance
of the system, we run another set of experiments
in which the maximum number of epochs is
gradually increased until the overall results start
to degrade (similar to what we did in the analysis
of the learning rates in the previous section). In
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PBMT NMT
Generic

NMT
Oracle

Adaptive
Lrate-
Epochs

Overall 54.5 44.9 55.6 58.4
ECB 58.6 46.5 58.0 58.7
Gnome 90.5 61.5 93.8 94.9
JRC 66.3 56.5 62.6 69.7
KDE4 50.6 46.4 55.7 56.2
OOffice 37.1 31.8 39.9 40.3
PHP 47.0 33.4 39.7 50.5
Ubuntu 45.8 45.3 46.9 48.8
UN-TM 69.7 52.1 75.7 75.9
WMT 26.0 30.7 26.6 30.7

Table 4: Comparison of the generic PBMT,
NMT, and domain-specific NMT oracles against
the adaptive system with dynamic learning rate
and dynamic number of epochs. The reported
BLEU scores are computed on the test corpora.

these experiments we used the dynamic learning
rates described in Section 6.1. We observed that
increasing the maximum number of epochs up
to 9 helps to improve the overall performance of
the system, while using larger number of updates
leads in performance degradation due to the
aforementioned overfitting issue.

Similarly to the experiments in Section 6.1, the
relation between the number of epochs and the
sentence similarity is first explored and, then, it
is used to devise an approach that can automati-
cally set the number of updates. This analysis sug-
gests to set the number of epochs proportional to
the level of similarity of the training instance.

The results of our adaptive system using dy-
namic learning rate and number of epochs (i.e.
Adaptive Dynamic Lrate-Epochs) on the dev set
are reported in Table 3. As the results show, dy-
namically deciding about the number of epochs
improves the performance of the system by +3.9
BLEU scores, outperforming all our adaptive sys-
tems and the approach of (Li et al., 2016) by a
large margin. More detailed analysis of the sys-
tem shows that dynamically setting the number of
epochs is in particular beneficial for the domains
with high similarity, where it allows the system
to leverage more the information of the training
sample by performing more updates. In fact, the
significant improvements over Adaptive Dynamic
Lrate in the domains with high sentence similar-
ities (e.g. +12.2 in case of Gnome and +7.4 in

case of UN-TM) and the smaller gains in the do-
mains with low similarities (e.g. +1.7 in case of
Ubuntu) empirically proves this. Our investiga-
tion into the correlation of the performance gain
by the adaptive system and similarity of the re-
trieved sentence, shows that there is a correlation
of 0.9 between these two factors, further support-
ing our domain-wise analysis.

The results of the experiments on the test set
are reported in Table 4 and show that our adap-
tive system outperforms the generic NMT system
and both the strong PBMT system and domain-
specific oracles by a large margin (+14.5, +3.9
and +2.8). This confirms that local adaptation of
the generic NMT models to small set of relevant
training samples can effectively improve the final
performance of the system, making it a reason-
able solution for the multi-domain application sce-
narios where maintaining several domain-specific
MT engines is not feasible.

Our further analysis on the outputs of the
generic and the adaptive systems reveals that the
adaptive system produces sentences that are more
similar to the references in terms of length (i.e.
14.4 vs 15.1 words per sentence, compared to 15.3
of the reference). Moreover, by analyzing the er-
rors of the systems using TER we note that the
adaptive system effectively reduces the lexical er-
rors by 14%. This shows that our adaptive ap-
proach helps the system to produce translations
that are more similar to the reference both in terms
of length and structure.

7 Further Analysis

In Table 5 we present four examples taken from
the dev set, for which the performance of the
Generic, Baseline and Adaptive 6 systems is com-
pared. The first example (from ECB) shows a case
that the retrieved source sentence is highly similar
to the test sentence. Comparing the outputs pro-
duced by the three systems we see that the adapta-
tion step in the Baseline helps the system to pro-
duce translations that are closer to the reference
but it still translates “such management” literally
to “cetter gestion” which is a less fluent translation
than “celle-ci” in this context. This shows that in
this case the system could not leverage all the in-
formation provided by the retrieved pair in just one

6To make it short, we refer to the adaptive system with
dynamic learning rate and epochs (Adaptive Dynamic Lrate-
Epochs) as Adaptive.
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epoch. However, by performing more epochs the
Adaptive system is able to effectively adapt to the
retrieved pair and correctly translate the given test.

The second example (from KDE4) shows an-
other case where the retrieved pair is highly sim-
ilar to the test sentence on the surface level but
is different in terms of semantics. The English
word “collapse” is translated into “réduire” and
“Groupe” in French, which are semantically dif-
ferent. However, given the retrieved pair, both the
Baseline and Adaptive system learn to translate it
to “Groupe” which is not a correct translation in
the context of the test sentence.

The next example (from JRC) presents the is-
sue of inconsistent translations. As we see, the
retrieval method is able to retrieve a sentence pair
whose its source side is identical to the test sen-
tence but is translated differently. In this case both
the Baseline and Adaptive system effectively learn
the information given by the retrieved pair and
learn to produce the exact translation as the re-
trieved target (i.e. Ret.Trg). However, since the
translation provided by the retrieved pair is differ-
ent than the reference, they are eventually penal-
ized in terms of BLEU.

The last example (from WMT) shows a case of
low-similar retrieved pair and the need for a more
conservative adaptation. In this case the Baseline
replaces the French term “une aide” with “des ser-
vices d’”, learned aggressively from the retrieved
pair, while the Adaptive system learns to only re-
place “aide” with “services”, leading in a higher
quality translation. However, both the systems fail
to learn the correct translation of “and” (i.e. “et
de”) in this context, which is provided by the re-
trieved target (i.e. Ret.Trg).

These observations open to interesting research
avenues that we plan to address in future work.
These include: i) developing semantic-aware re-
trieval methods that, in addition to the surface
form of the sentences, also consider their seman-
tic similarities (KDE4 example). ii) handling in-
consistent translations to avoid being biased to-
wards an specific translation where other correct
translations exist for the given sentence or phrase
(JRC example) iii) developing adaptation methods
that are able to leverage more efficiently the small
amount of information provided by the low similar
retrieved training samples (WMT example).

8 Conclusion

In this paper we investigated an instance-based
adaptive Neural MT approach that effectively han-
dles translation requests from multiple domains in
an unsupervised manner, that is without knowing
the domain labels. Given an input sentence, it up-
dates a background generic model on-the-fly by
means of a single training instance selected among
all available training data. Differently from previ-
ous works, we enhance this approach by propos-
ing a method to dynamically set the hyperparam-
eters of the learning algorithm (i.e. learning rate
and number of epochs) before updating the model.
When tested in a multi-domain scenario, our ap-
proach was able to significantly outperform the
generic NMT and PBMT systems and the single-
domain NMT models specifically optimized on
each domain.
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Abstract

Recent works have shown that the usage
of a synthetic parallel corpus can be effec-
tively exploited by a neural machine trans-
lation system. In this paper, we propose
a new method for adapting a general neu-
ral machine translation system to a specific
task, by exploiting synthetic data.

The method consists in selecting, from a
large monolingual pool of sentences in the
source language, those instances that are
more related to a given test set. Next, this
selection is automatically translated and
the general neural machine translation sys-
tem is fine-tuned with these data.

For evaluating the adaptation method, we
first conducted experiments in two con-
trolled domains, with common and well-
studied corpora. Then, we evaluated our
proposal on a real e-commerce task, yield-
ing consistent improvements in terms of
translation quality.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Cho et al., 2014a; Bahdanau et al.,
2015) has obtained state-of-the art performance
in several domains and language pairs (Sennrich
et al., 2016b; Wu et al., 2016). Given the na-
ture of NMT paradigms, the limitation for obtain-
ing bilingual corpora—or their availability—has
been one of the major obstacles faced when build-
ing competitive NMT systems. Recently, the idea
of using synthetic corpora in NMT has reported
promising results with regard to the data scarcity
in NMT. Many different works demonstrated that
the combination of real parallel corpora with syn-
thetic bilingual corpus enhances the NMT trans-

lation quality (Sennrich et al., 2016a; Zhang and
Zong, 2016a; Cheng et al., 2016).

Following these good results, we aim to adapt
general NMT models to real, specific tasks by us-
ing synthetic parallel data. The core idea is to se-
lect the most valuable instances from a large pool
of monolingual source sentences, with respect to
a given test set. Next, we automatically translate
them. Therefore, we obtain a synthetic parallel
corpus, related to our test set domain. Such syn-
thetic corpus can be used to fine-tune a NMT sys-
tem to the domain at hand.

The main contributions of this paper involve the
necessary steps required to adapt a NMT system
to a specific domain:

• We propose a novel method to create the
most adequate synthetic corpus leverages a
vector-space representation of sentences, re-
lying on the word embeddings by Mikolov
et al. (2013a) and Le and Mikolov (2014).

• We describe the pipeline of our adaptation
process, relating the selection, translation and
fine-tuning processes.

• We study our adaptation technique on two
classical domains. Additionally, we validate
our technique on a real e-commerce transla-
tion task.

• Results show important improvements over a
baseline system.

This paper is structured as follows. NMT tech-
nology is briefly described in Section 2. Section
3 summarizes the related work. In Section 4, we
present our selection method and we describe the
adaptation pipeline. Section 5 presents the exper-
imental set-up and corpora. Results are analyzed
and discussed in Section 6. Finally, conclusions
and future work are traced in Section 7.
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2 Neural Machine Translation

Neural machine translation is an instantiation of
sequence-to-sequence learning: given a sequence
of words in the source language, we must produce
the corresponding sequence of words in the target
language. This is usually done by means of the
encoder–decoder architecture: the encoder com-
putes a representation of the input sequence, while
the decoder takes it and generates, word by word,
the sentence in the target language (Sutskever
et al., 2014). In this work, we use a NMT system
featuring long short-term memory (LSTM) units
(Hochreiter and Schmidhuber, 1997)—in both the
encoder and decoder—and equipped with an at-
tention mechanism (Bahdanau et al., 2015).

The input to the system is a sequence of words
in the source language. A word embedding matrix
projects each word from the discrete to a contin-
uous space. The sequence of word embeddings
is then processed by a bidirectional (Schuster and
Paliwal, 1997) LSTM network, which produces a
sequence of annotations by concatenating the hid-
den states from the forward and backward layers.

At each decoding timestep, the attention mech-
anism computes a weighted mean of the sequence
of annotations. The weights are given according
to a soft alignment model that weights each anno-
tation with the previous decoding state. This can
be seen as a joint, dynamic representation of the
input sentence.

The decoder is another LSTM network, condi-
tioned to the representation computed by the at-
tention model and the previously generated word.
Finally, a deep output layer (Pascanu et al., 2014)
computes a distribution over the target language
vocabulary.

The model is jointly trained by stochastic gradi-
ent descent (SGD), aiming to maximize the log-
likelihood over a bilingual parallel corpus. At
decoding time, the model approximates the most
likely target sentence with beam-search (Sutskever
et al., 2014).

3 Related work

Since Kalchbrenner and Blunsom (2013),
Sutskever et al. (2014) and Cho et al. (2014b)
proposed the first NMT systems, this has been
a boiling research topic. A singular effort has
been spent into leverage the advantages that
this technology brings in. One of them is the
ability of NMT systems to rapidly adapt to a

given domain, when they are already trained
on a general domain. This is useful either for
creating domain-dependent NMT systems or for
low-resource tasks. Thus, Luong and Manning
(2015) tackled the informal speech translation
task by starting from a system trained on the
WMT data and adapting it to the translation task
at hand.

In phrase-based statistical machine translation
(SMT), synthetic bilingual corpora have been
mainly proposed as a mean to exploit the vast
amount of monolingual data available. By apply-
ing a self-training scheme, the synthetic parallel
data can be obtained by automatically translating
a source-side monolingual corpus (Ueffing et al.,
2007; Wu et al., 2008). Other works used target-
side corpora to build the synthetic parallel cor-
pus (Bertoldi and Federico, 2009; Lambert et al.,
2011).

Inspired by these works in SMT, research re-
ferring the inclusion of monolingual data in NMT
has a growing interest. Different works have tack-
led the inclusion of monolingual data, either in
source (Zhang and Zong, 2016b) and target lan-
guage (Gulcehre et al., 2015, 2017).

Moreover, Sennrich et al. (2016a) showed that
parallel data is not strictly necessary for perform-
ing domain adaptation: the usage of synthetic data
has positive effects on the NMT system. For ob-
taining the synthetic data they automatically trans-
lated a large monolingual corpus. This synthetic-
based approach obtained better results than other
methods aimed to exploit monolingual data (e.g.
Gulcehre et al. (2015)). Domain adaptation in
NMT systems is also integrated in commercial
systems, such as SYSTRAN (Crego et al., 2016).

4 Adaptation using synthetic corpus

As described in the previous section, synthetic par-
allel data have been widely used to boost the trans-
lation quality of NMT. In this work, we further
extend their application by adapting NMT models
with synthetic parallel data. In certain language
pairs or domains where parallel corpora are scarce
or even non-existent, a model adjusted with syn-
thetic data can improve the performance with re-
spect to a more general model.

The core idea is that, once a model has been
trained on a large, general corpus, we can adapt it
to a new domain, by fine-tuning it exclusively us-
ing the synthetic data. For doing this, we create an
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Figure 1: The process of building an adequate synthetic parallel corpus for a given test set.

ad-hoc, specific synthetic corpus in which appear
the features from our target-domain data. This
corpus is constructed by selecting from a large
monolingual pool of sentences—in the source
language—those instances that are related with
our in-domain dataset. Next, we automatically
translate these sentences into the target language.
Finally, using this synthetic corpus, we fine-tune
a NMT system trained on a more general domain.
Figure 1 shows the pipeline of our adaptation pro-
cess.

In this section, we describe our technique for
creating adequate synthetic corpora, based on a
vector-space representation of sentences, and the
NMT adaptation process.

4.1 Continuous vector-space representation
The idea of representing words or sentence in a
continuous vector-space employing neuronal net-
works was initially proposed by Hinton (1986)
and Elman (1990). Continuous vector-space rep-
resentations (CVR) of words or sentences have
been widely leveraged in a variety of natural
language applications and demonstrated solid re-
sults across a variety of tasks, such as speech
recognition (Schwenk, 2007), part-of-speech tag-
ging (Socher et al., 2011), sentiment classifica-
tion and identification (Glorot et al., 2011) or ma-
chine translation (Cho et al., 2014a; Mikolov et al.,
2013b).

In this paper, we use a sophisticated CVR of the
sentences involved in our data selection method.
Specifically, we follow the CVR approach pre-
sented by Le and Mikolov (2014). In this work, the
authors adapted the continuous Skip-Gram model

(Mikolov et al., 2013a) to generate representative
vectors of sentences and documents. Thus, with
this technique, we obtain a particular vector that
represents a complete sentence by means of the
the Skip-Gram architecture.

4.2 Synthetic creation method
For creating an adequate synthetic corpus for
adapting a NMT system, we select from a large
pool of monolingual text the most related sen-
tences for our task at hand. We present a novel
selection technique, based on the CVR of the sen-
tences.

The intuition is to select sentences whose
vector-space representation is similar to the rep-
resentation of our in-domain instances, assuming
that similar sentences will have similar vectors (Le
and Mikolov, 2014).

Having a continuous vector space representa-
tion of the test sentences allows us to compute a
centroid. This can be seen as prototype of the sen-
tences present in the test set.

Provided that similar sentences have simi-
lar vector-space representations (Mikolov et al.,
2013b), we assume that vectors from the in-
domain corpus will be clustered. On the other
hand, vectors from the general pool of sentences
are likely to be more disperse. The idea of our
method is to create a hypersphere in the contin-
uous space, with center in our test set centroid,
containing all sentences from the test set. Hope-
fully, only a selection of the sentences from the
general pool will be contained in this hypersphere.
The hyper-sphere radius is established according
to some similarity metric between the centroid of
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the test set, and the furthest of the test sentences.
As similarity metric we consider the cosine sim-

ilarity, defined as:

cos(F1,F2) =
F1 · F2

‖F1‖ · ‖F2‖
(1)

where F1 and F2 are two z-dimensional vectors.
The centroid is defined as an average of the rep-

resentations of the sentences from our in-domain
corpus T (made up of T sentences):

FT =
1

|T |

|T |∑

t

Fxt (2)

where Fxt ∈ Rz is the z-dimensional representa-
tion of the sentence xt and FT ∈ Rz denotes the
centroid of our test set.

Data: Pool P; test data T
Result: Source synthetic corpus S

1 FT := centroid(T );
2 ρ :=∞;
3 S := ∅;
4 forall xt ∈ T do
5 if cos(Fxt ,FT ) ≤ ρ then
6 ρ := cos(Fxt ,FT )
7 end
8 end
9 forall xp ∈ P do

10 if cos(Fxp ,FT ) ≥ ρ then
11 S ∪ {xp};
12 end
13 end

Algorithm 1: Pseudo-code for selecting syn-
thetic corpora.

Algorithm 1 shows the selection procedure.
Here, xt ∈ T , is a sentence from our source test
data T ; and Fxt is the vector-space representation
of xt. Analogously, P is the pool of candidate
sentences, xp ∈ P is a source candidate sentence,
Fxp is the vector-space representation of xp, and
|P| is the number of sentences in P . Then, our ob-
jective is to select data from P such that it is the
most suitable for translating data belonging to the
source test data T .

Algorithm 1 introduces several functions:

• centroid(·): calculates the centroid (Eq. 2)
for the test corpus T .
• cos(·, ·): computes the cosine similarity

(Eq. 1) between two different vectors.

ρ represents the radius of the hyper-sphere,
which is computed in lines 4 to 8 (the first forall
loop) in Algorithm 1.

4.3 Adapting with the selection

In our adaptation framework, we assume that we
have a NMT model trained on a general domain.
We also have a large monolingual pool of sen-
tences (in the source language) and the source part
of the test set.

As first step, we compute the distributed repre-
sentation of the sentences in our large pool. Next,
we select sentences from the monolingual pool,
given the test set, according to Algorithm 1. This
subset of sentences are expected to be related with
our in-domain test data. We translate them by
means of machine translation (see Section 5.3 for
further details). Now we have a synthetic parallel
corpus, relating our in-domain task. Finally, we
fine-tune the general NMT model with these data.

5 Experiments

In this section, we describe the experimental
framework employed to assess the performance
of the NMT adaptation method described in Sec-
tion 4. For this purpose, we studied its behav-
ior in three corpora. Two of them refer to con-
trolled tasks; while the last one belongs to a real
e-commerce task.

5.1 Corpora

We performed the experiments on
English→Spanish translation. Our out-of-
domain training data was the Common Crawl
(COMMON) corpus which was collected from
web sources. We chose the 1 Billion Words
corpus (Chelba et al., 2013) as the large pool of
monolingual sentences. For validation, we chose
the News-commentary test 2013 (dev13) dataset.
For testing, we used corpus from three different
domains: Xerox printer manuals (XRCE–Test)
(Barrachina et al., 2009), Information Tech-
nology1 (IT–Test) and Electronic Commerce
(E-Com–Test). This last corpus was obtained
from a real e-commerce website (Cachitos de
Plata2). Statistics of all corpora are provided in
Table 1.

1http://metashare.metanet4u.eu/
qtleapcorpus

2http://cachitosdeplata.com
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Table 1: Corpora main figures, in terms of number
of sentences (|S|), number of words (|W |), vocab-
ulary size (|V |) and average sentence length (|W |).

Corpus |S| |W | |V | |W |
1 Billion Words EN 30.3M 800M 800k 26.4

COMMON EN 1.5M 30M 456k 20.0
ES 31M 522k 20.0

dev2013 EN 2.7k 48.9k 7.5k 18.1
ES 52.6k 9.1k 19.5

XRCE – Test EN 1.1k 8.4k 1.6k 7.6
ES 10.1k 1.7k 9.2

IT – Test EN 857 15.6k 2.1k 18.2
ES 17.4k 2.4k 20.3

E-Com – Test EN 886 7.3k 874 8.2
ES 8.6k 973 9.7

5.2 Evaluation

Translation quality was assessed according to the
following well-known metrics:

• BLEU (BiLingual Evaluation Understudy)
(Papineni et al., 2002), measures n-gram pre-
cision with respect to a reference set, with a
penalty for sentences that are too short.

• TER (Translation Error Rate) (Snover et al.,
2006), is an error metric that computes the
minimum number of edits (including swaps)
required to modify the system hypotheses so
that they match the reference.

For all results, we computed their confidence in-
tervals (p = 0.05) by means of bootstrap resam-
pling (Koehn, 2004).

5.3 Machine translation systems

We used NMT-Keras (Peris, 2017) for building
the NMT system, as described in Section 2. We
applied joint byte pair encoding (BPE) (Sennrich
et al., 2016b), learning 32, 000 merge operations,
on the out-of-domain dataset. Following the find-
ings from Britz et al. (2017), we used LSTM units.
Due to practical reasons, we used single-layered
LSTMs. The LSTM, word embedding and atten-
tion MLP sizes were 512 each. We applied layer
normalization (Ba et al., 2016) and Gaussian noise
(σ = 0.01) to the weights (Graves, 2011). We
clipped the L2 norm of the gradients to 1 (Pascanu
et al., 2012). We used Adam (Kingma and Ba,
2014) with a learning rate of 0.0002 (Wu et al.,
2016). The size of the beam was set to 6.

We trained further the NMT system using the
selected synthetic data. For this training, we used
vanilla SGD with an initial learning rate of 0.05.
Such hyperparameters were set according the re-
sults observed in the development set. From this
exploration, we also noticed that the application of
more sophisticated SGD optimizers (e.g. Adam) is
tricky, as they update the model on a more aggres-
sive way. Therefore, if we apply excessively large
updates, the knowledge from the general model is
somehow lost.

We also tested our method with ensembles of
NMT systems. Ensembles were made up of 4
models sampled at different points of the train-
ing process. Such points were evenly chosen (each
2, 000 updates) around the single model which ob-
tained the highest performance on the develop-
ment set.

Finally, we used Moses toolkit as phrase-based
reference (Koehn et al., 2007). We used a 5-
gram language model with modified Kneser-Ney
smoothing (Kneser and Ney, 1995), built with the
SRILM toolkit (Stolcke, 2002). The phrase ta-
ble was generated employing symmetrised word
alignments obtained with GIZA++ (Och and Ney,
2003). The log-lineal combination weights were
optimized using MERT (Minimum Error Rate
Training) (Och, 2003).

Table 2: Main figures of the selections obtained
by Algorithm 1 for each test set (T ), employed for
adapting the NMT system. |S| denotes number of
sentences; |W |, number of words; |V |, vocabulary
size and |W |, average sentence length.

T |S| |W | |V | |W |

XRCE – Test EN 180k 2.2M 54k 9.4
ES 1.7M 58k 12.2

IT – Test EN 150k 2.5M 76k 16.7
ES 3.0M 78k 20.0

E-Com – Test EN 300k 3.2M 100k 10.6
ES 4.1M 100k 13.6

5.4 Corpus creation

The process for building synthetic parallel corpora
begins with the selection from the monolingual
pool. The selection method presented in Section
4.2, requires to set the dimension of the vector-
space representation. We set it to 200, according
to preliminary research, and it was maintained for
all the experiments reported in this paper.
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Table 3: Selection examples from each domain.

Selected sentence

XRCE
id rather send files electronically
use current antivirus and a firewall
images are stored on a one terabyte built in hard drive which includes a DVD burner

IT
the technology would also be available to ipod touch users although they would have to buy a microphone and headphones to make calls pc world reported
if you want to find panorama archive material on delicious the easiest way to search is to use the single word on the right hand column
my personal have is tweetdeck which although designed for photo uploading amongst other things

E-Com
it is perfect for your collection
pasta is inexpensive easy and really romantic
another shows the dust forming into clumps along magnetic lines like pearls on a necklace

Once we obtained the monolingual selections,
we translated them. In order to speed up this pro-
cess, we split the selection and translate it using
Moses and NMT. Both systems were trained on
the out-of-domain data. In the case of the NMT
system, we applied the same BPE subword seg-
mentation to all data. Therefore, the potential vo-
cabulary differences across tasks were effectively
leveraged by using subword units.

6 Results and analysis

In this section, we present and discuss the results
obtained. We start by analyzing the selection ob-
tained by Algorithm 1. Next, we present the trans-
lation results obtained in all tasks. Finally, in order
to get some insights of the system behavior, we an-
alyze several representative examples.

6.1 Analysis of the selection
Table 2 shows the features of the selection for each
corpus. Note that the average length of the sen-
tences belonging to each selection is tightly related
to the sentence length from each test set (Table 1).

Therefore, the selections from XRCE and E-
Com had shorter sentences, while the selection ob-
tained from the IT corpus had longer ones. As
shown in the following sections, this was a key
factor that affected the machine translation sys-
tems performance.

Moreover, Table 3 shows some samples from
each domain, selected by our selection technique.
We can notice that such samples are related to the
correspondent test set domain. Thus, sentences
from XRCE and IT domains refer to a technolog-
ical field. As illustrated in Table 2, sentences se-
lected from the IT corpus were notoriously longer
than those selected from XRCE. Sentences se-
lected from the E-Com task are related to jewelry
or economy. Given the E-Com domain—an elec-
tronic shop of silver jewelry—these sentences are
also coherent.

6.2 Quantitative results

Table 4 shows the results on the XRCE and IT
tasks. The general NMT model performed worse
than Moses in out-of-domain tasks. The use of a
4-model ensemble was very helpful. Nevertheless,
it still had a lower performance than Moses.

The TER values of the general NMT system in
the XRCE task were unusually high. This is due
to the corpus features: As shown in Table 1, the
XRCE–Test set has an average sentence length of
9 words. The general NMT model generated sen-
tences with an average of 13 words, because it was
trained on general-domain data. The TER met-
ric greatly penalizes this behavior, because it must
delete the exceeding words. Therefore, TER re-
sults of the NMT system were surprisingly high.
In the case of Moses, the average sentence length
of the sentences generated by Moses was 9.5. Be-
cause the generation was bounded by the phrase
and language models.

The addition of synthetic data significantly im-
proved the NMT systems, in all cases. Taking the
reference of a single NMT model, the gains ranged
from 5 to 7 BLEU points. The performance of a
single fine-tuned NMT model was also clearly bet-
ter than fine-tuned ensembles.

Especially critical were the enhancements in
terms of TER. In the XRCE task, the synthetic data
improved TER by almost 40 and 20 points, for
single model and ensembles, respectively. Due to
the addition of synthetic data, the system learned
to produce shorter translations (around 5 words
shorter, in average), and therefore, greatly dimin-
ishing TER. In the IT task, the synthetic data also
improved TER, but to a lower extent. This is be-
cause the IT task is closer to the out-of-domain
corpus. Therefore, the adaptation benefits brought
by the synthetic data were less crucial than in the
XRCE task.

It is worth noting that the adaptation of the
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Table 4: Translation results for the XRCE and IT tasks. BLEU and TER results given in percentage.
Σ denotes an ensemble of 4 neural models. |W | is the average number of words per sentence.

XRCE IT

System BLEU TER |W | BLEU TER |W |
Moses 26.2± 0.8 59.0± 0.8 9.1 33.4± 0.6 45.6± 0.6 20.4

NMT 20.4± 1 94.5± 5.1 12.8 29.0± 0.8 53.5± 0.8 15.3
NMTΣ 25.5± 0.8 76.8± 2.0 11.3 31.4± 0.8 51.2± 0.8 15.3

NMT + Synthetic 27.5± 0.8 56.7± 0.8 8.6 34.1± 0.7 45.7± 0.7 17.8
NMTΣ + Synthetic 27.3± 0.8 56.3± 0.8 8.4 33.8± 0.7 46.3± 0.7 18.1

NMT system was very fast. The system only re-
quired to be trained on∼ 15, 000 samples in order
to achieve the best results. Using a GPU, the fine-
tuning of the NMT model can be done in minutes.

Table 5 shows the results on the real E-Com
task. This was a very specific task. In these
cases, the single NMT model also yielded worse
performance in terms of BLEU than Moses, but
when applying an ensemble, the results were sig-
nificantly enhanced. In terms of BLEU, even beat-
ing Moses.

Table 5: E-Com – Test set results. BLEU and TER
results given in percentage. Σ denotes an ensemble
of 4 neural models. |W | is the average number of
words per sentence.

E-Com

System BLEU TER |W |
Moses 21.1± 0.8 56.7± 0.7 9.4

NMT 16.9± 1.0 104.7± 6.3 14.1
NMTΣ 23.0± 1.0 80.8± 2.9 12.0

NMT + Synthetic 25.5± 1.0 59.1± 1.0 8.7
NMTΣ + Synthetic 25.8± 1.0 61.1± 2.6 8.7

The NMT systems behaviored similarly to the
XRCE task in terms of TER. The E-Com cor-
pus had similar features than XRCE–Test (in this
case, 9.7 words per sentence). Therefore, we ob-
served the same phenomenon: as we introduced
in-domain-related sentences, the system learned to
produce shorter sentences, diminishing TER con-
sequently.

The use of synthetic data again greatly im-
proved the system. The results were coherent with
the previous experiments: A single, fine-tuned
model, significantly outperformed the general sys-
tem (+9 BLEU points). A sole adapted system was
even better than a general model ensemble. With
respect to Moses, we also found major enhance-

ments in terms of BLEU.
It is also noticeable the ensemble of systems

trained with synthetic data did not improve the
performance of a single fine-tuned system. This
is probably due to the fact that the adaptation was
performed from an already trained model and with
few data. Therefore, the systems belonging to the
ensemble were quite similar, all of them around
the same local minimum. Therefore, potential en-
hancements from the ensembles were diluted.

Finally, we should remark than the E-Com task
belongs to a real-world scenario. This corpus is
not designed for experimental purposes. It con-
tains elements that distort the experiment, and
therefore yield to unpredictable results. In such
open scenarios, a human evaluation should be the
next step to take.

6.3 Qualitative results

Some translation examples from each corpus are
shown in Table 6. In the first example, all the sys-
tems presented the similar error at the beginning
of the translation (especificación del). This is be-
cause that was the most likely translation in our
corpora, both the real and synthetic ones.

In the second example, Moses was not able to
correctly identify the right meaning of the word
(windows) in the sentence to translate. It should be
left untranslated, as it is a proper noun. The NMT
systems were able to detect it. Also, Moses, NMT
and NMT+Synth systems presented the same lex-
ical choice error at the word (deberı́an).

Finally, we show the translation examples for
the e-commerce domain. Moses obtained the
worst translation. The NMTΣ method was not
able to obtain the word (precioso), as provided in
the reference, but instead it a synonym (hermoso).
Nevertheless, note that, although this may not be
an actual mistake in translation terms, it will be pe-
nalized by BLEU and TER. The NMT+Synth ob-
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Table 6: Translation examples for each domain with the MT systems built: Src (source sentence), Moses
(moses system), NMT (NMT system), NMTΣ (NMT system with ensemble), NMT + Synth (NMT using
synthetic corpus) and Ref (reference).

XRCE

Src specifying the output file format 2-29

Moses especificando el formato de salida 2-29
NMT especificar el formato de archivo de salida 2-29 .
NMTΣ especificar el formato de archivo de salida de 29 a 29 .
NMT+Synth especificar el formato de archivo de salida 2-29

Ref especificación del formato de archivo de salida 2-29

IT

Src almost all apps installed on windows 8 should work correctly in windows 8.1 .

Moses casi todas las aplicaciones instaladas en las ventanas 8 deberı́a funcionar correctamente en ventanas 8.1 .
NMT casi todas las aplicaciones instaladas en windows 8 deben funcionar correctamente en windows 8.1 .
NMTΣ casi todas las aplicaciones instaladas en windows 8 deberı́an funcionar correctamente en windows 8.1 .
NMT+Synth casi todas las aplicaciones instaladas en windows 8 deberı́a funcionar correctamente en windows 8.1 .

Ref casi todas las aplicaciones instaladas en windows 8 deberı́an funcionar correctamente en windows 8.1 .

E-Com

Src they are a lovely set of small and thin strips silver intertwined .

Moses son un conjunto de pequeñas y encantadoras tiras finas plata interrelacionado .
NMT son un precioso conjunto de tiras de pelı́cula pequeña y delgada .
NMTΣ son un hermoso conjunto de pequeñas y finas tiras de plata .
NMT+Synth son un precioso conjunto de pequeñas y finas tiras de plata .

Ref son un precioso conjunto de pequeñas y finas tiras de plata entrelazada .

tained the closer translation to the reference. Even
though, the system was unable to obtain a transla-
tion for the word (intertwined).

7 Conclusions

In this work we presented an instance selection
method and applied it to collect the most ade-
quate sentences for translating a corpus from a
specific domain. We selected domain-related in-
stances from a large monolingual corpus, automat-
ically translated them and fine-tuned a NMT sys-
tem, originally trained on a more general domain.
Results showed significant improvements in terms
of BLEU and TER with respect to the original
model. Moreover, we found that it is preferable
to use a single fine-tuned model than an ensem-
ble of general models. It is also worth mentioning
that, once the selection was performed, the adap-
tation of NMT systems to new domains was very
fast (few minutes).

As byproduct of the evaluation carried out in
this work, we can also conclude two main points.
First, to use a single automatic metric for evalu-
ating machine translation is risky, as every auto-
matic metric is likely to be distorted. In order to
have more confidence about the performance of a
machine translation system, it should be tested on
more metrics. Second, when applying NMT sys-
tems to tasks with different features than the train-
ing data, we should control the length of the output
sentences. This can be achieved either with some
heuristics or adapting with an in-domain corpus.

We leave the study of this control as future work.
As additional future work, we intend to prove

our methods in more domains and different lan-
guage pairs in order to establish its robustness.
Moreover, we want to observe the influence of
the quality and nature of the synthetic data in our
pipeline. Therefore, we aim to study the influ-
ence of different translation methods or technolo-
gies when translating the monolingual corpus. We
should also study if adding source synthetic data
instead of target synthetic data affects the system.
Finally, given the good results obtained, we want
to leverage the bondages of the synthetic data, us-
ing it in different applications.
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Abstract

We train a neural machine translation
(NMT) system to both translate source-
language text and copy target-language
text, thereby exploiting monolingual cor-
pora in the target language. Specifically,
we create a bitext from the monolingual
text in the target language so that each
source sentence is identical to the tar-
get sentence. This copied data is then
mixed with the parallel corpus and the
NMT system is trained like normal, with
no metadata to distinguish the two input
languages.

Our proposed method proves to be
an effective way of incorporating
monolingual data into low-resource
NMT. On Turkish↔English and
Romanian↔English translation tasks,
we see gains of up to 1.2 BLEU over
a strong baseline with back-translation.
Further analysis shows that the linguis-
tic phenomena behind these gains are
different from and largely orthogonal to
back-translation, with our copied corpus
method improving accuracy on named
entities and other words that should
remain identical between the source and
target languages.

1 Introduction

Neural machine translation (NMT) systems re-
quire a large amount of training data to make
generalizations, both on the source side (in or-
der to interpret the text well enough to translate
it) and on the target side (in order to produce flu-
ent translations). This data typically comes in the
form of parallel corpora, in which each sentence

in the source language is matched to a transla-
tion in the target language. Recent work (Gul-
cehre et al., 2015; Sennrich et al., 2016b) has
investigated incorporating monolingual training
data (particularly on the target side) into NMT.
This effectively converts machine translation into
a semi-supervised problem that takes advantage
of both labeled (parallel) and unlabeled (mono-
lingual) data. Adding monolingual data to NMT
is important because sufficient parallel data is un-
available for all but a few language pairs and do-
mains.

In this paper, we introduce a straightforward
method for adding target-side monolingual train-
ing data to an NMT system without changing its
architecture or training algorithm. This method
converts a monolingual corpus in the target lan-
guage into a parallel corpus by copying it, so that
each source sentence is identical to its correspond-
ing target sentence. This copied corpus is then
mixed with the original parallel data and used to
train the NMT system, with no distinction made
between the parallel and the copied data.

We focus on language pairs with small amounts
of parallel data where monolingual data has
the most impact. On the relatively low-
resource language pairs of English↔Turkish and
English↔Romanian, we find that our copying
technique is effective both alone and combined
with back-translation. This is the case even when
no additional monolingual data is used (i.e. when
the copied corpus and the back-translated corpus
are identical on the target side). This implies that
back-translation does not make full use of mono-
lingual data in low-resource settings, which makes
sense because it relies on low-resource (and there-
fore low-quality) translation in the reverse direc-
tion.
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2 Related Work

Early work on incorporating monolingual data
into NMT concentrated on target-side monolin-
gual data. Jean et al. (2015) and Gulcehre et al.
(2015) used a 5-gram language model and a recur-
rent neural network language model (RNNLM),
respectively, to re-rank NMT outputs. Gulcehre
et al. (2015) also integrated a pre-trained RNNLM
into NMT by concatenating hidden states. Sen-
nrich et al. (2016b) added monolingual target data
directly to NMT using null source sentences and
freezing encoder parameters while training with
the monolingual data. Our method is similar, al-
though instead of using a null source sentence, we
use a copy of the target sentence and train the en-
coder parameters on the copied sentence.

Sennrich et al. (2016b) also created synthetic
parallel data by translating target-language mono-
lingual text into the source language. To perform
this process, dubbed back-translation, they first
trained an initial target→source machine transla-
tion system on the available parallel data. They
then used this model to translate the monolingual
corpus from the target language to the source lan-
guage. The resulting back-translated data was
combined with the original parallel data and used
to train the final source→target NMT system.
Since this back-translation method outperforms
previous methods that only train the decoder (Gul-
cehre et al., 2015; Sennrich et al., 2016b), we use
it as our baseline. In addition, our method stacks
with back-translation in both the target→source
and source→target systems; we can use source
text to improve the back-translations and target
text to improve the final outputs.

In the mirror image of back-translation, Zhang
and Zong (2016) added source-side monolingual
data to NMT by first translating the source data
into the target language using an initial machine
translation system and then using this translated
data and the original parallel data to train their
NMT system. Our method is orthogonal: it could
improve the initial system or be used alongside the
translated data in the final system. They also con-
sidered a multitask shared encoder setup where the
monolingual source data is used in a sentence re-
ordering task.

More recent approaches have used both source
and target monolingual data while simultane-
ously training source→target and target→source
NMT systems. Cheng et al. (2016) accom-

plished this by concatenating source→target and
target→source NMT systems to create an autoen-
coder. Monolingual data was then introduced by
adding an autoencoder objective. This can be in-
terpreted as back-translation with joint training.
He et al. (2016) similarly used a small amount
of parallel data to pre-train source→target and
target→source NMT systems; they then added
monolingual data to the systems by translating
a sentence from the monolingual corpus into the
other language and then translating it back into
the original language, using reinforcement learn-
ing with rewards based on the language model
score of the translated sentence and the similarity
of the reconstructed sentence to the original. Our
approach also employs an autoencoder, but rather
than concatenate two NMT systems, we have flat-
tened them into one standard NMT system.

Our approach is related to multitask systems.
Luong et al. (2016) proposed conjoined translation
and autoencoder networks; we use a single shared
encoder. Further work used the same encoder
and decoder for multi-way translation (Johnson
et al., 2016). We have repurposed the idea to
inject monolingual text for low-resource NMT.
Their work combined multiple translation direc-
tions (e.g. French→English, German→English,
and English→German) into one system. Our
work combines e.g. English→English and
Turkish→English into one system for the purpose
of improving Turkish→English quality. They
used only parallel data; our goal is to inject
monolingual data.

3 Neural Machine Translation

We evaluate our approach using sequence-
to-sequence neural machine translation (Cho
et al., 2014; Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014) augmented with atten-
tion (Bahdanau et al., 2015). We briefly explain
these models here.

Neural machine translation is an end-to-end ap-
proach to machine translation that learns to di-
rectly model p(y | x) for a source-target sentence
pair (x, y). The system consists of two recurrent
neural networks (RNNs): the encoder and the de-
coder. In our experiments, the encoder is a bidi-
rectional RNN with gated recurrent units (GRUs)
that maps the source sentence into a vector repre-
sentation. The decoder is an RNN language model
conditioned on the source sentence. This is aug-
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mented with an attention mechanism, which as-
signs weights to each of the words in the source
sentence when modeling target words. This model
is trained to minimize word-level cross-entropy
loss; at test time, translations are generated using
beam search.

4 Copied Monolingual Data for NMT

We propose a method for incorporating target-
side monolingual data into low-resource NMT that
does not rely heavily on the amount or quality
of the parallel data. We first convert the target-
side monolingual corpus into a bitext by making
each source sentence identical to its target sen-
tence; i.e., the source side of the bitext is a copy
of the target side. We refer to this bitext as the
copied corpus. The copied corpus is then mixed
with the bilingual parallel corpus and no distinc-
tion is made between the two corpora. Finally,
we train our NMT system with a single encoder
and decoder using this mixed data. We are able to
use the same encoder for both the parallel and the
copied source sentences because we use byte pair
encoding (Sennrich et al., 2016c) to represent the
source and target words in the same vocabulary.

This copying method can also be combined
with the back-translation method of Sennrich et al.
(2016b). This is done by shuffling the parallel,
back-translated, and copied corpora together into
a single dataset and training the NMT system like
normal, again making no distinction between the
three corpora during training. We experiment with
using the same monolingual data as the basis for
both the back-translated and copied corpora (so
that the target sides of the back-translated and
copied corpora are identical) and with using two
separate monolingual datasets for these purposes.
Note that in the former case, each sentence in the
original monolingual corpus occurs twice in the
training data.

5 Experiments

5.1 Experimental Setup

5.1.1 Training Details
We train attentional sequence-to-sequence mod-
els (Bahdanau et al., 2015) implemented in Nema-
tus (Sennrich et al., 2017). We use hidden layers of
size 1024 and word embeddings of size 512. The
models are trained using Adam (Kingma and Ba,
2015) with a minibatch size of 80 and a maximum

Language pair Parallel Monolingual
EN↔TR 207 373 414 746
EN↔RO 608 320 608 320
EN↔DE 5 852 458 10 000 000

Table 1: Number of parallel and monolingual
training sentences for each language pair.

sentence length of 50. We apply dropout (Gal
and Ghahramani, 2016) in all of our EN↔TR
and EN↔RO systems with a probability of 0.1
on word layers and 0.2 on all other layers. No
dropout is used for EN↔DE. For all models, we
use early stopping based on perplexity on the val-
idation dataset. We decode using beam search on
a single model with a beam size of 12, except for
EN↔DE where we use a beam size of 5. For the
experiments which use back-translated versions of
the monolingual data, the target→source systems
used to create the back-translations have the same
setup as those used in the final source→target ex-
periments.

5.1.2 Data and Preprocessing
We evaluate our models on three language pairs:
English (EN) ↔ Turkish (TR), English ↔ Ro-
manian (RO), and English ↔ German (DE). As
shown in Table 1, these pairs each have vastly dif-
ferent amounts of parallel data. All of these lan-
guages have a substantial amount of monolingual
data available.

The EN↔TR and EN↔DE data comes from
the WMT17 news translation shared task,1 while
the EN↔RO data comes from the WMT16 shared
task (Bojar et al., 2016). We use all of the avail-
able parallel data for each language pair, and the
monolingual data comes from News Crawl 2015
(EN↔RO) or News Crawl 2016 (EN↔TR and
EN↔DE). To create our monolingual datasets we
randomly sample from the full monolingual sets.

For all language pairs, we tokenize and truecase
the parallel and monolingual training data; we also
apply byte pair encoding (BPE) to split words into
subword units (Sennrich et al., 2016c). For each
language pair, we learn a shared BPE model with
90,000 merge operations. Both the BPE model
and the truecase model are learned on parallel data
only (not on monolingual data). For RO→EN, we
remove diacritics from the source training data,
following the recommendation by Sennrich et al.
(2016a).

1http://statmt.org/wmt17
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EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN
BLEU 2016 2017 2016 2017 2016 2016 2016 2017 2016 2017
baseline 12.8 14.2 18.5 18.3 23.8 34.5 33.3 26.6 40.1 33.8
+ copied 14.0† 15.2† 18.9‡ 18.6‡ 24.5† 35.7† 33.3 26.3 40.2 34.0

Table 2: Translation performance in BLEU with and without copied monolingual data. Statistically
significant differences are marked with † (p < 0.01) and ‡ (p < 0.05).

5.2 Translation Performance

We evaluate our models compared to a baseline
containing parallel and back-translated data on
the newstest2016 (all language pairs) and new-
stest2017 (EN↔TR and EN↔DE) test sets. For
each model, we report case-sensitive detokenized
BLEU (Papineni et al., 2002) calculated using
mteval-v13a.pl.

The BLEU scores for each language pair and
each system are shown in Table 2. The only dif-
ference between the baseline and the + copied
systems is the addition of the copied corpus
during training. Note that the copied and the
back-translated corpora are created using identi-
cal monolingual data, which means that in the
+ copied system, each sentence from the monolin-
gual corpus occurs twice in the training data (once
as part of the copied corpus and once as part of the
back-translated corpus).

For EN↔TR and EN↔DE, we use about twice
as much monolingual as parallel data, so the ra-
tio of parallel to back-translated to copied data is
1:2:2. For EN↔RO, we use a 1:1:1 ratio. In ad-
dition, for EN↔DE, we oversample the parallel
corpus twice in order to balance the parallel and
monolingual data.

For EN↔TR and EN↔RO, we observe statisti-
cally significant improvements (up to 1.2 BLEU)
when adding the copied corpus. This indicates that
our copied monolingual method can help improve
NMT in cases where only a moderate amount of
parallel data is available. For EN↔DE, we do not
see improvements from adding the copied data; we
conjecture that this occurs because this is a high-
resource language pair. However, the EN↔DE
systems trained with the copied corpus also do not
perform any worse that those without.

5.3 Fluency

Adding copied target-side monolingual data re-
sults in a significant improvement in translation
performance as measured by BLEU for EN↔TR
and EN↔RO. Motivated by a desire to better un-
derstand the source of these improvements, we

further experiment with the outputs for each sys-
tem described in section 5.2. In particular, we
want to examine whether these gains are simply
due to the monolingual data improving the fluency
of the NMT system.

In order to evaluate the fluency of each system,
we train 5-gram language models for each lan-
guage using KenLM (Heafield, 2011). The models
are trained on the full monolingual News Crawl
2015 and 2016 datasets. This data is preprocessed
as described in section 5.1, except that no subword
segmentation is used.

We use these language models to measure per-
plexity on the outputs of the baseline systems
(trained using parallel and back-translated data)
and the + copied systems (trained using parallel,
back-translated, and copied data). The language
models are also queried on the reference transla-
tions for comparison. For all language pairs ex-
cept EN↔RO, we concatenate newstest2016 and
newstest2017 into a single dataset to find the per-
plexity.

Table 3 displays the perplexities for each sys-
tem output and the reference. Interestingly, the
perplexities for the baseline and the + copied sys-
tems are similar for all language pairs. In partic-
ular, improvements in BLEU (see Table 2) do not
necessarily correlate to improvements in perplex-
ity. This indicates that the gains from the + copied
system may not solely be due to fluency.

5.4 Pass-through Accuracy

Since the copied monolingual data adds an autoen-
coder element to the NMT training, it is possible
that the systems trained with copied data learn how
to better pass through named entities and other rel-
evant words than the baselines. In order to test
this hypothesis, we detect words that are identical
in each sentence in the source and the reference
for the tokenized test data (excluding words that
contain only one character and ignoring case). We
then count how many of these words occur in the
corresponding sentence in the translation output
from each system. We calculate the pass-through

151



Perplexity EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN
reference 700.0 146.7 202.4 118.1 231.0 116.5
baseline 921.1 341.6 328.2 248.4 490.6 317.3
+ copied 921.6 344.2 344.8 245.5 493.3 314.2

Table 3: Language model perplexities for the outputs of each NMT system.

Accuracy EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN
baseline 77.3% 85.0% 71.5% 85.3% 78.5% 91.4%
+ copied 82.0% 89.1% 78.5% 91.5% 78.6% 91.1%

Table 4: Pass-through accuracy for the outputs of each NMT system.

accuracy as the percent of such words that appear
in the output; these results are shown in Table 4.

For all language pairs except for EN↔DE,
there is a large improvement in pass-through ac-
curacy when the copied data is added during train-
ing. This closely mirrors the BLEU results dis-
cussed in section 5.2. These results suggest that
a key advantage of using copied data is that the
model learns to pass appropriate words through
to the target output more successfully. Table 5
shows some examples of translations with im-
proved pass-through accuracy for the + copied
systems.

5.5 Additional EN-TR Experiments

In this section, we describe a number of additional
experiments on EN→TR in order to investigate
the effects of different experimental setups and as-
pects of the data. Note that the BLEU scores in
this section are not directly comparable with those
in Table 2, since a different subset of the monolin-
gual data is used for some of these experiments.
All BLEU scores reported in this section are on
newstest2016 unless otherwise noted.

5.5.1 Double Back-Translated Data
In section 5.2, we report significant gains from
our + copied systems over baselines trained on
parallel and back-translated data for EN↔TR and
EN↔RO, even while using the same monolingual
data as the basis for both the copied and the back-
translated corpora. However, in our experiments,
we use particularly high-quality in-domain mono-
lingual data. As a result, it is possible that these
improvements are due to using this monolingual
data twice (in the form of the back-translated and
copied corpora) rather than to using the copied
monolingual corpus.

In order to evaluate this, we consider an addi-
tional configuration in which we train using two
copies of the same back-translated corpus (instead

of using one copy of each of the back-translated
corpus and the copied corpus). The results for
this experiment are in Table 6. For both test sets,
the + copied system performs better than the sys-
tem with double back-translated data by about 1
BLEU point. This indicates that our copied cor-
pus improves NMT performance, and that this is
not simply due to the higher weight given to the
high-quality monolingual data.

5.5.2 Different Copied Data
In our initial experiments, we use the same mono-
lingual corpus to create the back-translated and
the copied data. Here, we consider a variation in
which we use different monolingual data for these
purposes. This is done by cutting the monolin-
gual corpus in half and back-translating only half
of it, leaving the rest for copied data. Note that
this means that the original monolingual corpus is
the same size (twice the size of the parallel data;
see Table 1), but each monolingual sentence only
occurs once in the training data, rather than twice
as before.

The results for these experiments are shown
in Table 7. The baseline is trained on back-
translations of all of the monolingual data, and
the + same copied system contains the full copied
corpus. The + different copied system uses dif-
ferent data for copying and back-translation. Both
copied systems outperform the baseline, although
the + same copied system does slightly better.

5.5.3 Copied Data Without Back-translation
Our results in section 5.2 show that our copied
corpus method stacks with back-translation to im-
prove translation performance when there is not
much parallel data available. In this section, we
study whether the copied corpus can aid NMT
when no back-translated data is used. If so,
this would be advantageous, as the copied cor-
pus method is much simpler to apply than back-
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RO→EN
source ... a afirmat Angel Ubide, analist s, ef ı̂n cadrul Peterson Institute for International Economics.
reference ... said Angel Ubide, senior fellow at the Peterson Institute for International Economics.
baseline ... “said Angel Ubide, chief analyst at the Carson Institute for International Economics.
+ copied ... “said Angel Ubide, chief analyst at Peterson Institute for International Economics.

source Les Dissonances a aparut pe scena muzicala ı̂n 2004 ...
reference Les Dissonances appeared on the music scene in 2004 ...
baseline Les Dissonville appeared on the music scene in 2004 ...
+ copied Les Dissonances appeared on the music scene in 2004 ...

TR→EN
source Metcash, Bay Douglass'ın yorumlarına bir yanıt vermeyi reddetti.
reference Metcash has declined to respond publicly to Mr Douglass’ comments.
baseline Metah declined to give an answer to Mr. Doug’s comments.
+ copied Metcash declined to respond to a response to Mr. Douglass’s comments.

source PSV teknik direktörü Phillip Cocu, şöyle dedi: “Çok kötü bir sakatlanma.”
reference Phillip Cocu, the PSV coach, said: “It’s a very bad injury.”
baseline PSV coach Phillip Coker said: “It was a very bad injury.
+ copied PSV coach Phillip Cocu said: “It’s a very bad injury.”

Table 5: Comparison of translations generated by baseline and + copied systems.

BLEU 2016 2017
parallel + back-translated 12.4 14.2
parallel + double back-translated 13.1 14.1
parallel + back-translated + copied 14.0 15.2

Table 6: EN→TR translation performance when
using the back-translated corpus twice vs. the
back-translated and copied corpora.

BLEU
baseline 12.4
+ same copied 13.6
+ different copied 13.3

Table 7: EN→TR translation performance when
using the same or different data for copied and
back-translated corpora.

translation and does not require the training of an
additional target→source machine translation sys-
tem. We experiment with both a small copied cor-
pus (about 200k sentences) and a large copied cor-
pus (about 400k sentences).

The results for systems trained with only par-
allel and copied data are in Table 8. Both the
small copied corpus and the large copied corpus
yield large improvements (2.3-2.6 BLEU) over
using parallel data only, and their performance
is only slightly worse (0.3-0.4 BLEU) than the
corresponding systems trained with only back-
translated and parallel data.

5.5.4 Source Monolingual Data
Although we have concentrated thus far on incor-
porating target-side monolingual data into NMT,
source-side monolingual data also has the poten-

BLEU
parallel only 9.4
parallel + small copied 11.7
parallel + large copied 12.0
parallel + small back-translated 12.0
parallel + large back-translated 12.4

Table 8: EN→TR translation performance
without back-translated data. We include sys-
tems trained with parallel and back-translated data
(without copied data) for comparison.

BLEU
baseline 12.4
+ copied 13.6
+ EN data 13.6

Table 9: EN→TR translation performance with
EN monolingual data.

tial to help translation performance. In particular,
a source copied corpus can be used when train-
ing the target→source system for back-translation.
Here, we test this strategy on EN→TR NMT
with EN monolingual data. For this purpose, we
randomly sample about 400k English sentences
(twice the size of the parallel corpus) from the
News Crawl 2015 monolingual corpus.

The results for this experiment are shown in Ta-
ble 9. Although both copied systems improve over
the baseline, adding the EN monolingual data does
not result in further improvement over the target-
only copied model, despite taking much longer to
train.
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BLEU 1:1 2:1 3:1
baseline 12.0 12.4 12.8
+ copied 13.0 13.6 13.8

Table 10: EN→TR translation performance with
different amounts of monolingual data.

5.5.5 Amount of Monolingual Data
Finally, we study the effectiveness of the copied
monolingual corpus when the amount of mono-
lingual data is varied. We consider three differ-
ent monolingual corpus sizes: the same size as
the parallel data (200k sentences; 1:1), twice the
size of the parallel data (400k sentences; 2:1), and
three times the size of the parallel data (600k sen-
tences; 3:1). We compare these different sizes for
the baseline (parallel and back-translated data) and
the + copied systems (parallel, back-translated,
and copied data, where the back-translated and
copied data are identical on the target side). Each
smaller monolingual corpus is a subset of the
larger monolingual corpora. Note that we do not
oversample the parallel data to balance the differ-
ent data sources.

Table 10 displays the results when different
amounts of monolingual data are used. Note that
we vary the amount of back-translated data in the
baseline and of back-translated and copied data in
the + copied system. For both the baseline and
+ copied, adding more monolingual data consis-
tently yields small improvements (0.2-0.6 BLEU).
In addition, the + copied system performs about
1.0 BLEU better than the baseline regardless of
the amount of monolingual data. This is surpris-
ing since we do not oversample the parallel data
at all. For the 2:1 and 3:1 cases, the systems see
far less parallel than synthetic data, but the overall
translation performances still improve.

6 Discussion

Our proposed method of using a copied target-
side monolingual corpus to augment training data
for NMT proved to be beneficial for EN↔TR and
EN↔RO translation, resulting in improvements
of up to 1.2 BLEU over a strong baseline. We
showed that our method stacks with the previ-
ously proposed back-translation method of Sen-
nrich et al. (2016b) for these language pairs. For
EN↔DE, however, there was no significant differ-
ence between systems trained with the copied cor-
pus and those trained without it. There was much
more parallel training data for EN↔DE than for

EN↔RO (nearly 10 times as much) and EN↔TR
(about 28 times as much), so it is possible that
the gains that would have come from the copied
corpus were already achieved with the parallel
data. Overall, the copied monolingual corpus ei-
ther helped or was indifferent, so training with this
corpus is not risky. In addition, it does not require
any more monolingual data besides what is used
for back-translation.

We initially assumed that the copied monolin-
gual corpus was helping to improve the fluency of
the target outputs. However, further study of the
outputs did not necessarily support this assump-
tion, as noted in section 5.3. Our method did im-
prove accuracy when copying proper nouns and
other words that are identical in the source and tar-
get languages; this is at least part of the explana-
tion for the increases in BLEU score when using
the copied corpus.

Subsequent experiments revealed various fac-
tors that influenced the effectiveness of the copied
monolingual corpus. An unexpected finding was
that doubling and tripling the size of the mono-
lingual corpus (whether used as copied or back-
translated data) resulted in small improvements
(0.2-0.6 BLEU). We had originally thought that
using much more monolingual than parallel data
would result in a worse performance, since the
system would see true parallel data less often than
copied or back-translated data, but this did not turn
out to be the case. Not having to limit the amount
of monolingual data based on the availability of
parallel data is an advantage for language pairs
with much more monolingual than parallel data.

7 Conclusion

In this paper, we introduced a method for improv-
ing neural machine translation using monolingual
data, particularly for low-resource scenarios. Aug-
menting the training data with monolingual data
in which the source side is a copy of the target
side proved to be an effective way of improving
EN↔TR and EN↔RO translation, while not dam-
aging EN↔DE (high-resource) translation. This
technique could be used in combination with back-
translation or with parallel data only. In addition,
using much more monolingual than parallel data
did not hinder performance, which is beneficial for
the common case where a large amount of mono-
lingual data is available but the language pair has
little parallel data.
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In the future, we plan on studying the effects
of the quality of the monolingual data, since our
copied corpus technique might in principle pose
the risk of adding noise to the NMT system. In
particular, we would like to apply a data selection
method when creating the monolingual corpus, as
the similarity of the monolingual and parallel data
has been shown to have an effect on NMT (Cheng
et al., 2016). We also hope to find an effective way
of adding source monolingual training data. Fi-
nally, it would be interesting to do a manual evalu-
ation of our method to confirm the BLEU and per-
plexity findings reported in sections 5.2 and 5.3.
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Abstract

Differently from the phrase-based
paradigm, neural machine translation
(NMT) operates on word and sentence
representations in a continuous space.
This makes the decoding process not only
more difficult to interpret, but also harder
to influence with external knowledge. For
the latter problem, effective solutions like
the XML-markup used by phrase-based
models to inject fixed translation options
as constraints at decoding time are not
yet available. We propose a “guide”
mechanism that enhances an existing
NMT decoder with the ability to prioritize
and adequately handle translation options
presented in the form of XML annotations
of source words. Positive results obtained
in two different translation tasks indicate
the effectiveness of our approach.

1 Introduction

The need to enforce fixed translations of certain
source words is a well known problem in machine
translation (MT). For instance, this is an issue
in application scenarios in which the translation
process has to comply with specific terminology
and/or style guides. In such situations it is gen-
erally necessary to consider external resources to
guide the decoder in order to ensure consistency
or meet other specific requirements. Terminology
lists, which provide the decoder with the expected
translations of specific words or phrases, are a typ-
ical example of external knowledge used to guide
the process to meet such constraints. Meeting pre-
defined constraints, however, does not represent
the only case in which an external guidance can
support decoding. In ensemble MT architectures,
for example, the output of a translation system

specialised in handling specific phenomena (e.g.
numbers or dates) can be used to guide another
decoder without changing its underlying model.

Phrase-based statistical MT (PBSMT), which
explicitly manipulates symbolic representations of
the basic constituents (phrases) in the source and
target languages, provides solutions to address
these needs. For instance, the XML markup im-
plemented in the Moses toolkit (Koehn et al.,
2007) allows one to supply the expected transla-
tions to the decoder in the form of tags surround-
ing the corresponding source phrases.

To our knowledge, solutions to this problem are
not yet available for neural machine translation
(NMT), which has recently emerged as the dom-
inant approach for MT. In particular, no work has
been done to address the needs of the translation
industry, in which language service providers usu-
ally receive translation requests that must be sat-
isfied in short time, often taking into account ex-
ternal knowledge that defines specific customers’
constraints. In this case, the time-consuming re-
training routines of NMT are not viable, thus mak-
ing methods to inject external knowledge without
retraining of paramount importance.

To address this gap, we investigate problems
arising from the fact that NMT operates on im-
plicit word and sentence representations in a con-
tinuous space, which makes influencing the pro-
cess with external knowledge more complex. In
particular, we attempt to answer the following
questions: i) How to enforce the presence of a
given translation recommendation in the decoder’s
output? ii) How to place these word(s) in the right
position? iii) How to guide the translation of out-
of-vocabulary terms?

Our solution extends an existing NMT de-
coder (Sennrich et al., 2016a) by introducing the
possibility to guide the translation process with
constraints provided as XML annotations of the
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source words with the corresponding translation
options. The guidance mechanism supervises the
process, generating the final output with the ex-
pected translations, in the right place, including
cases of external words unknown to the model.

To test our approach, we experiment in two sce-
narios that pose different challenges to NMT. The
first one is a translation task in which source sen-
tences contain XML-annotated domain-specific
terms. The presence of few annotated terms poses
fewer constraints to the decoder in generating the
output sentence. The second scenario is an auto-
matic post-editing (APE) task, in which the NMT
model is trained to translate “monolingually” from
draft machine-translated sentences into human-
quality post-edits. The external guidance is pro-
vided by word-level quality judgements (Blatz
et al., 2004) indicating the “good” words in the
machine-translated sentence that should be kept in
the final APE output. In this case, the large num-
ber of “good” words already present in the original
MT output poses more constraints to the decoding
process. In both scenarios, our guidance mecha-
nism achieves significant performance gains over
the original NMT decoder.

2 Related Work

In PBSMT, the injection of external knowledge
in the decoder is usually handled with the so-
called XML markup, a technique used to guide the
decoder by supplying the desired translation for
some of the source phrases. The supplied trans-
lation choice can be injected in the output by us-
ing different strategies, all rather straightforward.
Examples include manipulating the phrase table
by either replacing entries that cover the specific
source phrase, or adding the alternative phrase
translations to it, so that they are in competition.

This problem has only recently started to be
explored in NMT and, in most of the cases, the
proposed solutions integrate external knowledge at
training stage. Time-consuming training routines,
however, limit the suitability of this strategy for
applications requiring real-time translations. In
Gulcehre et al. (2015), monolingual data is used
to train a neural language model that is integrated
in the NMT decoder by concatenating their hidden
states. In Arthur et al. (2016), the probability of
the next target word in the NMT decoder is biased
by using lexicon probabilities computed from a
bilingual lexicon. When the external knowledge is

in the form of linguistic information, such as POS
tags or lemmas, Sennrich and Haddow (2016) pro-
pose to compute separate embedding vectors for
each linguistic information and then concatenate
them, without altering the decoder. Other solu-
tions exploit the strengths of PBSMT systems to
improve NMT by pre-translating the source sen-
tence. In Niehues et al. (2016), the NMT model is
fed with a concatenation of the source and its PB-
SMT translation. Some of these solutions lead to
improvements in performance, but they all require
time-intensive training of the NMT models to use
an enriched input representation or to optimize the
parameters of the model. (Stahlberg et al., 2016)
proposed an approach which can be used at decod-
ing time. A hierarchical PBSMT system is used
to generate the translation lattices, which are then
re-scored by the NMT decoder. During decoding,
the NMT posterior probabilities are adjusted using
the posterior scores computed by the hierarchical
model. However, by representing the additional
information as a translation lattice, this approach
does not allow the use of external knowledge in the
form of bilingual terms or quality judgements as
we do in §5 and §6. A different technique is post-
processing the translated sentences. Jean et al.
(2015) and Luong and Manning (2015) replace the
unknown words either with the most likely aligned
source word or with the translation determined by
another word alignment model.

The closest approach to ours is the one by
(Hokamp and Liu, 2017). They explore all the
possible constraints (or translation options) at each
time step making sure not to generate a constraint
that have already been generated in the previous
timestep. Their approach generates all the con-
straints in the final output, thus implicitly it as-
sumes that only one translation options is pro-
vided as constraint for a given source word/phrase.
However, in a more realistic scenario (e.g. in pres-
ence of a termbase or when the target language is
more inflected than the source language), a source
word can have multiple translation options from
which the decoder should decide the best one on-
the-fly depending on the source context. Our ap-
proach can handle both scenarios thus being more
suitable in practice. In this paper we consider the
possibility of having multiple translation options
for a single word. For this reason, we can not com-
pare the guided decoder against the approach pro-
posed in (Hokamp and Liu, 2017). In addition to
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the application in MT to customize NMT output
to meet customer-specific needs (Task 1), our ap-
proach can also be used to add quality judgements
within NMT at decoding time (Task 2).

3 NMT decoding

In this section we first provide a general introduc-
tion to NMT as it is currently commonly imple-
mented in systems like the one used in our exper-
iments. Then, we discuss its limitations with re-
spect to our problem: guiding decoding with ex-
ternal knowledge.

Figure 1: Overview of NMT decoding.

As shown in Figure 1, NMT starts by mapping
all words of the source sentence into a continu-
ous space, through an embedding layer. The word
embeddings are processed by a bidirectional recur-
rent layer, implemented with gated recurrent units
(GRUs) (Cho et al., 2014), which encodes each
source word together with its left and right con-
text in a sequence of hidden states. Once all the
hidden states of the encoder are computed, the de-
coder starts generating the target string one word
at the time. The decoder layer is implemented
as a unidirectional GRU-based RNN.1 The de-
coder hidden state at time t (st) is recursively up-
dated via the previous hidden state (st−1), the em-
bedding of the previously generated target word
(yt−1), and the input context (ct). The context is
generated as a convex combination of the encoder
hidden states, whose weights (αt,j) are computed
by a so-called attention model (Bahdanau et al.,
2014). The attention model weights αt,j are com-
puted with a feed-forward neural network and can
be interpreted as probability distributions over the

1The implementation in Nematus (Sennrich et al., 2016a)
we are building on deploys two GRUs, but this variation does
not play any important role here.

source positions (j = 1, . . . ,m).
Finally, the decoder linearly combines the em-

bedding of yt−1, st, and ct and applies a softmax
transformation to compute a language model over
the target vocabulary which, through st, is actu-
ally conditioned on all the previous target words
y0, . . . , yt−1 (where y0 is a conventional sentence
delimiter symbol). This language model is used
to sample the new target word yt, which is fed
back to the decoder layer to continue the process
of generating target words until the sentence de-
limiter word is produced. When a beam search
strategy is employed, the most probable K target
words (yt,i i = 1, . . . ,K) are sampled instead, and
used as alternative hypotheses for the next decod-
ing step. The process does not diverge because
only K best target words are again selected from
the resulting K target language model distribu-
tions. Through simple bookkeeping, the best tar-
get word sequence is computed that maximises the
product of all the corresponding language model
scores.

In this NMT workflow, there is no easy way to
integrate partial translations provided by an exter-
nal resource, such as a bilingual dictionary. Dif-
ferently from a PBSMT decoder that is aware of
which source phrase is translated at each step,
the NMT decoder does not have this information.
The only indirect connection between the target
word yt generated at time t and the corresponding
source positions (words) is represented by the at-
tention model weights αt,j , which are used to cre-
ate the context vector ct from the encoder hidden
states. Moreover, differently from decoding in PB-
SMT, the NMT architecture described above does
not apply any coverage constraint on the source
positions. Thus, there is no guarantee that the out-
put generated by NMT covers (i.e. translates) each
source word exactly once.

4 Guided NMT decoding

To overcome the aforementioned problems, we
present a novel technique called “guided decod-
ing” that forces the decoder to generate particular
translations given as external knowledge. Transla-
tion hints are provided in the form of annotations
of individual source words in the input text. Our
decoder accepts input in an XML format similar
to the one adopted in the Moses toolkit,2 which
contains the source sentence and its annotations

2goo.gl/ObB6QL

159



as shown below (for English-German):
<seg id="1702"> enter the <n transla-
tion=“Benutzer”> user</n> name and password
</seg>
The annotations are placed in a “n” tag that has
the attribute “translation” to hold the translation
recommendation for the corresponding source
word. The decoder parses the XML input and
creates two parallel input streams: one that
contains source words and another that contains
the corresponding suggestions or the empty string.
Then, the overall process is carried out similarly
to the previously described NMT system but with
a different interaction between the beam search
and the network. In particular, after a new beam
of K-top target words is generated, the “guide”
mechanism checks the K hypotheses and their
attention model weights to possibly influence
the beam search with the external suggestions.
This is done by: i) prioritizing the hypotheses
that can generate the suggestions provided (§4.1);
ii) performing look-ahead steps with the beam
search to evaluate the current hypothesis (§4.2)
and iii) applying different strategies to manage
out-of-vocabulary (OOV) terms (§4.3).

4.1 Forcing the presence of a given term

In PBSMT, XML markups can be easily han-
dled: when looking for translation options for each
source phrase, the decoder checks both the exter-
nal suggestions and the options in the phrase table.
However, the NMT process is too complex to fol-
low a similar approach. When generating a target
word, NMT assumes a continuous representation
of the whole source sentence through a context
vector. In particular: i) all the source words can
in principle contribute to generate a target word,
and ii) different hypotheses may focus on different
source words in the same decoding step. Thus, it is
not guaranteed that the output at a given time step
is solely dependent on a particular source word
and, in turn, it is not clear how the external sug-
gestions could be used. We tackle this issue by
using the probability distribution of the source po-
sitions obtained from the attention model used to
create the context vector. At each step of the beam
search, for each of the K generated target words
we look for the most probable source position pro-
vided by the attention model. If the corresponding
source word has a suggestion, then we replace the
target word by the given suggestion and update the

score of the hypotheses; otherwise, we keep the
original target word.

4.2 Placing the term in the right position

The guiding mechanism in §4.1 allows the decoder
to generate a given translation by replacing op-
tions inside the beam. However, the method does
not consider cases in which one source word po-
sition is involved in the generation of multiple tar-
get words. This may happen when the decoder has
its attention on a particular source word more than
once (e.g. an article and a noun in the target re-
ferring to the same noun in the source). In these
situations, it could happen that valid translation
options are erroneously replaced and the external
suggestion is reproduced multiple times in the out-
put. For instance, in Figure 2, the source word
“application” which the attention model refers to
for both “die” and “Anwendung” would be trans-
lated as “Anwendung Anwendung”.

To address this problem and to make our ap-
proach more robust to possible attention model nu-
ances, we relax the hard replacement of a trans-
lation option if it differs from the provided sug-
gestion. In particular, if the conditions for a re-
placement occur, we also check if the beam search
would nevertheless generate the suggestion from
the current word, within a small number of steps.
If this happens, we keep the current word in place
since we know that the actual suggestion will be
generated in the short future. If the suggestion is
not reachable, then we force the replacement.

Algorithm 1 illustrates the modified beam
search process that generates the K best hypothe-
ses for the next target word. Starting from the
beam at time t− 1, a new state St is computed
and returned. The state contains the best K tar-
get words (yt), their corresponding decoder hidden
states (st), cumulative language model scores (qt),
backtracking indexes to the parent entries in the
previous state (bt), and source indexes having the
largest attention weight (αt). In addition, the mod-
ified beam search algorithm maintains, for each of
theK entries, the list of suggestions (Lt) that have
been generated within that hypothesis so far. The
algorithm accesses the global variable ỹ[j], which
contains for each source position j either a pro-
vided target word suggestion or the empty word
∅. The algorithm proceeds by computing the nor-
mal beam search step (line 14) and initializing the
lists of generated suggestions with the list of the

160



Algorithm 1 Guided Beam Search Step
1: . K: size of beam
2: . Lt: K lists of generated suggestions
3: . N : look-ahead step to check reachability
4: . St = [yt, st, qt, bt, αt]: state information
5: . yt: K target words
6: . st: K decoder layer hidden states
7: . qt: K cumulative language model scores
8: . bt: K backtracking indexes
9: . αt: K highest-attention-indexes

10: . Global variable with suggestions:
11: . ỹ[j]: target word for source position j
12: procedure GUIDEDBEAMSEARCH(K ,Lt−1 ,N ,St−1)
13: . Perform a step of beam search
14: St:= BeamSearchStep(St−1)
15: . Copy generated suggestions from parent
16: Lt:=UpdateLists(bt, Lt−1)
17: . for each entry of the beam
18: for k ∈ {1, . . . ,K} do
19: . Check suggestion for source word αt,k

20: if ỹ[αt,k] 6= ∅ ∧ αt,k /∈ Lt,k then
21: ỹ := ỹ[αt,k]
22: if yt,k 6= ỹ then
23: . if ỹ is not generated by N steps
24: if !Reachable(St, ỹ, k,N ) then
25: . Force suggestion in beam
26: yt,k = ỹ;
27: . Update suggestion list
28: Add(αt,k, Lt,k)
29: end if
30: else
31: . Suggestion is generated
32: Add(αt,k, Lt,k)
33: end if
34: end if
35: end for
36: return (Lt, St)
37: end procedure

corresponding parents (line 16) that are accessible
through the backtracking indexes. The main loop
(line 18) checks, for each beam entry, the source
position that received the highest weight by the
corresponding attention model. If this source po-
sition (αt′k) corresponds to a non-empty sugges-
tion and if the suggestion has not been generated
by one of the predecessors of this entry, then the
algorithm decides whether or not this suggestion
(ỹ) has to be forced in the beam. In particular,
there are two cases for which action is taken. First,
if the suggestion is different from the word in the
beam (line 22) and the suggestion will not be gen-
erated by one of its next N successors, then the
suggestion will replace the current word (line 26).
The list of generated suggestions by this hypoth-
esis is updated accordingly. Second, if the sug-
gestion is equal to the word in the beam (line 30),
then the suggestion has been generated directly by
the beam search and the corresponding list is up-
dated (line 32). The algorithm finally returns the

updated lists of generated suggestions and the up-
dated beam search state.

This algorithm can generate both continuous
and discontinuous target phrases:

Continuous phrases are those in which con-
secutive target words are pointed by the same
source word. The phrase pair (“application”,
“die Anwendung”) in Figure 2 falls in this cat-
egory. With a look-ahead window set to 1 in the
algorithm, the decoder will be able to generate bi-
gram phrases (such as “die Anwendung”). With
larger look-ahead windows, longer phrases can be
generated.

Discontinuous phrases are those in which tar-
get words pointed by the same source word are
intermingled with other words for which the at-
tention points elsewhere. The phrase pair (“quit”,
“haben verlassen”) in Figure 2 falls in this cat-
egory. In these cases, the guided beam search
should look at least two steps in the future. The
time step value maps the distance (number of
words) between the left and right sub-parts of the
target phrase. In our example, the distance is 4
(i.e. 4 steps are needed to reach “verlassen”
from “haben”) so, if we set the look-ahead win-
dow to 4, the decoder can generate the annotation
“verlassen” after emitting “haben”.

Figure 2: An example showing continu-
ous (“die Anwendung”) and discontinuous
(“haben...verlassen”) target phrases.

4.3 Guiding the translation of OOV terms

The last problem is dealing with suggestions that
are OOV words. In NMT, it is common practice to
replace OOV words by the unknown token (UNK)
and use its corresponding embedding. The ques-
tions are: i) if an OOV suggestion is given by
the external resource, should the modified beam
search force it into the beam?, and ii) which tar-
get word embedding should be used in the next
step? To answer these questions, we implemented
a lookup table to store all the OOV suggestions
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along with their unique id before initializing the
decoder. These ids are used for OOV suggestions
by the beam search instead of the id associated by
default to the UNK token. To get the embeddings
for OOV suggestions, we tested different strate-
gies, which are discussed in §5.2 and §6.2.

5 Task 1: Machine Translation

In our first experiment, we use guided decoding in
a standard MT setting. Our goal is to improve MT
performance by exploiting prior knowledge sup-
plied as translation recommendations for domain-
specific terms. The suggested terms (i.e. the con-
straints posed to the decoder) are usually few, thus
leaving a large degree of freedom to the NMT de-
coder while generating the output.

5.1 Experimental setting
NMT models. We evaluate guided decoding in
its ability to improve the performance of two dif-
ferent English to German NMT models, both ob-
tained with the Nematus toolkit (Sennrich et al.,
2016a). The first system operates at word level
and it is trained by using part of the JRC-Acquis
corpus (Steinberger et al., 2006), Europarl (Koehn,
2005) and OpenSubtitles2013 (Tiedemann, 2009),
which results in at total of about 1.8M parallel
sentence pairs. The size of the vocabulary, word
embedding, and hidden units is respectively set to
40K, 600, and 600, and parameters are optimised
with Adagrad (Duchi et al., 2011) using a learning
rate of 0.01. The batch size is set to 100, and the
model is trained for 300K updates (∼17 epochs).
At test stage, the word-level system is supplied
with terminology lists containing term recommen-
dations at the level of granularity of full words.
The second system is trained on sub-word units
by using the Byte-Pair Encoding (BPE) technique
(Gage, 1994), which has been proposed by Sen-
nrich et al. (2016b) as a successful way to reduce
the OOV rate. The system used in our evaluation
is the pre-trained model built for the best English-
German submission (Sennrich et al., 2016a) at the
News Translation task at WMT’16 (Bojar et al.,
2016). At test stage, it is supplied with termi-
nology lists containing term recommendations in
BPE format. In all the experiments we use a de-
fault beam size of 12.

Test data. We experiment with two domain-
specific English-German test sets containing 850
segments each: i) a subset of the EMEA corpus

(Tiedemann, 2009) for the medical domain and ii)
an information technology corpus extracted from
software manuals (Federico et al., 2014). Word-
level term lists for both domains are obtained by
processing the test data with the “Terminology as
a Service” platform,3 a cloud-based system that
supports automatic bilingual term extraction from
user uploaded documents. The BPE-level ver-
sion of each word-level term list is obtained as
follows. First, each entry is segmented with the
BPE rules available along with the pre-trained Ne-
matus model. Then, the segmented entries are
aligned by running MGiza++ (Gao and Vogel,
2008) trained on the BPE-level WMT’16 training
data. Finally, all the one-to-one aligned sub-units
are extracted to form the sub-word level bilingual
term dictionaries. The word and sub-word bilin-
gual dictionaries are used to annotate the respec-
tive test sets. This results in the annotation of
∼5K words and ∼7.5K sub-words. The term rate
(#Term/#Tokens) in the two test sets is respec-
tively 18.9% (IT: 21.5% and Medical: 17.7%) and
20.1% (IT: 23.2% and Medical: 18.0%).

5.2 Results and discussion

Our results on the MT task are reported in Ta-
ble 1, which shows system performance on the
concatenation of the test sets from the two target
domains. Performance is measured with BLEU
(Papineni et al., 2002), and statistical significance
is computed with bootstrap resampling (Koehn,
2004). The result of the word-level baseline sys-
tem is computed after post-processing its output
following the approach of Jean et al. (2015), which
was customized to our scenario. This method (see
§2) is driven by the attention model to replace the
UNK tokens in the output with their corresponding
recommendation supplied as external knowledge.
This post-processing strategy is not used for the
BPE-level baseline because it implicitly addresses
the problem of OOVs.

We evaluate our guided decoder incrementally,
by adding one at a time the mechanisms described
in §4. In the discussion, we do not compare the
performance of BPE-based and word-based mod-
els because the former were trained and optimized
with larger training data for the news translation
task at WMT’16. Results, instead, will be dis-
cussed in terms of the contribution yield by each
mechanism on top of previous best results.

3http://www.taas-project.eu
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The baseline decoder (Baseline) per-
forms better than our basic guided decoder
(GDec_base), which considers translation
recommendations only in the case of known
terms as described in §4.1. This indicates that the
problem of constraining the NMT output using
a bilingual dictionary can not be addressed by
simply emitting the recommendations whenever
the corresponding source term has the highest
attention.

words BPE
Baseline 22.62 25.64
GDec_base 21.68 25.25
GDec_base+oov 23.04† 25.66
GDec_base+oov+reach 25.51† 28.42†

Table 1: BLEU results of different decoders on
the MT task (“†” indicates statistically significant
differences wrt. Baseline with p<0.05).

GDec_base+oov extends GDec_base with
the mechanism to handle OOV annotations as de-
scribed in §4.3. In order to generate word embed-
dings for OOV terms, we tested several strategies:
i) using the embedding of the unknown word, ii)
using the embedding of the best target word in
the beam, iii) using the embedding of the previ-
ous word (yt−1), and iv) using the average of the
embeddings of all the previous words (y1,..,t−1).
The best results are obtained when using the em-
bedding of the unknown word which, on further
investigation, resulted to be close to rare words in
terms of cosine similarity. As of now, this prox-
imity to rare words suggests that it can model
OOVs better than the other strategies, but deeper
investigations on this aspect are certainly an in-
teresting topic for future analysis. The ability to
handle OOVs yields statistically significant im-
provements (+0.4 BLEU) over the baseline for the
word-based model. In contrast, since the BPE-
based systems can implicitly mitigate the OOV
problem (as discussed in §5.1), our strategy results
in marginal improvements over the BPE baseline.

Finally, GDec_base+oov+reach combines
OOV handling with the method to avoid repeti-
tions and to manage the insertion positions de-
scribed in §4.2. Since it uses a look-ahead (LA)
hyper-parameter in order to validate the transla-
tion options, we experimented with different val-
ues ranging from 1 to 9. By varying the LA win-
dow, performance increases both for the word-

level and the BPE-level models up to the highest
scores achieved with LA=6. Increasing LA be-
yond 6 does not yield further gains. Using LA=1
performs slightly worse (-0.4 BLEU) than LA=6,
indicating that this mechanism is already effec-
tive even at small values (i.e. on our data, a large
number of problematic cases involve continuous
phrases like the example in Figure 2). This full-
fledged guided decoder achieves a statistically sig-
nificant improvement of ∼3 BLEU points over
both word-level and BPE-level baselines. A per-
domain results’ analysis shows similar gains over
the Baseline for word-based (IT: +4.3, Med-
ical: +2.6) and for BPE-based NMT (IT: +3.9,
Medical: +2.0).

To better understand the behaviour of our
decoder, we further analysed its output. First,
the percentage of translation recommendations
produced in the MT output (#TermsInTranslation

#AnnotatedTerms )
was computed both for the Baseline,
and for the GDec_base+oov+reach de-
coders. As expected, the Baseline achieves
lower results (BPE-level: 70.81%, Word-
level: 65.38%) compared to the full-fledged
GDec_base+oov+reach (BPE-level: 94.08%,
Word-level: 87.19%). Indeed, as a generic NMT
system, it is not able to properly handle domain-
specific terms (the BPE representation helps to
reduce OOVs but does not guarantee correct
realizations in the target language). Second, a
preliminary error analysis was carried out by
looking at the word alignments returned by the
attention model. This revealed that the majority of
the errors produced by our decoder can be found
in sentences in which the annotated source words
never receive the highest attention, thus making
the corresponding recommendations unreachable.

Manual Analysis: We manually analyzed some
samples to understand the effect of using GDec in
the translation task. We observe that when fed
with a list of translation options in the form of
xml annotations, GDec is able to generate the cor-
rect terms. Moreover, these local improvements
also help GDec to fix other parts of the translation.
Examples illustrating these effects are provided in
Table 2. Example 1 shows that the baseline sys-
tem (Base) translates the word "browse" in the
source sentence (Src) to “stöbern” (En: “rummage
around”) but the post-editors prefers to use in the
reference “durchsuche” (En: “search”) which is
then generated by the GDec. Example 2 illustrates
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a case where post-editors prefer to preserve the
terms in the source language rather than translat-
ing them. The baseline system translates “plastics
labs” to “Kunststofflabore” (En: “Plastic laborato-
ries”), however, it should be preserved as-is in the
final output as done by GDec. Another interesting
example highlighting the effect of choosing a cor-
rect term on the overall translation quality is pro-
vided in example 3. The term “zugewiesen” trans-
lation of the source word "assigned" helps GDec to
correct other parts of the final translation, like gen-
erating “es gibt keine” (En: “There is no”) which
is otherwise missing in the baseline translation.

6 Task 2: Automatic Post-Editing

In our second experiment, we apply guided decod-
ing in an automatic post-editing task. The goal
of automatic post-editing (APE) is to correct er-
rors in an MT-ed text. The problem is typically
approached as a “monolingual translation” task,
in which models are trained on parallel corpora
containing (MT_output, MT_post-edit) pairs, with
MT post-edits coming from humans (Simard et al.,
2007; Chatterjee et al., 2015b, 2017). In their at-
tempt to translate the entire input sentence, APE
systems usually tend to over-correct the source
words, i.e. to use all applicable correction op-
tions. This can happen even when the input is
correct, often resulting in text deterioration (Bojar
et al., 2015). To cope with this problem, neural-
based APE decoders would benefit from external
knowledge indicating words in the input which
are correct and thus should not be modified dur-
ing decoding. For that we propose to use word-
level binary quality estimation labels (Blatz et al.,
2004; de Souza et al., 2014) to annotate the “good”
words that should be kept. Due to the relatively
high quality of the MT outputs (62.11 BLEU),
source sentences will usually contain many terms
annotated as “good”. This, compared to the MT
task, poses more constraints on the decoder.

6.1 Experimental setting

NMT models. We use the pre-trained model
built for the best English-German submis-
sion (Junczys-Dowmunt and Grundkiewicz, 2016)
at the WMT’16 APE task. This available model
was trained with Nematus over a data set of ∼4M
back-translated pairs, and then adapted to the task-
specific data segmented using the BPE technique.

Test data. In this experiment, we use the
English-German data released at the WMT’16
APE shared task (Bojar et al., 2016). To anno-
tate the test set, instead of relying on automatic
quality, predictions, we exploit oracle labels in-
dicating “good” words (to be kept in the out-
put) and “bad” words (to be replaced by the de-
coder). To this aim, we first aligned each MT out-
put with the corresponding human post-edit using
TER (Snover et al., 2006). Then, each MT word
that was aligned with itself in the post-edit was an-
notated as “good”. This resulted in a high number
of “good” labels (on average, 79.4% of the sen-
tence terms). It is worth noting that, by construc-
tion, the resulting quality labels are “gold” anno-
tations that current word-level quality estimation
systems can only approximate. These make them
suitable for our testing purposes, as they allow us
to avoid the noise introduced by sub-optimal pre-
dictors. The BPE-level version of the test set is
obtained by projecting the word-level QE tags into
the sub-words (all sub-words of a word receive the
original word tag). If a sub-word was labelled as
“good”, then we annotate it with itself to indicate
that the decoder must generate the sub-word in the
output.

6.2 Results and discussion

Our results on the APE task are reported in Ta-
ble 3. Performance is measured with the two
WMT’16 APE task metrics, namely TER and
BLEU (Bojar et al., 2016). The statistical signif-
icance for BLEU is computed using paired boot-
strap resampling, while for TER we use stratified
approximate randomization (Yeh, 2000).

Our first baseline (Base-MT), the same used
at WMT, corresponds to the original MT output
left untouched. Our second baseline (Base-APE)
is a neural APE system that was trained on
(MT_output, MT_post-edit) pairs but ignores the
information from the QE annotations. Base-APE
improves the Base-MT up to 3.14 BLEU points.

Similar to §5.2, the evaluation of our guided de-
coder is performed incrementally. GDec_base
forces the “good” words in the automatic trans-
lation to appear in the output according to the
mechanism described in §4.1. This basic guid-
ance mechanism yields only marginal improve-
ments over the Base-MT and is far behind the
Base-APE. This can be explained by the large
number of constraints (i.e. “good” words to be
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Src: <n translation="durchsuchen||Durchsuchen"> browse </n> all products
Base: stöbern alle Produkte
GDec: durchsuchen Sie alle Produkte
Ref: durchsuchen Sie alle Produkte
Src: <n translation="produkt||Produkt"> Product </n> 4 - <n translation="plastics||Plastics"> Plastics
</n> <n translation="labs||Labs"> Labs </n>
Base: Produkt 4 - Kunststofflabore
GDec: Produkt 4 - Plastics Labs
Ref: Produkt 4 - Plastics Labs
Src: There is no limit on the number of valve gates that can be <n translation="zugewiesen"> assigned
</n> to a model .
Base: die Anzahl der Ventiltore , die einem Modell zugeordnet werden können , ist nicht begrenzt .
GDec: es gibt keine Grenze für die Anzahl der Ventiltore , die einem Modell zugewiesen werden
können .
Ref: Es gibt keine Begrenzung für die Anzahl der Anschnitte , die zugewiesen werden können.

Table 2: Examples covering some cases where GDec improves over the baseline for the MT task

BLEU (↑) TER (↓)
Base-MT 62.11 24.76
Base-APE 65.25 23.67
GDec_base 62.68† 23.97†
GDec_base+OOV 62.69† 23.96†
GDec_base+OOV+reach 67.03† 22.45†

Table 3: Performance of different decoders on the
APE task measured in terms of TER (↓) and BLEU
score (↑) (“†” indicates statistically significant dif-
ferences wrt. Base-APE with p<0.05).

kept), which drastically reduces the freedom of the
decoder to generate surrounding words. This is
confirmed by manual inspection: many original
MT segments were missing function words that
depended on the “good” words present in the sen-
tence. These insertions are easily performed by
the unconstrained Base-APE decoder but are un-
reachable by GDec_base, which is only able to
keep the annotated words.
GDec_base+OOV integrates the mechanism to

handle OOV annotations described in §4.3. Since
the model is trained on the BPE segment corpus,
the problem of OOV is already tackled by the
model itself. Thus, we do not observe a significant
contribution by this mechanism, which is in-line
with our results on BPE in the MT task.
GDec_base+OOV+reach is our full-fledged

system, which manages repetitions and insertion
positions as illustrated in §4.2. Its ability to bet-
ter model the surroundings of the annotated words
allows this technique to achieve statistically sig-
nificant improvements (+1.78 BLEU, -1.22 TER)

over the strong Base-APE decoder.
To better appreciate the ability of the APE de-

coder to leverage the QE labels and to avoid over-
correction, we compute the APE precision (Chat-
terjee et al., 2015a) as the ratio of the number of
sentences an APE system improves (with respect
to the MT output) over all the sentences it mod-
ifies. The GDec_base+OOV+reach decoder
gains 9 precision points over Base-APE (72% vs.
63%) confirming that guided decoding supported
by QE labels can improve also APE output quality.

Manual Analysis: Similar to the MT task we
performed a manual analysis of the outputs gen-
erated by different APE systems. Examples cap-
turing various aspects of the workings of GDec
in this task are provided in Table 4. The labels
Src, MT, Base, GDec, and Ref respectively repre-
sents the source sentence, machine translation out-
put, baseline APE output, GDec full-fledge output,
and the reference translation. Example 1 shows
the capability of GDec to preserve the MT words
in the final output that are correctly generated by
the MT system. In this example the word “Gibt”
(En: “Specifies”) is preserved by GDec which
is otherwise translated to “Legt” (En: “Sets”) by
the baseline system. Example 2 shows that guid-
ing the neural decoder by marking the MT word
“gewährleisten” (En: “ensure”) as “Good” not
only helps to preserve it in the final output but
also help to improve other parts of the translation
like “um ein ähnliches” (En: “a similar”) which is
otherwise untouched by the baseline APE system.
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Src: Specifies the source for the glow .
MT: <n translation="gibt||Gibt">Gibt</n> die Quelle</n> für</n> das Glü@@ hen aus .
Base: Legt die Quelle für das Glühen fest .
GDec: Gibt die Quelle für das Glühen aus .
Ref: Gibt die Quelle für den Schein an .
Src: Map Japanese indirect fonts across platforms to ensure a similar appearance .
MT: ... zu einem ähnlichen Erscheinungsbild <n translation="gewährleisten"> gewährleisten </n> .
Base: ... " auf einem ähnlichen Erscheinungsbild an .
GDec: ... " auf , um ein ähnliches Erscheinungsbild zu gewährleisten .
Ref: ... zu , um ein ähnliches Erscheinungsbild zu gewährleisten .
Src: All values , even primitive values , are objects .
MT: alle Werte , auch Grund@@ werte , <n translation="handelt">handelt</n> <n trans-
lation="es">es</n> <n translation="sich">sich</n> <n translation="um">um</n> <n transla-
tion="Objekte">Objekte</n> .
Base: Alle Werte , auch Grundwerte , sind Objekte .
GDec: Alle Werte , auch Grundwerte , handelt es sich um Objekte .
Ref: Bei allen Werten , auch Grundwerten , handelt es sich um Objekte .

Table 4: Examples covering some cases where GDec improves over the baseline for APE task.

Example 3 illustrates that GDec can be very use-
ful to avoid the problem of over-correction. The
MT segment in this example is almost a correct
translation of the source sentence and should be
left untouched but the baseline APE system mod-
ifies it deteriorating the overall translation quality.
However, when the MT word is annotated to itself
by the xml tags, GDec is able to preserve this word
thereby avoiding over-correction and retaining the
translation quality.

7 Conclusion

We presented a novel method for guiding the be-
haviour of an NMT decoder with external knowl-
edge supplied in the form of translation recom-
mendations (e.g. terminology lists). Our approach
supervises the translation process, ensuring that
the final output includes the expected translations,
in the right place, including cases of added OOV
words. Evaluation results on two tasks indicate the
effectiveness of our proposed solution, which sig-
nificantly improves over a standard NMT decoder.
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Abstract

This paper presents the results of the
WMT17 shared tasks, which included
three machine translation (MT) tasks
(news, biomedical, and multimodal), two
evaluation tasks (metrics and run-time es-
timation of MT quality), an automatic
post-editing task, a neural MT training
task, and a bandit learning task.

1 Introduction

We present the results of the shared tasks of the
Second Conference on Statistical Machine Trans-
lation (WMT) held at EMNLP 2017. This confer-
ence builds on eleven previous editions of WMT
as workshops and conference (Koehn and Monz,
2006; Callison-Burch et al., 2007, 2008, 2009,
2010, 2011, 2012; Bojar et al., 2013, 2014, 2015,
2016a).

This year we conducted several official tasks.
We report in this paper on three tasks:

• news translation (Section 2, Section 3)
• quality estimation (Section 4)
• automatic post-editing (Section 5)

The conference featured additional shared tasks
that are described in separate papers in these pro-
ceedings:

• metrics (Bojar et al., 2017a)
• multimodal machine translation and multilin-

gual image description (Elliott et al., 2017)
• biomedical translation (Jimeno Yepes et al.,

2017)

• neural MT training (Bojar et al., 2017b)
• bandit learning (Sokolov et al., 2017)

In the news translation task (Section 2), partic-
ipants were asked to translate a shared test set,
optionally restricting themselves to the provided
training data (constraint condition). We held 14
translation tasks this year, between English and
each of Chinese, Czech, German, Finnish, Lat-
vian, Russian, and Turkish. The Latvian and Chi-
nese translation tasks were new this year. Latvian
is a lesser resourced data condition on challenging
language pair. Chinese allowed us to co-operate
with an ongoing evaluation campaign on Asian
languages organized alongside the Chinese Work-
shop on Machine Translation (CWMT).1 System
outputs for each task were evaluated both automat-
ically and manually.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. In addition, we used Mechanical
Turk to collect further evaluations. This year, the
official manual evaluation metric is based on judg-
ments of adequacy on a 100-point scale, a method
we explored last year with convincing results in
terms of the trade-off between annotation effort
and reliable distinctions between systems.

The quality estimation task (Section 4) this year
included three subtasks: sentence-level prediction
of post-editing effort scores, word and phrase-
level prediction of good/bad labels. Datasets

1http://nlp.nju.edu.cn/cwmt2017/evaluation.en.html
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were released with English→German IT transla-
tions and German→English Pharmaceutical trans-
lations for all subtasks.

The automatic post-editing task (Section 5)
examined automatic methods for correcting er-
rors produced by an unknown machine transla-
tion system. Participants were provided with train-
ing triples containing source, target and human
post-edits, and were asked to return automatic
post-edits for unseen (source, target) pairs. In
this third round, the task focused on correcting
English→German translations in the IT domain
and German→English translations in the Pharma-
ceutical domain.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation and estimation methodologies for
machine translation. As before, all of the data,
translations, and collected human judgments are
publicly available.2 We hope these datasets serve
as a valuable resource for research into statisti-
cal machine translation, automatic evaluation, or
prediction of translation quality. News transla-
tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016).

2 News Translation Task

The recurring WMT task examines translation be-
tween English and other languages in the news do-
main. As in the previous years, we include Ger-
man, Czech, Russian, Finnish, and Turkish. New
languages this years are Latvian and Chinese.

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data.

2.1 Test data

The test data for this year’s task was selected from
online sources, as before. We took about 1500 En-
glish sentences and translated them into the other
5 languages, and then additional 1500 sentences
from each of the other languages and translated
them into English. This gave us test sets of about
3000 sentences for our English-X language pairs,
which have been either originally written in En-
glish and translated into X, or vice versa. The

2http://statmt.org/wmt17/results.html

composition of the test documents is shown in Ta-
ble 1.

The stories were translated by professional
translators, funded by the EU Horizon 2020
projects CRACKER and QT21 (German, Czech,
Latvian), by Yandex3, a Russian search engine
company (Turkish, Russian), and by BAULT, a re-
search community on building and using language
technology funded by the University of Helsinki
(Finnish). The Chinese–English task was spon-
sored by Nanjing University, Xiamen University,
the Institutes of Computing Technology and of
Automation, Chinese Academy of Science, North-
eastern University (China) and Datum Data Co.,
Ltd. All of the translations were done directly, and
not via an intermediate language.

For Latvian, the test set size was 2000 sen-
tences, and an additional 2000 sentences were re-
leased as development set.

2.2 Training data

As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters. Some training corpora
were identical from last year (Europarl4, Common
Crawl, SETIMES2 , Russian-English parallel data
provided by Yandex, Wikipedia Headlines pro-
vided by CMU) and some were updated (United
Nations, CzEng v1.6 (Bojar et al., 2016b), News
Commentary v12, monolingual news data). A new
corpis is the EU Press Release parallel corpus for
German, Finnish, and Latvian.

For Latvian and Chinese a number of new cor-
pora were released. For Latvian this data was pre-
pared by the University of Latvia and Tilde, the
Chinese corpora were prepared by the Institutes of
Computing Technology and of Automation, Chi-
nese Academy of Science, Northeastern Univer-
sity (China) and Datum Data Co., Ltd.

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems

We received 103 submissions from 31 institu-
tions. The participating institutions and their entry
names are listed in Table 2; each system did not
necessarily appear in all translation tasks. We also

3http://www.yandex.com/
4As of Fall 2011, the proceedings of the European Parlia-

ment are no longer translated into all official languages.
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Europarl Parallel Corpus

German↔ English Czech↔ English Finnish↔ English Latvian↔ English
Sentences 1,920,209 646,605 1,926,114 637,599

Words 50,486,398 53,008,851 14,946,399 17,376,433 37,814,266 52,723,296 11,957,078 15,412,186
Distinct words 381,583 115,966 172,461 63,039 693,963 115,896 289,849 137,244

News Commentary Parallel Corpus

German↔ English Czech↔ English Russian↔ English Chinese↔ English
Sentences 270,769 211,284 222,390 332,525

Words 6,087,255 5,924,001 4,057,726 4,545,443 4,759,919 5,068,124 – 5,123,145
Distinct words 285,017 181,203 295,447 157,800 317,074 169,315 – 164,103

Common Crawl Parallel Corpus
German↔ English Czech↔ English Russian↔ English

Sentences 2,399,123 161,838 878,386
Words 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 1,640,835 823,480 210,170 128,212 764,203 432,062

EU Press Release Parallel Corpus

German↔ English Finnish↔ English Latvian↔ English
Sentences 1,329,041 583,223 306,588

Words 22,078,112 22,998,930 6,823,630 10,063,161 4,250,672 5,135,993
Distinct words 642,591 347,021 465,355 189,316 200,773 121,401

Latvian Parallel Corpora

LETA News Online Books Corpus of Eu. Parliament
Latvian↔ English Latvian↔ English Latvian↔ English

Sentences 15,671 9,577 3,542,280
Words 340,394 438,666 63,233 82,665 30,177,230 37,158,634

Distinct words 62,734 41,252 19,191 9,104 604,110 416,932

Chinese Parallel Corpora

casia2015 casict2011 casict2015 datum2011 datum2017 neu2017
Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000

Words (en) 20,571,578 34,866,598 22,802,353 24,632,984 25,182,185 29,696,442
Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420

Yandex 1M Parallel Corpus

Russian↔ English
Sentences 1,000,000

Words 24,121,459 26,107,293
Distinct 701,809 387,646

CzEng Parallel Corpus
Czech↔ English

Sentences 62,493,539
Words 611,094,888 688,534,994

Distinct 8,017,713 5,738,815

Wiki Headlines Parallel Corpus

Russian↔ English Finnish↔ English
Sentences 514,859 153,728

Words 1,191,474 1,230,644 269,429 354,362
Distinct 282,989 251,328 127,576 96,732

United Nations Parallel Corpus

Russian↔ English Chinese↔ English
Sentences 23,239,280 15,886,041

Words 482,966,738 524,719,646 – 372,612,596
Distinct 3,857,656 2,737,469 – 1,981,413

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the provided tokenizer.
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Language Sources (Number of Documents)
English ABC News (1), BBC (9), Brisbane Times (1), CBS News (5), CNN (1), Daily Mail (10), Euronews (1),

Fox News (2), Globe and Mail (1), Guardian (3), Independent (2), Los Angeles Times (1), Novinte (1),
New York Times (8), Reuters (4), Russia Today (3), Scotsman (1), Sydney Morning Herald (4), Tele-
graph (1), The Local (1), UPI (4)

Chinese Ifeng (82), People Daily (14), Sina (14), Xinhua (8)
Czech aktuálně.cz (10), blesk.cz (4), blisty.cz (1), denı́k.cz (1), iDNES.cz (14), ihned.cz (4), lidovky.cz (8),

Novinky.cz (5), Reflex (1), tyden.cz (4), ZDN (2)
German Abendzeitung München (1), Abendzeitung Nürnberg (1), ARD (1), Augsburger Allgemeine (1),

Bergedorfer Zeitung (1), Braunschweiger Zeitung (1), Der Standard (2), Deutsche Welle (1),
Dülmener Zeitung (1), Euronews (1), Frankfurter Rundschau (2), Generalanzeiger Bonn (1), Göttinger
Tageblatt (1), Handelsblatt (4), In Franken (4), In Südthüringen (1), Kieler Nachrichten (2),
Kreisanzeiger (1), Kreiszeitung (3), Krone (1), Kölner Stadt Anzeiger (2), Merkur (1), Morgenpost (3),
Neue Presse Coburg (1), Nordbayerischer Kurier (1), oe24 (1), Potzdamer Neueste Nachrichten (1),
Passauer Neue Presse (1), Pforzheimer Zeitung (1), Rheinzeitung (1), Rundschau (1), Schwarzwälder
Bote (2), Südkurier (1), Süddeutsche Zeitung (1), Usinger Anzeiger (1), Westfälischer Anzeiger (1),
Westfälische Nachrichten (3), Westdeutsche Zeitung (4), Zeit (1), Waiblinger Kreiszeitung (4).

Finnish Etelä-Saimaa (2), Etelä-Suomen Sanomat (1), Helsingin Sanomat (14), Ilkka (10), Iltalehti (16), Ilta-
Sanomat (16), Kaleva (9), Kansan Uutiset (3), Karjalainen (10), Kouvolan Sanomat (2), Loimaan
Lehti (1).

Latvian Dienas Bizness (3), Delfi (11), Diena (13), grenet.lv (1), LSM (10), NRA (9), Talsu Vestis (1), TV
Net (21)

Russian aif (), dp.ru (2), eg-online.ru (2), gazeta.ru (5), gzt-sv.ru (1), Izvestiya (7), Kommersant (16), Lenta (17),
lgng (5), MK RU (4), nov-pravda.ru (1), Novaya Gazeta (3), pnp.ru (4), rg.ru (1), rusplit.ru (1), Vedo-
mosti (1), Versia (2), Vesti (3), VM News (1), zr.ru (3)

Turkish Sabah (96), Sözcü (19)
Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.

Europarl Language Model Data

English German Czech Finnish Latvian
Sentences 2,218,201 2,176,537 668,595 2,120,739 667, 241

Words 59,848,044 53,534,167 14,946,399 39,511,068 12,092,389
Distinct words 123,059 394,781 172,461 711,868 160,312

News Language Model Data

English German Czech Russian Finnish
Sentences 166,127,560 221,793,141 59,184,372 31,285,072 10,938,701

Words 3,816,723,867 3,938,344,482 974,167,234 572,672,132 137,162,922
Distinct words 5,895,731 17,824,672 4,011,712 2,929,646 ,3557,784

Common Crawl Language Model Data

English German Czech Russian Finnish Romanian Turkish
Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851 157,264,161 288,806,234 511,196,951

Words 65,128,419,540 65,154,042,103 6,694,811,063 23,313,060,950 2,935,402,545 8,140,378,873 11,882,126,872
Dist. 342,760,462 339,983,035 50,162,437 101,436,673 47,083,545 37,846,546 88,463,295

Test Set
Czech↔ EN German↔ EN Finnish↔ EN Latvian↔ EN

Sentences. 3,005 3,004 3,002 2,001
Words 54,630 61,958 60,963 64,760 45,472 62,769 39,064 47,832

Distinct words 14,462 8,544 12,514 8,997 16,156 8,552 11,708 7,435

Russian↔ EN Turkish↔ EN Chinese↔ EN
Sentences. 3,001 3,007 2,001

Words 59,912 69,847 55,303 67,927 – 54,011
Distinct words 17,391 9,386 14,864 8,664 – 7,710

Figure 2: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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ID Institution
AALTO Aalto University(Grönroos et al., 2017)
AFRL-MITLL Air Force Research Lab / MIT Lincoln Lab (Gwinnup et al., 2017)
APERTIUM Apertium / Helsinki University (Hurskainen and Tiedemann, 2017)
C-3MA Tartu-Riga-Zürich (Rikters et al., 2017)

CASICT-DCU
Chinese Academy of Sciences / Dublin City University
(Zhang et al., 2017)

CU-CHIMERA Charles University (Sudarikov et al., 2017)
FBK Fondazione Bruno Kessler (Di Gangi et al., 2017)
HUNTER Hunter College, City University of New York (Xu et al., 2017)
HY Helsinki University (Östling et al., 2017)
JAIST Japan Advanced Institute of Science and Technology (Trieu et al., 2017)
JHU Johns Hopkins University (Ding et al., 2017)
KIT Karlsruhe Institute of Technology (Pham et al., 2017)
LIMSI LIMSI (Burlot et al., 2017)

LIUM-CVC
University of Le Mans / Universitat Autonoma de Barcelona
(Garcı́a-Martı́nez et al., 2017)

LMU LMU Munich (Huck et al., 2017)
NMT-AVE-MULTI-CS

NRC National Research Council, Canada
OREGON Orgon State University
PJATK Polish-Japanese Academy of Information (Wolk and Marasek, 2017)
PROMT PROMT Rule-Based System
QT21 QT21 project system combination (Peter et al., 2017b)
ROCMT University of Rochester (Holtz et al., 2017)
RWTH RWTH Aachen (Peter et al., 2017a)
SOGOU Sogou Inc. (Wang et al., 2017)
SYSTRAN Systran (Deng et al., 2017)
TALP-UPC TALP, Technical University of Catalonia (Escolano et al., 2017)
TILDE Tilde (Pinnis et al., 2017)
UEDIN University of Edinburgh (Sennrich et al., 2017)
USFD University of Sheffield
UU Uppsala University
XMU Xiamen University (Tan et al., 2017b)

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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included 39 online statistical MT systems (origi-
nating from 4 services), which we anonymized as
ONLINE-A,B,F,G.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the final
ranking of systems taking part in the competition.
This section describes how preparation of evalu-
ation data, collection of human assessments, and
computation of the official results of the shared
task is carried out this year.

In previous years, we asked human annota-
tors to rank the outputs of five systems. From
these rankings, we produced pairwise translation
comparisons, and applied the TrueSkill algorithm
(Herbrich et al., 2007; Sakaguchi et al., 2014) to
produce system rankings. We refer to this ap-
proach as the relative ranking (RR) approach, so
named because the pairwise comparisons denote
only relative ability between a pair of systems, and
cannot be used to infer absolute quality. For ex-
ample, RR can be used to discover which systems
perform better than others, but RR does not pro-
vide any information about the absolute quality of
system translations, i.e. it provides no information
about how far a given system is from producing
perfect output according to a human user.

Work on evaluation over the past few years has
provided fresh insight into ways to collect direct
assessments (DA) of machine translation quality
(Graham et al., 2013, 2014, 2016), and last year’s
evaluation campaign included parallel assessment
of a subset of News task language pairs evaluated
with RR and DA. DA has some clear advantages
over RR, namely the evaluation of absolute trans-
lation quality and the ability to carry out evalua-
tions through quality controlled crowd-sourcing.
As established last year (Bojar et al., 2016a),
DA results (via crowd-sourcing) and RR results
(produced by researchers) correlate strongly, with
Pearson correlation ranging from 0.920 to 0.997
across several source languages into English and
at 0.975 for English-to-Russian (the only pair eval-

uated out-of-English). This year, we thus employ
DA only. Where possible, we collect DA judg-
ments via the crowd-sourcing platform, Amazon’s
Mechanical Turk, and as in previous year’s we
ask participating teams to provide manual eval-
uation of system outputs via Appraise with a
new implementation of DA. Researcher involve-
ment is needed particularly for translations out-of-
English.

Human assessors are asked to rate a given trans-
lation by how adequately it expresses the mean-
ing of the corresponding reference translation (i.e.
no bilingual speakers are needed) on an analogue
scale, which corresponds to an underlying abso-
lute 0–100 rating scale. Since DA involves evalu-
ation of a single translation per screen, this allows
the sentence length restriction usually applied dur-
ing manual evaluation to be removed for both re-
searchers and crowd-sourced workers.5 Figure 3
shows one DA screen as completed by researchers
on Appraise, while Figure 4 provides a screenshot
of DA shown to crowd-sourced workers on Ama-
zon’s Mechanical Turk.

The annotation is organized into “HITs” (fol-
lowing the Mechanical Turk’s term “human intel-
ligence task”), each containing 100 such screens
and requiring about half an hour to finish. Ap-
praise users were allowed to pause their annota-
tion at any time, Amazon interface did not allow
any pauses. More details of composition of HITs
are given in Section 3.3 and details on time spent
in Section 3.6 below.

3.1 Evaluation Campaign Overview

In terms of the News translation task manual eval-
uation, a total of 151 individual researcher ac-
counts were involved, and 754 turker accounts.6

Researchers in the manual evaluation came from
29 different research groups and contributed judg-
ments of 125,693 translations, while 237,200
translation assessment scores were submitted in
total by the crowd.7

Under ordinary circumstances, each assessed
translation would correspond to a single individ-
ual scored segment. However, since many systems

5The maximum sentence length with RR was 30 in
WMT16.

6Numbers do not include the 954 workers on Mechanical
Turk who did not pass quality control.

7Numbers include quality control items for workers who
passed quality control but omit the additional 151,200 assess-
ments collected on Mechanical Turk where a worker did not
pass quality control.
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Figure 3: Screen shot of Direct Assessment in the Appraise interface used in the human evaluation campaign. The annotator
is presented with a reference translation and a single system output randomly selected from competing systems (anonymized),
and is asked to rate the translation on a sliding scale.

Figure 4: Screen shot of Direct Assessment as carried out by workers on Mechanical Turk.

can produce the same output for a particular input
sentence, we are often able to take advantage of
this and use a single assessment for multiple sys-
tems. This year we only combine human assess-
ments in this way if the string of text belonging
to multiple systems is exactly identical. For ex-
ample, even small differences in punctuation dis-
qualify the potential combination of similar sys-
tem outputs into a single human assessment, and
this is due to lack of evidence about what kinds of
minor differences might impact human evaluation.

Table 3 shows the numbers of segments for
which distinct MT systems participating in the
News task produced identical outputs. English to
Czech is the only language pair to include sys-

tems that do not belong to the news task, the addi-
tional NMT Training task systems, and we include
a breakdown of duplicate translations by each task
for that language pair in Table 3. The biggest
saving in terms of exact duplicate translations for
multiple systems was made in the News task for
English to German.

3.2 Data Collection

The system ranking is produced from a large set of
human assessments, each of which indicates the
absolute quality of the output of a system. An-
notations are collected in an evaluation campaign
that enlists participants in the shared task to help.
Each team is asked to contribute 8 hours anno-
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Language Pair # Systems # Segs # Total Segs # Unique Segs Overall Saving

Chinese→English 16 2,001 32,016 30,772 3.9 %
Czech→English 4 3,005 12,020 11,501 4.3 %

German→English 11 3,004 33,044 29,513 10.7 %
Finnish→English 6 3,002 18,012 17,766 1.4 %
Latvian→English 9 2,001 18,009 17,441 3.2 %
Russian→English 9 3,001 27,009 25,430 5.8 %
Turkish→English 10 3,007 30,070 28,672 4.6 %

English→Chinese 11 2,001 22,011 21,626 1.7 %
English→Czech 14 3,005 42,070 37,774 10.2 %

News 8 3,005 24,040 21,261 11.6 %

NMT Training 6 3,005 18,030 17,098 5.2 %

English→German 16 3,004 48,064 41,918 12.8 %
English→Finnish 12 3,002 36,024 34,688 3.7 %
English→Latvian 17 2,001 34,017 30,928 9.1 %
English→Russian 9 3,001 27,009 25,807 4.5 %
English→Turkish 8 3,007 24,056 23,540 2.1 %

Table 3: Total segments prior to sampling for manual evaluation and savings made by combining identical segments (Segs)
produced by multiple MT systems in the News (all language pairs) and NMT Training task (English→Czech only).

tation time, which we estimated this year at 16
100-translation HITs per primary system submit-
ted. We continue to use the open-source Appraise8

(Federmann, 2012) tool for our data collection, in
addition to Amazon Mechanical Turk.9 Table 4
shows total numbers of human assessments col-
lected in WMT17 contributing to final scores for
systems.

When summarizing and comparing annotation
times recorded on Appraise and Mechanical Turk,
both encounter possible challenges in terms of
idle times exaggerating summary statistics. We
explore this issue in detail in Section 3.6, and
for the summary that follows, assessment times
for Appraise that appear to include very lengthy
idle times are each replaced with a realistic av-
erage time per assessment, as described in Sec-
tion 3.6. In total, our human annotators spent
nearly 24 days and 22 hours working on Appraise,
and 47 days and 23 hours annotating via crowd-
sourcing.10 This gives an average annotation time
of 4 hours per researcher using Appraise and 1
hour 32 minutes contribution by individual work-
ers on Mechanical Turk.11 Compared to last year’s

8https://github.com/cfedermann/Appraise
9https://www.mturk.com

10Numbers do not include the 2,106,918 seconds of anno-
tation provided by workers who did not pass quality control.

11Times for Mechanical Turk workers do not include work-

RR evaluation, we see a reduction in average time
commitment per researcher, which was 6.4 hours
in WMT16.

In this year’s evaluation, since it is the first time
DA has been used with non-crowdsourced human
evaluators, estimates of expected assessment com-
pletion times were used to guess the required time
commitment by each participating team. Similar
to the previous campaigns, several of the Appraise
annotators passed the mark of required numbers
of annotations (the maximum number being 5,240
translation assessments) with the most patient an-
notator contributing close to 22.5 hours of work.
However, for one language pair, English to Lat-
vian, insufficient annotations were contributed by
researchers, which we suspect was caused by the
difficulty in sourcing Latvian speakers.

Nonetheless, the effort that goes into the manual
evaluation campaign each year is impressive, and
we are grateful to all participating individuals and
teams. We believe that human annotation provides
the best decision basis for evaluation of machine
translation output and it is great to see continued
contributions on this large scale.

ers who failed to pass quality control checks. Some but not
all of the HITs that do not pass quality control checks are re-
jected and therefore go unpaid. A portion of unusable data
is accepted and paid due to the possibility that some diligent
workers may simply lack the required literary skills to pass
quality control.
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Language Pair Systems Comps Comps/Sys Assessments Assess/Sys

Chinese→English 16 − − 38,736 2,421
Czech→English 4 − − 21,992 5,498
German→English 11 − − 36,189 3,290
Finnish→English 6 − − 27,545 4,591
Latvian→English 9 − − 30,321 3,369
Russian→English 9 − − 24,837 2,760
Turkish→English 10 − − 25,853 2,585

English→Chinese 11 − − 16,253 1,478
English→Czech 15 − − 32,564 2,171
English→German 16 − − 10,229 639
English→Finnish 12 − − 8,289 691
English→Latvian 17 − − 6,882 405
English→Russian 9 − − 25,798 2,866
English→Turkish 8 − − 2,219 277

Total Researcher 153 − − 107,902 705
Total Crowd 85 − − 199,805 2,351
Total WMT17 153 − − 307,707 2,011

WMT16 138 569,287 4,125.2 284,644 2,062
WMT15 131 542,732 4,143.0 271,366 2,071
WMT14 110 328,830 2,989.3 164,415 1,494
WMT13 148 942,840 6,370.5 471,420 3,185
WMT12 103 101,969 999.6 50,985 495
WMT11 133 63,045 474.0 31,522 237

Table 4: Amount of data (assessments after removal of quality control items and “de-collapsing” multi-system outputs) col-
lected in the WMT17 manual evaluation campaign. The final six rows report summary information from previous years of the
workshop. Note how many rankings we get for Czech language pairs; these include systems from the NMT Training shared
task.

3.3 Crowd Quality Control

Translations are arranged in sets of 100-translation
HITs as this allows a minimum number of pairs
of quality control translations to be collected from
each worker who participates, while at the same
time allowing sufficient separation of assessment
of quality control translation pairs so that human
assessors are highly unlikely to simply remember
the score they assigned to the initial assessed trans-
lation. Details of the three kinds of quality con-
trol translation pairs employed by DA are provided
in Table 5: we repeat pairs (expecting a similar
judgement), damage MT outputs (expecting sig-
nificantly worse scores) and use references instead
of MT outputs (expecting high scores). Bad refer-
ence pairs are created automatically by replacing a
phrase within a given translation with a phrase of
the same length randomly selected from n-grams
extracted from the full test set of reference transla-

tions belonging to that language pair. This means
that the replacement phrase in itself will comprise
a fluent sequence of words (making it difficult to
tell that the sentence is low quality without reading
the entire sentence) while at the same time making
its presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the translation to be degraded, as follows:

Translation # Words Replaced
Length (N) in Translation

1 1
2–5 2
6–8 3
9–15 4
16–20 5
>20 � N/4 �
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Repeat Pairs: Original System output (10) An exact repeat of it (10);
Bad Reference Pairs: Original System output (10) A degraded version of it (10);
Good Reference Pairs: Original System output (10) Its corresponding reference translation (10);

Table 5: Quality control translation pairs hidden within 100-translation HITs, numbers of items are provided in parentheses.

In total, 60 items in a 100-translation HIT serve
in quality control checks but 40 of those are regu-
lar judgements of MT system outputs (we exclude
assessments of bad references and ordinary ref-
erence translations when calculating final scores).
The effort wasted for the sake of quality control is
thus 20%.

3.4 Annotator Agreement

When an analogue (or 0–100 point, in practice)
scale is employed, agreement cannot be measured
using the conventional Kappa coefficient, ordi-
narily applied to evaluation of human assessment
where judgments are discrete categories or pref-
erences. Instead, we filter crowd-sourced human
assessors by how consistently they rate transla-
tions of known distinct quality using bad reference
pairs described previously. Quality filtering via
bad reference pairs is especially important for the
crowd-sourced portion of the manual evaluation.
Due to the anonymous nature of crowd-sourcing,
when collecting assessments of translations it is
likely to encounter workers who attempt to game
the service, as well as submission of inconsistent
and even robotic HITs. We therefore employ DA’s
quality control mechanism, facilitated by the use
of DA’s analogue rating scale.

Assessments belonging to a given crowd-
sourced worker who has not demonstrated that
they can reliably score bad reference translations
significantly lower than corresponding genuine
system output translations are filtered out. The
p-value produced in a paired significance test of
bad reference pair score distributions is used as
an estimate of human assessor reliability. As-
sessments of workers whose p-value does not fall
below the conventional 0.05 threshold are omit-
ted from the evaluation of systems, since they do
not reliably score degraded translations lower than
corresponding MT output translations.

Table 6 shows the number of unique workers
who evaluated MT output on Mechanical Turk via
DA, those who met our filtering requirement by
showing a significantly lower score for bad ref-
erence items, and the proportion of those work-
ers who simultaneously showed no significant dif-

ference between scores they attributed in repeat
assessment of identical translations. The idea
is that the repeated input should receive a very
similar score. Assuming that annotators do not
remember their previous assessment for the re-
peated sentence, the “Exact Rep.” corresponds to
intra-annotator agreement and it reaches very high
scores of 97–100%.

We also see in Table 6 that the number of ex-
cluded Mechanical Turk workers can be high for
many languages, between 42 and 58% for En-
glish HITs, 72% for Russian and 81% for Chinese.
The variance in English annotations for different
source languages are consistent with previous DA
evaluations and we do not believe this is caused in
any significant way by the source language. With
respect to the choice of target language, however,
in general DA evaluation for languages with fewer
speakers on Mechanical Turk, such as Russian and
Chinese, do tend to encounter higher rates of gam-
ing. Since HITs are slower to complete, due to
fewer workers with that language, HITs are live
for a longer duration on the service and gamer-
type workers have a greater opportunity to attempt
payment for them.

This year, bad reference items were only col-
lected for crowd-sourced assessments. For infor-
mation on quality control statistics for non crowd-
sourced workers see this year’s human evaluation
of the APE task, Section 5.5, where student volun-
teers were employed and although only 11 annota-
tors were involved in total, 100% of those passed
DA’s quality control filter.

3.5 Producing the Human Ranking

All research and crowd data that passed qual-
ity control were combined to produce the overall
shared task results. In order to iron out differ-
ences in scoring strategies of distinct human as-
sessors, human assessment scores for translations
were first standardized according to each individ-
ual human assessor’s overall mean and standard
deviation score, for both researchers and crowd.
Average standardized scores for individual seg-
ments belonging to a given system are then com-
puted, before the final overall DA score for that
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(A) Sig. (A) & No Sig.
Diff. Diff.

All Bad Ref. Exact Rep.

Czech→English 154 89 (58%) 87 (98%)
German→English 398 201 (51%) 194 (97%)
Finnish→English 264 106 (40%) 102 (96%)
Latvian→English 332 123 (37%) 122 (99%)
Russian→English 274 148 (54%) 144 (97%)
Turkish→English 344 107 (31%) 103 (96%)
Chinese→English 386 161 (42%) 158 (98%)

English→Russian 82 23 (28%) 23 (100%)
English→Chinese 43 8 (19%) 8 (100%)

Total 1708 754 (44%) 733 (97%)
Table 6: Number of unique Mechanical Turk workers, (A) those whose scores for bad reference pairs were significantly
different and numbers of unique human assessors in (A) whose scores for exact repeat assessments also showed no significant
difference.

system is computed as the average of its segment
scores (Ave z in Table 7). Results are also reported
for average scores for systems, computed in the
same way but without any score standardization
applied (Ave % in Table 7).

Table 7 includes final DA scores for all systems
participating in WMT17 translation task. Clusters
are identified by grouping systems together ac-
cording to which systems significantly outperform
all others in lower ranking clusters, according to
Wilcoxon rank-sum test. Figure 5 shows the un-
derlying head-to-head significance test results for
all pairs of systems.

3.6 Crowd versus Researcher Results
Comparison

Finally, although we have combined all data col-
lected via crowd-sourcing and researchers to pro-
duce the overall results of the shared task, suffi-
cient assessments were collected to produce sys-
tem scores independently in both set-ups for three
language pairs. Table 8 shows the Pearson corre-
lation between DA scores for systems when eval-
uated by researchers with scores produced via
crowd-sourcing, showing high levels of agreement
reached overall for all language pairs as correla-
tions range from 0.98 to 0.997.

In terms on annotation times, some differences
in the way HIT durations are recorded within Ap-
praise and Mechanical Turk make a comparison
of annotation times for researchers and crowd-
sourced workers not entirely straightforward. On
the one hand, it is possible for a Mechanical Turk

(Mturk) worker, attempting to game the system,
to leave the window idle in order to obscure a lack
of effort, while on Appraise, researcher annotation
times will naturally include idle times due to inter-
ruptions of some kind.

The degree to which annotation times can be
exaggerated for Mturk workers is quite limited,
however. Firstly, since we impose quality control
checks throughout Mturk HITs, it won’t be possi-
ble for many workers to meet the quality threshold
without genuinely spending a minimum amount
of time on assessments. Additionally, we impose
a hard time limit of 90 minutes duration to each
100-translation HIT on Mturk (this corresponds
to an average maximum completion time of 54
seconds per translation) which limits the amount
of exaggeration of completion times that can take
place. The situation on Appraise is quite different
however, and idle times could potentially severely
skew annotation time analysis.

Figure 6(a) shows annotation times recorded for
our HITs on Mechanical Turk and Figure 6(b)
shows equivalent times for Appraise, where both
sets of completion times have been sorted from
shortest to longest duration. Examining the y-axis
of the Appraise plot in Figure 6(b) shows the max-
imum completion time for a single translation to
be at a whopping 329,578 seconds (3.8 days), re-
vealing the extent to which the inclusion of idle
times for Appraise runs the risk of exaggerating
annotation times for researchers, while on Me-
chanical Turk, Figure 6(a), the 90 minute HIT du-
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Chinese→English
# Ave % Ave z System

1 73.2 0.209 SogouKnowing-nmt
73.8 0.208 uedin-nmt
72.3 0.184 xmunmt

4 69.9 0.113 online-B
70.4 0.109 online-A
69.8 0.079 NRC

7 67.9 0.023 jhu-nmt
66.9 −0.016 afrl-mitll-opennmt
67.1 −0.026 CASICT-DCU NMT
65.4 −0.058 ROCMT

11 64.3 −0.107 Oregon-State-Uni-S

12 61.7 −0.209 PROMT-SMT
61.2 −0.265 NMT-Ave-Multi-Cs
60.0 −0.276 UU-HNMT
59.6 −0.279 online-F
59.3 −0.305 online-G

English→Chinese
# Ave % Ave z system

1 73.2 0.208 SogouKnowing-nmt
72.5 0.178 uedin-nmt
72.0 0.165 xmunmt

4 69.8 0.065 online-B
69.5 0.056 jhu-nmt
68.5 0.035 CASICT-DCU NMT
68.2 0.010 online-A

8 64.8 −0.111 Oregon-State-Uni-S

9 59.2 −0.300 UU-HNMT

10 55.9 −0.438 online-G

11 53.1 −0.504 online-F

Czech→English
# Ave % Ave z system

1 74.6 0.181 uedin-nmt

2 71.9 0.068 online-B

3 68.3 −0.068 online-A

4 62.7 −0.268 PJATK

English→Czech
# Ave % Ave z system

1 62.0 0.308 uedin-nmt

2 59.7 0.240 online-B

3 55.9 0.111 limsi-factored-norm
55.2 0.102 LIUM-FNMT
55.2 0.090 LIUM-NMT
54.1 0.050 CU-Chimera
53.3 0.029 online-A

8 44.9 −0.236 TT-ufal-8GB

9 42.2 −0.315 TT-afrl-4GB
41.9 −0.327 PJATK
40.7 −0.373 TT-base-8GB
40.5 −0.376 TT-afrl-8GB

13 36.5 −0.486 TT-ufal-4GB
36.6 −0.493 TT-denisov-4GB

German→English
# Ave % Ave z system

1 78.2 0.213 online-B
76.6 0.169 online-A
76.6 0.165 KIT
76.6 0.162 uedin-nmt
75.8 0.131 RWTH-nmt-ensemb
74.5 0.098 SYSTRAN

7 72.9 0.029 LIUM-NMT

8 70.2 −0.058 TALP-UPC
69.8 −0.072 online-G
68.6 −0.103 C-3MA

11 64.1 −0.260 online-F

English→German
# Ave % Ave z system

1 72.9 0.257 LMU-nmt-reranked

2 70.2 0.158 online-B
69.8 0.139 uedin-nmt
68.9 0.092 SYSTRAN
66.9 0.035 LMU-nmt-single
66.7 0.022 KIT
66.4 0.015 xmu
66.6 0.006 LIUM-NMT
66.0 −0.003 RWTH-nmt-ensemb

10 60.1 −0.233 online-A
60.3 −0.234 PROMT-Rule-based
58.9 −0.270 C-3MA
58.1 −0.301 fbk-nmt-comb
55.2 −0.391 TALP-UPC
54.9 −0.440 online-F
53.2 −0.491 online-G

Finnish→English
# Ave % Ave z system

1 73.8 0.407 online-B

2 67.5 0.220 online-G

3 62.6 0.041 online-A

4 58.8 −0.095 TALP-UPC

5 52.1 −0.316 Hunter-MT

6 44.6 −0.559 apertium

English→Finnish
# Ave % Ave z system

1 59.6 0.378 online-B
57.8 0.305 HY-HNMT

3 51.6 0.090 online-G
51.3 0.060 jhu-nmt-latt-resc
49.3 −0.004 AaltoHnmtMultitask

6 46.4 −0.102 AaltoHnmtFlatcat
46.7 −0.109 online-A
45.8 −0.115 HY-SMT
43.5 −0.192 HY-AH
43.4 −0.204 jhu-pbmt

11 40.8 −0.298 TALP-UPC

12 8.0 −1.428 apertium

Latvian→English
# Ave % Ave z system

1 76.2 0.266 online-B
76.2 0.245 tilde-nc-nmt-smt

3 71.4 0.087 uedin-nmt
71.0 0.083 tilde-c-nmt-smt

5 67.3 −0.039 online-A

6 64.4 −0.137 jhu-pbmt

7 63.4 −0.187 C-3MA
62.2 −0.199 Hunter-MT

9 56.3 −0.436 PJATK

English→Latvian
# Ave % Ave z system

1 54.4 0.196 tilde-nc-nmt-smt
51.6 0.121 online-B
51.1 0.104 tilde-c-nmt-smt
50.8 0.075 limsi-fact-norm
50.0 0.058 usfd-cons-qt21
47.1 −0.014 QT21-Comb
47.3 −0.027 usfd-cons-kit
45.7 −0.063 KIT
45.2 −0.072 uedin-nmt
44.9 −0.099 tilde-nc-smt
43.2 −0.157 LIUM-FNMT
43.0 −0.198 LIUM-NMT
40.1 −0.253 HY-HNMT
37.5 −0.341 online-A
36.1 −0.368 jhu-pbmt
33.3 −0.457 C-3MA

17 18.8 −0.947 PJATK

Russian→English
# Ave % Ave z system

1 82.0 0.271 online-B

2 77.6 0.126 online-G

3 76.5 0.081 NRC
76.1 0.057 online-A
74.9 0.017 afrl-mitll-comb
74.6 0.005 afrl-mitll-opennmt
74.2 0.002 uedin-nmt
74.7 −0.011 jhu-pbmt

9 65.9 −0.288 online-F

English→Russian
# Ave % Ave z system

1 75.4 0.402 online-B

2 68.2 0.166 uedin-nmt

3 66.5 0.105 online-H

4 65.9 0.080 PROMT-Rule-based
65.2 0.061 online-A
65.2 0.054 online-G

7 62.6 −0.018 jhu-pbmt

8 57.3 −0.194 afrl-mitll-backtra

9 46.5 −0.568 online-F

Turkish→English
# Ave % Ave z system

1 68.8 0.294 online-B
68.5 0.282 online-A

3 61.1 0.050 uedin-nmt

4 58.6 −0.029 online-G
58.0 −0.083 afrl-mitll-m2w
57.0 −0.093 afrl-mitll-comb
56.7 −0.097 LIUM-NMT

8 53.5 −0.183 PROMT-SMT

9 46.4 −0.436 jhu-pbmt
45.5 −0.475 JAIST

English→Turkish
# Ave % Ave z system

1 53.4 0.513 online-B

2 44.0 0.206 uedin-nmt

3 39.1 0.071 online-A
35.5 −0.032 online-G

5 32.2 −0.129 LIUM-NMT

6 18.0 −0.554 jhu-nmt-latt-resc
16.7 −0.597 jhu-pbmt
15.7 −0.602 JAIST

Table 7: Official results of WMT17 News translation task. Systems ordered by standardized mean DA score, though systems
within a cluster are considered tied. Lines between systems indicate clusters according to Wilcoxon rank-sum test at p-level
p ≤ 0.05. Systems with gray background indicate use of resources that fall outside the constraints provided for the shared task.180
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Figure 5: Wilcoxon rank-sum significance test results for pairs of systems competing in the News translation task, where a
green cell denotes a significant win for the system in a given row over the system in a given column, at p ≤ 0.05.

r # Researcher # Crowd

Czech→English 0.997 2,915 2,445
Finnish→English 0.996 1,261 3,245

English→Russian 0.980 867 1,889
Table 8: Pearson correlation (r) between overall DA standardized mean adequacy scores collected via crowd-sourcing (Mturk)
and from researchers participating in the shared task (Appraise), numbers of assessments per system (#) are also provided for
each set-up.
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Figure 6: Comparison of Completion Times for (a) Mechanical Turk Assessments; (b) Appraise Assessments (unfiltered); (c)
Appraise Assessments (with reasonable cut-off imposed)

ration constraint we impose means that the maxi-
mum annotation time per translation is just under
54 seconds.

Although it is possible that assessment times for
Mechanical Turk HITs in Figure 6(a) still contain
a degree of idle-time exaggeration themselves, the
extent to which they could possibly obscure as-
sessment times is vastly less than that of Appraise.
Prior to analysis of assessment times, we there-
fore impose a reasonable limit on what could be
considered a realistic maximum annotation time
for assessment of a single translation with DA on
Appraise. Just to remind ourselves, the assess-
ment of a single translation on Appraise includes:
(i) reading a reference translation; (ii) reading the
MT output; (iii) considering how well the latter ex-
presses the meaning of the former; (iv) assigning
a score via the analogue rating scale; (v) press-
ing the submit button. We apply the same maxi-
mum cut-off applied within Mturk assessments of
54 seconds per translation assessment to Appraise
annotation times analysis therefore, which is a rea-
sonable maximum duration for a single translation
assessment. Figure 6(c) shows a plot of sorted
assessment times for Appraise assessments when
this cut-off is applied.

Once overly lengthy idle times have been omit-
ted, it is possible to compare the speed at which
researchers and crowd-sourced workers complete
DA assessments, in addition to comparing an-
notation times in this year’s DA evaluation with
WMT16’s RR evaluation as both were completed
by researchers. Table 9 shows average annotation
times for each human annotator type, and annota-
tion scheme. Annotation times for DA in terms of
the average time taken to assess a single transla-
tion are straightforward to compute, since a single

DA DA RR
Crowd Researcher Researcher

WMT16 19.6 − 20.8
WMT17 17.5 17.1 −

Table 9: Average annotation time per translation (in seconds)

translation is assessed per screen. Each RR assess-
ment is made up of a relative ranking of five MT
output translations, however. Therefore to com-
pute average annotation times for a single transla-
tion with RR we simply divide the average time to
evaluate five translations by five.

Before comparing annotation times, it is im-
portant to note that we must take care compar-
ing annotations times collected in two different
year’s evaluation campaigns, as for researchers,
the annotators involved in the evaluation will have
some overlap, this is less likely for crowd-sourced
workers and in both cases the data involved comes
from two different data sets. The evaluation pro-
duced by researchers in WMT16 and WMT17
does, however, provide the first data enabling a
comparison of annotation speeds for researchers
employing DA and RR. Annotation times analy-
sis should only provide an approximate indication
of speeds as opposed to tried and tested findings,
however, which we hope to provide in the future.

Table 9 shows the reduction in average annota-
tion time resulting from DA’s simpler assessment
set-up for researchers, from 20.8 seconds per as-
sessment with RR to 17.1 seconds with DA, an
approximate reduction of 18%.

Comparing annotation speeds for crowd-
sourced workers evaluating with DA in both
WMT16 and WMT17, we also see a slight speed
up from 19.6 to 17.5 seconds. It is difficult to
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conclude from a comparison of crowd-sourced
workers that this as a genuine speed up as it is
likely due at least in part to variance in annotation
styles of two different groups of workers drawn
from a very large crowd. For example, average
annotation times of crowd-sourced workers in
the APE task this year was 13.6 seconds with
DA where a distinct set of workers was also
employed.

In terms of researchers versus crowd-sourced
workers evaluating with DA, when we com-
pare this year’s results, researchers appear to be
marginally quicker, on average approximately 0.4
seconds faster per translation assessment. Al-
though again, this comparison includes average
annotation times of crowd-sourced workers that
can naturally vary from one group to the next.

Finally, we include a brief comparison in terms
of projected time commitments required by par-
ticipants in future evaluations when the method-
ology employed is DA rather than RR. In sub-
sequent evaluations, since we have verified that
DA results produced by quality controlled crowd-
sourcing correspond very closely to researcher re-
sults, it should be possible to collect all to-English
evaluations via crowd-sourcing. This means that
the switch to DA may result in only requiring par-
ticipants to make a time commitment in terms of
out-of-English language pairs. For some research
groups this will cut the required manual evaluation
time commitment in half.

Assuming a similar number of language pairs
as in WMT17 (14 language pairs), an RR man-
ual evaluation, which in previous years required
manual evaluation of 100 HITs (each containing
15 translations), amounts to a commitment of as-
sessment of 1,500 translations per submitted sys-
tem. Considering researchers took on average
20.8 seconds per translation, a team wishing to
participate in all language pairs would require a
total time commitment of approximately (1,500
x 20.8 seconds x 14 = 436,800 seconds) 121.3
hours. In comparison for DA, even if we stick with
the same number of translations per submission
(1,500), when we take into account the fact that
all of the to-English language pairs can be crowd-
sourced as well as the quicker annotation time for
DA, the time commitment for such a team would
be reduced by approximately 60% to (1,500 x 17.1
seconds x 7 = 179,550 seconds) 49.9 hours.

4 Quality Estimation Task

This shared task builds on its previous five editions
to further examine automatic methods for estimat-
ing the quality of machine translation output at
run-time, without the use of reference translations.
It includes the (sub)tasks of word-level, phrase-
level and sentence-level estimation. In addition to
advancing the state of the art at all prediction lev-
els, our goals include:

• To test the effectiveness of larger (domain-
specific and professionally annotated)
datasets. We do so by significantly increas-
ing the size of one of last year’s training
sets.

• To study the effect of language direction and
domain. We do so by providing two datasets
created in similar ways, but for different do-
mains and language directions.

• To investigate the utility of detailed informa-
tion logged during post-editing. We do so by
providing a score for perceived post-editing
effort, post-editing time, keystrokes, and ac-
tual edits.

• To measure progress over years at all predic-
tion levels. We do so by using last year’s test
set for comparative experiments.

This year’s shared task provides new training
and test datasets for all tasks, and allows par-
ticipants to explore any additional data and re-
sources deemed relevant. All tasks make use of a
large dataset produced from post-editions by pro-
fessional translators. The data is domain-specific
(IT and Pharmaceutical domains) and substan-
tially larger than in previous years. An in-house,
in-domain SMT system was used to produce trans-
lations for all tasks. System-internal information
was made available under request. The data is
publicly available but since it was provided by in-
dustry collaborators it is subject to specific terms
and conditions. However, these have no practical
implications on the use of this data for research
purposes.

The three tasks are defined as follows: Task 1 at
sentence level (Section 4.4), Task 2 at word level
(Section 4.5), and Task 3 at phrase level (Section
4.6). Two datasets are used for all tasks (Section
4.3): English-German and German-English SMT
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translations labelled with task-specific labels. Par-
ticipants were also provided with a baseline set of
features for each task, and a software package to
extract these and other quality estimation features
and perform model learning (Section 4.1). Partici-
pants (Section 4.2) could submit up to two systems
for each task. A discussion on the main goals and
findings from this year’s task is given in Section
4.7.

4.1 Baseline systems
Sentence-level baseline system: For Task 1,
QUEST++12 (2015) was used to extract 17 MT
system-independent features from the source and
translation (target) files and parallel corpora:

• Number of tokens in the source and target
sentences.

• Average source token length.
• Average number of occurrences of the target

word within the target sentence.
• Number of punctuation marks in source and

target sentences.
• Language model (LM) probability of source

and target sentences based on models built
using the source or target sides of the parallel
corpus used to train the SMT system.

• Average number of translations per source
word in the sentence as given by the IBM
model 1 extracted using the SMT parallel
corpus, and thresholded such that P (t|s) >
0.2 or P (t|s) > 0.01.

• Percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source language extracted from
the source side of the SMT parallel corpus.

• Percentage of unigrams in the source sen-
tence seen in the source side of the SMT par-
allel corps.

These features were used to train a Support Vec-
tor Regression (SVR) algorithm using a Radial
Basis Function (RBF) kernel within the SCIKIT-
LEARN toolkit.13 The γ, � and C parameters were
optimised via grid search with 5-fold cross valida-
tion on the training set, resulting in γ=0.01, � =
0.0825, C = 20. This baseline system has proved
robust across a range of language pairs, MT sys-
tems, and text domains for predicting various

12https://github.com/ghpaetzold/
questplusplus

13http://scikit-learn.org/

forms of post-editing effort (2012; 2013; 2014;
2015; 2016a).

Word-level baseline system: For Task 2, the
baseline features were extracted with the MAR-
MOT tool (Logacheva et al., 2016). These are 28
features that have been deemed the most informa-
tive in previous research on word-level QE. 22 of
them were taken from the feature set described in
(Luong et al., 2014), and had also been used as a
baseline feature set at WMT16:

• Word count in the source and target sen-
tences, and source and target token count ra-
tio. Although these features are sentence-
level (i.e. their values will be the same for all
words in a sentence), the length of a sentence
might influence the probability of a word be-
ing wrong.

• Target token, its left and right contexts of 1
word.

• Source word aligned to the target token, its
left and right contexts of 1 word. The align-
ments were given by the SMT system that
produced the automatic translations.

• Boolean dictionary features: target token is a
stopword, a punctuation mark, a proper noun,
or a number.

• Target language model features:
– The order of the highest order ngram

which starts and end with the target to-
ken.

– The order of the highest order ngram
which starts and ends with the source to-
ken.

– The part-of-speech (POS) tags of the tar-
get and source tokens.

– Backoff behaviour of the ngrams
(ti−2, ti−1, ti), (ti−1, ti, ti+1),
(ti, ti+1, ti+2), where ti is the target
token (backoff behaviour is computed
as described by (2011)).

In addition to that, 6 new features were included
which contain combinations of other features, and
which proved useful in (Kreutzer et al., 2015; Mar-
tins et al., 2016):

• Target word + left context.
• Target word + right context.
• Target word + aligned source word.
• POS of target word + POS of aligned source

word.
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• Target word + left context + source word.
• Target word + right context + source word.

The baseline system models the task as a
sequence prediction problem using the Linear-
Chain Conditional Random Fields (CRF) algo-
rithm within the CRFSuite tool (Okazaki, 2007).
The model was trained using passive-aggressive
optimisation algorithm.

We note that this baseline is different from the
one used last year. In Section 4.7 we present re-
sults comparing this against last year’s baseline.

Phrase-level baseline system: The phrase-level
system is identical to the one used in last year’s
shared task. The phrase-level features were also
extracted with MARMOT, but they are different
from the word-level features. They are based on
the sentence-level features in QUEST++.14 These
are the so-called “black-box” features — features
that do not use the internal information from the
MT system. The baseline uses the following 72
features:

• Source phrase frequency features:

– average frequency of ngrams (unigrams,
bigrams, trigrams) in different quartiles
of frequency (the low and high fre-
quency ngrams) in the source side of the
SMT parallel corpus.

– percentage of distinct source ngrams
(unigrams, bigrams, trigrams) seen in
the source side of the SMT parallel cor-
pus.

• Translation probability features:

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5).

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5) weighted by the fre-
quency of each word in the source side
of the parallel SMT corpus.

14http://www.quest.dcs.shef.ac.uk/quest_
files/features_blackbox

• Punctuation features:

– difference between numbers of various
punctuation marks (periods, commas,
colons, semicolons, question and excla-
mation marks) in the source and the tar-
get phrases.

– difference between numbers of various
punctuation marks normalised by the
length of the target phrase.

– percentage of punctuation marks in the
target or source phrases.

• Language model features:

– log probability of the source or target
phrases based on models built using the
source or target sides of the parallel cor-
pus used to train the SMT system.

– perplexity of the source and the target
phrases using the same models as above.

• Phrase statistics:

– lengths of the source or target phrases.
– ratio between the source and target

phrase lengths.
– average length of tokens in source or tar-

get phrases.
– average occurrence of target word

within the target phrase.

• Alignment features:

– number of unaligned target words, us-
ing the word alignment provided by the
SMT decoder.

– number of target words aligned to more
than one source word.

– average number of alignments per word
in the target phrase.

• Part-of-speech features:

– percentage of content words in the
source or target phrases.

– percentage of words of a particular part
of speech tag (verb, noun, pronoun) in
the source or target phrases.

– ratio of numbers of words of a particu-
lar part of speech (verb, noun, pronoun)
between the source and target phrases.

– percentage of numbers and alphanu-
meric tokens in the source or target
phrases.
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– ratio between the percentage of numbers
and alphanumeric tokens in the source
and target phrases.

This feature set was designed for sentences. We
expect that phrases, being sequences of words of
varied length, are similar to sentences and can be
treated analogously in QE. On the other hand, un-
like sentences, phrases are related to their neigh-
bouring phrases, and in this respect they are sim-
ilar to words. Therefore, analogously to the base-
line word-level system, we treat phrase-level QE
as a sequence labelling task, and model it us-
ing Conditional Random Fields. The phrase-level
baseline system is trained with CRFSuite toolkit
using passive-aggressive optimisation algorithm.

4.2 Participants

Table 10 lists all participating teams submitting
systems to any of the tasks. Each team was al-
lowed up to two submissions for each task and lan-
guage pair. In the descriptions below, participation
in specific tasks is denoted by a task identifier (T1
= task1, T2 = task 2, T3 = task 3).

CDACM (T2, T3): The submissions from
CDACM use a recurrent neural network
language model (RNN-LM) architecture for
word-level QE as described in (Patel and M,
2016), and explore the word-level predictions
for phrase-level QE. CDACM’s WMT16 sub-
mission was modified to add other RNN
variants, such as LSTMs, deep LSTMs and
GRUs. Another difference with respect to
the WMT16 submission is the addition of the
predicted history (only previous prediction)
and characters of the word as additional fea-
tures to the RNN model. This modified archi-
tecture predicts the label (OK/BAD) in a slot
rather than predicting the word as in the case
of standard RNN-LMs. The input to the sys-
tem is a word sequence, similar to the stan-
dard RNN-LM. Bilingual models were also
used and performed better than monolingual
models. The code for these models is freely
available.15

DCU (T2): DCU’s submission is an ensemble
of neural MT systems with different input
factors, designed to jointly tackle both the
automatic post-editing and word-level QE.

15https://github.com/patelrajnath/rnn4nlp

Word-level features which have proven ef-
fective for QE, such as part-of-speech tags
and dependency labels are included as input
factors to NMT systems. NMT systems us-
ing different input representations are ensem-
bled together in a log-linear model which is
tuned for the F1-mult metric using MERT
(Och, 2003). The output of the ensemble is
a pseudo-reference that is then TER aligned
with the original MT to obtain OK/BAD tags
for each word in the MT hypothesis.

DFKI (T1): These submissions investigate alter-
native machine learning models for the pre-
diction of the HTER score on the sentence-
level task. Instead of directly predicting the
HTER score, the systems use a single-layer
perceptron with four outputs that jointly pre-
dict the number of each of the four distinct
post-editing operations that are then used to
calculate the HTER score. This also gives
the possibility to correct invalid (e.g. nega-
tive) predicted values prior to the calculation
of the HTER score. The two submissions
use the baseline features and the English-
German submission also uses features from
(Avramidis, 2017a).

JXNU (T1): The JXNU submissions use features
extracted from a neural network, including
embedding features and cross-entropy fea-
tures of the source sentences and their ma-
chine translations. The sentence embedding
features are extracted through global aver-
age pooling from word embedding, which
are trained using the WORD2VEC toolkit.
The sentence cross-entropy features are cal-
culated by a recurrent neural network lan-
guage model. They experimented with dif-
ferent sentence embedding dimensions of the
source sentences and translation outputs, as
well as different sizes of the training corpus.
The experimental results show that the neural
network features lead to significant improve-
ments over the baseline, and that combining
the neural network features with baseline fea-
tures leads to further improvement.

POSTECH (T1, T2, T3): POSTECH’s submis-
sions to the sentence/word/phrase-level QE
tasks are based on predictor-estimator ar-
chitecture (Kim et al., 2017; Kim and Lee,
2016), which is the two-stage end-to-end
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ID Participating team
CDACM Centre for Development of Advanced Computing, India (Patel and M, 2016)

DCU Dublin City University (Hokamp, 2017)
DFKI German Research Centre for Artificial Intelligence, Germany (Avramidis, 2017b)
JXNU Jiangxi Normal University, China (Chen et al., 2017)

POSTECH Pohang University of Science and Technology, Republic of Korea (Kim et al., 2017)
RTM Referential Translation Machines, Turkey (Biçici, 2017)

SHEF University of Sheffield, UK (Blain et al., 2017; Paetzold and Specia, 2017)
UHH University of Hamburg, Germany (Duma and Menzel, 2017)

Unbabel Unbabel, Portugal (Martins et al., 2017b)

Table 10: Participants in the WMT17 quality estimation shared task.

neural QE model. The predictor-estimator ar-
chitecture consists of two types of stacked
neural network models: 1) a word pre-
diction model based on bidirectional and
bilingual recurrent neural network language
model trained on additional large-scale paral-
lel corpora and 2) a neural quality estimation
model trained on quality-annotated noisy par-
allel corpora. To jointly learn the two-stage
model, a stack propagation method was ap-
plied (Zhang and Weiss, 2016). In addition,
a “multilevel model” was developed where a
task-specific predictor-estimator model was
trained using not only task-specific training
examples but also all the other training ex-
amples of QE subtasks. All the submitted
runs are ensembles that combine a set of neu-
ral models, trained under different settings
of varying dimensionalities and shuffling of
training examples.

RTM (T1, T2, T3): The RTM systems are im-
proved versions over WMT16’s RTM sub-
missions which average prediction scores
from different models using weights based
on their training performance to improve
the overall test performance. They also
use new features representing substring dis-
tances, punctuation tokens, character n-
grams, and alignment crossings.

SHEF (T1, T2, T3): The SHEF team participated
in all the three sub-tasks. For task 1, two
types of systems were submitted: CNN and
QUEST-EMB. The CNN submissions are
based on convolutional neural networks. The
system first transforms the source and target
sentences into sequences of character embed-
dings, and then passes them through a se-
ries of deep parallel stacked convolution/max
pooling layers. The baseline features are
provided through a multi-layer perceptron,

and then concatenated with the character-
level information. Finally, the concatena-
tion is passed onto another multi-layer per-
ceptron and the very last layer outputs HTER
values. The two submissions differ in the
the use of standard (CNN+BASE-Single) and
multi-task learning (CNN+BASE-Multi) for
training. The QUEST-EMB submission fol-
lows the word embeddings approach used
by (Scarton et al., 2016) for document-level
QE. Here in-domain word embeddings are
used instead of embeddings obtained gen-
eral purpose data (same as in task 2, below).
Word embeddings were averaged to generate
a single vector for each sentence. Source and
target word embeddings were then concate-
nated with the baseline features and given to
an SVM regressor for model building.

For the word-level task SHEF investigated
a new approach based on predicting the
strength of the lexical relationships between
the source and target sentences (BMAPS).
Following the work by (Madhyastha et al.,
2014), a bilinear model is trained from three
matrices corresponding to the training data,
the development set and a “truth” matrix be-
tween them, which is built from the word
alignments and the gold labels to indicate
which lexical items form a pair, and whether
or not their lexical relation is OK or BAD.
The first two matrices are built from 300 di-
mension word vectors computed with pre-
trained in-domain word embeddings. They
train their model over 100 iterations with
the l2 norm as regulariser and using the
forward-backward splitting algorithm (FO-
BOS) (Duchi and Singer, 2009) as optimisa-
tion method. They report results considering
the word and its context versus the word in
isolation, as well as variants with and with-
out the gold labels at training time.
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Finally, for the phrase-level task, SHEF made
use of predictions generated by BMAPS for
task 2 and the phrase labelling approaches in
(Blain et al., 2016). These approaches use
the number of BAD word-level predictions
in a phrase: an optimistic version labels the
phrase as OK if at least half of the words
in it are predicted to be OK, and a super-
pessimistic version labels the phrase as BAD
if any word is in is predicted to be BAD.

UHH (T1): The UHH-STK submission is based
on sequence and tree kernels applied on the
source and target input data for predicting
the HTER score. The kernels use a back-
translation of the MT output into the source
language as an additional input data repre-
sentation. Further hand-crafted features were
defined in the form of the scores of the ker-
nel functions applied on the pair of source
and back-translation sentences. The submit-
ted runs outperformed the baseline systems
for both language pairs.

Unbabel (T1, T2): For word level, the “stacked”
system stacks a linear and a neural model
similar to the ones submitted by Unbabel
at WMT16. The “full-stacked-src-mt” sys-
tem incorporates the output of an APE sys-
tem, converted to OK/BAD tags, as an addi-
tional feature, similar to their work in (Mar-
tins et al., 2017a). The sentence-level sub-
missions use and normalise the word-level
predictions as percentage of words edited to
generate an HTER score.

4.3 Datasets
One of the main differences between this year’s
and previous years’ tasks is the considerably larger
size of human-labelled datasets made available to
participants for training. Whereas the last year we
released a corpus of 12, 000 instances (plus 1, 000
and 2, 000 for development and test, respectively),
this year this figure was doubled. In contrast to last
year, we also provide datasets for two language
pairs.

The structure used for the data have been the
same since WMT15. Each data instance consists
of (i) a source sentence, (ii) its automatic trans-
lation into the target language, (iii) the manually
post-edited version of the automatic translation,
(iv) a free reference translation of the source sen-
tence. Post-edits are used to extract labels for the

different levels of granularity, which allows using
the same datasets for all three QE tasks.

The first dataset contains texts in IT domain
translated from English into German. This is a
superset of the last year’s data: 11, 000 sentences
from the same source were added to the training
set. Their translations were produced using the
same statistical MT system and post-edited by pro-
fessional translators who are native speakers of
German. The dataset statistics are outlined in Ta-
ble 11.

The second dataset belongs to pharmaceutical
domain and provides translations from German
into English. It contains 25, 000 instances for
training. Analogously to the IT dataset, automatic
translations were generated with a statistical MT
system and post-edited by professional translators.
The dataset statistics are shown in Table 12. The
Table shows another feature of this dataset: it con-
tains much fewer errors than the IT one.

Sentences Words
% of BAD
words

Training 23,000 404,198 20.55
Development 1,000 19,487 19.55
Test 2,000 35,577 19.70

Table 11: Statistics of the English–German dataset.

Sentences Words
% of BAD
words

Training 25,000 453,666 12.55
Development 1,000 18,152 11.71
Test 2,000 36,119 11.52

Table 12: Statistics of the German–English dataset.

4.4 Task 1: Predicting sentence-level quality

This task consists in scoring (and ranking) transla-
tion sentences according to the proportion of their
words that need to be fixed. HTER (Snover et al.,
2006b) is used as quality score, i.e. the minimum
edit distance between the machine translation and
its manually post-edited version.

Labels HTER labels were computed using the
TERCOM tool16 with default settings (tokenised,
case insensitive, exact matching only), with scores
capped to 1.

16http://www.cs.umd.edu/˜snover/tercom/
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Evaluation Evaluation was performed against
the true HTER label and/or ranking, using the fol-
lowing metrics:

• Scoring: Pearson’s r correlation score (pri-
mary metric, official score for ranking sub-
missions), Mean Average Error (MAE) and
Root Mean Squared Error (RMSE).

• Ranking: Spearman’s ρ rank correlation and
DeltaAvg.

Statistical significance on Pearson r was com-
puted using the William’s test.17

Results Tables 13 and 14 summarise the re-
sults for Task 1 on German–English and English–
German datasets, respectively, ranking participat-
ing systems best to worst using Pearson’s r cor-
relation as primary key. Spearman’s ρ correlation
scores should be used to rank systems for the rank-
ing variant.

The top three systems are the same for both
datasets, and the ranking of systems according
to their performance is similar for both datasets.
They are all based on neural models that first
model the problem of word-level prediction and
then somehow generalise such predictions for sen-
tence level QE, either by using them directly (Un-
babel) or building a model from word to sentence-
level prediction (POSTECH). We also note that
the majority of the systems perform better than the
baseline, although five submissions are not signif-
icantly different from it.

4.5 Task 2: Predicting word-level quality

This task evaluates the extent to which we can de-
tect word-level errors in MT output. Often, the
overall quality of a translated segment is signifi-
cantly harmed by specific errors in a small propor-
tion of the words. Various classes of errors can
be found in translations, but for this task we con-
sider all error types together, aiming at making a
binary distinction between correct (OK) and incor-
rect (BAD) tokens.

Labels The binary labels for the datasets (OK
and BAD) were derived automatically from the
TERCOM tool with default settings and disabled
shifts (option “-d 0”). We aligned automatically
translated sentences with their post-edited version
and labelled each word in the automatic translation

17https://github.com/ygraham/mt-qe-eval

with an edit operation: insertion, deletion, substi-
tution or no edit (correct word). We mark each
edited word as BAD, and the remainingn as OK.

Evaluation Analogously to the last year’s task,
the primary evaluation metric is the multiplica-
tion of F1-scores for the OK and BAD classes,
denoted as F1-mult. Unlike previously used F1-
BAD score this metric is not biased towards “pes-
simistic” labellings. We also report F1-scores
for individual classes for completeness. We test
the significance of the results using randomisa-
tion tests (Yeh, 2000) with Bonferroni correction
(Abdi, 2007).

Results The results for Task 2 are summarised in
Tables 15 and 16, ordered by the F1-mult metric.

The top two systems are the same as for the
sentence-level task. This is perhaps not surpris-
ing since these are essentially word-level predic-
tors: POSTECH and Unbabel. These along with
DCU’s submissions (which were specifically de-
signed for the English–German word-level task),
are all based on neural models.

4.5.1 Word-level predictions for
sentence-level QE

Given that some submissions to the sentence-level
task which were actually based on word-level pre-
dictions performed very well at sentence level,
here we study the performance of all teams par-
ticipating in the word-level task for sentence-level
prediction. The percentage of words labelled as
BAD in a sentence can essentially be seen as a
sentence-level HTER score. Participants were also
invited to submit an additional word-level system
tuned to optimise sentence-level scores, but we are
not aware of systems that did so.

In order to obtain sentence-level scores from
word-level predictions we computed HTER for
each sentence in the test set as the percentage
of words classified as BAD. We then evaluated
the submissions in terms of sentence-level met-
rics: Pearson correlation, MAE, RMSE. Table 17
shows the performance of the word-level systems
on the sentence-level task for the German–English
dataset and their comparison with the participants
of the Task 1. It can be clearly seen that word-
level predictions are very close to sentence-level
ones: systems of different levels are well dis-
tributed along the ranked list.

The submissions by POSTECH and Unbabel
show that word-level and sentence-level systems
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Model Pearson r MAE RMSE Spearman ρ DeltaAvg
• POSTECH/Combined-MultiLevel-Ensemble 0.728 0.091 0.133 0.691 10.64
POSTECH/SingleLevel-Ensemble 0.715 0.094 0.136 0.669 10.44
Unbabel/full-stacked-src-mt 0.626 0.121 0.179 0.613 9.74
RTM/RTM-MIX 0.600 0.109 0.157 0.570 8.94
RTM/RTM-TREE 0.585 0.119 0.158 0.573 9.18
Unbabel/stacked 0.580 0.106 0.170 0.574 7.72
SHEF/QUEST-EMB-SCALE 0.558 0.121 0.161 0.561 8.79
JXNU/Emb+RNNLM+QuEst+SVM 0.531 0.130 0.167 0.520 8.62
UHH/STK1 0.503 0.137 0.172 0.503 8.17
UHH/STK2 0.489 0.140 0.175 0.482 7.97
BASELINE 0.441 0.128 0.175 0.446 6.81
DFKI/SLP4 0.398 0.123 0.188 0.396 5.82
SHEF/CNN+BASE-Single 0.390 0.136 0.179 0.388 6.39
SHEF/CNN+BASE-Multi 0.350 0.162 0.202 0.387 6.41

Table 13: Official results of the WMT17 Quality Estimation Task 1 for the German–English dataset. The winning submission
is indicated by a • and is statistically significantly different from all others. Submissions in the grey area are those which are
not significantly different from the baseline.

Model Pearson r MAE RMSE Spearman ρ DeltaAvg
• POSTECH/Combined-MultiLevel-Ensemble 0.695 0.102 0.137 0.725 12.32
POSTECH/SingleLevel-Ensemble 0.673 0.107 0.141 0.703 11.98
Unbabel/full-stacked-src-mt 0.641 0.128 0.169 0.652 11.36
Unbabel/stacked 0.589 0.129 0.176 0.610 10.28
JXNU/Emb+RNNLM+QuEst+SVM 0.522 0.126 0.163 0.545 9.54
UHH/STK2 0.509 0.130 0.166 0.534 9.41
UHH/STK1 0.508 0.129 0.165 0.533 9.49
SHEF/QUEST-EMB-SCALE 0.496 0.126 0.166 0.513 8.96
RTM-MIX 0.454 0.130 0.171 0.477 8.64
RTM-PLS-GBR 0.430 0.131 0.173 0.452 8.23
SHEF/CNN+BASE-Single 0.416 0.135 0.174 0.444 8.13
SHEF/CNN+BASE-Multi 0.402 0.135 0.178 0.452 8.16
BASELINE 0.397 0.136 0.175 0.425 7.45
DFKI/SLP4 0.113 0.153 0.204 0.136 2.5

Table 14: Official results of the WMT17 Quality Estimation Task 1 for the English–German dataset. The winning submission
is indicated by a • and is statistically significantly different from all others. Submissions in the grey area are those which are
not significantly different from the baseline.

Model F1-mult F1-BAD F1-OK
• POSTECH/Combined-MultiLevel-Ensemble 0.535 0.569 0.940
• Unbabel/full-stacked-src 0.529 0.562 0.941
POSTECH/SingleLevel-Ensemble 0.516 0.552 0.936
Unbabel/stacked 0.466 0.497 0.936
BASELINE 0.342 0.365 0.939
CDACM/RNN 0.333 0.370 0.900
RTM/s4-RTM-GLMd 0.329 0.350 0.939
SHEF/BMAPS-unigram 0.088 0.210 0.419
SHEF/BMAPS-nolabel-unigram 0.082 0.209 0.391

Table 15: Official results of the WMT17 Quality Estimation Task 2 for the German–English dataset. The winning submissions
are indicated by a • and are statistically significantly different from all others. Submissions in the grey area are those which are
not significantly different from the baseline.
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Model F1-mult F1-BAD F1-OK
• POSTECH/Combined-MultiLevel-Ensemble 0.568 0.628 0.904
• Unbabel/full-stacked-src-mt 0.566 0.625 0.906
• DCU/SRC-APE-QE-TUNED 0.559 0.614 0.910
• DCU/AVG-ALL 0.556 0.611 0.910
POSTECH/SingleLevel-Ensemble 0.543 0.607 0.894
Unbabel/stacked 0.512 0.581 0.882
CDACM/RNN 0.370 0.457 0.809
BASELINE 0.361 0.407 0.886
RTM/s5-RTM-GLMd 0.285 0.322 0.884
RTM/s4-RTM-GLMd 0.261 0.293 0.889
SHEF/BMAPS-unigram 0.097 0.302 0.322
SHEF/BMAPS-nolabel-unigram 0.157 0.325 0.484

Table 16: Official results of the WMT17 Quality Estimation Task 2 for the English–German dataset. The winning submissions
are indicated by a • and are statistically significantly different from all others. Submissions in the grey area are those which are
not significantly different from the baseline.

trained on the same data using the same (or
similar) methods yield very close results: the
POSTECH sentence-level systems occupy the first
two positions in the list, while their word-level
systems follow. The corresponding word-level
and sentence-level systems by Unbabel are even
closer, their differences are not statistically signifi-
cant. This is expected since Unbabel’s submission
to the sentence-level task was based on their pre-
dictions for the word-level task. Finally, the base-
lines for the two task do not show significant dif-
ferences in their performance either, although they
are based on very different features and models.

Overall, these results suggest that word-level
QE models can indeed be successfully used to pre-
dict sentence-level quality of translation. Addi-
tionally, sentence-level metrics proved suitable for
the evaluation of word-level QE models (the rank-
ings of word-level submissions produced by F1-
mult and Pearson r metrics have correlation coef-
ficient of 0.96). Results for the English–German
task show the same trend.

4.6 Task 3: Predicting phrase-level quality

This level of granularity was first introduced in the
shared task at WMT16. The goal is to predict MT
quality at the level of phrases.

Labels The phrase-level QE task requires seg-
menting training and test sentences into phrases.
We used the segmentation produced by the SMT
system which generated automatic translations for
the datasets. The phrase-level labels were pro-
duced from binary word-level labels: we labelled
a phrase as OK if all words in it were correct (OK

words). Any phrase with one or more BAD words
was labelled as BAD.

Evaluation In contrast to the last year’s phrase-
level shared task, where we used word-level met-
rics to evaluate phrase-level submissions, this time
we resort to phrase-level F1 scores. The reason for
that is that the word-level metrics were unable to
differentiate between various systems. Therefore,
here our primary metric is the phrase-level ver-
sion of F1-mult, and we also report phrase-level
F1-BAD and F1-OK. Statistical significance was
computed using randomised test with Bonferroni
correction as in task 2.

Results The results of the phrase-level task are
represented in Tables 18 and 19. These re-
sults follow from those for the word-level task,
with POSTECH showing significantly better re-
sults overall.

4.7 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Larger training data To test the effectiveness
of larger (domain-specific and professionally an-
notated) datasets, we increase the size of last
year’s training set for English–German. In order to
check if the increased training data size helps im-
prove the systems’ performance we compare the
baseline systems for all tasks trained on last year’s
versus this year’s dataset, with parameters opti-
mised on the same development sets.
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Model Pearson r MAE RMSE
• POSTECH/Combined-MultiLevel-Ensemble 0.728 0.091 0.133
POSTECH/SingleLevel-Ensemble 0.715 0.094 0.136
word POSTECH/Combined-MultiLevel-Ensemble 0.687 0.092 0.149
word POSTECH/SingleLevel-Ensemble 0.674 0.095 0.153
Unbabel/full-stacked-src-mt 0.626 0.121 0.179
word Unbabel/full-stacked-src-mt 0.625 0.147 0.242
RTM/RTM-MIX 0.600 0.109 0.157
RTM/RTM-TREE 0.585 0.119 0.158
Unbabel/stacked 0.580 0.106 0.170
word Unbabel/stacked 0.580 0.147 0.242
SHEF2/QUEST-EMB-SCALE 0.558 0.121 0.161
JXNU/Emb+RNNLM+QuEst+SVM 0.531 0.130 0.167
UHH/STK1 0.503 0.137 0.172
UHH/STK2 0.489 0.140 0.175
word BASELINE 0.455 0.118 0.197
word CDACM/RNN 0.450 0.132 0.198
BASELINE 0.441 0.128 0.175
word RTM/s4-RTM-GLMd 0.425 0.122 0.201
DFKI/SLP4 0.398 0.123 0.188
SHEF1/CNN+BASE-Single 0.390 0.136 0.179
SHEF1/CNN+BASE-Multi 0.350 0.162 0.202
word SHEF/BMAPS-nolabel-unigram 0.180 0.592 0.628
word SHEF/BMAPS-unigram 0.167 0.574 0.613

Table 17: Additional results of the WMT17 Quality Estimation Task 1 for the German–English dataset: using for the word-
level predictions for sentence-level QE, evaluated for scoring. The winning submission is indicated by a • and is statistically
significantly different from all others. Submissions in the grey area are those which are not significantly different from the
baselines. The word-level systems are denoted with prefix word.

Model F1-mult F1-BAD F1-OK
• POSTECH/PredictorEstimator-Combined-MultiLevel-Ensemble 0.561 0.615 0.912
POSTECH/PredictorEstimator-SingleLevel-Ensemble 0.543 0.599 0.906
CDACM/RNN 0.381 0.444 0.858
BASELINE 0.360 0.397 0.907
RTM/s5-RTM-GLMd 0.284 0.312 0.908
RTM/s4-RTM-GLMd 0.278 0.306 0.908
SHEF/BMAPS-unigram-opti 0.141 0.299 0.473
SHEF/BMAPS-unigram-nolabel-opti 0.132 0.300 0.440

Table 18: Official results for the WMT17 Quality Estimation Task 3 for the German-English data. The winning submission is
indicated by a • and is statistically significantly different from all others. The gray area indicates the submissions whose results
are not statistically different from the baseline.

Model F1-mult F1-BAD F1-OK
• POSTECH/PredictorEstimator-Combined-MultiLevel-Ensemble 0.586 0.679 0.863
POSTECH/PredictorEstimator-SingleLevel-Ensemble 0.549 0.652 0.843
CDACM/RNN 0.391 0.535 0.731
BASELINE 0.327 0.402 0.814
SHEF/BMAPS-unigram-opti 0.226 0.409 0.553
SHEF/BMAPS-unigram-nolabel-opti 0.148 0.388 0.380

Table 19: Official results for the WMT17 Quality Estimation Task 3 for the English–German data. The winning submission is
indicated by a • and is statistically significantly different from all others. The gray area indicates the submissions whose results
are not statistically different from the baseline.
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In Table 20 we show the performance of the
baseline systems for all tasks trained on the
WMT16 and WMT17 English–German datasets
and tested on the WMT16 test set. The per-
formance improves for all tasks when using the
WMT17 training set, which is much larger. How-
ever, the gain for the word-level and phrase-level
tasks is smaller than that for sentence level. For
the word-level task, we also include experiments
with the WMT16 baseline system, which was sim-
pler than the WMT17 baseline system. We ob-
serve larger improvement from the new word-level
features which we included in this year’s baseline
system than from the larger training set. This sug-
gests that better features/models can lead to larger
performance gains than more data, at least for the
word-level task.

2016 word-level baseline
Training set F1-mult F1-BAD F1-OK
2016 data 0.324 0.368 0.880
2017 data 0.335 0.378 0.886

2017 word-level baseline
Training set F1-mult F1-BAD F1-OK
2016 data 0.341 0.384 0.887
2017 data 0.360 0.404 0.892

Phrase-level baseline
Training set F1-mult F1-BAD F1-OK
2016 data 0.311 0.389 0.799
2017 data 0.328 0.403 0.812

Sentence-level baseline
Training set Pearson r MAE RMSE
2016 data 0.351 0.135 0.184
2017 data 0.397 0.136 0.175

Table 20: Comparison of baseline English–German sys-
tems trained on WMT16 and WMT17 datasets (tested on the
WMT16 test set) for all tasks.

Progress over years Progress over years is a dif-
ficult factor to measure. We attempted to do so this
year for the first time given the similarity between
the tasks this and last year for the English–German
data. We do so by requesting participants in this
year’s task to submit results using their WMT17
systems on the WMT16 test sets. We note how-
ever that this comparison is also affected by the
increased size of the training set for this language
pair in the current edition of the task. There-
fore, the WMT17 systems may be better systems
because of better techniques but also because of
larger amounts of training data.

In Table 21 we compare the results from
WMT16 and WMT17 systems on the WMT16 test
set at sentence level, where WMT16 systems are
highlighted in cyan background. Overall, it can
be clearly seen that WMT17 systems perform bet-
ter: last year’s top system is only the 4th best
compared to the WMT17 submissions, and half of
WMT16 participants are below this year’s base-
line. It is important to note that the baseline per-
forms much better than last year because of the
additional training data – as shown in Table 20 –
since the baseline system itself did not change.

Table 22 shows the results for word-level sys-
tems, which indicates a similar trend: systems also
improved from last year’s submissions, with last
year’s winner being outperformed by four other
systems, and the majority of WMT16 participants
performing closely to this year’s baseline (which
we note is a stronger model than last year’s base-
line as previously discussed).

Finally, the same trend is observed when com-
paring phrase-level systems submitted to WMT16
and WMT17 in Table 23. The only difference is
that although the new data improved the perfor-
mance of the phrase-level baseline system, this im-
provement did not change its position in the sys-
tems ranking.

Overall, the (Person r and F1-mult) scores of
the winning submissions this year is much higher
than in last year’s results, which we believe to be a
combination of better techniques as well as better
(larger) data.

The progress of state-of-the-art QE models can
also be tracked by the performance of recurring
participants: the results of systems by POSTECH
(tasks 1, 2, 3) and CDACM (task 2) teams are bet-
ter this year.

We note the increasing popularity of neural net-
works and their improving performance for QE:
although some of the last year’s winners (e.g.
YSDA team which won the sentence-level task)
did not use neural networks, all WMT17 winners
and the majority of best-performing systems use
neural networks for model building.

Languages and domains To study the effect
of language direction and domain, we provided
two datasets created in similar ways, but for dif-
ferent domains and language directions, as was
previously mentioned. The QE performance on
these datasets varies considerably, with German–
English showing higher scores for the sentence-
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Model Pearson r MAE RMSE
• POSTECH/PredictorEstimator-Combined-MultiLevel-Ensemble 0.714 0.096 0.134
POSTECH/PredictorEstimator-SingleLevel-Ensemble 0.686 0.101 0.139
JXNU/Emb+RNNLM+QuEst+SVM 0.527 0.122 0.163
• YSDA/SNTX+BLEU+SVM 0.525 12.30 16.41
UHH/STK2 0.524 0.124 0.162
UHH/STK1 0.516 0.123 0.163
SHEF/QUEST-EMB-SCALE 0.499 0.124 0.167
POSTECH/SENT-RNN-QV2 0.460 13.58 18.60
SHEF-LIUM/SVM-NN-emb-QuEst 0.451 12.88 17.03
POSTECH/SENT-RNN-QV3 0.447 13.52 18.38
SHEF-LIUM/SVM-NN-both-emb 0.430 12.97 17.33
SHEF/CNN+BASE-Single 0.421 0.131 0.174
UGENT-LT3/SCATE-SVM2 0.412 19.57 24.11
BASELINE 2017 0.399 0.132 0.175
SHEF/CNN+BASE-Multi 0.397 0.135 0.184
UFAL/MULTIVEC 0.377 13.60 17.64
RTM/RTM-FS-SVR 0.376 13.46 17.81
UU/UU-SVM 0.370 13.43 18.15
UGENT-LT3/SCATE-SVM1 0.363 20.01 24.63
RTM/RTM-SVR 0.358 13.59 18.06
BASELINE 2016 0.351 13.53 18.39
SHEF/SimpleNets-SRC 0.320 13.92 18.23
SHEF/SimpleNets-TGT 0.283 14.35 18.22
RTM-PLS-GBR 0.163 0.150 0.192
RTM-TREE 0.155 0.148 0.190
DFKI/SLP4 0.132 0.154 0.206

Table 21: Comparison of official results of WMT17 and WMT16 sentence-level QE task on the English–German WMT16 test
set. The winning submission is indicated by a • and is statistically significantly different from all others. WMT16 systems are
highlighted with cyan.

level task, both in terms of the baseline systems
the winning submissions, and English–German
showing generally higher scores for the word and
phrase-level tasks (except for the baseline system
in the phrase-level task). Even though the perfor-
mance scores may not be directly comparable, we
can make some interesting observations. We be-
lieve that the main reasons for these differences
are related to the general quality of the MT sys-
tems and – as a consequence – the distribution of
quality labels in the QE datasets, and – to a lesser
extent – the sizes of the QE training sets, which
are slightly different (see Tables 11 and 12).

The quality of the translations in each dataset is
very different. As shown in Tables 11 and 12, the
German–English dataset contains much fewer er-
rors. Indeed, when building the SMT systems that
generated these translations, we observed very dif-
ferent BLEU scores: 35.9 for English–German (IT
domain), and 53.4 for German–English (Pharma

domain). This difference in quality is not due to
training settings, since these were the same for
both datasets, except that for English–German the
SMT training set was much larger (7.2 vs 2.09
million sentences). Details on the SMT models
and data used to build such models are given in
(Specia et al., 2017a). In addition to the well-
known fact that translating into English normally
leads to better quality than translating from En-
glish, we hypothesise that this difference could be
due to higher token repetition rate in the German–
English dataset. The difference in quality was
confirmed by the average HTER score obtaining
from the post-editing of these test sets: 0.25 for
English–German and 0.19 for German–English.18.
The fact that the German–English dataset con-
tains fewer errors makes it harder for the word
and phrase-level tasks to achieve high F1-mult as

18We note that these BLEU and HTER scores were mea-
sured on a superset of this data, as described in (Specia et al.,
2017a)
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Model F1-mult F1-BAD F1-OK
• POSTECH/Combined-MultiLevel-Ensemble 0.581 0.637 0.913
• DCU/SRC-APE-QE-TUNED 0.575 0.627 0.917
• DCU/AVG-ALL 0.573 0.625 0.917
POSTECH/SingleLevel-Ensemble 0.561 0.619 0.906
• Unbabel/ensemble 0.495 0.560 0.885
Unbabel/linear 0.463 0.529 0.875
UGENT-LT3/SCATE-RF 0.411 0.492 0.836
CDACM/RNN 0.391 0.469 0.833
UGENT-LT3/SCATE-ENS 0.381 0.464 0.821
POSTECH/WORD-RNN-QV3 0.380 0.447 0.850
POSTECH/WORD-RNN-QV2 0.376 0.454 0.828
UAlacant/SBI-Online-baseline 0.367 0.456 0.805
BASELINE 2017 0.360 0.404 0.892
CDACM/RNN 0.353 0.419 0.842
SHEF/SHEF-MIME-1 0.338 0.403 0.839
SHEF/SHEF-MIME-0.3 0.330 0.391 0.845
BASELINE 2016 0.324 0.368 0.880
RTM/s5-RTM-GLMd 0.308 0.349 0.882
RTM/s5-RTM-GLMd 0.305 0.353 0.865
UAlacant/SBI-Online 0.290 0.406 0.715
RTM/s4-RTM-GLMd 0.286 0.326 0.878
RTM/s4-RTM-GLMd 0.273 0.307 0.888
SHEF/BMAPS-unigram 0.158 0.316 0.501
SHEF/SHEF/BMAPS-nolabel-unigram 0.098 0.296 0.330

Table 22: Comparison of official results of WMT17 and WMT16 word-level QE task on the English–German WMT16 test
set. Winning submissions are indicated by a • and are statistically significantly different from all others. WMT16 systems are
highlighted with cyan.

Model F1-mult F1-BAD F1-OK
• POSTECH/Combined-MultiLevel-Ensemble 0.603 0.693 0.869
POSTECH/SingleLevel-Ensemble 0.562 0.662 0.849
CDACM/RNN 0.403 0.541 0.744
POSTECH/RNN-QV3 0.393 0.518 0.759
POSTECH/RNN-QV2 0.388 0.504 0.771
CDACM/RNN 0.378 0.500 0.756
USFD2/CONTEXT 0.364 0.467 0.780
USFD2/W&SLP4PT 0.363 0.475 0.764
RTM/s5-RTM-GLMd 0.342 0.420 0.814
RTM/s4-RTM-GLMd 0.336 0.411 0.817
RTM/s5-RTM-GLMd 0.331 0.413 0.802
BASELINE 2017 0.328 0.403 0.812
BASELINE 2016 0.311 0.389 0.799
RTM/s4-RTM-GLMd 0.306 0.376 0.815
UAlacant/SBI-Online-baseline 0.275 0.502 0.547
SHEF/BMAPS-unigram-opti 0.233 0.415 0.562
SHEF/BMAPS-unigram-nolabel-opti 0.149 0.398 0.373
UAlacant/SBI-Online 0.146 0.456 0.320

Table 23: Comparison of official results of WMT17 and WMT16 phrase-level QE task on the English–German WMT16 test
set. The winning submission is indicated by a • and is statistically significantly different from all others. WMT16 systems are
highlighted with cyan.
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the models will have a strong bias towards pre-
dicting words or phrases as OK. In fact, if we
take the word-level task, the difference between
F1-BAD and F1-OK scores is much more no-
ticeable for German–English (0.569 vs 0.940, re-
spectively – Table 15) than for English–German
(0.628 vs 0.904, respectively – Table 16), show-
ing that the systems tend to overpredict OK la-
bels for German–English. The same applies to the
phrase-level task. For the sentence-level task, the
skewed distribution towards good quality transla-
tions does not have the same effect, perhaps due to
the prediction of an aggregated (HTER) score and
the metric used for evaluation.

Additional evidence To investigate the utility of
detailed information logged during post-editing,
we offered to participants other sources of infor-
mation: post-editing time, keystrokes, and actual
edits. Surprisingly, no participating system re-
quested these additional labels. The DFKI submis-
sion re-created some of this information by further
annotating words with the actual edit operations,
as obtained from the HTER alignments. Instead of
predicting the HTER score, the systems attempted
to predict the number of each of the four post-
editing operations (add, replace, shift, delete) at
the sentence level. However, this did not lead to
positive results. In future editions of the task, we
plan to make this detailed post-editing information
available again and suggest clear ways of using it.

5 Automatic Post-editing Task

The WMT shared task on MT automatic post-
editing (APE), this year at its third round at WMT,
aims to evaluate systems for the automatic cor-
rection of errors in a machine translated text. As
pointed out by (Chatterjee et al., 2015b), from the
application point of view the task is motivated by
its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

The third round of the APE task proposed to
participants the same general evaluation frame-
work of the previous ones (Bojar et al., 2015,
2016a). It consists in a “black box” scenario in
which the MT system that produced the transla-
tions is unknown to the participants and cannot be
modified.

This year the task has been extended by in-
cluding German-English as a new language di-
rection in addition to English-German, which
was the only language pair covered in the 2016
round. For both directions, participants oper-
ated with domain-specific data (information
technology for EN-DE and pharmacological
for DE-EN),19 with post-edits collected from pro-
fessional translators.20 All data has been provided
by the European Project QT21.21

As in 2016, TER and BLEU computed between
automatic and human post-edits have been respec-
tively used as primary and secondary evaluation
metrics. In continuity with the previous round, a
manual evaluation has also been carried out to gain
further insights on final output quality. However,
while in 2016 Appraise22 (Federmann, 2012) was
employed for manual evaluation, this year the Ger-
man to English evaluation was carried out via di-
rect human assessment (Graham et al., 2016) and
quality controlled crowd-sourcing on Amazon’s
Mechanical Turk23, while the English to German
evaluation was completed, again via direct assess-
ment, but translation students were employed as
opposed to crowd-sourcing.

In terms of participants and submitted runs, this
year’s round replicated the success of the 2016
edition. On English-German we had 7 participants
(one more than in 2016), with a total of 15 submit-
ted runs. On German-English (a more challenging
direction due to a much higher quality of the origi-
nal MT output), we had 2 participants, with a total
of 5 submitted runs.

Building on the recent success of neural ap-

19As opposed to the general news domain data used in the
first round, which proved to be more difficult to handle due
to scarce repetitiveness.

20As opposed to the less coherent crowdsourced material
used in the first round.

21http://www.qt21.eu/
22https://github.com/cfedermann/Appraise
23https://www.mturk.com
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proaches to APE, this year all the submissions re-
lied on neural end-to-end solutions. The adoption
of multi-source models (able to combine informa-
tion from raw MT output and the original source
text) and the extensive use of available synthetic
data (to increase the size of the training set) are
other traits common to several systems.

On both directions, all participants managed to
beat the baseline, at least with their primary sub-
mission. Top results achieved impressive improve-
ments up to -4.9 TER and +7.6 BLEU points on
English-German and smaller, but statistically sig-
nificant gains up to -0.25 TER and +0.3 BLEU
on German-English. The manual evaluation of
participants’ primary submissions confirmed the
jump in performance of this year’s systems in the
English-German task. Although all of them are
still below human quality, the gap has been re-
duced with respect to the 2016 round, three sys-
tems are almost on par in the top tier (last year
it was only one) and the improvements over the
baseline are significantly better than the original
MT output prior to post-editing for all participants
(last year this was only true for the top submis-
sion).

5.1 Task description

Similar to previous years, participants were pro-
vided with training and development data consist-
ing of (source, target, human post-edit) triplets,
and were asked to return automatic post-edits for
a test set of unseen (source, target) pairs.

5.1.1 Data
Previous rounds of the APE task suggested (Bojar
et al., 2015) and confirmed (Bojar et al., 2016a)
the dependence of system results on data repet-
itiveness. In the 2015 pilot task, dealing with
“general-domain” news data and crowdsourced
post-edits proved to be very difficult due to data
sparsity issues that prevented participants to learn
from the training set useful correction patterns re-
applicable to the test set. In 2016, the switch
to more repetitive (in other terms, less sparse)
domain-specific data post-edited by professional
translators resulted in a higher applicability of the
learned correction patterns. The effect of this
switch was made evident by final results: while
none of the submitted runs was able to beat the
baseline in the pilot round, more than half of the
submissions significantly outperformed it in 2016.
Based on these outcomes, and to give stability to

a relatively young task, also this year we opted for
the adoption of domain-specific data post-edited
by professionals for both language directions.

Training and development sets consist of
(source, target, human post-edit) triplets in which:

• The source (SRC) is a tokenized sentence
with length between 3 and 30 tokens;

• The target (TGT) is a tokenized translation of
the source. Translations were obtained from
statistical MT systems.24 This information,
however, was unknown to participants, for
which the MT system was a black-box.

• The human post-edit (PE) is a manually-
revised version of the target, done by profes-
sional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
were left apart to measure system performance.

English-German data were drawn from the
Information Technology (IT) domain. Train-
ing and test sets respectively contain 11,000 and
2,000 triplets. The data released for the 2016
round of the task (15,000 instances) and the ar-
tificially generated post-editing triplets (4 mil-
lion instances) used by last year’s winning sys-
tem (Junczys-Dowmunt and Grundkiewicz, 2016)
were also provided as additional training material.

German-English data were drawn from the
Pharmacological domain. Training and devel-
opment sets respectively contain 25,000 and 1,000
triplets, while the test set consists of 2,000 in-
stances.

Table 24 provides some basic statistics about
the data (the same used for the sentence-level
quality estimation task), which has been released
by the European Project QT21 (Specia et al.,
2017b).25 In addition, Tables 25 and 26 provide
a view of the data from a task difficulty stand-
point. Table 25 shows the repetition rate (RR) val-
ues of the data sets released in the three rounds

24We used phrase-based MT systems trained with generic
and in-domain parallel training data, leveraging pre-
reordering techniques (Herrmann et al., 2013), and taking ad-
vantage of POS and word class-based language models.

25For both language directions, the source sentences
and reference translations were provided by TAUS
(https://www.taus.net/).
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Tokens Types Lemmas
SRC TGT PE SRC TGT PE SRC TGT PE

EN-DE
Train (23,000) 384448 403306 411246 18220 27382 31652 10946 21959 25550
Dev (1,000) 17827 19355 19763 2931 3333 3506 1922 2686 2806
Test (2,000) 65120 69812 71483 8061 9765 10502 2626 3976 4282
DE-EN
Train (25,000) 437833 453096 456163 29745 19866 19172 23532 15422 14131
Dev (1,000) 17578 18130 18313 4426 3583 3642 3589 2828 2836
Test (2,000) 35087 36082 36480 6987 5391 5488 5590 4255 4255

Table 24: Data statistics.

of the WMT APE task. RR measures the repet-
itiveness inside a text by looking at the rate of
non-singleton n-gram types (n=1...4) and combin-
ing them using the geometric mean. Larger values
indicate a higher text repetitiveness and, as dis-
cussed in (Bojar et al., 2016a), suggest a higher
chance of learning from the training set correc-
tion patterns that are applicable also to the test set.
In (Bojar et al., 2016a) we considered the large
differences in repetitiveness between APE15 and
APE16 data as a possible motivation for the signif-
icant baseline improvements achieved by partici-
pants in the second round of the task. As we will
see in Section 5.4, similar explanations hold for
this year’s results, in which the higher repetitive-
ness of English-German data likely contributed to
facilitate the task in comparison with the German-
English direction.

Table 26 shows, for the same data sets, the
Translation Error Rate (TER) (Snover et al.,
2006a) and the BLEU score (Papineni et al.,
2002) of the original target translations, computed
against the human post-edits. In this case, nu-
meric evidence of a higher quality of the original
translations can indicate a smaller room for im-
provement for APE systems (having, at the same
time, less to learn during training and less to cor-
rect at test stage). On one side, indeed, training on
good (or near-perfect) automatic translations can
drastically reduce the number of learned correc-
tion patterns. On the other side, testing on simi-
larly good translations can drastically reduce the
number of corrections required and the applicabil-
ity of the learned patterns, thus making the task
potentially more difficult. Together with the lower
repetition rates observed, also the large differences
in translation quality between the two APE17 lan-
guage directions (62.49 BLEU for APE17 EN-DE

vs 79.54 for APE17 DE-EN) suggest a higher dif-
ficulty for the German-English task. Further indi-
cations in this direction are provided by Figures 7
and 8, which plot the TER distribution for the test
items in the two data sets. As can be seen, the
quality of English-German data is much more bal-
anced compared to German-English, with about
50% of the test items distributed over the first
five bins. In particular, what makes a big differ-
ence between the two test sets is the proportion of
“perfect” test instances having TER=0 (i.e. items
that should not be modified by the APE systems).
While for English-German they represent 14.0%
of the total, for German-English they are about
45.0% of the test data. This means that, for almost
half of the German-English test set, any correction
made by the APE systems will be unnecessary and
penalized by automatic evaluation metrics. This
difficult scenario calls for conservative and precise
systems able to properly fix errors only in the re-
maining 50% of the data.

5.1.2 Evaluation metric

System performance was evaluated by computing
the distance between automatic and human post-
edits of the machine-translated sentences present
in the test set (i.e. for each of the 2, 000 target
test sentences). Similar to last year, this distance
was measured in terms of TER and BLEU (case-
sensitive).26 Systems were ranked based on the av-
erage TER calculated on the test set by using the

26In the case of TER, the baseline is computed by averag-
ing the distances between each machine-translated sentence
and its human-revised version. The actual evaluation metric
is the human-targeted TER (HTER). For the sake of clarity,
since TER and HTER compute edit distance in the same way
(the only difference is in the origin of the correct sentence
used for comparison), henceforth we will use TER to refer to
both metrics.
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APE15 APE16 APE17 EN-DE APE17 DE-EN

RR
SRC 2.905 6.616 7.216 5.225
TGT 3.312 8.845 9.531 6.841
PE 3.085 8.245 8.946 6.293

Table 25: Repetition Rate (RR) of the WMT15 (English-Spanish, news domain, crowdsourced post-edits), WMT16 (English-
German, IT domain, professional post-editors), WMT17 EN-DE (English-German, IT domain, professional post-editors) and
WMT17 DE-EN (German-English, pharmacological domain, professional post-editors) APE task data.

APE15 APE16 APE17 EN-DE APE17 DE-EN
TER 23.84 24.76 24.48 15.55
BLEU n/a 62.11 62.49 79.54

Table 26: Translation quality (TER/BLEU of TGT and proportion of TGTs with TER=0) of the WMT15, WMT16,
WMT17 EN-DE and WMT17 DE-EN data.

Figure 7: TER distribution over the EN-DE test
set

Figure 8: TER distribution over the DE-EN test
set

TERcom27 software: lower average TER scores
correspond to higher ranks. BLEU was computed
using the multi-bleu.perl package28 available in
MOSES.

5.1.3 Baselines
Also this year, the official baseline results are the
TER and BLEU scores calculated by comparing
the raw MT output with the human post-edits.
In practice, the baseline APE system is a “do-
nothing” system that leaves all the test targets un-
modified. Baseline results, the same shown in Ta-
ble 26, are also reported in Tables 28-29 for com-
parison with participants’ submissions.

In continuity with the previous rounds, we
used as additional term of comparison a re-
implementation of the method firstly proposed
by Simard et al. (2007). It relies on a phrase-
based post-editing approach to the task, which rep-
resented the common backbone of APE systems
before the spread of neural solutions. The system
is based on Moses (Koehn et al., 2007); transla-
tion and reordering models were estimated follow-
ing the Moses protocol with default setup using

27http://www.cs.umd.edu/˜snover/tercom/
28https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/multi-bleu.perl

MGIZA++ (Gao and Vogel, 2008) for word align-
ment. For language modeling we used the KenLM
toolkit (Heafield, 2011) for standard n-gram mod-
eling with an n-gram length of 5. Finally, the sys-
tem was tuned on the development set, optimiz-
ing TER/BLEU with Minimum Error Rate Train-
ing (Och, 2003). The results of this additional term
of comparison are also reported in Tables 28-29.

For each submitted run, the statistical signifi-
cance of performance differences with respect to
the baseline and our re-implementation of Simard
et al. (2007) was calculated with the bootstrap
test (Koehn, 2004).

5.2 Participants
Seven teams participated in the English-German
task by submitting a total of fifteen runs. Two of
them also participated in the German-English task
with five submitted runs. Participants are listed in
Table 27, and a short description of their systems
is provided in the following.

Adam Mickiewicz University. AMU’s (EN-
DE) participation explores and combines mul-
tiple neural architectures available in the Mar-
ian toolkit.29 They include single source (either

29https://github.com/marian-nmt/marian
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ID Participating team
EN-DE
AMU Adam Mickiewicz University, Poland (Junczys-Dowmunt and Grundkiewicz, 2017)
CUNI Univerzita Karlova v Praze, Czech Republic (Variš and Bojar, 2017)
DCU Dublin City University, Ireland (Hokamp, 2017)
FBK Fondazione Bruno Kessler, Italy (Chatterjee et al., 2017)
JXNU Jiangxi Normal University, Nanchang, China (Tan et al., 2017a)
LIG University of Lille & University Grenoble, France (Berard et al., 2017)
USAAR Saarland University, Germany
DE-EN
FBK Fondazione Bruno Kessler, Italy (Chatterjee et al., 2017)
LIG University of Lille & University Grenoble, France (Berard et al., 2017)

Table 27: Participants in the WMT17 Automatic Post-editing task.

src → pe or mt → pe) and multi-source models
({src, mt} → pe), the latter being able to com-
bine information from raw MT output and orig-
inal source language input. Different attention
mechanisms are explored, including soft attention
(looking at information anywhere in the source se-
quence during decoding) and hard monotonic at-
tention (looking at one encoder state at a time
from left to right, thus being more conservative
and faithful to the original input), which are com-
bined in different ways in the case of multi-source
models. The artificial data provided by Junczys-
Dowmunt and Grundkiewicz (2016) are used to
boost performance by increasing the size of the
corpus used for training.

Univerzita Karlova v Praze. CUNI’s (EN-DE)
system is based on the character-to-character neu-
ral network architecture described in (Lee et al.,
2016). This architecture was compared with the
standard neural network architecture proposed by
Bahdanau et al. (2014) which uses byte-pair en-
coding (Sennrich et al., 2015) for generating trans-
lation tokens. During the experiments, two setups
have been compared for each architecture: i) a sin-
gle encoder with SRC and MT sentences concate-
nated, and ii) a two-encoder system, where each
SRC and MT sentence is fed to a separate encoder.
The submitted system uses the two-encoder archi-
tecture with a character-level encoder and decoder.
The initial state of the decoder is a weighted com-
bination of the final states of the encoders. At-
tention is computed separately over each encoder.
The model was trained using both the WMT17
training data and the artificial data provided by
Junczys-Dowmunt and Grundkiewicz (2016). The
WMT17 training dataset was sampled to match the

size of the artificial data. The submitted primary
submission used beam-search for decoding while
greedy decoding was used for the contrastive sub-
mission.

Dublin City University. DCU’s (EN-DE) sub-
mission is an ensemble of neural MT systems
with different input factors, designed to jointly
tackle both the APE task and the Word-Level QE
task. Word-Level features which have proven ef-
fective for QE, such as word-alignments, part-
of-speech tags, and dependency labels, are in-
cluded as input factors to neural machine trans-
lation systems, which are trained to output Post-
Edited MT hypotheses. Concatenated source +
MT hypothesis are also used as an input represen-
tation for some models. The system makes ex-
tensive use of the synthetic training data provided
by Junczys-Dowmunt and Grundkiewicz (2016),
as well as min-risk training for fine-tuning (Shen
et al., 2016). The neural systems, which use differ-
ent input representations but share the same output
vocabulary, are then ensembled together in a log-
linear model which is tuned for the TER metric
using MERT.

Fondazione Bruno Kessler. FBK’s (EN-DE &
DE-EN) submission extends the existing NMT
implementation in the Nematus toolkit (Sennrich
et al., 2016) to train an ensemble of multi-source
neural APE systems. Building on previous par-
ticipations based on the phrase-based paradigm
(Chatterjee et al., 2015a, 2016), and similar to (Li-
bovický et al., 2016), such systems jointly learn
from source and target information in order to in-
crease robustness and precision of the automatic
corrections. The n-best hypotheses produced by
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this ensemble are further re-ranked using features
based on the edit distance between the original MT
output and each APE hypothesis, as well as other
statistical models (n-gram language model and op-
eration sequence model). For English-German,
generic models are trained using the ∼4M syn-
thetic data provided by Junczys-Dowmunt and
Grundkiewicz (2016), and then fine-tuned with
in-domain data. Similarly, for German-English,
synthetic post-editing training data are created by
round-trip translation of a sub-set of parallel data
released in the medical task at WMT‘14 (Bojar
et al., 2014).

Jiangxi Normal University. JXNU’s (EN-DE)
system contains three neural automatic post-
editing models: npe baseline, npe minor and
npe single. Based on Junczys-Dowmunt and
Grundkiewicz (2016), the npe baseline model
is created and trained with the training set of-
ficially released by the evaluation campaign.
The npe minor model is obtained by fine-tuning
npe baseline with a triplets corpus including raw
machine translation outputs needing four or less
edit operations. The npe single model is obtained
by fine-tuning npe baseline with a triplets corpus
containing machine translations needing at most
two edit operations. The output of these three
systems is integrated into an n-best list of trans-
lations hypotheses, which are scored and ranked
by means of a sentence-level QE approach (Spe-
cia et al., 2013) and a statistical language model
(Stolcke, 2002). Since the raw machine translation
outputs can be classified into five grades according
to the above sentence-level QE score, the best out-
put can be selected from the n-best list in accor-
dance with the raw MT outputs’ grading. The fea-
tures used by these models can mitigate the over-
correction problem emerged in previous rounds of
the APE task (Bojar et al., 2016a).

University of Lille & University of Grenoble.
LIG’s (EN-DE & DE-EN) submission is a neural-
based APE system that exploits the approach pro-
posed by Libovický et al. (2016): instead of pre-
dicting words, it predicts edit operations (keep,
delete, or insert a word). An advantage of this
approach, is that it is very easy to learn to repli-
cate the (“do-nothing”) baseline, by just predict-
ing keep operations. By contrast, it can be hard for
a classic NMT model to learn the identity func-
tion, in particular because of the unknown word

problem, and because of the limited amounts of
training data. LIG’s submission proposes a num-
ber of improvements over this method: the sim-
plest model (‘Contrastive-Forced’) uses a task-
specific attention mechanism, which forces the de-
coder to look at the right word in the input (i.e.,
the word being post-edited). This simple approach
gives very good results on the English-German
task in limited data conditions. Finally, they
also propose a chained architecture (‘Contrastive-
Chained’), which uses two different models (and
two different training objectives): a translation
model (src → mt), and a post-editing model
(mt→ pe). The attention vectors over src learned
by the translation model are used by the post-
editing model to give additional contextual infor-
mation (when predicting a new edit operation, it
can look at the mt word to post-edit, and at the
src words that are aligned to this word.) This ap-
proach is a way to incorporate the source sentence
into the proposed framework, and gives promising
results on the English-German task, when adding
more data (‘primary’ models).

Saarland University. USAAR’s (EN-DE) sub-
mission combines a neural model and an operation
sequence (OSM) phrase-based (Pal et al., 2016c)
model. The neural system is trained on a bidirec-
tional (forward-backward) RNN-based encoder-
decoder30 MT model (Bahdanau et al., 2014)
trained for mt→ pe translation. The network has
been trained for 5 days using a hyper-parameter
setting similar to (Pal et al., 2016b). Training
data consists of WMT-2016, 2017 APE data (23K)
and 4.5M artificial APE data (Junczys-Dowmunt
and Grundkiewicz, 2016). The OSM phrase-based
system (Pal et al., 2016c) consists of three basic
components: corpus pre-processing, hybrid word
alignment (Pal et al., 2016a) and a vanilla setting
of a phrase-based MT system integrated with the
hybrid word alignment. The model used 23K (tar-
get, human post-edit) data for training. Experi-
ments on the WMT-2017 test set using both the
neural and the OSM-based APE systems revealed
that the neural system provides better performance
for short sentences (less than 15 words) and the
OSM-based APE model performs better for the
longer ones. A manual inspection indicates that
the neural system suffers from a “lack of cover-
age” while translating longer sentences. There-

30The system used is GroundHog – https://github.
com/lisa-groundhog/GroundHog.

201



fore, the final submission was based on a mix
of neural translations for short test sentences and
OSM translations for the longer ones.

5.3 TER/BLEU results

Participants’ TER and BLEU results are shown
in Tables 28 (English-German) and 29 (German-
English). The submitted runs are ranked based
on the average TER (case-sensitive), which is
the APE task primary evaluation metric. Over-
all, similar to last year, TER and BLEU rankings
do not show major differences. The main ones
can be found in the English-German task where:
i) two mid-ranked primary submissions (USAAR
and JXNU) are inversely ordered by the two met-
rics, and ii) the phrase-based APE (worse in terms
of TER) would outperform the “do-nothing” strat-
egy by around 0.48 BLEU points. In the German-
English task, TER and BLEU rankings differ in
the ordering of a primary submission and the “do-
nothing” baseline, but the negligible score dif-
ferences are not significant. As we will see in
Section5.5, for English-German, the human eval-
uation based on direct assessment (DA) suggests a
third different ranking that is slightly closer to the
BLEU-based one (two primary submissions are
ranked in the same position, while with TER this
happens only in one case). On German-English, a
slight preference is confirmed for the BLEU-based
ranking as shown by the small difference (0.1) in
average DA scores in favour of the “do-nothing”
baseline over the second-ranked primary submis-
sion. However, due to the small differences in sys-
tems’ architectures and results, it’s not surprising
that different metrics and evaluation criteria pro-
duce slightly different rankings. Also this year, it’s
hence difficult to draw definite conclusions about
which automatic metric is more reliable.

English-German Compared to previous rounds
of the APE task, the most noticeable aspect is that
this year, for the first time, all participants man-
aged to beat the MT baseline at least with their
primary submission.31 This steady improvement
has been mainly driven by the massive migration
to the neural approach, which in 2016 allowed the
winning system to achieve impressive results (-
3.24 TER, +5.54 BLEU with respect to the base-
line). This year, the gains on English-German data

31In 2015, none of the submitted runs were able to consis-
tently improve over the raw MT output. Last year, only half
of the runs outperformed this baseline.

are even larger, with the winning system scoring -
4.88 TER and +7.58 BLEU points better than the
MT baseline. The technology advancement is ev-
ident if we look at our second term of compar-
ison: the re-implementation of the phrase-based
approach by Simard et al. (2007). Last year, on
English-German, the results of this method were
better than the baseline and in a middle position in
the official participants’ ranking. This year, on the
same language direction, they are almost identical
to those achieved in 2016, but also: i) worse than
the baseline in terms of TER (+0.21), ii) slightly
better in terms of BLEU (+0.48) and iii) competi-
tive only against the contrastive submission of one
participant. Considering the distance between the
same phrase-based approach and the baseline as
an indicator of the task difficulty across differ-
ent rounds of the task, we hypothesize that the
good results achieved by this year’s participants
are mainly due to improved techniques rather than
“easier” test data. Indeed, for English-German
where a comparison with last year is possible, the
close repetition rate and BLEU scores reported in
Tables 25 and 26 reveal a similar level of difficulty
for the APE16 and APE 17 test data.

ID Avg. TER BLEU
FBK Primary 19.6 70.07
AMU Primary 19.77 69.5
AMU Contrastive 19.83 69.38
DCU Primary 20.11 69.19
DCU Contrastive 20.25 69.33
FBK Contrastive 20.3 69.11
FBK USAAR Contr. 21.55 67.28
USAAR Primary 23.05 65.01
LIG Primary 23.22 65.12
JXNU Primary 23.31 65.66
LIG Contrastive-Forced 23.51 64.52
LIG Contrastive-Chained 23.66 64.46
CUNI Primary 24.03† 64.28
USAAR Contrastive 24.17 63.55
Baseline 24.48 62.49
(Simard et al., 2007) 24.69 62.97
CUNI Contrastive 25.94 61.65

Table 28: Results for the WMT17 APE EN-DE task – av-
erage TER (↓), BLEU score (↑). The † indicates a difference
from the MT baseline that is not statistically significant.

German-English On German-English, the im-
provements of the top submission over the base-
line are smaller (-0.26 TER, +0.28 BLEU) but still
statistically significant. Such smaller gains, ob-
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ID Avg. TER BLEU
FBK Primary 15.29 79.82
FBK Contrastive 15.31 79.64†
LIG Primary 15.53† 79.49†
Baseline 15.55 79.54
LIG Contrastive-Forced 15.62† 79.48†
LIG Contrastive-Chained 15.68 79.35
(Simard et al., 2007) 15.74 79.28†

Table 29: Results for the WMT17 APE DE-EN task – av-
erage TER (↓), BLEU score (↑). The † indicates differences
from the MT baseline that are not statistically significant.

tained by systems based on the same approaches
adopted for the English-German task, confirm our
initial expectations about the different level of dif-
ficulty of the two language directions. The inter-
action between low repetition rates and high trans-
lation quality, which certainly played a role in re-
ducing the gap between the primary submissions
and the “do-nothing” MT baseline, is hence an
interesting aspect for more thorough explorations
in future rounds of the APE task. Also in this
case, however, the lowest results achieved by the
phrase-based APE baseline (with both metrics)
confirm that the switch to neural methods repre-
sents a technology advancement in the right direc-
tion.

5.4 System/performance analysis

Although all participants built their systems under
the same general neural paradigm, results’ distri-
bution in a 4.5 TER (and 6.5 BLEU) points inter-
val suggests differences in systems’ behaviour that
it is worth to explore further. To this aim, and as
a complement to global TER/BLEU scores, also
this year we performed a more fine-grained analy-
sis of the changes made by each system to the test
instances.

5.4.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 30 and 31 show the number of modified,
improved and deteriorated sentences, respectively
for the English-German and the German-English
tasks. It’s worth noting that, as in the previous
rounds and for both language directions, the num-
ber of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield
TER variations. This grey area, for which qual-
ity improvement/degradation can not be automati-

cally assessed, contributes to motivate the human
evaluation discussed in Section 5.5

English-German. As expected, differently from
last year where the amount of test sentences mod-
ified by the participants had a much larger vari-
ance due to the different approaches applied, this
year the top English-German systems show a quite
homogeneous behaviour. In 2016, out of 11 sub-
mitted runs, the number of sentences modified by
the top 3 primary submissions (the best one being
neural and the others being phrase-based) ranged
between 421 and 1,613 (respectively 21.0% and
80.6% of the total). This year, out of 15 sub-
mitted runs (all neural-based), the top 3 primary
submissions have a number of modified sentences
that falls in a much smaller range between 1,583
and 1,607 (between 79.1% and 80.0% of the to-
tal). The same holds for systems’ precision (i.e.
the proportion of improved sentences out of the
total amount of modified test items). The top 3 pri-
mary submissions, indeed, have a precision rang-
ing in a two points interval from 63.6% to 65.6%,
while last year the proportion for the top 3 pri-
mary runs was more spread in a 11 points inter-
val from 57.9% to 68.8%. Overall, lower ranked
systems show a tendency to either modify less sen-
tences (all submissions with less than 1,000 mod-
ified sentences are in the bottom half of the rank-
ing), or to do it with lower precision (all submis-
sions with less than 60.0% precision are in the bot-
tom half of the ranking), or a combination of the
two, as in the case of the phrase-based approach
(Simard et al., 2007), which is the second less ag-
gressive method and by far the less precise one.
In general, looking at system precision numbers,
it’s worth noting that the close results between the
top submissions still leave large room for improve-
ment. Indeed, in the case of the best systems, more
than 30 points in precision represent a huge gap to
be filled before considering APE a solved prob-
lem.

German-English. In this case, the higher dif-
ficulty of the task (due to lower repetition rate
and higher translation quality, as discussed in Sec-
tion 5.1.1) changes the global picture provided by
our macro indicators. Although the two partic-
ipating systems were developed under the neu-
ral paradigm, their different behaviour is evident
from the amount of modified sentences: the two
primary submissions respectively modified 270
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Systems Modified Improved Deteriorated
FBK Primary 1,607 (80.3%) 1,035 (64.4%) 334 (20.7%)
AMU Primary 1,583 (79.1%) 1,040 (65.6%) 322 (20.3%)
AMU Contrastive 1,583 (79.1%) 1,044 (65.9%) 326 (20.5%)
DCU Primary 1,592 (79.6%) 1,014 (63.6%) 361 (22.6%)
DCU Contrastive 1,558 (77.9%) 1,012 (64.9%) 329 (21.1%)
FBK Contrastive 1,597 (79.8%) 996 (62.3%) 344 (21.5%)
FBK USAAR Contrastive 1,675 (83.7%) 920 (55.0%) 482 (28.7%)
USAAR Primary 744 (37.2%) 461 (61.9%) 160 (21.5%)
LIG Primary 1,168 (58.4%) 629 (53.8%) 306 (26.1%)
JXNU Primary 1,385 (69.2%) 678 (48.9%) 404 (29.1%)
LIG Contrastive-Forced 719 (35.9%) 412 (57.3%) 166 (23.1%)
LIG Contrastive-Chained 814 (40.7%) 422 (51.8%) 217 (26.6%)
CUNI Primary 1,513 (75.6%) 713 (47.1%) 515 (34.0%)
USAAR Contrastive 306 (15.3%) 179 (58.4%) 76 (24.8%)
(Simard et al., 2007) 571 (28.5%) 211 (36.9%)) 244 (42.7%)
CUNI Contrastive 1577 (78.8%) 644 (40.8%) 663 (42.0%)

Table 30: Number of test sentences modified, improved and deteriorated by each run submitted to the EN-DE task.

Systems Modified Improved Deteriorated
FBK Primary 270 (13.5%) 108 (40.0%) 78 (28.9%)
FBK Contrastive 364 (18.2) 135 (37.0% 118 (32.4%)
LIG Primary 64 (3.2%) 27 (42.1%) 24 (37.5%)
LIG Contrastive-Forced 47 (2.3%) 13 (27.6%) 21 (44.7%)
LIG Contrastive-Chained 64 (3.2%) 27 (42.1%) 46 (71.9%)
(Simard et al., 2007) 139 (6.9%) 30 (21.6%) 69 (49.6%)

Table 31: Number of test sentences modified, improved and deteriorated by each run submitted to the DE-EN task.

Figure 9: System behaviour (primary submis-
sions) for EN-DE – TER(MT, APE)

Figure 10: System behaviour (primary submis-
sions) for DE-EN – TER(MT, APE)

(13.5%) and 64 (3.2%) test items. On one side,
the small number of modified sentences compared
to English-German indicates systems’ ability to
keep under control the number of unnecessary cor-
rections. If we consider that almost half of the
test items are “perfect” translations that should be

kept unchanged (see Table26), a rather conserva-
tive approach is indeed a desired behaviour. On
the other side, however, precision scores are much
lower compared to those observed in the English-
German task. Even for an “easy” target language
like English, coping with data featuring low repe-
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tition rates and high translation quality is hence a
still open challenge.

5.4.2 Micro indicators: edit operations
Also this year we performed a more fine-grained
analysis of systems’ behaviour in order to discover
possible differences in the way they correct the test
set instances. To this aim, we looked at the dis-
tribution of the edit operations done by each sys-
tem (insertions, deletions, substitutions and shifts)
by computing the TER between the original MT
output and the output of each system taken as ref-
erence (only for the primary submissions). The
outcomes of this analysis are shown in Figures 9
(English-German) and 10 (German-English).

English-German. As expected, compared to
last year, the plot in Figure 9 does not show large
differences between similar neural-based submis-
sions. All of them are characterized by a rather ho-
mogeneous distribution of the types of correction
patterns applied, with a slight dominance of sub-
stitutions for the top submissions (between 37.0%
and 40.0%) and a slight dominance of deletions
for the others (between 34.5% and 42.1%). An-
other quite visible correlation is the one between
shift operations and performance results, which
tend to decrease for systems that perform less re-
ordering (also last year, the winning neural system
had a significantly larger amount of shifts com-
pared to the others). Interestingly, also in this case
the phrase-based baseline (the weakest APE sys-
tem in terms of results) is a clear outlier. It per-
forms the lowest number of shifts (2.2% vs 9.7%
of the top submission), the lowest number of in-
sertions (7.1% vs 19.5%) and the largest number
of deletions (50.2% vs 32.1%). This indicates a
scarce capability of the phrase-based approach to
learn reordering rules and its tendency to replace
them with more radical deletion operations.

German-English. As shown by Figure 10, the
two primary submissions for this task have a quite
different behaviour. In addition to the large dif-
ferences in the number of modified, improved and
deteriorated sentences (see Table 31), the distri-
bution of the edit operations performed on test
data indicates opposite strategies. Also in this
case, the distribution is more homogeneous for the
best performing system, with a dominance of sub-
stitutions and around 4.0% of shifts (though less
than in the English-German task, where they were
around 10.0%). The second system has a much

more unbalanced distribution, with lots of inser-
tions and no shifts in the few sentence corrections
it returned. The distribution for the phrase-based
APE baseline is more similar to the best system
but, as shown in Table 31, its corrections are by
far the less reliable ones. Apart from these con-
siderations, it is hard to draw clear conclusions
since the different correction strategies of the three
methods result in close final scores. Indeed, as
shown in Table 29, only 0.24 TER and 0.33 BLEU
points separate the two primary systems, while
0.45 TER and 0.54 BLEU points separate the best
system from the phrase-based baseline. The small
improvements of the primary submissions over
the “do-nothing” MT baseline suggest that, inde-
pendently from the different correction strategies
applied, both primary submissions definitely suf-
fered from the large amount of “perfect” transla-
tion in the test set (around 45.0%). However, while
automatic evaluation metrics like TER and BLEU
always penalize unnecessary corrections of good
translations, there is a chance that some of these
corrections are acceptable paraphrases rather than
sentence deteriorations. One of the objectives of
the human evaluation discussed in the next section
is to check if this phenomenon has a visible impact
on performance.

5.5 Human evaluation

To assess the quality of the output of the APE
systems and produce a ranking based on human
judgment, as well as analyze how humans perceive
TER/BLEU performance differences between the
submitted systems, a human evaluation of the
quality of automatic post-edits was carried out us-
ing Direct Assessment (DA) (Graham et al., 2013,
2016). Since sufficient crowd-sourced workers
are available for assessing English on Mechani-
cal Turk, the DA evaluation for German to En-
glish was completed via quality-controlled crowd-
sourcing. For English to German, DA judgments
were provided by 10 native German speakers from
Saarland University, studying language technolo-
gies and translation. This subsection describes
the human evaluation procedure and presents the
results of the evaluation of participants’ primary
submissions.

5.5.1 Evaluation procedure
Direct Assessment, which is described in more
detail in Section 3, elicits human assessments of
translation adequacy on an analogue rating scale
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Language Pair EN-DE DE-EN

# Systems 9 4
# Segs 2,000 2,000
# Total Segs 18,000 8,000
# Unique Segs 9,767 3,415
Overall Saving 46% 57%

Table 32: Total segments prior to sampling for manual eval-
uation and savings made by combining identical segments
(Segs) produced by multiple APE systems.

(0–100), where human assessors are asked to rate
how adequately the APE system output expresses
the meaning of the human reference translation.
DA scores for systems and segments have been
shown to be highly repeatable in self-replication
experiments (Graham et al., 2015). Thus, DA
overcomes the previous challenges associated with
lack of reliability of human assessment of MT.

Since we also have a human post-edit available
for each MT output in the test set, to make DA
outcomes more informative we also included the
human post-edits as a hidden system in the eval-
uation, which will provide some insight into an
achievable DA score for a potential system that
achieved human-quality post-editing. Addition-
ally, we included the original MT output without
any post-editing as a hidden system to discover the
baseline DA score for each language pair.

When running the APE manual evaluation, it
was possible in many cases to take advantage of
the fact that multiple systems can produce iden-
tical outputs, as was begun in evaluation of the
News task in WMT15 (Bojar et al., 2015). Table
32 shows numbers of translations in total for all
APE systems, as well as savings in terms of anno-
tation effort that was gained by combining identi-
cal system outputs prior to running the evaluation,
where, as expected, a substantial saving was made
due to the fact that the systems quite often pro-
duced the same output. In terms of human effort
involved in carrying out the manual evaluation, Ta-
ble 33 shows numbers of judgments collected in
total for each language pair and number of assess-
ments contributing to the final DA score for APE
systems on average.

When carrying out a manual evaluation of any
kind, it is important to consider the consistency
of annotators with the aim of estimating, where
the evaluation to be repeated, how likely it would
be that the same conclusions would be drawn.

Systems Assess Assess/Sys

EN-DE 9 11,492 1,277
DE-EN 4 7,193 1,798

Table 33: Amount of data (assessments after “de-collapsing”
multi-system outputs) collected in the WMT17 APE manual
evaluation campaign and numbers of assessments per system.

When an analogue scale is employed for human
assessment, consistency of human assessors can-
not be evaluated in the usual way, such as the
Kappa coefficient, commonly employed for eval-
uating the consistency of human assessors when
discrete quality judgments or relative preference
judgments are collected. Instead, for analogue
scale data, we examine the consistency of individ-
ual human assessors according to their ability to
discriminate between the quality of pairs of known
worse quality translations, known as bad reference
pairs, where original translations produced by the
APE systems are degraded automatically. In ad-
dition, repeat assessments of the same translation
are given to human assessors to see how reliably
they assign similar scores to similar quality trans-
lations. Hiding bad reference and repeat transla-
tion pairs within hits allows a significance test to
be carried out for each human judge investigating
if their score distributions show a significant dif-
ference where there should be one, and another
test to check that no significant difference shows
up for repeated assessment of the same translation.

As such, proportions of human assessors and
whether they discriminate between the quality of
bad reference pairs and repeat translations are
shown in Table 34. Notably, all of the student
translators (for EN-DE) passed the DA’s qual-
ity control mechanism by assigning significantly
lower scores to degraded translations, while 54%,
a usual number of crowd-sourced workers (for
DE-EN), passed quality control.

Proportions of workers showing a non signif-
icant difference in repeat items at first appears
lower than usual for DA, at 91% for EN-DE and
93% for DE-EN, as this proportion has been be-
tween 97 and 100% for DA in past evaluations.
However, on closer inspection, the total num-
ber of assessors showing a significant difference
for repeat items is as low as three assessors and
proportions are therefore exaggerated due to the
low number of workers involved in the evaluation
overall.
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(A) Sig. (A) & No Sig.
Diff. Diff.

All Bad Ref. Exact Rep.

EN-DE 11 11 (100%) 10 (91%)
DE-EN 54 29 (54%) 27 (93%)

Table 34: Number of unique Mechanical Turk workers, (A)
those whose scores for bad reference pairs were significantly
different and numbers of unique human assessors in (A)
whose scores for exact repeat assessments also showed no
significant difference.

Prior to computing final DA scores for systems,
in order to iron out differences in scoring strate-
gies of distinct human assessors, human assess-
ment scores for translations were first standard-
ized according to each individual human asses-
sor’s overall mean and standard deviation score.
Average standardized scores for individual seg-
ments belonging to a given system are then com-
puted, before the final overall DA score for that
system is computed as the average of its segment
scores.

5.5.2 Human evaluation results
Table 35 includes DA results for English-German
and Table 36 shows results for German-English
APE systems. Clusters are identified by grouping
systems together according to which systems sig-
nificantly outperform all others in lower ranking
clusters, according to Wilcoxon rank-sum test.

# Ave % Ave z System

− 84.8 0.520 HUMAN POST EDIT

1 78.2 0.261 AMU
77.9 0.261 FBK
76.8 0.221 DCU

4 73.8 0.115 JXNU
5 71.9 0.038 USAAR

71.1 0.014 CUNI
70.2 −0.020 LIG

− 68.6 −0.083 NO POST EDIT

Table 35: EN-DE DA Human evaluation results showing
average raw DA scores (Ave %) and average standardized
scores (Ave z), lines between systems indicate clusters ac-
cording to Wilcoxon rank-sum test at p-level p ≤ 0.05.

Figures 11 and 12 show head to head sig-
nificance test results for English-German and
German-English systems participating in the APE
task, as well as the two additional “systems” where
either no post-editing or human post-editing was

# Ave % Ave z System

− 81.9 0.199 HUMAN POST EDIT

1 76.8 0.040 FBK
75.3 −0.007 LIG
75.4 −0.008 NO POST EDIT

Table 36: DE-EN DA Human evaluation results showing
average raw DA scores (Ave %) and average standardized
scores (Ave z), lines between systems indicate clusters ac-
cording to Wilcoxon rank-sum test at p-level p ≤ 0.05.
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Figure 11: EN-DE Wilcoxon rank-sum significance test re-
sults for pairs of systems competing in the APE task, where a
green cell denotes a significant win for the system in a given
row over the system in a given column, at p ≤ 0.05.

carried out, where a darker shade of green signi-
fies a lower p-value and a conclusion made with
more certainty.

English-German. For this language direction,
the ranking produced by DA is slightly different
from those based on TER/BLEU. This is not sur-
prising if we consider the close performance re-
sults measured with automatic metrics. With pri-
mary submissions compressed in a relatively small
TER/BLEU interval, different system orders are
in fact likely to emerge also from manual evalua-
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Figure 12: DE-EN Wilcoxon rank-sum significance test re-
sults for pairs of systems competing in the APE task, where a
green cell denotes a significant win for the system in a given
row over the system in a given column, at p ≤ 0.05.
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tion. Overall, as shown in Table 35, three systems
emerge as significantly better than the others. This
ranking is comparable to the one obtained with
automatic metrics, although the top two systems
(FBK and AMU) are switched, but this is in-line
with the human evaluation that showed no sig-
nificant difference between the two. This is also
in-line with TER/BLEU rankings, for which the
three systems are the only primary systems with
TER<20.00 and BLEU>69.00. In agreement
with the BLEU-based ranking, the JXNU submis-
sion ranks in fourth position in its own cluster.
This represents the main difference with the TER-
based ranking (in which it occupies the 6th place),
which suggests a higher agreement between DA
and BLEU. The remaining three systems, which
feature rather close TER/BLEU scores, are posi-
tioned in the same lower cluster, though in a dif-
ferent order, again with small raw DA score differ-
ences.

Apart from these general considerations, which
are difficult to project into conclusive indications
about the reliability of our two automatic met-
rics, two major outcomes are evident. First, the
technology advancement with respect to the 2016
round is also confirmed by DA scores, which in-
dicate that all the systems are significantly better
than the “do-nothing” baseline (NO POST EDIT).
Last year, in contrast, all participants but one were
in the same cluster of the baseline. The downside
is that, despite the significant progress made, APE
systems are still far from human quality. Average
DA scores indicate that the distance between the
top primary submissions and human post-edits is
in fact similar to the distance that separates them
from the primary submissions in the bottom clus-
ter.

German-English. Also DA scores confirm the
higher difficulty of the German-English task. As
expected, also in this case human quality is much
higher, with a gap that is even larger compared
to the distance observed in Figure 35. Moreover,
while in terms of automatic metrics the improve-
ment over the baseline for the top ranked system
was statistically significant, the DA-based ranking
places the two primary systems in the same cluster
of the baseline.

5.6 Lessons learned and outlook

The third round of the APE task has marked a
further step forward from the previous ones both

in terms of participants (one more than in 2016)
and, most importantly, in terms of the deployed
technology. Concerning the latter aspect, the wide
adoption of neural approaches has led, for the first
time, to significant improvements over the base-
lines for all participants. On English-German data
we observed the largest gains, which are up to -4.9
TER and +7.6 BLEU points for the top submis-
sion. On German-English, a more difficult task
due to lower repetition rate and higher translation
quality of the test data, the improvements of the
top submission over the baseline are smaller (-0.26
TER, +0.28 BLEU) but still statistically signifi-
cant. With respect to previous years, similar de-
sign and training choices (e.g. the use of multi-
source solutions and additional synthetic training
data), produced a more compact ranking of the
participating systems but, at the same time, re-
sulted in submissions that still feature different be-
haviour that deserve closer inspection in future.

Despite the technology improvement, some ma-
jor challenges are still open. The main one is how
to better handle the difficult case in which an auto-
matic translation is already (or near-) perfect and
APE systems should abstain from performing use-
less (or risky) corrections. Another limitation of
current solutions is their inefficacy in generaliz-
ing the learned correction patterns, so that training
data featuring low repetitiveness can be better ex-
ploited to learn useful correction patterns.

From the performance evaluation standpoint,
the selection of the best metric is still debatable.
TER (the official one in all the APE rounds so
far) and BLEU produce slightly different rankings,
which both differ from those produced by human
evaluation with direct assessment. The compari-
son with DA indicates a small preference for the
BLEU-based ranking, but drawing definite con-
clusions about the suitability of the two metrics
is difficult due to the small performance differ-
ences observed. Most likely, future rounds of the
task will hence keep the the evaluation setting un-
altered, possibly focusing on the aforementioned
challenges to increase the level of difficulty and
further raise the interest on the APE problem.
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bovický, and Tomáš Musil. 2017b. Results of the
WMT17 Neural MT Training Task. In Proceedings
of the Second Conference on Machine Translation,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.
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ing MT-ComparEval. In Translation Evaluation:
From Fragmented Tools and Data Sets to an Inte-
grated Ecosystem, pages 76–82.

Yiming Tan, Zhiming Chen, Liu Huang, Lilin Zhang,
Maoxi Li, and Mingwen Wang. 2017a. Neural Post-
Editing Based on Quality Estimation. In Proceed-
ings of the Second Conference on Machine Transla-
tion, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Zhixing Tan, Boli Wang, Jinming Hu, Yidong Chen,
and xiaodong shi. 2017b. XMU Neural Machine
Translation Systems for WMT 17. In Proceedings
of the Second Conference on Machine Translation,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Long Trieu, Trung-Tin Pham, and Le-Minh Nguyen.
2017. The JAIST Machine Translation Systems for
WMT 17. In Proceedings of the Second Confer-
ence on Machine Translation, Copenhagen, Den-
mark. Association for Computational Linguistics.
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Abstract

We present the results from the second
shared task on multimodal machine trans-
lation and multilingual image description.
Nine teams submitted 19 systems to two
tasks. The multimodal translation task, in
which the source sentence is supplemented
by an image, was extended with a new lan-
guage (French) and two new test sets. The
multilingual image description task was
changed such that at test time, only the
image is given. Compared to last year, mul-
timodal systems improved, but text-only
systems remain competitive.

1 Introduction

The Shared Task on Multimodal Translation and
Multilingual Image Description tackles the prob-
lem of generating descriptions of images for lan-
guages other than English. The vast majority of
image description research has focused on English-
language description due to the abundance of
crowdsourced resources (Bernardi et al., 2016).
However, there has been a significant amount of
recent work on creating multilingual image de-
scription datasets in German (Elliott et al., 2016;
Hitschler et al., 2016; Rajendran et al., 2016), Turk-
ish (Unal et al., 2016), Chinese (Li et al., 2016),
Japanese (Miyazaki and Shimizu, 2016; Yoshikawa
et al., 2017), and Dutch (van Miltenburg et al.,
2017). Progress on this problem will be useful
for native-language image search, multilingual e-
commerce, and audio-described video for visually
impaired viewers.

The first empirical results for multimodal trans-
lation showed the potential for visual context to

improve translation quality (Elliott et al., 2015;
Hitschler et al., 2016). This was quickly followed
by a wider range of work in the first shared task
at WMT 2016 (Specia et al., 2016). The current
shared task consists of two subtasks:

• Task 1: Multimodal translation takes an im-
age with a source language description that is
then translated into a target language. The
training data consists of parallel sentences
with images.

• Task 2: Multilingual image description
takes an image and generates a description in
the target language without additional source
language information at test time. The train-
ing data, however, consists of images with
independent descriptions in both source and
target languages.

The translation task has been extended to include
a new language, French. This extension means the
Multi30K dataset (Elliott et al., 2016) is now triple
aligned, with English descriptions translated into
both German and French.

The description generation task has substantially
changed since last year. The main difference is
that source language descriptions are no longer
observed for test images. This mirrors the real-
world scenario in which a target-language speaker
wants a description of image that does not already
have source language descriptions associated with
it. The two subtasks are now more distinct because
multilingual image description requires the use of
the image (no text-only system is possible because
the input contains no text).

Another change for this year is the introduction
of two new evaluation datasets: an extension of the
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existing Multi30K dataset, and a “teaser” evalua-
tion dataset with images carefully chosen to contain
ambiguities in the source language.

This year we encouraged participants to submit
systems using unconstrained data for both tasks.
Training on additional out-of-domain data is under-
explored for these tasks. We believe this setting
will be critical for future real-world improvements,
given that the current training datasets are small
and expensive to construct.

2 Tasks & Datasets

2.1 Tasks

The Multimodal Translation task (Task 1) follows
the format of the 2016 Shared Task (Specia et al.,
2016). The Multilingual Image Description Task
(Task 2) is new this year but it is related to the
Crosslingual Image Description task from 2016.
The main difference between the Crosslingual Im-
age Description task and the Multilingual Image
Description task is the presence of source language
descriptions. In last year’s Crosslingual Image De-
scription task, the aim was to produce a single
target language description, given five source lan-
guage descriptions and the image. In this year’s
Multilingual Image Description task, participants
received only an unseen image at test time, without
source language descriptions.

2.2 Datasets

The Multi30K dataset (Elliott et al., 2016) is the
primary dataset for the shared task. It contains
31K images originally described in English (Young
et al., 2014) with two types of multilingual data:
a collection of professionally translated German
sentences, and a collection of independently crowd-
sourced German descriptions.

This year the Multi30K dataset has been ex-
tended with new evaluation data for the Translation
and Image Description tasks, and an additional lan-
guage for the Translation task. In addition, we
released a new evaluation dataset featuring ambi-
guities that we expected would benefit from visual
context. Table 1 presents an overview of the new
evaluation datasets. Figure 1 shows an example of
an image with an aligned English-German-French
description.

In addition to releasing the parallel text, we also
distributed two types of ResNet-50 visual features
(He et al., 2016) for all of the images, namely the
‘res4 relu’ convolutional features (which preserve

En: A group of people are eating noddles.
De: Eine Gruppe von Leuten isst Nudeln.
Fr: Un groupe de gens mangent des nouilles.

Figure 1: Example of an image with a source de-
scription in English, together with German and
French translations.

the spatial location of a feature in the original im-
age) and averaged pooled features.

Multi30K French Translations
We extended the translation data in Multi30K
dataset with crowdsourced French translations. The
crowdsourced translations were collected from 12
workers using an internal platform. We estimate the
translation work had a monetary value of e9,700.
The translators had access to the source segment,
the image and an automatic translation created with
a standard phrase-based system (Koehn et al., 2007)
trained on WMT’15 parallel text. The automatic
translations were presented to the crowdworkers to
further simplify the crowdsourcing task. We note
that this did not end up being a post-editing task,
that is, the translators did not simply copy and paste
the suggested translations. To demonstrate this, we
calculated text-similarity metric scores between the
phrase-based system outputs and the human trans-
lations on the training corpus, resulting in 0.41 edit
distance (measured using the TER metric), mean-
ing that more than 40% of the words between these
two versions do not match.

Multi30K 2017 test data
We collected new evaluation data for the Multi30K
dataset. We sampled new images from five of
the six Flickr groups used to create the original
Flickr30K dataset using MMFeat (Kiela, 2016)1.
We sampled additional images from two themat-
ically related groups (Everything Outdoor and

1Strangers!, Wild Child, Dogs in Action, Action Photogra-
phy, and Outdoor Activities.
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Training set Development set

Images Sentences Images Sentences

Translation 29,000 29,000 1,014 1,014

Description 29,000 145,000 1,014 5,070

2017 test COCO

Images Sentences Images Sentences

Translation 1,000 1,000 461 461

Description 1,071 5,355 —

Table 1: Overview of the Multi30K training, development, 2017 test, and Ambiguous COCO datasets.

Group Task 1 Task 2

Strangers! 150 154

Wild Child 83 83

Dogs in Action 78 92

Action Photography 238 259

Flickr Social Club 241 263

Everything Outdoor 206 214

Outdoor Activities 4 6

Table 2: Distribution of images in the Multi30K
2017 test data by Flickr group.

Flickr Social Club) because Outdoor Activities
only returned 10 new CC-licensed images and
Flickr-Social no longer exists. Table 2 shows the
distribution of images across the groups and tasks.
We initially downloaded 2,000 images per Flickr
group, which were then manually filtered by three
of the authors. The filtering was done to remove
(near) duplicate images, clearly watermarked im-
ages, and images with dubious content. This pro-
cess resulted in a total of 2,071 images.

We crowdsourced five English descriptions of
each image from Crowdflower2 using the same pro-
cess as Elliott et al. (2016). One of the authors se-
lected 1,000 images from the collection to form the
dataset for the Multimodal Translation task based
on a manual inspection of the English descriptions.
Professional German translations were collected
for those 1,000 English-described images. The
remaining 1,071 images were used for the Multilin-
gual Image Description task. We collected five ad-

2http://www.crowdflower.com

ditional independent German descriptions of those
images from Crowdflower.

Ambiguous COCO

As a secondary evaluation dataset for the Multi-
modal Translation task, we collected and translated
a set of image descriptions that potentially con-
tain ambiguous verbs. We based our selection on
the VerSe dataset (Gella et al., 2016), which anno-
tates a subset of the COCO (Lin et al., 2014) and
TUHOI (Le et al., 2014) images with OntoNotes
senses for 90 verbs which are ambiguous, e.g. play.
Their goals were to test the feasibility of annotat-
ing images with the word sense of a given verb
(rather than verbs themselves) and to provide a
gold-labelled dataset for evaluating automatic vi-
sual sense disambiguation methods.

Altogether, the VerSe dataset contains 3,518 im-
ages, but we limited ourselves to its COCO section,
since for our purposes we also need the image de-
scriptions, which are not available in TUHOI. The
COCO portion covers 82 verbs; we further dis-
carded verbs that are unambiguous in the dataset,
i.e. although some verbs have multiple senses in
OntoNotes, they all occur with one sense in VerSe
(e.g. gather is used in all instances to describe the
‘people gathering’ sense), resulting in 57 ambigu-
ous verbs (2,699 images). The actual descriptions
of the images were not distributed with the VerSe
dataset. However, given that the ambiguous verbs
were selected based on the image descriptions, we
assumed that in all cases at least one of the origi-
nal COCO description (out of the five per image)
should contain the ambiguous verb. In cases where
more than one description contained the verb, we
randomly selected one such description to be part
of the dataset of descriptions containing ambiguous
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En: A man on a motorcycle is passing another
vehicle.
De: Ein Mann auf einem Motorrad fährt an einem
anderen Fahrzeug vorbei.
Fr: Un homme sur une moto dépasse un autre
véhicule.

En: A red train is passing over the water on a
bridge
De: Ein roter Zug fährt auf einer Brücke über
das Wasser
Fr: Un train rouge traverse l’eau sur un pont.

Figure 2: Two senses of the English verb ”to pass” in their visual contexts, with the original English and
the translations into German and French. The verb and its translations are underlined.

verbs. This resulted in 2,699 descriptions.
As a consequence of the original goals of the

VerSe dataset, each sense of each ambiguous verb
was used multiple times in the dataset, which re-
sulted in many descriptions with the same sense,
for example, 85 images (and descriptions) were
available for the verb show, but they referred to a
small set of senses of the verb.

The number of images (and therefore descrip-
tions) per ambiguous verb varied from 6 (stir) to
100 (pull, serve). Since our intention was to have a
small but varied dataset, we selected a subset of a
subset of descriptions per ambiguous verb, aiming
at keeping 1-3 instances per sense per verb. This
resulted in 461 descriptions for 56 verbs in total,
ranging from 3 (e.g. shake, carry) to 26 (reach)
(the verb lay/lie was excluded as it had only one
sense). We note that the descriptions include the
use of the verbs in phrasal verbs. Two examples
of the English verb “to pass” are shown in Figure
2. In the German translations, the source language
verb did not require disambiguation (both German
translations use the verb “fährt”), whereas in the
French translations, the verb was disambiguated
into “dépasse” and “traverse”, respectively.

3 Participants

This year we attracted submissions from nine dif-
ferent groups. Table 3 presents an overview of the
groups and their submission identifiers.

AFRL-OHIOSTATE (Task 1) The AFRL-
OHIOSTATE system submission is an atypical
Machine Translation (MT) system in that the
image is the catalyst for the MT results, and not the
textual content. This system architecture assumes
an image caption engine can be trained in a target
language to give meaningful output in the form
of a set of the most probable n target language
candidate captions. A learned mapping function
of the encoded source language caption to the
corresponding encoded target language captions
is then employed. Finally, a distance function is
applied to retrieve the “nearest” candidate caption
to be the translation of the source caption.

CMU (Task 2) The CMU submission uses a
multi-task learning technique, extending the base-
line so that it generates both a German caption
and an English caption. First, a German caption
is generated using the baseline method. After the
LSTM for the baseline model finishes producing
a German caption, it has some final hidden state.
Decoding is simply resumed starting from that final
state with an independent decoder, separate vocab-
ulary, and this time without any direct access to
the image. The goal is to encourage the model to
keep information about the image in the hidden
state throughout the decoding process, hopefully
improving the model output. Although the model
is trained to produce both German and English cap-
tions, at evaluation time the English component of
the model is ignored and only German captions are
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ID Participating team

AFRL-OHIOSTATE Air Force Research Laboratory & Ohio State University (Duselis et al., 2017)

CMU Carnegie Melon University (Jaffe, 2017)

CUNI Univerzita Karlova v Praze (Helcl and Libovický, 2017)

DCU-ADAPT Dublin City University (Calixto et al., 2017a)

LIUMCVC Laboratoire d’Informatique de l’Université du Maine & Universitat Autonoma
de Barcelona Computer Vision Center (Caglayan et al., 2017a)

NICT National Institute of Information and Communications Technology & Nara
Institute of Science and Technology (Zhang et al., 2017)

OREGONSTATE Oregon State University (Ma et al., 2017)

SHEF University of Sheffield (Madhyastha et al., 2017)

UvA-TiCC Universiteit van Amsterdam & Tilburg University (Elliott and Kádár, 2017)

Table 3: Participants in the WMT17 multimodal machine translation shared task.

generated.

CUNI (Tasks 1 and 2) For Task 1, the sub-
missions employ the standard neural MT (NMT)
scheme enriched with another attentive encoder for
the input image. It uses a hierarchical attention
combination in the decoder (Libovický and Helcl,
2017). The best system was trained with additional
data obtained from selecting similar sentences from
parallel corpora and by back-translation of similar
sentences found in the SDEWAC corpus (Faaß and
Eckart, 2013).

The submission to Task 2 is a combination of
two neural models. The first model generates an
English caption from the image. The second model
is a text-only NMT model that translates the En-
glish caption to German.

DCU-ADAPT (Task 1) This submission evalu-
ates ensembles of up to four different multimodal
NMT models. All models use global image fea-
tures obtained with the pre-trained CNN VGG19,
and are either incorporated in the encoder or the
decoder. These models are described in detail in
(Calixto et al., 2017b). They are model IMGW,
in which image features are used as words in the
source-language encoder; model IMGE, where im-
age features are used to initialise the hidden states
of the forward and backward encoder RNNs; and
model IMGD, where the image features are used
as additional signals to initialise the decoder hid-
den state. Each image has one corresponding fea-
ture vector, obtained from the activations of the

FC7 layer of the VGG19 network, and consist of a
4096D real-valued vector that encode information
about the entire image.

LIUMCVC (Task 1) LIUMCVC experiment
with two approaches: a multimodal attentive NMT
with separate attention (Caglayan et al., 2016)
over source text and convolutional image features,
and an NMT where global visual features (2048-
dimensional pool5 features from ResNet-50) are
multiplicatively interacted with word embeddings.
More specifically, each target word embedding is
multiplied with global visual features in an element-
wise fashion in order to visually contextualize word
representations. With 128-dimensional embed-
dings and 256-dimensional recurrent layers, the
resulting models have around 5M parameters.

NICT (Task 1) These are constrained submis-
sions for both language pairs. First, a hierarchi-
cal phrase-based (HPB) translation system s built
using Moses (Koehn et al., 2007) with standard
features. Then, an attentional encoder-decoder net-
work (Bahdanau et al., 2015) is trained and used
as an additional feature to rerank the n-best output
of the HPB system. A unimodal NMT model is
also trained to integrate visual information. Instead
of integrating visual features into the NMT model
directly, image retrieval methods are employed to
obtain target language descriptions of images that
are similar to the image described by the source
sentence, and this target description information
is integrated into the NMT model. A multimodal
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NMT model is also used to rerank the HPB output.
All feature weights (including the standard features,
the NMT feature and the multimodal NMT feature)
were tuned by MERT (Och, 2003). On the develop-
ment set, the NMT feature improved the HPB sys-
tem significantly. However, the multimodal NMT
feature did not further improve the HPB system
that had integrated the NMT feature.

OREGONSTATE (Task 1) The OREGON-
STATE system uses a very simple but effective
model which feeds the image information to both
encoder and decoder. On the encoder side, the
image representation was used as an initialization
information to generate the source words’ repre-
sentations. This step strengthens the relatedness
between image’s and source words’ representations.
Additionally, the decoder uses alignment to source
words by a global attention mechanism. In this way,
the decoder benefits from both image and source
language information and generates more accurate
target side sentence.

UvA-TiCC (Task 1) The submitted systems are
Imagination models (Elliott and Kádár, 2017),
which are trained to perform two tasks in a mul-
titask learning framework: a) produce the target
sentence, and b) predict the visual feature vector of
the corresponding image. The constrained models
are trained over only the 29,000 training examples
in the Multi30K dataset with a source-side vocab-
ulary of 10,214 types and a target-side vocabulary
of 16,022 types. The unconstrained models are
trained over a concatenation of the Multi30K, News
Commentary (Tiedemann, 2012) parallel texts, and
MS COCO (Chen et al., 2015) dataset with a joint
source-target vocabulary of 17,597 word pieces
(Schuster and Nakajima, 2012). In both constrained
and unconstrained submissions, the models were
trained to predict the 2048D GoogleLeNetV3 fea-
ture vector (Szegedy et al., 2015) of an image as-
sociated with a source language sentence. The
output of an ensemble of the three best randomly
initialized models - as measured by BLEU on the
Multi30K development set - was used for both the
constrained and unconstrained submissions.

SHEF (Task 1) The SHEF systems utilize the
predicted posterior probability distribution over the
image object classes as image features. To do so,
they make use of the pre-trained ResNet-152 (He et
al., 2016), a deep CNN based image network that
is trained over the 1,000 object categories on the

Imagenet dataset (Deng et al., 2009) to obtain the
posterior distribution. The model follows a stan-
dard encoder-decoder NMT approach using softdot
attention as described in (Luong et al., 2015). It
explores image information in three ways: a) to
initialize the encoder; b) to initialize the decoder;
c) to condition each source word with the image
class posteriors. In all these three ways, non-linear
affine transformations over the posteriors are used
as image features.

Baseline — Task 1 The baseline system for the
multimodal translation task is a text-only neural
machine translation system built with the Nema-
tus toolkit (Sennrich et al., 2017). Most settings
and hyperparameters were kept as default, with a
few exceptions: batch size of 40 (instead of 80
due to memory constraints) and ADAM as opti-
mizer. In order to handle rare and OOV words, we
used the Byte Pair Encoding Compression Algo-
rithm to segment words (Sennrich et al., 2016b).
The merge operations for word segmentation were
learned using training data in both source and target
languages. These were then applied to all training,
validation and test sets in both source and target
languages. In post-processing, the original words
were restored by concatenating the subwords.

Baseline — Task 2 The baseline for the multilin-
gual image description task is an attention-based
image description system trained over only the Ger-
man image descriptions (Caglayan et al., 2017b).
The visual representation are extracted from the
so-called res4f relu layer from a ResNet-50 (He et
al., 2016) convolutional neural network trained on
the ImageNet dataset (Russakovsky et al., 2015).
Those feature maps provide spatial information
on which the model focuses through the attention
mechanism.

4 Text-similarity Metric Results

The submissions were evaluated against either pro-
fessional or crowd-sourced references. All submis-
sions and references were pre-processed to low-
ercase, normalise punctuation, and tokenise the
sentences using the Moses scripts.3 The evalua-
tion was performed using MultEval (Clark et
al., 2011) with the primary metric of Meteor 1.5
(Denkowski and Lavie, 2014). We also report the
results using BLEU (Papineni et al., 2002) and

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
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TER (Snover et al., 2006) metrics. The winning
submissions are indicated by •. These are the top-
scoring submissions and those that are not signifi-
cantly different (based on Meteor scores) according
the approximate randomisation test (with p-value
≤ 0.05) provided by MultEval. Submissions
marked with * are not significantly different from
the Baseline according to the same test.

4.1 Task 1: English→ German

4.1.1 Multi30K 2017 test data

Table 4 shows the results on the Multi30K
2017 test data with a German target language.
It interesting to note that the metrics do not
fully agree on the ranking of systems, although
the four best (statistically indistinguishable) sys-
tems win by all metrics. All-but-one sub-
mission outperformed the text-only NMT base-
line. This year, the best performing systems
include both multimodal (LIUMCVC MNMT C
and UvA-TiCC IMAGINATION U) and text-only
(NICT NMTrerank C and LIUMCVC MNMT C)
submissions. (Strictly speaking, the UvA-
TiCC IMAGINATION U system is incomparable
because it is an unconstrained system, but all un-
constrained systems perform in the same range as
the constrained systems.)

4.1.2 Ambiguous COCO

Table 5 shows the results for the out-of-domain
ambiguous COCO dataset with a German target
language. Once again the evaluation metrics do not
fully agree on the ranking of the submissions.

It is interesting to note that the metric scores are
lower for the out-of-domain Ambiguous COCO
data compared to the in-domain Multi30K 2017 test
data. However, we cannot make definitive claims
about the difficulty of the dataset because the Am-
biguous COCO dataset contains fewer sentences
than the Multi30K 2017 test data (461 compared
to 1,000).

The systems are mostly in the same order as
on the Multi30K 2017 test data, with the same
four systems performing best. However, two sys-
tems (DCU-ADAPT MultiMT C and OREGON-
STATE 1NeuralTranslation C) are ranked higher
on this test set than on the in-domain Flickr dataset,
indicating that they are relatively more robust and
possibly better at resolving the ambiguities found
in the Ambiguous COCO dataset.

4.2 Task 1: English→ French

4.2.1 Multi30K Test 2017
Table 6 shows the results for the Multi30K 2017
test data with French as target language. A reduced
number of submissions were received for this new
language pair, with no unconstrained systems. In
contrast to the English→German results, the eval-
uation metrics are in better agreement about the
ranking of the submissions.

Translating from English→French is an easier
task than English→German systems, as reflected
in the higher metric scores. This also includes
the baseline systems where English→French re-
sults in 63.1 Meteor compared to 41.9 for
English→German.

Eight out of the ten submissions outperformed
the English→French baseline system. Two of the
best submissions for English→German remain the
best for English→French (LIUMCVC MNMT C
and NICT NMTrerank C), the text-only system
(LIUMCVC NMT C) decreased in performance,
and no UvA-TiCC IMAGINATION U system was
submitted for French.

An interesting observation is the difference
of the Meteor scores between text-only NMT
system (LIUMCVC NMT C) and Moses hier-
archical phrase-based system with reranking
(NICT NMTrerank C). While the two systems are
very close for the English→German direction, the
hierarchical system is better than the text-only
NMT systems in the English→French direction.
This pattern holds for both the Multi30K 2017 test
data and Ambiguous COCO test data.

4.2.2 Ambiguous COCO
Table 7 shows the results for the out-of-domain
Ambiguous COCO dataset with the French tar-
get language. Once again, in contrast to the
English→German results, the evaluation met-
rics are in better agreement about the ranking
of the submissions. The performance of all
the models is once again in mostly agreement
with the Multi30K 2017 test data, albeit lower.
Both DCU-ADAPT MultiMT C and OREGON-
STATE 2NeuralTranslation C again perform rela-
tively better on this dataset.

4.3 Task 2: English→ German

The description generation task, in which systems
must generate target-language (German) captions
for a test image, has substantially changed since
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BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 33.4 54.0 48.5
•NICT NMTrerank C 31.9 53.9 48.1
•LIUMCVC NMT C 33.2 53.8 48.2
•UvA-TiCC IMAGINATION U 33.3 53.5 47.5
UvA-TiCC IMAGINATION C 30.2 51.2 50.8
CUNI NeuralMonkeyTextualMT U 31.1 51.0 50.7
OREGONSTATE 2NeuralTranslation C 31.0 50.6 50.7
DCU-ADAPT MultiMT C 29.8 50.5 52.3
CUNI NeuralMonkeyMultimodalMT U 29.5 50.2 52.5
CUNI NeuralMonkeyTextualMT C 28.5 49.2 54.3
OREGONSTATE 1NeuralTranslation C 29.7 48.9 51.6
CUNI NeuralMonkeyMultimodalMT C 25.8 47.1 56.3
SHEF ShefClassInitDec C 25.0 44.5 53.8
SHEF ShefClassProj C 24.2 43.4 55.9
Baseline (text-only NMT) 19.3 41.9 72.2
AFRL-OHIOSTATE-MULTIMODAL U 6.5 20.2 87.4

Table 4: Official results for the WMT17 Multimodal Machine Translation task on the English-German
Multi30K 2017 test data. Systems with grey background indicate use of resources that fall outside the
constraints provided for the shared task.

BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC NMT C 28.7 48.9 52.5
•LIUMCVC MNMT C 28.5 48.8 53.4
•NICT 1 NMTrerank C 28.1 48.5 52.9
•UvA-TiCC IMAGINATION U 28.0 48.1 52.4
DCU-ADAPT MultiMT C 26.4 46.8 54.5
OREGONSTATE 1NeuralTranslation C 27.4 46.5 52.3
CUNI NeuralMonkeyTextualMT U 26.6 46.0 54.8
UvA-TiCC IMAGINATION C 26.4 45.8 55.4
OREGONSTATE 2NeuralTranslation C 26.1 45.7 55.9
CUNI NeuralMonkeyMultimodalMT U 25.7 45.6 55.7
CUNI NeuralMonkeyTextualMT C 23.2 43.8 59.8
CUNI NeuralMonkeyMultimodalMT C 22.4 42.7 60.1
SHEF ShefClassInitDec C 21.4 40.7 56.5
SHEF ShefClassProj C 21.0 40.0 57.8
Baseline (text-only NMT) 18.7 37.6 66.1

Table 5: Results for the Multimodal Translation task on the English-German Ambiguous COCO dataset.
Systems with grey background indicate use of resources that fall outside the constraints provided for the
shared task.
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BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 55.9 72.1 28.4
•NICT NMTrerank C 55.3 72.0 28.4
DCU-ADAPT MultiMT C 54.1 70.1 30.0
LIUMCVC NMT C 53.3 70.1 31.7
OREGONSTATE 2NeuralTranslation C 51.9 68.3 32.7
OREGONSTATE 1NeuralTranslation C 51.0 67.2 33.6
CUNI NeuralMonkeyMultimodalMT C 49.9 67.2 34.3
CUNI NeuralMonkeyTextualMT C 50.3 67.0 33.6
Baseline (text-only NMT) 44.3 63.1 39.6
*SHEF ShefClassInitDec C 45.0 62.8 38.4
SHEF ShefClassProj C 43.6 61.5 40.5

Table 6: Results for the Multimodal Translation task on the English-French Multi30K Test 2017 data.

BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 45.9 65.9 34.2
•NICT NMTrerank C 45.1 65.6 34.7
•DCU-ADAPT MultiMT C 44.5 64.1 35.2
OREGONSTATE 2NeuralTranslation C 44.1 63.8 36.7
LIUMCVC NMT C 43.6 63.4 37.4
CUNI NeuralMonkeyTexutalMT C 43.0 62.5 38.2
CUNI NeuralMonkeyMultimodalMT C 42.9 62.5 38.2
OREGONSTATE 1NeuralTranslation C 41.2 61.6 37.8
SHEF ShefClassInitDec C 37.2 57.3 42.4
*SHEF ShefClassProj C 36.8 57.0 44.5
Baseline (text-only NMT) 35.1 55.8 45.8

Table 7: Results for the Multimodal Translation task on the English-French Ambiguous COCO dataset.
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BLEU ↑ Meteor ↑ TER ↓
Baseline (target monolingual) 9.1 23.4 91.4
CUNI NeuralMonkeyCaptionAndMT C 4.2 22.1 133.6
CUNI NeuralMonkeyCaptionAndMT U 6.5 20.6 91.7
CMU NeuralEncoderDecoder C 9.1 19.8 63.3
CUNI NeuralMonkeyBilingual C 2.3 17.6 112.6

Table 8: Results for the Multilingual Image Description task on the English-German Multi30K 2017 test
data.

last year. The main difference is that source lan-
guage descriptions are no longer observed for im-
ages at test time. The training data remains the
same and contains images with both source and
target language descriptions. The aim is thus to
leverage multilingual training data to improve a
monolingual task.

Table 8 shows the results for the Multilingual
image description task. This task attracted fewer
submissions than last year, which may be because it
was no longer possible to re-use a model designed
for Multimodal Translation. The evaluation metrics
do not agree on the ranking of the submissions,
with major differences in the ranking using either
BLEU or TER instead of Meteor.

The main result is that none of the sub-
missions outperform the monolingual German
baseline according to Meteor. All of the
submissions are statistically significantly dif-
ferent compared to the baseline. However,
the CMU NeuralEncoderDecoder C submission
marginally outperformed the baseline according
to TER and equalled its BLEU score.

5 Human Judgement Results

This year, we conducted a human evaluation in ad-
dition to the text-similarity metrics to assess the
translation quality of the submissions. This evalu-
ation was undertaken for the Task 1 German and
French outputs for the Multi30K 2017 test data.

This section describes how we collected the hu-
man assessments and computed the results. We
would like to gratefully thank all assessors.

5.1 Methodology

The system outputs were manually evaluated by
bilingual Direct Assessment (DA) (Graham et al.,
2015) using the Appraise platform (Federmann,
2012). The annotators (mostly researchers) were

asked to evaluate the semantic relatedness between
the source sentence in English and the target sen-
tence in German or French. The image was shown
along with the source sentence and the candidate
translation and evaluators were told to rely on the
image when necessary to obtain a better under-
standing of the source sentence (e.g. in cases where
the text was ambiguous). Note that the reference
sentence is not displayed during the evaluation, in
order to avoid influencing the assessor. Figure 3
shows an example of the direct assessment inter-
face used in the evaluation. The score of each trans-
lation candidate ranges from 0 (meaning that the
meaning of the source is not preserved in the target
language sentence) to 100 (meaning the meaning
of the source is “perfectly” preserved). The human
assessment scores are standardized according to
each individual assessor’s overall mean and stan-
dard deviation score. The overall score of a given
system (z) corresponds to the mean standardized
score of its translations.

5.2 Results

The French outputs were evaluated by seven asses-
sors, who conducted a total of 2,521 DAs, resulting
in a minimum of 319 and a maximum of 368 direct
assessments per system submission, respectively.
The German outputs were evaluated by 25 asses-
sors, who conducted a total of 3,485 DAs, resulting
in a minimum of 291 and a maximum of 357 direct
assessments per system submission, respectively.
This is somewhat less than the recommended num-
ber of 500, so the results should be considered
preliminary.

Tables 9 and 10 show the results of the hu-
man evaluation for the English to German and
the English to French Multimodal Translation task
(Multi30K 2017 test data). The systems are ordered
by standardized mean DA scores and clustered ac-
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Figure 3: Example of the human direct assessment evaluation interface.

cording to the Wilcoxon signed-rank test at p-level
p ≤ 0.05. Systems within a cluster are consid-
ered tied. The Wilcoxon signed-rank scores can be
found in Tables 11 and 12 in Appendix A.

When comparing automatic and human evalu-
ations, we can observe that they globally agree
with each other, as shown in Figures 4 and
5, with German showing better agreement than
French. We point out two interesting disagree-
ments: First, in the English→French language pair,
CUNI NeuralMonkeyMultimodalMT C and DCU-
ADAPT MultiMT C are significantly better than
LIUMCVC MNMT C, despite the fact that the lat-
ter system achieves much higher metric scores. Sec-
ondly, across both languages, the text-only LIUM-
CVC NMT C system performs well on metrics but
does relatively poorly on human judgements, es-
pecially as compared to the multimodal version of
the same system.

6 Discussion

Visual Features: do they help? Three teams
provided text-only counterparts to their multimodal
systems for Task 1 (CUNI, LIUMCVC, and ORE-
GONSTATE), which enables us to evaluate the
contribution of visual features. For many systems,
visual features did not seem to help reliably, at least
as measured by metric evaluations: in German,
the CUNI and OREGONSTATE text-only systems
outperformed the counterparts, while in French,
there were small improvements for the CUNI mul-
timodal system. However, the LIUMCVC multi-
modal system outperformed their text-only system

across both languages.

The human evaluation results are perhaps more
promising: nearly all the highest ranked systems
(with the exception of NICT) are multimodal.
An intruiging result was the text-only LIUM-
CVC NMT C, which ranked highly on metrics but
poorly in the human evaluation. The LIUMCVC
systems were indistinguishable from each other in
terms of Meteor scores but the standardized mean
direct assessment score showed a significant dif-
ference in performance (see Tables 11 and 12):
further analysis of the reasons for humans disliking
the text-only translations will be necessary.

The multimodal Task 1 submissions can be
broadly categorised into three groups based on
how they use the images: approaches useing
double-attention mechanisms, initialising the hid-
den state of the encoder and/or decoder networks
with the global image feature vector, and al-
ternative uses of image features. The double-
attention models calculate context vectors over
the source language hidden states and location-
preserving feature vectors over the image; these
vectors are used as inputs to the translation de-
coder (CUNI NeuralMonkeyMultimodalMT). En-
coder and/or decoder initialisation involves ini-
tialising the recurrent neural network with an
affine transformation of a global image fea-
ture vector (DCU-ADAPT MultiMT, OREGON-
STATE 1NeuralTranslation) or initialising the
encoder and decoder with the 1000 dimen-
sion softmax probability vector over the object
classes in ImageNet object recognition challenge
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Figure 4: System performance on the English→German Multi30K 2017 test data as measured by human
evaluation against Meteor scores. The AFRL-OHIOSTATE-MULTIMODAL U system has been ommitted
for readability.
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Figure 5: System performance on the English→French Multi30K 2017 test data as measured by human
evaluation against Meteor scores.
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English→German
# Raw z System

1 77.8 0.665 LIUMCVC MNMT C

2 74.1 0.552 UvA-TiCC IMAGINATION U

3 70.3 0.437 NICT NMTrerank C
68.1 0.325 CUNI NeuralMonkeyTextualMT U
68.1 0.311 DCU-ADAPT MultiMT C
65.1 0.196 LIUMCVC NMT C
60.6 0.136 CUNI NeuralMonkeyMultimodalMT U
59.7 0.08 UvA-TiCC IMAGINATION C
55.9 -0.049 CUNI NeuralMonkeyMultimodalMT C
54.4 -0.091 OREGONSTATE 2NeuralTranslation C
54.2 -0.108 CUNI NeuralMonkeyTextualMT C
53.3 -0.144 OREGONSTATE 1NeuralTranslation C
49.4 -0.266 SHEF ShefClassProj C
46.6 -0.37 SHEF ShefClassInitDec C

15 39.0 -0.615 Baseline (text-only NMT)
36.6 -0.674 AFRL-OHIOSTATE MULTIMODAL U

Table 9: Results of the human evaluation of the WMT17 English-German Multimodal Translation task
(Multi30K 2017 test data). Systems are ordered by standardized mean DA scores (z) and clustered
according to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered tied,
although systems within a cluster may be statistically significantly different from each other (see Table 11).
Systems using unconstrained data are identified with a gray background.

(SHEF ShefClassInitDec). The alternative uses
of the image features include element-wise mul-
tiplication of the target language embeddings
with an affine transformation of a global im-
age feature vector (LIUMCVC MNMT), sum-
ming the source language word embeddings
with affine-transformed 1000 dimension soft-
max probability vector (SHEF ShefClassProj), us-
ing the visual features in a retrieval framework
(AFRL-OHIOSTATE MULTIMODAL), and learn-
ing visually-grounded encoder representations by
learning to predict the global image feature vec-
tor from the source language hidden states (UvA-
TiCC IMAGINATION).

Overall, the metric and human judgement results
in Sections 4 and 5 indicate that there is still a
wide scope for exploration of the best way to inte-
grate visual and textual information. In particular,
the alternative approaches proposed in the LIUM-
CVC MNMT and UvA-TiCC IMAGINATION
submissions led to strong performance in both the
metric and human judgement results, surpassing
the more common approaches using initialisation
and double attention.

Finally, the text-only NICT system ranks highly

across both languages. This system uses hierarchi-
cal phrase-based MT with a reranking step based on
a neural text-only system, since their multimodal
system never outperformed the text-only variant in
development (Zhang et al., 2017). This is in line
with last year’s results and the strong Moses base-
line (Specia et al., 2016), and suggests a continuing
role for phrase-based MT for small homogeneous
datasets.

Unconstrained systems The Multi30k dataset is
relatively small, so unconstrained systems use more
data to complement the image description transla-
tions. Three groups submitted systems using ex-
ternal resources: UvA-TiCC, CUNI, and AFRL-
OHIOSTATE. The unconstrained UvA-TiCC and
CUNI submissions always outperformed their re-
spective constrained variants by 2–3 Meteor points
and achieved higher standardized mean DA scores.
These results suggest that external parallel text cor-
pora (UvA-TiCC and CUNI) and external monolin-
gual image description datasets (UvA-TiCC) can
usefully improve the quality of multimodal transla-
tion models.

However, tuning to the target domain remains im-
portant, even for relatively simple image captions.
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English→French
# Raw z System

1 79.4 0.446 NICT NMTrerank C
74.2 0.307 CUNI NeuralMonkeyMultimodalMT C
74.1 0.3 DCU-ADAPT MultiMT C

4 71.2 0.22 LIUMCVC MNMT C
65.4 0.056 OREGONSTATE 2NeuralTranslation C
61.9 -0.041 CUNI NeuralMonkeyTextualMT C
60.8 -0.078 OREGONSTATE 1NeuralTranslation C
60.5 -0.079 LIUMCVC NMT C

9 54.7 -0.254 SHEF ShefClassInitDec C
54.0 -0.282 SHEF ShefClassProj C

11 44.1 -0.539 Baseline (text-only NMT)

Table 10: Results of the human evaluation of the WMT17 English-French Multimodal Translation
task (Multi30K 2017 test data). Systems are ordered by standardized mean DA score (z) and clustered
according to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered
tied, although systems within a cluster may be statistically significantly different from each other (see
Table 12).

We ran the best-performing English→German
WMT’16 news translation system (Sennrich et al.,
2016a) on the English→German Multi30K 2017
test data to gauge the performance of a state-of-
the-art text-only translation system trained on only
out-of-domain resources4. It ranked 10th in terms
of Meteor (49.9) and 11th in terms of BLEU (29.0),
placing it firmly in the middle of the pack, and be-
low nearly all the text-only submissions trained on
the in-domain Multi30K dataset.

The effect of OOV words The Multi30k trans-
lation training and test data are very similar, with
a low OOV rate in the Flickr test set (1.7%). In
the 2017 test set, 16% of English test sentences
include a OOV word. Human evaluation gave the
impression that these often led to errors propagated
throughout the whole sentence. Unconstrained sys-
tems may perform better by having larger vocabu-
laries, as well as more robust statistics. When we
evaluate the English→German systems over only
the 161 OOV-containing test sentences, the high-
est ranked submission by all metrics is the uncon-
strained UvA-TiCC IMAGINATION submission,
with +2.5 Metor and +2.2 BLEU over the second
best system (LIUMCVC NMT; 45.6 vs 43.1 Me-
teor and 24.0 vs 21.8 BLEU).

The difference over non-OOV-containing sen-

4http://data.statmt.org/rsennrich/
wmt16_systems/en-de/

tences is not nearly as stark, with constrained sys-
tems all performing best (both LIUMCVC systems,
MNMT and NMT, with 56.6 and 56.3 Meteor, re-
spectively) but unconstrained systems following
close behind (UvA-TiCC with 55.4 Meteor, CUNI
with 53.4 Meteor).

Ambiguous COCO dataset We introduced a
new evaluation dataset this year with the aim of
testing systems’ ability to use visual features to
identify word senses.

However, it is unclear whether visual features
improve performance on this test set. The text-only
NICT NMTrerank system performs competitively,
ranking in the top three submissions for both lan-
guages. We find mixed results for submissions
with text-only and multimodal counterparts (CUNI,
LIUMCVC, OREGONSTATE): LIUMCVC’s mul-
timodal system improves over the text-only system
for French but not German, while the visual fea-
tures help for German but not French in the CUNI
and OREGONSTATE systems.

We plan to perform a further analysis on the
extent of translation ambiguity in this dataset. We
will also continue to work on other methods for
constructing datasets in which textual ambiguity
can be disambiguated by visual information.

Multilingual Image Description It proved diffi-
cult for Task 2 systems to use the English data to
improve over the monolingual German baseline.
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In future iterations of the task, we will consider
a lopsided data setting, in which there is much
more English data than target language data. This
setting is more realistic and will push the use of
multilingual data. We also hope to conduct human
evaluation to better assess performance because au-
tomatic metrics are problematic for this task (Elliott
and Keller, 2014; Kilickaya et al., 2017).

7 Conclusions

We presented the results of the second shared task
on multimodal translation and multilingual image
description. The shared task attracted submissions
from nine groups, who submitted a total of 19 sys-
tems across the tasks. The Multimodal Transla-
tion task attracted the majority of the submissions.
Human judgements for the translation task were
collected for the first time this year and ranked
systems broadly in line with the automatic metrics.

The main findings of the shared task are:

(i) There is still scope for novel approaches to
integrating visual and linguistic features in
multilingual multimodal models, as demon-
strated by the winning systems.

(ii) External resources have an important role to
play in improving the performance of multi-
modal translation models beyond what can be
learned from limited training data.

(iii) The differences between text-only and mul-
timodal systems are being obfuscated by the
well-known shortcomings of text-similarity
metrics. Multimodal systems often seem to
be prefered by humans but not rewarded by
metrics. Future research on this topic, encom-
passing both multimodal translation and multi-
lingual image description, should be evaluated
using human judgements.

In future editions of the task, we will encourage
participants to submit the output of single decoder
systems to better understand the empirical differ-
ences between approaches. We are also considering
a Multilingual Multimodal Translation challenge,
where the systems can observe two language inputs
alongside the image to encourage the development
of multi-source multimodal models.
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Abstract

Automatic translation of documents is
an important task in many domains, in-
cluding the biological and clinical do-
mains. The second edition of the Biomed-
ical Translation task in the Conference of
Machine Translation focused on the au-
tomatic translation of biomedical-related
documents between English and various
European languages. This year, we ad-
dressed ten languages: Czech, German,
English, French, Hungarian, Polish, Por-
tuguese, Spanish, Romanian and Swedish.
Test sets included both scientific publica-
tions (from the Scielo and EDP Sciences
databases) and health-related news (from
the Cochrane and UK National Health Ser-
vice web sites). Seven teams participated
in the task, submitting a total of 82 runs.
Herein we describe the test sets, participat-
ing systems and results of both the auto-
matic and manual evaluation of the trans-
lations.

1 Introduction

Automatic translation of texts allows readers to
gain access to information present in documents
written in a language in which the reader is not

fluent. We identify two main use cases of ma-
chine translation (MT) in the biomedical domain:
(a) making health information available to health
professionals and the general public in their own
language; and (b) assisting health professionals
and researchers in writing reports of their research
in English. In addition, it creates an opportu-
nity for natural language processing (NLP) tools
to be applied to domain-specific texts in languages
for which few domain-relevant tools are available;
i.e., the texts can be translated into a language for
which there are more resources.

The second edition of the Biomedical Transla-
tion Task in the Conference for Machine Trans-
lation (WMT)1 builds on the first edition (Bo-
jar et al., 2016) by offering seven additional lan-
guage pairs and new test sets. This year, we ex-
panded to a total of ten languages in the biomed-
ical task, namely, Czech (cs), German (de), En-
glish (en), French (fr), Hungarian (hu), Polish (pl),
Portuguese (pt), Spanish (es), Romanian (ro) and
Swedish (sv). Test sets included scientific publica-
tions from the Scielo and EDP Sciences databases
and health-related news from Cochrane and the
UK National Health Service (NHS).

Participants were challenged to build systems to
enable translation from English to all other lan-

1http://www.statmt.org/wmt17/
biomedical-translation-task.html
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guages, as well as from French, Spanish and Por-
tuguese to English. We provided both training and
development data but the teams were allowed to
use additional in-domain or out-of-domain train-
ing data. After release of the test sets, the par-
ticipants had 10 days to submit results (automatic
translations) for any of the test sets and languages.
We allowed up to three runs per team for each lan-
guage pair and test sets.

We evaluated the submission both automatically
and manually. In this work, we report details on
the challenge, test sets, participating teams, the re-
sults they obtained and the quality of the automatic
translations.

2 Training and test sets

We released test sets from four sources, namely,
Scielo, EDP, Cochrane and NHS, as presented in
Table 1. For training and development data, we re-
ferred participants to various biomedical corpora:
(a) Biomedical Translation Corpora Repository2,
which includes titles from MEDLINE R© and the
Scielo corpus (Neves et al., 2016); (b) UFAL Med-
ical Corpus,3 which includes EMEA and PatTR
Medical, among others; (c) development data from
the Khresmoi project.4 We provide details of the
test sets below.

Scielo. Similar to last year, this dataset consisted
of titles and abstracts from scientific publications
retrieved from the Scielo database5 and addressed
the following language pairs: es/en, en/es, pt/en
and en/pt. There were not enough articles indexed
in 2017 with French titles or abstracts, so we re-
lied on another source for en/fr and fr/en language
pairs (namely, EDP as described below). Sim-
ilar to last year, we crawled the Scielo site for
publications containing both titles and abstracts in
both English/Spanish or English/Portuguese lan-
guage pairs. We considered only articles pub-
lished in 2017 until that point (April/2017). We to-
kenized the documents using Apache OpenNLP6

(with specific models for each language). The test
set dataset was automatically created by aligning

2https://github.com/
biomedical-translation-corpora/wmt-task

3https://ufal.mff.cuni.cz/ufal_
medical_corpus

4https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2122

5http://www.scielo.org
6https://opennlp.apache.org/

the GMA tool.7 We manually checked the align-
ment of a sample and confirmed that around 88%
of the sentences were correctly aligned.

EDP. Title and abstracts of scientific publica-
tions were collected from the open access pub-
lisher EDP Sciences8 on March 15, 2017. The cor-
pus comprises a selection of titles and abstracts of
articles published in five journals in the fields of
Health and Life & Environmental Sciences. The
articles were originally written in French but the
journals also publish the titles and abstracts in
English, using a translation provided by the au-
thors. The dataset was pre-processed for sen-
tence segmentation using the Stanford CoreNLP
toolkit9 and aligned using YASA.10 Manual eval-
uation conducted on a sample set suggests that
94% of the sentences are correctly aligned, with
about 20% of the sentence pairs exhibiting addi-
tional content in one of the languages.

Cochrane and NHS. The test data was pro-
duced during the course of the KConnect11 and
HimL12 projects. The test data contains health-
related documents from Cochrane and NHS that
were manually translated by experts from English
to eight languages: cs, de, fr, hu, pl, ro, es and sv.

3 Participating teams and systems

We received submissions from seven teams, as
summarized in Table 2. The teams came from a
total of five countries (Germany, Japan, Poland,
UK and USA) and from three continents. They
include both research institutions and a company.
An overview of the teams and their systems is pro-
vided below.

Hunter (Hunter College, City University of
New York). The system from the Hunter
College is based on Moses EMS, SRI-LM,
GIZA++ (Xu et al., 2017). For the transla-
tion model, they generate word alignments using
GIZA++ and mGIZA. For the language model,
they relied on an interpolation of models that in-
cludes 6-grams with Kneser-Ney smoothing. Dif-
ferent corpora were used for the various languages

7http://nlp.cs.nyu.edu/GMA/
8http://www.edpsciences.org
9https://stanfordnlp.github.io/

CoreNLP/
10http://rali.iro.umontreal.ca/rali/?q=

en/yasa
11http://k-connect.org
12http://www.himl.eu/
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Test sets en/cs en/de fr/en en/hu pt/en es/en en/fr en/pl en/pt en/es en/ro en/sv
Scielo 189/1897 158/1180 188/1806 158/1082
EDP 85/699 84/750

Cochrane 25/467 25/467 25/467 25/467 25/467 25/467 25/467 25/467 25/467 25/467
NHS 25/1044 25/1044 25/1044 25/1044 25/1044 25/1044 25/1044 25/1044 25/1044 25/1044

Table 1: Overview of the test sets. We present the number of documents and sentences in each test set.

Team ID Institution
Hunter Hunter College, City University of New York
kyoto Kyoto University
Lilt Lilt Inc.

LMU Ludwig Maximilian University of Munich
PJIIT Polish-Japanese Academy of Information Technology

uedin-nmt University of Edinburgh
UHH University of Hamburg

Table 2: Overview of the participating teams.

to which they submitted runs. The system was
tuned using the WMT16 test sets (in the case of
French and English) and on the HimL test sets for
Cochrane and NHS. For training data, the team
relied on a variety of corpora, depending on the
language pair, which included MEDLINE, Eu-
roparl, Scielo, News Commentary, UFAL, EMEA,
Cordis, among others.

kyoto (Kyoto University). The system from the
team from Kyoto University is based on two pre-
vious papers (Cromieres et al., 2016; Cromieres,
2016). The participants describe it as a classic
neural machine translation (NMT) system, how-
ever, we do not have further information regarding
the datasets that have been used to train and tune
the system for the WMT challenge.

Lilt (Lilt Inc.). The system from the Lilt Inc.13

uses an in-house implementation of a sequence-
to-sequence model with Bahdanau-style attention.
The final submissions are ensembles between
models fine-tuned on different parts of the avail-
able data.

LMU (Ludwig Maximilian University of Mu-
nich). LMU Munich has participated with an
en2de NMT system (Huck and Fraser, 2017).
A distinctive feature of their system is a linguis-
tically informed, cascaded target word segmen-
tation approach. Fine-tuning for the domain of
health texts was done using in-domain sections of
the UFAL Medical Corpus v.1.0 as a training cor-
pus. The learning rate was set to 0.00001, initial-
ized with a pre-trained model, and optimized using
only the in-domain medical data. The HimL tun-

13https://lilt.com/

ing sets were used for validation, and they tested
separately on the Cochrane and NHS24 parts of
the HimL devtest set.

PJIIT (Polish-Japanese Academy of Informa-
tion Technology). PJIIT developed a translation
model training, created adaptations of training set-
tings for each language pair, and implemented
byte pair encoding (BPE) (subword units) in their
systems (Wolk and Marasek, 2017). Only the offi-
cial parallel text corpora and monolingual models
for the challenge evaluation campaign were used
to train language models, and to develop, tune,
and test their system. PJIIT explored the use of
domain adaptation techniques, symmetrized word
alignment models, the unsupervised transliteration
models and the KenLM language modeling tool.

uedin-nmt (University of Edinburgh). The
systems from the University of Edinburgh used
a NMT trained with Nematus, an attentional
encoder-decoder (Sennrich et al., 2017). Their
setup follows the one from last year. This team
again built BPE-based models with parallel and
back-translated monolingual training data. New
approaches this year included the use of deep ar-
chitectures, layer normalization, and more com-
pact models due to weight-tying and improve-
ments in BPE segmentations.

UHH (University of Hamburg). All SMT mod-
els were developed using the Moses phrase-based
MT toolkit and the Experiment Management Sys-
tem (Duma and Menzel, 2017). The preprocess-
ing of the data consisted of tokenization, cleaning
(6-80), lowercasing and normalizing punctuation.
The tuning and the test sets were derived from
WMT 2016 and WMT 2017. The SRILM toolkit
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and Kneser-Ney discounting were used to estimate
5-gram language models (LM). For word align-
ment, GIZA++ with the default grow-diag-final-
and alignment symmetrization method was used.
Tuning of the SMT systems was performed with
MERT. Commoncrawl and Wikipedia were used
as general domain data for all language pairs ex-
cept for EN/PT, where no Commoncrawl data was
provided by WMT. As for the in-domain corpora,
EMEA was used for all language pairs and Much-
more, ECDC, Pattr and Pubmed (all from UFAL
Medical Corpus2) for the language pairs where
data was available. The system made use of the
training data provided by the previous Biomedi-
cal Task from 2016. The corpora corresponding to
the general domain were concatenated into a sin-
gle data source and the same procedure was ap-
plied for the in-domain corpora. This team inves-
tigated performing data selection for MT via Para-
graph Vector and a Feed Forward Neural Network
Classifier. Continuous distributed vector represen-
tations of the sentences were used as features for
the classifier.

4 Evaluation

In this section, we present an overview of the sub-
missions to the Biomedical Task and results in
terms of both automatic and manual evaluation.

4.1 Submissions
An overview of the submissions is shown is Ta-
ble 3. The participating teams submitted a total
of 82 runs. No submissions were received for
Swedish (en/sv) and Hungarian (en/hu).

4.2 Baselines
We provided baseline results only for the EDP and
Scielo test sets, however, not for the other lan-
guages included in the Cochrane and NHS test
sets.

Baseline. For the Scielo and EDP test sets, we
compared the participants’ results to our baseline
system, which used the same approach as applied
in last year’s challenge (Bojar et al., 2016) for
the evaluation of the Scielo dataset (Neves et al.,
2016). The statistical machine translation (SMT)
system used for the baseline was Moses (Koehn
et al., 2007) with default settings. For es2en,
en2es, fr2en, en2fr, pt2en and en2pt, the baseline
system was trained as described in (Neves et al.,
2016).

LIMSI baseline. For additional comparison, we
also provided the results of an en2fr Moses-based
system prepared by Ive et al. for their participa-
tion in the WMT16 biomedical track, which re-
flects the state of the art for this language pair (Ive
et al., 2016a). The system uses in-domain paral-
lel data provided for the biomedical task in 2016,
as well as additional in-domain data14 and out-of-
domain data. However, we did not perform SOUL
re-scoring.

4.3 Automatic evaluation

In this section, we provide the results for the au-
tomatic evaluation and rank the various systems
based on those results. For the automatic eval-
uation, we computed BLEU scores at the sen-
tence level using the multi-bleu and tokenization
scripts as provided by Moses (tokenizer and
truecase). For all test sets and language pairs,
we compare the automatic translations to the ref-
erence one, as provided by each test set.

Results for the Scielo test sets are presented in
Table 4. All three runs from the UHH team, for
all four language pairs, obtained a much higher
BLEU score than our baseline. However, this is
not surprising given the simplicity of the methods
used in the baseline system.

The BLEU scores for the EDP test set are pre-
sented in Table 5. While all system runs score
above the baseline, only the Kyoto system outper-
forms the stronger baseline for en2fr. We rank the
various submissions as follows:

• fr2en: Hunter (runs 1,2) < baseline < UHH
(runs 1,2) < UHH (run 3) < kyoto (run 1).

• en2fr: baseline < Hunter (runs 1,2) < UHH
(runs 1,2,3) < LIMSI baseline < kyoto (run
1) < kyoto (run 2).

The BLEU scores for the Cochrane test sets are
presented in Table 6. The scores range from as low
as 12.45 (for Polish) to as high as 48.99 (for Span-
ish). All scores were particularly high for Spanish
(close to 50), but rather low for Polish and Czech
(all below 30). While the BLEU value did not vary
much for French (all around 30), these went from
a range of 14 to 41 for Romanian. We rank the
various submissions for each language as below:

14Cochrane translation corpus available at http://
www.translatecochrane.fr/corpus/ (Ive et al.,
2016b)
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Teams en/cs en/de fr/en pt/en es/en en/fr en/pl en/pt en/es en/ro
Hunter CN E2 C2NE2 CN CN
kyoto E E2

lilt C2N2
LMU CN
PJIIT CN CN C3N3 CN

uedin-nmt CN CN C2N2 C2N2
UHH C3N3 E3 S3 S3 C3N3E3 S3 C3N3S3

Table 3: Overview of submissions for each language pair and test set: [E]DP, [S]cielo, [C]ochrane
and [N]HS. The number next to the letter indicates the number of runs that the team submitted for the
corresponding test set.

Runs pt/en es/en en/pt en/es
baseline 36.35 31.50 30.52 27.31

UHH run1 43.84 37.14 39.14 36.08
UHH run2 43.93 37.47 39.38 35.93
UHH run3 43.88* 37.49* 39.21* 36.23*

Table 4: Results for the Scielo test sets. * indicates
the primary run as identified by the participants.

Runs fr/en en/fr
baseline 17.47 12.32

LIMSI baseline - 24.05
Hunter run1 15.10* 17.50*
Hunter run2 15.18 17.21
kyoto run1 25.21* 25.52
kyoto run2 - 27.04*
UHH run1 22.64 22.43
UHH run2 22.37 22.25
UHH run3 23.41* 22.79*

Table 5: Results for the EDP test sets. * indicates
the primary run as declared by the participants.

• cs: PJIIT (run 1) < uedin-nmt (run 1).

• de: UHH (runs 1,2,3) < Hunter (run 1) < PI-
IJT (run 1) < lilt (run 1,2) < LMU < uedin-
nmt (run 1).

• fr: Hunter (runs 1,2) < UHH (runs 1,2,3).

• pl: PIIJT (run 2) < Hunter (run 1) < PIIJT
(runs 1,3) < uedin-nmt (run 2) < uedin-nmt
(run 1).

• ro: Hunter (run 1) < PIIJT (run 1) < uedin-
nmt (run 2) < uedin-nmt (run 1).

Finally, the BLEU scores for the NHS dataset
are presented in Table 7. The scores range from
as low as 10.56 (for Romanian, the lowest score
across all test sets and languages) to as high as
41.22 (for Spanish). All scores were particularly
high for Spanish (around 40), but rather low for
Polish, Czech and Romanian (all below 30). We
rank the various submissions for each language as
shown below:

• cs: PJIIT (run 1) < uedin-nmt (run 1).

• de: UHH (runs 1,2,3) < Hunter (run 1) < PI-
IJT (run 1) < lilt (run 1,2) < LMU < uedin-
nmt (run 1).

• fr: Hunter (run 1) < UHH (runs 1,2) < UHH
(run 3).

• pl: PIIJT (run 2) < Hunter (run 1), PIIJT
(runs 1,3) < uedin-nmt (run 2) < uedin-nmt
(run 1).

• ro: Hunter (run 1) < PIIJT (run 1) < uedin-
nmt (run 2) < uedin-nmt (run 1).

The BLEU values were generally lower for
NHS than the ones obtained for the same teams
for the Cochrane test sets. However, the rank-
ings of systems and runs are nearly the same for
the Cochrane and NHS test sets. The only excep-
tions were in French, where run 3 from UHH was
higher than the others from the team, and for Pol-
ish, where the scores for Hunter and PIIJT (runs
1,3) were nearly the same.

4.4 Manual evaluation

We required teams to identify a primary run for
each language pair, in the case that they submitted
more than one run. These are the runs for which
we performed manual evaluation. The follow-
ing runs were considered to be primary: Hunter
(run1), kyoto (run2 for en/fr, run1 for fr/en), lilt
(run1), LMU (run1), PJIIT (run3 for pl, otherwise,
run1), uedin-nmt (run1), UHH (run3).

We computed pairwise combinations of trans-
lations either between two automated systems, or
one automated system and the reference transla-
tion. We compared all systems (primary) to the
reference translation, as well as to each other sys-
tem. We ran manual validation for all target lan-
guages and test sets. The human validators were
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Cochrane cs de fr pl es ro
Hunter run1 - 24.72* 30.75* 17.16* - 14.74*
Hunter run2 - - 30.76 - - -

lilt run1 - 34.91* - - - -
lilt run2 - 33.97 - - - -
LMU - 36.44* - - - -

PJIIT run1 19.96* 25.13* - 18.86 - 24.91*
PJIIT run2 - - - 12.45 - -
PJIIT run3 - - - 18.88* - -

uedin-nmt run1 28.54* 37.11* - 29.04* - 41.18*
uedin-nmt run2 - - - 27.69 - 38.89

UHH run1 - 22.03 32.46 - 48.99 -
UHH run2 - 22.37 32.59 - 48.45 -
UHH run3 - 22.63* 33.16* - 48.70* -

Table 6: Results for the Cochrane test sets. * indicates the primary run as informed by the participants.

NHS cs de fr pl es ro
Hunter - 20.45* 22.99* 14.09* - 10.56*
lilt run1 - 27.57* - - - -
lilt run2 - 26.79 - - - -
LMU - 29.46* - - - -

PJIIT run1 15.93* 21.88* - 14.32 - 18.10*
PJIIT run2 - - - 10.75 - -
PJIIT run3 - - - 14.34* - -

uedin-nmt run1 22.79* 33.06* - 23.15* - 29.32*
uedin-nmt run2 - - - 19.87 - 27.32

UHH run1 - 18.71 31.79 - 40.97 -
UHH run2 - 19.80 31.89 - 41.20 -
UHH run3 - 19.66* 33.36* - 41.22* -

Table 7: Results for the NHS test sets. * indicates the primary run as informed by the participants.

native speakers of the languages and were either
members of the participating teams or colleagues
from the research community.

The validation task was carried out using the
Appraise tool15 (Federmann, 2010). For each
pairwise comparison, we validated a total of 100
randomly-chosen sentence pairs. The validation
consisted of reading the two sentences (A and B),
i.e., translations from two systems or from the ref-
erence, and choosing one of the options below:

• A<B: when the quality of translation B was
higher than A.

• A=B: when both translation had similar qual-
ity.

• A>B: when the quality of translation A was
higher than B.

• Flag error: when the translations did not
seem to be derived from the same input sen-
tence. This is usually derived from error in
the corpus alignment (for the Scielo and EDP
datasets).

15https://github.com/cfedermann/
Appraise

The manual validation for the Scielo test sets
is presented in Table 8, for the comparison of the
only participating team (UHH) to the reference
translation. For en2es, the automatic translation
scored lower than the reference one in 53 out of
100 pairs, but could still beat the reference trans-
lation in 23 pairs. For en2pt, the automatic trans-
lation was better only on 13 sentences pairs, while
they could achieve similar quality to the reference
translation on 31 cases. In the case of translations
from Spanish or Portuguese to English, the refer-
ence scored better than the UHH around the same
proportion, while the latter could only beat the ref-
erence in very few cases.

We present the results for the manual evalua-
tion of the EDP test sets in Table 9. Based on the
number of times that a translation was validated as
being better than another, we ranked the systems
for each language as listed below:

• en2fr: Hunter < UHH < kyoto = reference

• fr2en: Hunter < UHH < kyoto < reference

Results for manual validation of the Cochrane
test sets are presented in Table 10. We rank the
various system as shown below:
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Test set Languages Runs (A vs. B) Total A>B A=B A<B

Scielo

en2es UHH vs. reference 100 23 24 53
en2pt UHH vs. reference 100 13 31 46
es2en UHH vs. reference 100 7 11 59
pt2en UHH vs. reference 100 10 20 50

Table 8: Results for the manual validation for the Scielo test sets. Values are absolute numbers (not
percentages). They might not sum up to 100 due to the skipped sentences.

Test set Languages Runs (A vs. B) Total A>B A=B A<B

EDP

en2fr

UHH vs. reference 100 3 4 87
UHH vs. Hunter 100 42 46 7
UHH vs. kyoto 100 10 21 64

Hunter vs. reference 100 0 2 93
kyoto vs. reference 100 28 30 35
Hunter vs. kyoto 100 3 10 82

fr2en

UHH vs. reference 100 5 9 72
UHH vs. Hunter 100 79 5 10
UHH vs. kyoto 100 26 7 62

Hunter vs. reference 100 2 4 79
kyoto vs. reference 100 25 9 48
Hunter vs. kyoto 100 3 9 81

Table 9: Results for the manual validation for the EDP test sets. Values are absolute numbers (not
percentages). They might not sum up to 100 due to the skipped sentences.

• cs: PIIJT < uedin-nmt < reference

• de: UHH < Hunter = PJIIT < Lilt < LMU <
uedin-nmt = reference

• fr: UHH < Hunter < reference

• pl: Hunter = PIIJT < uedin < reference

• es: UHH < reference

• ro: Hunter < PIIJT < uedin < reference

Results for manual validation of the NHS test
sets are presented in Table 11. We rank the various
system as shown below:

• cs: PIIJT < uedin-nmt < reference

• de: Hunter = UHH < PIIJT < Lilt < LMU =
uedin-nmt < reference

• fr: UHH < Hunter < reference

• pl: Hunter < PIIJT < uedin < reference

• es: UHH < reference

• ro: Hunter < PIIJT < uedin < reference

For the Polish language in the NHS test set,
the evaluator skipped too many sentences (68 out
of 100) to enable a comparison between Hunter
and PIIJT. However, we ranked the PIIJT system
higher than Hunter given that the former scored 21

times better that the latter (in contrast to 7). How-
ever, there is inadequate data to support assigning
a clear difference between the two systems. In-
deed, both systems have similar quality for this
language in the Cochrane test set.

5 Discussion

In this section we present, for each target lan-
guage, some insights from the automatic valida-
tion, the quality of the translations, as well as fu-
ture work that we plan to implement in the next
edition of the challenges.

5.1 Performance of the systems

The results obtained by the teams show interesting
point of discussion regarding the impact of meth-
ods and amount of training data. Considering all
the results in Tables 4-7, the highest BLEU score
(48.99) of all runs across all test sets was obtained
by the UHH system for en2es (Cochrane test set).
The same team also scored high (above 40) for the
NHS en2es test set and for the Scielo pt2en test set.
The only other team that obtained BLEU scores in
the same range (above 40) was uedin-nmt for the
Cochrane en2ro test set.

No automatic system was able to outperform or
match the reference translations on manual evalu-
ation; hence the automated systems all still have
room for improvement. Interestingly, it can be
noted that the best performing system on the EDP
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Test set Languages Runs (A vs. B) Total A>B A=B A<B

Cochrane

cs
PIIJT vs. reference 100 4 1 95
PIIJT vs. uedin-nmt 100 19 6 75

uedin-nmt vs. reference 100 8 38 54

de

Hunter vs. reference 100 5 12 83
Hunter vs. Lilt 100 12 20 68

Hunter vs. LMU 100 6 20 73
Hunter vs. PJIIT 100 26 41 33

Hunter vs. uedin-nmt 100 3 12 85
Hunter vs. UHH 100 42 30 28
Lilt vs. reference 100 19 22 59

LMU vs. reference 100 17 32 51
PJIIT vs. reference 100 2 8 90

uedin-nmt vs. reference 100 31 29 40
UHH vs. reference 100 93 6 1

Lilt vs. LMU 100 23 24 50
Lilt vs. PJIIT 100 66 19 15

Lilt vs. uedin-nmt 100 14 22 63
Lilt vs. UHH 100 81 8 11

LMU vs. PJIIT 100 82 9 7
LMU vs. uedin-nmt 100 19 50 31

LMU vs. UHH 100 82 10 3
PJIIT vs. uedin-nmt 100 14 22 64

PJIIT vs. UHH 100 34 44 22
uedin-nmt vs. UHH 100 87 5 8

fr
UHH vs. reference 100 8 8 83
UHH vs. Hunter 100 8 51 40

Hunter vs. reference 100 11 10 79

pl

Hunter vs. PJIIT 100 43 7 48
Hunter vs. reference 100 4 8 88
Hunter vs. uedin-nmt 100 16 0 84
PJIIT vs. reference 100 3 11 86
PJIIT vs. uedin-nmt 100 16 4 80

uedin-nmt vs. reference 100 15 34 51
es UHH vs. reference 100 4 29 67

ro

Hunter vs. PJIIT 100 6 20 74
Hunter vs. reference 100 1 3 96
Hunter vs. uedin-nmt 100 5 8 87
PJIIT vs. reference 100 3 6 91
PJIIT vs. uedin-nmt 100 20 21 59

uedin-nmt vs. reference 100 4 32 64

Table 10: Results for the manual validation for the Cochrane test sets. Values are absolute numbers (not
percentages). They might not sum up to 100 due to the skipped sentences.
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Test set Languages Runs (A vs. B) Total A>B A=B A<B

NHS

cs
PIIJT vs. reference 100 4 20 76
PIIJT vs. uedin-nmt 100 28 23 49

uedin-nmt vs. reference 100 7 41 52

de

Hunter vs. reference 100 0 9 91
Hunter vs. Lilt 100 28 29 43

Hunter vs. LMU 100 17 12 68
Hunter vs. PJIIT 100 32 28 40

Hunter vs. uedin-nmt 100 12 18 70
Hunter vs. UHH 100 34 36 30
Lilt vs. reference 100 2 35 63

LMU vs. reference 100 4 30 62
PJIIT vs. reference 100 1 24 74

uedin-nmt vs. reference 100 5 45 46
UHH vs. reference 100 2 18 79

Lilt vs. LMU 100 19 44 33
Lilt vs. PJIIT 100 46 24 30

Lilt vs. uedin-nmt 100 11 23 66
Lilt vs. UHH 100 47 28 25

LMU vs. PJIIT 100 56 22 18
LMU vs. uedin-nmt 100 37 27 33

LMU vs. UHH 100 59 19 18
PJIIT vs. uedin-nmt 100 8 24 68

PJIIT vs. UHH 100 51 21 28
uedin vs. UHH 100 63 29 8

fr
UHH vs. reference 100 0 2 98
UHH vs. Hunter 100 6 27 67

Hunter vs. reference 100 11 23 65

pl

Hunter vs. PJIIT 100 7 4 21
Hunter vs. reference 100 14 2 84
Hunter vs. uedin-nmt 100 8 11 48
PJIIT vs. reference 100 9 8 83
PJIIT vs. uedin-nmt 100 8 16 62

uedin-nmt vs. reference 100 11 14 75
es UHH vs. reference 100 1 32 67

ro

Hunter vs. PJIIT 100 10 38 52
Hunter vs. reference 100 1 7 92
Hunter vs. uedin-nmt 100 4 27 62
PJIIT vs. reference 100 3 16 81
PJIIT vs. uedin-nmt 100 24 34 41

uedin-nmt vs. reference 100 6 26 68

Table 11: Results for the manual validation for the NHS test sets. Values are absolute numbers (not
percentages). They might not sum up to 100 due to the skipped sentences.
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en2fr dataset (Kyoto) compared very favorably to
the reference and was found to be equal to or bet-
ter than the reference in 62% (58/93) of the manu-
ally evaluated sentences. In general, the kyoto and
uedin-nmt systems seemed to consistently outper-
form other competitors.

Regarding comparison of results to the ones ob-
tained in the last year’s edition of the challenge,
we can only draw conclusions for the Scielo test
set. The only participating team (UHH) obtained
much higher BLEU scores for en2pt (39 vs. 19),
pt2en (43 vs. 21) and es2en (37 vs. 30). However,
results for en2es were just a little higher than last
year’s ones (36 vs. 33).

As the performance of the methods improves on
the biomedical domain, it will make sense to intro-
duce additional domain-oriented evaluation mea-
sures that provide a document-level assessment fo-
cused on the clinical validity of the translations,
rather than the grammatical correctness and flu-
ency.

5.2 Best-performing methods
For languages which received submissions from
several systems, such as en2de over Cochrane
and NHS data, the systems based on neural net-
works (e.g., uedin-nmt and LMU) performed sub-
stantially better than those based on SMT (e.g.,
UHH and Hunter). In many runs, the difference in
BLEU score was greater than 10 points. The supe-
riority of NMT systems was also observed in the
EDP test set, as implemented in the Kyoto system.
However, we also note that a state-of-the-art sta-
tistical system relying on rich in-domain and out-
of-domain data still performs well (as seen in the
strong results of the LIMSI system).

Finally, some teams submitted more than one
run but we only observed significant differences in
BLEU scores in a few cases, namely, kyoto (EDP
en2fr test set), PJIIT (Cochrane/NHS pl test set),
uedin (Cochrane/NHS pl and ro test sets). In the
case of the PJIIT systems, the best performing one
is an extended version of the base SMT system
that includes domain adaptation, among other ad-
ditional features. In the case of the uedin-nmt sys-
tem, the best performing run relied on advanced
techniques, such as +right-to-left re-ranking.

5.3 Differences across languages
Even if some teams relied on equal or similar
methods for the different languages, the same sys-
tem might perform better for certain languages

then for others. This is probably due to amount
(or quality) of training data available for each lan-
guage and also due to different linguistic proper-
ties of the language pair in question.

For instance, the UHH team developed a SMT
system which was trained on a variety of domain
and out-of-the-domain data. This system achieved
good performance for English, Portuguese and
Spanish (around 30-48), but their results for Ger-
man were much poorer (around 18-22). In-
deed, the system obtained the lowest rank posi-
tion for German for the Cochrane and NHS test
sets. The participants report that this is prob-
ably due to the amount of training data avail-
able for this language (personal communication),
even though other teams could obtain much higher
BLEU scores for those same test sets, e.g., up to
37 points in the case of the uedin-nmt system.

Such differences across languages was also ob-
served for other systems (higher than 10-20 points
in the BLEU score). For instance, scores for the
uedin-nmt system ranged from 22 (for Czech) to
41 (for Romanian). Interestingly, the scores for the
Hunter system ranged from 10 (for Romanian, in
contrast to higher scores from uedin-nmt system)
to 30 (for French). The Hunter team seems to have
used the same approach across all languages and
all of these were trained on a variety of corpora.
On the other hand, the uedin-nmt team seems to
have used slightly different network architectures
for each language (Sennrich et al., 2017).

5.4 Differences across datasets

Given that the methods and corpora seem to be
largely the same for a particular language, differ-
ences in BLEU scores across the test sets are prob-
ably related to the the characteristics of these. Few
teams submitted runs for more than one test set
and only one team (UHH) submitted runs for all
test set (for one particular language).

For Spanish, the UHH team obtained consider-
able differences in BLEU score for Scielo (around
36), NHS (around 41) and Cochrane (around 48).
However, their system paper does not give much
insight on the reason for such differences (Duma
and Menzel, 2017). We can hypothesize that lower
scores in the Scielo datasets are due to the fact that
the reference translation is not a perfect transla-
tion of the source document and sentence align-
ment was performed automatically.

For French, the Hunter team obtained lower
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scores in the EDP test set (around 17) and higher
ones in the NHS (almost 23) and Cochrane test
sets (around 30). Similarly, the UHH team ob-
tained lower scores for the EDP (around 22) and
higher ones for Cochrane and NHS (around 31-
32). The reason for these differences is probably
the same as for the Scielo test set: this is an auto-
matically acquired test set, whose documents were
automatically aligned. While the quality of the au-
tomatic alignment is high (estimated at 88% accu-
racy for Scielo and 94% for EDP), we can also
note that the translations in these test sets are cre-
ated by the authors of the articles who are neither
professional translators nor native speakers of the
all the languages involved.

On the other hand, differences also occurred be-
tween the Cochrane and NHS test sets, although
these were manually translated by professionals.
Such differences were small for most systems (24
vs. 20 for Hunter, 22 vs. 19 for UHH, 25 vs. 21
for PIIJT), for German in the Cochrane and NHS
test sets, respectively. However, some cases show
larger differences, such as the uedin-nmt system
for Romanian (41 vs. 29 for Cochrane and NHS,
respectively). We observed that that the aver-
age sentence length is higher for Cochrane (with
some very long sentences included) while there
are many short sentence fragments in the NHS test
set. However, both can be problematic for MT as
this can scramble long sentences, and trip up over
sentence fragments since most of the training data
consists of full sentences.

5.5 Differences between manual and
automatic evaluations

We checked for differences between the manual
and automatic evaluations, i.e., whether a team
performed better than another in the manual eval-
uation but the other way round in the automatic
evaluation. We observed small differences for
Polish (Cochrane and NHS test sets) between the
Hunter and PIIJT teams, but these are probably not
significant and both systems have probably sim-
ilar performance. We observed the same for the
UHH and Hunter systems for German (NHS test
set). However, we found a more interesting con-
tradiction between Hunter and UHH systems for
French in both Cohrane and NHS test sets. UHH
obtained higher BLEU scores than Hunter (32-33
vs. 30 and 31-33 vs. 23, for Cochrane and NHS,
respectively). However, in the manual evaluation,

our expert chose Hunter as being better than UHH
in many more sentences (40 vs. 8 and 67 vs. 6,
respectively).

5.6 Quality of the automatic translations
We provide an overview of the quality of the trans-
lations and the common errors that we identified
during the manual validation.

Czech: The outputs of the weaker system, PIIJT,
were rather unsurprising, featuring a wide range of
well-known issues of phrase-based SMT, includ-
ing inflection errors that violate both long-distance
and short-distance morphological agreement, er-
rors in missing or surplus negation, untranslated
and uninflected rare words, wrong disambiguation
of word meanings, etc. On the other hand, the
quality of the neural uedint-nmt system is remark-
ably better, with no negation errors spotted, agree-
ment errors generally limited to long-distance de-
pendencies, only rare disambiguation errors (of-
ten domain-specific, e.g. “drug”, “study”, “re-
view”), and a much bolder attempt at handling
unknown or rare words. On one hand, we spot-
ted cases where it would have been better to leave
the word untranslated, or to only perform mod-
est transliterations, as in “haemoglobin”, which
is similar enough to the “hemoglobin” used in
Czech to be understandable as it is, but got trans-
lated to “hemoroidy” (“hemorrhoids”) instead; on
the other hand, both correct and incorrect transla-
tions of rare words were nearly always correctly
inflected. Occasionally, we also noticed a missing
or surplus word – especially with auxiliaries, such
as reflexive pronouns or forms of the verb “be”.

English: Overall, the assessor found the qual-
ity of translations into English improved from
2016. Some of the problems observed in the prior
year persisted, including inappropriate capitaliza-
tion of terms (terms were capitalized although
they were neither proper nouns nor acronyms) for
some translations. Other issues such as incor-
rect word order as well as untranslated and miss-
ing words were observed. Especially in fr2en
translations, incorrect word order occurred when
the noun-before-adjective grammar in French was
erroneously preserved in English; for instance,
“douleur oro-faciale” was translated as “pain oro-
facial”. Sometimes, however, untranslated words
could still be deciphered because the French words
were similar to the English equivalents, such as
“biomatériaux” vs. “biomaterials”, and “tolérance
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immunologique” vs. ”immunological tolerance”.
As for missing words, translations were severely
impacted when entire phrases were omitted, for
instance when two consequences of a procedure
were reduced to only one.

French: The quality of translations varied from
poor to good. The issues that we encountered
were similar to last year and included grammati-
cal errors such as incorrect subject/verb or adjec-
tive/noun agreement, untranslated passages, incor-
rect lexical choice due to a lack of word sense dis-
ambiguation. One recurring mistake was the trans-
lation of the term “female” as “femelle”, which is
appropriate for animals instead of “femme”, which
is appropriate for humans. This year, the best sys-
tems showed an ability to successfully translate
some acronyms. However, complex hyphenated
terms remained challenging (for example, “38-
year-old”, “mid-60s”, “immunoglobulin-like”).

German: Overall, the quality of translations to
German ranges from very good to poor. Com-
paring between the different systems, the transla-
tion with the better syntax, grammar and use of
technical terms was preferred. When both transla-
tions were equally bad their performance was as-
signed equal. Poor translations are mostly char-
acterized by incorrect syntax and grammar. Syn-
tactic errors are usually due to missing predicates,
the usage of two or more predicates in one sen-
tence, and strange word order, especially in long
sentences. This often led to confusion or even not
understanding the meaning of a sentence. Usual
grammar errors included incorrect conjugation of
verbs as “wir suchte” instead of “wir suchten”
(we searched). In well performing systems syn-
tax and grammar are often correct. Their differ-
ence to the reference is often due to not using the
most appropriate word. This does not influence
the meaning of the sentence. Only as a native
speaker one would rather use a different word. All
systems seem to have problems with certain tech-
nical terms. Usually this occurs when the Ger-
man translation is very different from the English
term. For instance, “to restart a person’s heart” is
often word-by-word translated into “Neustart des
Herzen” while in German this procedure is called
“Reanimation des Herzens”. The pairwise evalua-
tion of the two best performing teams (LMU and
uedin-nmt) indicates, that they often provide simi-
lar sentences in terms of grammar and token order.

Portuguese: Only one team (UHH) submitted
translation for Portuguese (Scielo dataset). In
comparison to submissions from the previous
challenge (Bojar et al., 2016), we found the qual-
ity of the translations considerably better. As ex-
pected, longer sentences usually contained more
mistakes and were harder to understand than
shorter sentences, usually due to the wrong place-
ment of the commas and conjunctions (e.g., and).
For instance, the translation “diâmetro tubular, al-
tura do epitélio seminı́fero e integridade” was de-
rived from the English version of the reference
clause “diâmetro dos túbulos seminı́feros, altura e
integridade do epitélio seminı́fero”. However, the
same can be also stated for some reference sen-
tences, which could have a higher quality.

Regarding more common mistakes, we ob-
served missing articles, such as “Extratos veg-
etais” versus “Os extratos das espécies vege-
tais”. However, we observed fewer instances
of untranslated English words in comparison
to last year, which seems to indicate a bet-
ter coverage of the biomedical terminology. In
some sentences, such cases were observed for
terms which were skipped by the translation
system, such as “método de manometria de
alta resolução” for “high-resolution manometry
method for esophageal manometry”. The same
mistake was observed for acronyms, e.g., DPS
(death of pastures syndrome) instead of SMP
(sı́ndrome da morte das pastagens). However, we
also found correct translations for acronyms, e.g.,
SII (sı́ndrome do intenstino irritavel) instead of
IBS (irritable bowel syndrome). Finally, we ob-
served other minor mistakes: (a) nominal concor-
dance, e.g., “O fortalecimento muscular progres-
siva”; (b) wrong word ordering, e.g., “plantadas
áreas florestais” instead of “áreas florestais plan-
tadas”; (c) wrong verb tense, e.g., “coeficiente de
correlação linear de Pearson spearmans determi-
nado” instead of “determinou”; (d) wrong verb
conjugation, e.g, “a umidade relativa, temperatura,
velocidade do vento e intensidade de luz foi...”, in-
stead of “foram”; and (e) no contraction when nec-
essary, e.g., “em as” instead of “nas”.

Spanish: Compared to last year’s challenge
translations, the quality of the translations into
Spanish is significantly better. Despite some small
variations, many of the produced translations are
valid translations of the original text. There are
still cases in which there are mistakes such as with
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verb tenses “a menudo oı́r voces”, which should
be “a menudo oyen voces”. There are translations
with similar meaning but not entirely the same
meaning such as “hace aparecer” vs. the reference
translation “ocurren”. In some cases, there are
some incorrect phrases such as “teléfono NHS in-
formar sobre” vs. the reference translation “llame
por teléfono el sistema informativo de NHS en”.
Translation systems seem to have better alignment
between masculine/feminine and singular/plural
articles as compared to last year. In addition, the
number of missing words is lower in the Spanish
submissions.

Romanian: The quality varied from good trans-
lations to clearly underperforming ones. When
both translations were good, the one that was
grammatically correct was preferred. When one
used an awkward language or did not use domain-
specific terms such as “traumatism cranian” or
“presiune intracraniana”, the other one was pre-
ferred. We noticed that these translations can be
very dangerous, especially when the form is good
(and thus the appearance of quality is high). For
instance, in one case, “vasopressor” was trans-
lated as “vasodilatatoare”, which is the precise
antonym. A frequent mistake was the transla-
tion of “trials” as “procese”, which would have
been correct for “law suits” but not for clinical tri-
als. Somewhat confusing was translating “nore-
pinephrine” as “noradrenaline”, as they look dif-
ferent but are two names of the same substance.
For the bad and very bad translations, errors
abounded up to the point that both were equally
useless and therefore marked as equal (in the sense
of equally bad); this happened quite often. In gen-
eral, we preferred translations that did not mis-
lead and were still possible to understand despite
their many flaws. Among the frequent transla-
tion errors, we identified the following: untrans-
lated words, grammatical errors (case, gender),
random characters and even Cyrillic (for no ap-
parent reason) and context which were frequently
not considered (e.g. “shots” translated to “gloante”
and “impuscaturi”, those words having to do with
weapons not with syringes). Other strange errors
included unrelated words from other fields, espe-
cially “subcontractantul copolimerului” or “trans-
ductoare AFC”.

6 Conclusions

We presented the results of the second edition of
the Biomedical task in the Conference for Ma-
chine Translation. The shared task addressed a to-
tal of ten languages and received submission from
seven teams. In comparison to last year, we ob-
served an increase on the performance of the sys-
tems in terms of higher BLEU scores as well as an
improvement in the quality of the translations, as
observed during manual validation. The methods
used by the systems included statistical and neural
machine translation techniques, but also incorpo-
rated many advanced features to boost the perfor-
mance, such as domain adaptation.

Despite the comprehensive evaluation that we
show here, there is still room for improvement
in our methodology. All by professionals were
rather small (up to 1000 sentences), which means
that some of the our conclusions might not hold
on a larger benchmark. Further, we did not per-
form statistical tests when ranking the various sys-
tems and runs in both manual and automatic eval-
uations. Furthermore, each combination of two
translations or one translation and reference was
evaluated by a single expert, given the high num-
ber of submissions and the difficulty of finding
available experts. On the other hand, most results
obtained through manual validation were consis-
tent with the automatic validation, suggesting that
automatic scoring is sufficiently meaningful.
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Abstract

This paper describes the neural and
phrase-based machine translation systems
submitted by CUNI to English-Czech
News Translation Task of WMT17. We
experiment with synthetic data for training
and try several system combination tech-
niques, both neural and phrase-based. Our
primary submission CU-CHIMERA ends
up being phrase-based backbone which in-
corporates neural and deep-syntactic can-
didate translations.

1 Introduction

The paper describes CUNI submissions for
English-to-Czech WMT 2017 News Translation
Task. We experimented with several neural ma-
chine translation (NMT) systems and we further
developed our phrase-based statistical machine
translation system Chimera, which was our pri-
mary system last year (Tamchyna et al., 2016).

This year, we planned our setup in a way that
would allow us to experiment with neural system
combination. To this end, we reserved the pro-
vided English-Czech parallel data for the training
of the system combination and trained our “indi-
vidual forward systems” on almost only synthetic
data.

The structure of the paper is the following. In
Section 2, we provide an overview of the relatively
complex setup. Section 3 details how the train-
ing data for all the systems were prepared, includ-
ing the description of MT systems used for back-
translation. Section 4 is devoted to our individual
forward translation systems, each of which could
actually serve as a submission to the translation
task. We do not stop there and train system com-
binations in Section 5. In Section 6, we present the

systems we actually submitted to WMT17 and we
conclude by Section 8.

2 Setup Overview

Our setup this year is motivated by the ability to
use all the parallel data for system combination
training. The overall sequence of system training
is the following:

1. Use available monolingual data and last
year’s systems to prepare a synthetic parallel
corpus using “back translation” (Section 3).

2. Train “individual forward systems” on this
synthetic corpus (Section 4).

3. Apply individual forward systems to the
source side of the genuine parallel data.

4. Train a (neural) system combination on this
dataset (Section 5).

5. Apply individual forward systems to the test
set and apply the trained combination system
to their output (Section 5).

Each of the steps is fully described in the
respective section of this paper. By “back-
translated” data we mean that for English-
to-Czech translation task, we created a syn-
thetic English-Czech parallel corpus by “back-
translating” Czech monolingual data into English.
To distinguish back-translation Czech-to-English
systems and the English-to-Czech systems to be
submitted, we will call Czech-to-English systems
“back-translation systems” and English-to-Czech
systems “forward(-translation) systems”.

3 Data Preparation

The section describes the data used for training of
both Czech-to-English back-translation systems as
well as English-to-Czech forward systems.
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Corpus Sentences Tokens Cs Tokens En
Synthetic corpora

NematusNews 59 190 187 985 887k 1 196 366k
MosesNews 59 146 101 985 017k 1 173 839k

XenC extracted corpora
XenCNews 20 415 268 289 472k 334 322k
XenCMonoNews 12 498 680 95 687k 103 193k

Development corpora
Dev 2 656 46k 55k
Eval 2 999 57k 67k

Table 1: Datasets

3.1 Back-Translated Data

To create back-translated data, we used the CzEng
1.6 Czech-English parallel corpus (Bojar et al.,
2016) and the Czech News Crawl articles released
for WMT20171 (called “mononews” for short).

We used two different back-translation systems:
Moses (Koehn et al., 2007) trained by ourselves,
and Marian2 (known as AmuNMT before it in-
cluded NMT training; Junczys-Dowmunt et al.,
2016) using the pretrained Nematus (Sennrich
et al., 2017) models3 from WMT16 News Task.4

We used only the non-ensembled left-to-right
run (i.e. no right-to-left rescoring as done by Sen-
nrich et al., 2016a) with beam size of 5,5 taking
just the single-best output.

The Moses-based system used only a single
phrase table translating from word form to word
forms and twelve 10-gram language models built
on individual years of English mononews.

We took all Czech mononews corpora available
this year, concatenated and translated them using
both systems described above and thus created two
back-translated corpora on which we planned to
train our forward systems.

The “Synthetic corpora” section of Table 1
shows the numbers of sentences and tokens of the
resulting corpora. Despite having started with the
same Czech monolingual corpus, the number of
sentences differs slightly due to minor technical
issues encountered by Moses.

In the following, the synthetic corpora created
by the two MT systems will be referred to as Ne-
matusNews and MosesNews, respectively.

1http://www.statmt.org/wmt17/
translation-task.html

2https://github.com/marian-nmt/marian
3http://data.statmt.org/rsennrich/

wmt16_systems
4We decided to use Marian instead of Nematus since it

was faster at the time we performed the translation.
5We chose beam size of 5, since our primary goal was to

produce a 5-best list.

3.2 Domain-Selected Genuine Parallel Data

For the training of forward translation systems, we
used primarily the synthetic corpora described in
Section 3.1 above but also some additional sources
described in this section.

The first source to mention is CzEng 1.6. We
did not use the whole corpus as we did in our
WMT16 submission (Tamchyna et al., 2016). In-
stead, we used the XenC toolkit (Rousseau, 2013)
to extract domain-specific data from the whole
corpus (referred to as “out-of-domain”, in the fol-
lowing). We used two modes of XenC. Both
of these modes estimate two language models
from in-domain and out-of-domain corpora, using
SRILM toolkit (Stolcke, 2002). The first mode
is a filtering process based on a simple perplex-
ity computation utilizing only one side of the cor-
pora so that monolingual corpora are sufficient and
the second mode is based on the bilingual cross-
entropy difference as described by Axelrod et al.
(2011).

We took two different corpora as our in-domain
data:

• News section of CzEng 1.6 – which had
197 053 parallel English-Czech sentences.
The extraction was performed both monolin-
gually (perplexity) and bilingually (bilingual
cross-entropy difference).

• Concatenated mononews corpora – which
had 59 190 187 Czech sentences. The extrac-
tion was performed only monolingually.

The two different in-domain corpora were used
because we wanted to estimate which of them
would lead to better extracted corpus – a small
parallel in-domain corpus or a larger monolingual
corpus.

Based on these two representatives of in-
domain texts, we extracted sentences from CzEng
1.6. We took top 20% of sentence pairs extracted
monolingually (see XenCMonoNews in the sec-
tion “XenC extracted corpora” in Table 1) and
top 20% of sentence pairs extracted monolingually
and bilingually (see XenCNews) in the same ta-
ble. For XenCNews corpus monolingual and bilin-
gual sentence extractions were made separately
and then the results were unioned, i.e. concate-
nated and duplicates removed.

For the development and evaluation purposes,
we used WMT2015 and WMT2016 test sets, re-
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spectively, see the “Development corpora” section
in Table 1.

Finally, what we are combining, are the outputs
of several forward translation systems: Nematus,
Neural Monkey and TectoMT. During the devel-
opment, we used the outputs of these systems on
the test sets of WMT 2015 and 2016. For the test
run, we translated the source of WMT news test
set 2017.

All the corpora were tokenized using Mor-
phoDita (Straková et al., 2014), i.e. even for
synthetic corpora and combined systems, we de-
BPE’d and detokenized the MT outputs and re-
tokenized them.

4 Individual Forward Systems

This section describes our English-to-Czech sys-
tems. Each of them could be submitted to WMT17
but we combine them into just one system, see
Section 5 below.

4.1 Baseline Nematus
We used Marian (formerly known as AmuNMT)
(Junczys-Dowmunt et al., 2016) with pretrained
English-to-Czech Nematus models6 from
WMT16 News Task as our baseline/benchmark
and we also later included it in the final combined
submission.

We used only the non-ensembled left-to-right
run (i.e. no right-to-left rescoring as done by Sen-
nrich et al., 2016a) with beam size of 12 (default
value).

4.2 Neural Monkey
We use Neural Monkey7 (Helcl and Libovický,
2017), an open-source neural machine translation
and general sequence-to-sequence learning toolkit
built using the TensorFlow machine learning li-
brary.

Neural Monkey is flexible in model configura-
tion but for forward translation, we restrict our ex-
periments to the standard encoder-decoder archi-
tecture with attention as preposed by Bahdanau
et al. (2015). (Attempts to combine MT systems
with Neural Monkey are described in Section 5.2
below.) We use the following model parame-
ters which fit into 8GB GPU memory of NVIDIA
GeForce GTX 1080. The encoder uses embed-
dings of size 600 and the hidden state of size 600.

6http://data.statmt.org/rsennrich/
wmt16_systems

7http://ufal.mff.cuni.cz/neuralmonkey

Dropout is turned off8 and maximum input sen-
tence length is set to 50 tokens. The decoder
uses attention mechanism and conditional GRU
cells (Firat and Cho, 2016), with the hidden state
of 600. Output embedding has the size of 600,
dropout is turned off as well and the maximum
output length is again 50 tokens. We use batch
size of 60.

To reduce vocabulary size, we use byte pair en-
coding (Sennrich et al., 2016b) which breaks the
all words into subword units defined in the vocab-
ulary. The vocabulary is initialized with all letters
and larger units are added on the basis of corpus
statistics. Frequent words make it to the vocab-
ulary, less frequent words are (deterministically)
broken into smaller units from the vocabulary.

We set the vocabulary size to 30,000 subword
units. The vocabulary is constructed jointly for the
source and target side of the corpus and it is then
shared between encoder and decoder.

During the inference, we use either greedy de-
coding or beam search with beam size of 50.9

4.3 Chimera 2016

The last individual forward system was based on
CUNI’s last year submission (Tamchyna et al.,
2016). We experimented with several setups, see
the list in Table 2.

Chimera itself is a hybrid system combination
and we used the technique both here as an individ-
ual system as well as below in Section 5.3 for our
final system combination.

The main components of the individual
Chimera system are:

• Synthetic phrase table extracted from the
main training data, ie. either or both of Ne-
matusNews and MosesNews as listed in Ta-
ble 1.

• In-domain phrase table extracted from ei-
ther or both of XenCNews and XenC-
MonoNews.

• Operation Sequence Model (Durrani et al.,
2013) trained on the NematusNews corpus.

8While dropout is useful for small datasets, Sennrich et al.
(2016a) observed no gain from dropout with 8M training sen-
tence pairs. Our training data is more than 7× larger.

9In contrast to what Tu et al. (2017, Table 1) observe for
other implementations of the Bahdanau et al. (2015) model,
Neural Monkey does not exhibit degradation of the quality of
the top candidate with increasing beam size. We have thus no
reason to keep beam size as small as usual.
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Phrase Tables Additional BLEU Avg. BLEU
1. XenCNews + TectoMT - 20.88 -
2. XenCMonoNews + TectoMT - 20.08 -
3. NematusNews OSM 20.60 -
4. MosesNews + TectoMT - 20.79 -
5. Mix(NematusNews, XenCNews) + TectoMT - 21.60 -
6. Mix(NematusNews, XenCMonoNews) + TectoMT OSM 21.70 21.6
7. Mix(NematusNews, XenCMonoNews) + TectoMT - 21.87 21.7
8. Mix(MosesNews, XenCNews) + TectoMT - 21.30 -
9. Mix(MosesNews, XenCMonoNews) + TectoMT - 20.96 -
10. Mix(MosesNews, NematusNews) + TectoMT - 21.67 -
11. Mix(MosesNews, NematusNews, XenCMonoNews) + TectoMT - 21.52 -
12. Mix(Moses, Nematus, XenCMonoNews, XenCNews) + TectoMT - 21.81 -

CHIMERA-TECTOMT-DEPFIX (secondary submission)
Mix(NematusNews, XenCMonoNews) + TectoMT - 21.65 21.8

Table 2: Chimera-style combinations of various individual forward systems on WMT 2016 News.

• TectoMT phrase table (Žabokrtský et al.,
2008) – a phrase table extracted from the
outputs of TectoMT, a transfer-based deep-
syntactic system, applied to the source side
of the development and test sets.

The common components for all the tested sys-
tems are language models, which were taken from
CUNI’s last year submission. For some experi-
ments we have used up to 4 phrase tables sepa-
rately as Moses alternative decoding paths, trust-
ing MERT (Och, 2003) to estimate weights. Al-
ternatively (or when the number of the phrase ta-
bles would be even higher), we used the standard
Moses phrase table mixing technique with uni-
form weights. Phrase tables mixed into one be-
fore MERT are listed as “Mix(table1, table2, ...)”
in the following.

MERT was done using the WMT2015 test set,
and our internal evaluation was performed on
WMT2016 test set, but with a different tokeniza-
tion so the scores reported here are not directly
comparable to the results at http://matrix.
statmt.org/.

We report the results in Table 2, listing the used
phrase tables and optionally OSM. The column
“Average BLEU” was calculated based on 5 sepa-
rate MERT runs.

It seems that training only on (in-domain) syn-
thetic data is a viable option, lines 3 and 4 in Ta-
ble 2 perform reasonably good and mixing the two
sources of the synthetic data into one phrase ta-
ble (line 10) instead of using the two of them si-
multaneously lead to an improvement of almost
1 BLEU point. At the same time, genuine paral-
lel (and again in-domain) training data is equally
good as each of the synthetic corpus, even if
much smaller, see lines 1 and 2 trained on up

to 20M sentence pairs instead of 59M synthetic
sentences. Selecting the genuine parallel sen-
tences both bilingually and monolingually (XenC-
News) works usually better than selecting them
only monolingually (XenCMonoNews), but there
is a significant difference in corpus size so the
numbers are not directly comparable.

The best-performing setup used the synthetic
corpus created by Nematus (NematusNews), the
(surprisingly) monolingually selected genuine
parallel data (XenCMonoNews) and TectoMT
(line 7 in Table 2). We used this setup as our
main phrase-based translation system and also
submitted is as a contrastive system under the
name CHIMERA-TECTOMT-DEPFIX. Difference
between line 7 and submitted system is in the Tec-
toMT phrase table – line 7 system had TectoMT
phrase-table without WMT 2017 test set, because
internal evaluation was performed prior to the re-
lease of this test set.

5 Forward System Combination

This sections describes our experiments with sys-
tem combination. We tried two neural and one
Chimera-style approach.

As described in Section 3, the genuine paral-
lel training data from CzEng was not directly used
for the training of the forward systems (except for
Chimera) so we could use this data to train our
neural combination systems. We again opted to
use only domain-specific part of CzEng, so we
trained the systems on XenCNews as listed in Ta-
ble 1.
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5.1 Concatenative Neural System
Combination

We experiment with system combination made by
simple concatenation of individual system outputs
together, inspired by Niehues et al. (2016).

To train the neural combination system, we cre-
ate a synthetic parallel corpus with the following
three sentences on the source side:

• Nematus English-to-Czech translation

• Neural Monkey English-to-Czech translation

• English source sentence

The sentence triples are concatenated with
spaces between them, forming a single input string
of tokens. The target side remains the same, i.e.
a single Czech target sentence. As shown by
Niehues et al. (2016), the attention mechanism is
capable of synchronously following the source and
one candidate translation, so we hoped it could fol-
low two candidate translations as well (with the
obvious complication due to much longer input se-
quences).

The translation system trained on such data
might benefit from distinguishing the words based
on the translation system they come from. We
therefore add labels in form of prefixes to each the
token to identify the originating the system (n- for
Nematus output, m- for Neural Monkey, and s- for
the English source).

We perform three experiments:

1. without labels,

2. with labels inserted before BPE splitting,
which means that only the first part of indi-
vidual tokens has the prefix,

3. with labels inserted after BPE splitting.

For training, we use Nematus NMT system
(Sennrich et al., 2017), using shared vocabulary of
size 50,000, RNN size 1024, embedding size 500,
and batch size 80. The maximum sentence length
is tripled to 150, instead of standard value of 50.

The results are in Table 3. It is obvious that
the additional labels do not help. The best results
were achieved without using labels and more la-
bels worsen the final BLEU score. However, the
concatenative system combination did not bring
any improvement over the individual systems, it
is worse than the best single system Nematus by

System BLEU
Nematus 24.4
Neural Monkey 22.9
combination without labels 21.4
combination labelled before BPE 21.2
combination labelled after BPE 20.4

Table 3: Concatenative combination BLEU scores
on WMT2016 News and comparison with the sin-
gle systems.

3 BLEU points. This was partially caused by too
short training time (about one week, 420,000 iter-
ations, batch size 80).

We inspected the attention scores and confirmed
that the decoder used all three sentences, however
it prefers the Nematus translation and the English
source sentence. It pays less attention to the Neu-
ral Monkey translation, which is understandable
since the translation quality is lower.

5.2 Neural Monkey System Combination

Neural Monkey supports multiple encoders and
a hierarchical attention model (Libovický et al.,
2016). Due to time constraints, we did not finish
these experiments for WMT17 but the work is still
in progress.

The idea is to use a separate encoder for each
input sentence and to combine their outputs before
passing them to the target sentence decoder. The
final encoder states are simply concatenated (and
optionally resized by a linear layer) and the hid-
den states are all passed to the decoder for atten-
tion computation without distinguishing which en-
coder generated them. Libovický and Helcl (2017)
suggest also other strategies for combining atten-
tion from multiple source encoders and we plan to
further investigate them in the near future.

Since we are trying to combine outputs gener-
ated by Nematus and Neural Monkey, both trained
on subword units, we decided to try a character-to-
character architecture as introduced in Lee et al.
(2016) for system combination, expecting better
results due to differences in the used architectures.
In the future, we also plan comparing this ap-
proach to the subword-level multi-encoder system
combination.

We trained a baseline model using GeForce
GTX 1080 with 8GB memory. We used a shared
vocabulary of size 500 for all encoders and de-
coder. We used RNN size 256 and embedding
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Tables BLEU Avg. BLEU
1. Moses + Mix(TectoMT, Nematus, Neural Monkey 50) * 24.11 24.1
2. Moses + Mix(TectoMT, Nematus, Neural Monkey 1) 24.17 24.3
3. Moses + Mix(TectoMT, Nematus, Neural Monkey) 23.86 23.9
4. Moses + TectoMT + Mix(Nematus, Neural Monkey) 23.82 23.9
5. Moses + Neural Monkey + Mix(TectoMT, Nematus) 23.75 23.7
6. Moses + Nematus + Mix(TectoMT, Neural Monkey) 23.87 23.9
7. Moses + Nematus + Neural Monkey + TectoMT 23.82 23.7
8. Moses + Nematus + Neural Monkey 23.82 23.7
9. Moses + TectoMT + Nematus 23.57 -
10. Moses + TectoMT + Neural Monkey 50 23.57 -
11. Moses + TectoMT + Neural Monkey 1 23.36 -
12. Moses + TectoMT + Neural Monkey 22.96 22.9
13. Moses + Neural Monkey 22.43 22.4
14. Moses + TectoMT 21.65 21.8

Table 4: Chimera system combination evaluation on WMT 2016 News. Submitted systems in bold, with
the primary marked with *.

300 for each encoder, highway depth of 2 and
set of convolutional filters scaled down to fit the
smaller memory and taking multiple encoders into
account. The decoder RNN size was 512 and used
embedding size 500. We trained the model for 10
days and obtained the BLEU score of 14.69 on
the newstest2016 EN-CS development set. This
is much lower than the individual combined sys-
tems.

The system performed poorly overall and we
have to investigate whether the main reason for the
failure is the character-to-character approach, the
multi-encoder architecture, their combination, or
simply some bugs in implementation. Further ex-
periments are planned for the future to be able to
draw better conclusions.

5.3 Chimera System Combination

Given the poor performance of our neural sys-
tem combinations, we decided to try the same
Chimera-style combination with all available sys-
tems, i.e. Nematus, Neural Monkey and Chimera
2016 described in Section 4.

We took the best phrase tables combination
from Section 4.3: (1) A combination of mixed
NematusNews and XenCMonoNews phrase table
(called simply “Moses” in Table 4 because it is the
phrase-based basis of the system), (2) phrase ta-
ble generated from TectoMT output and (3) tried
to add phrase tables extracted from Nematus and
Neural Monkey translations of WMT2015–2017
test sets.

For Neural Monkey, we had several setups to
extract phrase tables from:

• Neural Monkey – the output of the system de-
scribed in Section 4.2 using greedy decoding,

• Neural Monkey 1 – decoding with beam
search of 50 and taking only the first candi-
date translation to the phrase table,

• Neural Monkey 50 – decoding with beam
search of 50 and taking all 50 candidate trans-
lations to the phrase table,

All combinations we have experimented with
are shown in Table 4. The last column “Average
BLEU” was calculated the same way as it was
done in Section 4.3. Also the same 5 MERT runs
were used for MultEval evaluation (Clark et al.,
2011).

Basically, Table 4 confirms the well-know say-
ing “more data helps”. Using translations from
different systems as additional phrase tables gave
on average a 2.5 BLEU score boost, if we compare
rows 1 or 2 and row 14.

We also see that using more than three phrase
tables might lead to a lower BLEU score: Con-
sider the system in the row 7 with four separate
phrase tables (Avg. BLEU 23.7) and the system
in the row 3 where three of the tables were first
merged into one (Avg. BLEU 23.9). Moreover,
Multeval comparison showed no significant differ-
ence between systems from rows 7 and 8, despite
the effect of adding TectoMT table is generally
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Systems Depfix News2017
Moses+TectoTM+Neural Monkey 50+Nematus * + 20.5
Moses+TectoTM+Neural Monkey 1+Nematus + 20.4
Moses+TectoTM+Neural Monkey 50 + 19.9
Neural Monkey 1 - 19.3
Moses+TectoTM + 18.3

Table 5: Submitted systems comparison. Asterisk (*) denotes our primary submission, CU-Chimera.

# Ave % Ave z BLEU TER CharacTER BEER System
1 62.0 0.308 22.8 0.667 0.588 0.540 uedin-nmt
2 59.7 0.240 20.1 0.703 0.612 0.519 online-B
3 55.9 0.111 20.2 0.696 0.607 0.524 limsi-factored-norm

55.2 0.102 20.0 0.699 - - LIUM-FNMT
55.2 0.090 20.2 0.701 0.605 0.522 LIUM-NMT
54.1 0.050 20.5 0.696 0.624 0.523 CU-Chimera
53.3 0.029 16.6 0.743 0.637 0.503 online-A

8 41.9 -0.327 16.2 0.757 0.697 0.485 PJATK

Table 6: Official results for English-to-Czech primary systems and some automatic metrics as evaluated
by http://matrix.statmt.org/. For *TER metrics, lower is better.

positive. When TectoMT is added as the fourth
table, MERT can probably no longer optimize the
system to benefit from it.

We selected the system combination with Neu-
ral Monkey 50 as our primary submission (Avg.
BLEU 24.1), because we believed, that it would be
beneficial to have more translation variants. Un-
fortunately, we found only later that MultEval in-
dicates a significant difference between systems
from rows 1 and 2, supporting the single-best out-
put of Neural Monkey (Avg. BLEU 24.3).

6 Results and Discussion

Our submitted systems are shown in Table 5. Dep-
fix (Rosa et al., 2012) was applied only for the final
submission. Scores in the last column are BLEU-
cased evaluation results taken from https://
matrix.statmt.org.

It is interesting to notice that Neural Monkey
trained only on synthetic dataset preformed better
than Moses trained on synthetic dataset with addi-
tional in-domain data.

One point of further investigation is to find out
whether the combination of Moses and Neural
Monkey is better because Moses provided some
useful phrases or because it merely re-ranked Neu-
ral Monkey results of beam search output.

The next point is to experiment with mixing
phrase tables techniques, examining e.g. non-

uniform weights.
Table 6 displays the official results of English-

to-Czech translation. We see that our CU-Chimera
was second in terms of BLEU (20.5) and shared
the second position with limsi-factored-norm in
terms of TER (0.696) but considerably lost in
manual evaluation, sharing the third rank with four
other systems. For us, this confirms that BLEU
overvalues short sequences that our phrase-based
backbone of CU-Chimera was good at.

To summarize our results, we were able to con-
siderably improve over our setup from the last year
by adding the outputs of NMT to our strong com-
bined system. Unfortunately, we failed in imple-
menting neural system combination, mainly due
to technical difficulties, and our final system thus
suffers from the well-known limitations of PBMT.

7 Related Work

The idea of combining phrase-based and neural
systems is not novel. Our concatenative approach
follows Niehues et al. (2016) who saw PBMT as a
pre-processing step and added the output of PBMT
to the input of NMT system, obtaining improve-
ments over a good-performing NMT ensemble of
more than 1 BLEU for two different test sets for
English-German translation.

Cho et al. (2016) use a weaker approach to sys-
tem combination, mixing n-best lists of several
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variations of NMT systems (including those that
already included PBMT output)

The multi-encoder approach we describe in
Section 5.2 was very recently successfully applied
by Zhou et al. (2017). The main difference in
the application is that we tried to use character-
level encoders instead of standard sub-word units,
which was clearly overly ambitious given our lim-
ited computing and time resources.

8 Conclusion

In the paper, we presented our experiments with
both phrase-based and neural approaches to ma-
chine translation.

Our results document that synthetic datasets can
be nearly as good as genuine in-domain parallel
data.

We experimented with three different ap-
proaches to MT system combination: two neural
ones and one phrase-based. Due to time and re-
source limitations, we were not successful with
the neural approaches, although there are good
reasons (and new evidence) that they were very
promising.

CU-Chimera, our primary submission to the
WMT17 News Translation Task ends up being a
phrase-based backbone which includes neural and
deep-syntactic candidate translations.
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Abstract

This paper describes LIMSI’s submissions
to the news shared task at WMT’17 for
English into Czech and Latvian, as well
as related experiments. This year’s novel-
ties consist in the use of a neural machine
translation system with a factored output
predicting simultaneously a lemma deco-
rated with morphological information and
a fine-grained part-of-speech. Such a type
of system drew our attention to the spe-
cific step of reinflection, where lemmas
and parts-of-speech are transformed into
fully inflected words. Finally, we ran ex-
periments showing an efficient strategy for
parameter initialization, as well as data fil-
tering procedures.

1 Introduction

The contribution of LIMSI laboratory to the WMT
2017 News shared task consisted in the submis-
sion of different systems for English-to-Czech, as
well as with this year’s “guest” language pair:
English-to-Latvian.

Our main focus was on translation into mor-
phologically rich languages (MRL), a challenging
question in current state-of-the-art neural machine
translation (NMT) architectures. Indeed, the va-
riety of target word forms in these languages re-
quires the use of an open vocabulary. To tackle this
issue, we have experimented with a factored neu-
ral machine translation system predicting simulta-
neously at each timestep a normalized word and a
fine-grained part-of-speech (section 3). A normal-
ized word (section 5.2) is a specific representation
where we removed part of the morphological con-
tent of the word, keeping only the features that are
relevant to the source language.

Such a factored architecture required a non-
trivial step consisting in reinflecting the MT pre-
dictions, i.e. transforming normalized words and
parts-of-speech into fully inflected words. To this
end, we have experimented with a character-based
language model that is used to select ambigu-
ous word forms returned by a look-up table (sec-
tion 5.5).

Further experiments show the use of an auto-
encoder to initialize the NMT system’s encoder
(section 4.1), which enables a faster convergence
of the parameter and therefore a lower training
time.

Finally, we report experiments performed with
different data filtering procedures (section 4.2) and
their impact on translation quality.

2 Data and Preprocessing

The pre-processing of English data relies on in-
house tools (Déchelotte et al., 2008). All the
Czech data were tokenized and truecased using the
Moses toolkit (Koehn et al., 2007). PoS-tagging
was performed with Morphodita (Straková et al.,
2014). The pre-processing of Latvian was pro-
vided by TILDE.1 Latvian PoS-tags were obtained
with the LU MII Tagger (Paikens et al., 2013). All
the data used to train our systems were provided at
WMT’17.2

For English-to-Czech, the parallel data used
consisted in nearly 20M sentences from a subset
of WMT data relevant to the news domain: News-
commentary, Europarl and specific categories of
the Czeng corpus (news, paraweb, EU, fiction).
Newstest-2015 was used for validation and the
systems are tested on Newstest-2016 and 2017.

All systems were also trained on synthetic par-
allel data (Sennrich et al., 2016a). The Czech

1www.tilde.com
2www.statmt.org/wmt17
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monolingual corpus News-2016 was backtrans-
lated to English using the single best system
provided by the University of Edinburgh from
WMT’16.3 We then added five copies of News-
commentary and the news subcorpus from Czeng,
as well as 5M sentences from the Czeng EU
corpus randomly selected after running modi-
fied Moore-Lewis filtering with XenC (Rousseau,
2013). This resulted in about 14M parallel sen-
tences.

The English-to-Latvian systems used all the
parallel data provided at WMT’17. The DCEP
corpus was filtered with the Microsoft sentence
aligner4 and using modified Moore-Lewis. We
kept the best 1M sentences, which led to a total of
almost 2M parallel sentences. The systems were
validated on 2k sentences held out from the LETA
corpus and we report results on newsdev-2017 and
newstest-2017.

Training was carried on with synthetic parallel
data. We used a backtranslation of the monolin-
gual corpora News-2015 and 2016 provided by the
University of Edinburgh (Moses system). To these
corpora were added 10 copies of the LETA corpus,
as well as 2 copies of Europarl and Rapid.

Bilingual Byte Pair Encoding (BPE) models
(Sennrich et al., 2016b) for each language pair and
system setup were learned on the bibtext (ie. not
synthetic) parallel data used for the MT system.
90k merge operations where performed to obtain
the final vocabularies.

3 System Setup

Results are reported for two NMT systems: Nema-
tus (Sennrich et al., 2017) and NMTPY (Caglayan
et al., 2017).

3.1 NMTPY

Once the data was preprocessed, only sentences of
a maximum length of 50 were kept in the training
data, except for the setup where cluster IDs were
split in normalized words (see § 5). In this case,
we set the maximum length to 100.

All NMTPY systems have an embedding di-
mension of 512 and hidden states of dimension
1024 for both encoder and decoder, which are im-
plemented as GRU units. Dropout is enabled on

3http://data.statmt.org/rsennrich/
wmt16_systems/

4http://research.microsoft.com/apps/
catalog/

source embeddings, encoder states, as well as out-
put layer. When training starts, all parameters are
initialized with Xavier (Glorot and Bengio, 2010).
In order to slightly speed up training on bitext par-
allel data, the learning rate was set to 0.0004, pa-
tience to 30 with validation every 20k updates. On
synthetic data, we finally set the learning rate to
0.0001 and performed validation every 5k updates.
These systems were tuned with Adam optimizer
(Kingma and Ba, 2014) and have been training for
approximately 1 month.

3.2 Nematus

The setup for Nematus is very similar to the one
presented in the previous section. Training was
performed on sentences with the same maximum
length, the same embedding and hidden unit size.
The difference lies in the fact that dropout for Ne-
matus systems was enabled on all layers. The op-
timizer used was Adadelta (Zeiler, 2012) and all
systems had their learning rate set to 0.0001.

4 Experiments

4.1 Parameter initialization

In order to speed up the convergence of the train-
ing procedure we tried to initialize the encoder pa-
rameters with an a priori-trained model, instead of
using random initialization. For the English-to-
Czech translation system, this initial model was
trained to translate from English into English. In
order to do so, the same English corpus was fed
into the neural model on both source and target
side. After few updates according to the BLEU
score on the validation set (which was higher than
99) it was possible to stop the training of this
model and use the encoder parameters for the ini-
tialization of the main NMT system.

4.2 Data Filtering

The English-Czech training data provided at
WMT’17 was very large and some corpora con-
tained a lot of noise. For instance, we noticed sev-
eral duplicate sentences in the Czeng EU paral-
lel corpus and entire paragraphs in it were in lan-
guages other than English-Czech. Therefore, we
decided to experiment with a system not contain-
ing the Czeng EU corpus. However, this lead to a
degradation in terms of BLEI (see Table 1).

In another attempt, instead of removing the EU
corpus, a filtering process was performed to dis-
card the duplicate sentences on both sides. As
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Figure 1: Comparison of different beam-size in
terms of BLEU. The evaluation is performed on
Newstest-2016 and Newstest-2017 English-Czech
filtered data.

shown in Table 1, filtering the data results in an im-
provement in terms of BLEU for Newstest-2017,
which is also consistent with the results we ob-
tained on Newstest-2016 and validation set.

The filtering process was later followed by a
sentence alignment check using the Microsoft sen-
tence aligner. However, no further improvement
was achieved with this method. The filtered-
only data has shown the best performance on both
Newstest-2016 and Newstest-2017 corpora.

Table 1: Comparison of BLEU scores of different
filtering processes for English-to-Czech with Ne-
matus systems. All the systems are evaluated with
the beam search of size 2. The term “basic” is
referred to the data without any filtering or align-
ment. The term discard EU is adopted to refer to
the training without Czeng EU corpus.

data filtering Newstest-2016 Newstest-2017
basic 18.66 15.67
discard EU 18.09 16.07
filt 19.31 16.37
filt+align 18.72 15.91

It is worthwhile to note that the model which
had the best BLEU score performance on the vali-
dation data (Newstest-2015) resulted in the BLEU
scores of 18.43 and 15.81 on Newstest-2016 and
Newstest-2017, respectively.

Figure 1 shows the accuracy wrt. different sizes
of beam during decoding. The model was trained
using the English-Czech filtered data as reported
in the filt row of the Table 1. We observed a sim-

ilar trend on both Newstest-2016 and Newstest-
2017, where the best performance was obtained
with a beam of size 3 for both test sets.

5 Submitted systems

5.1 Factored NMT
Additionally to standard NMTPY systems (base-
lines), our best submissions in terms of BLEU at
WMT’17 consisted in factored NMT systems.

The architecture of such systems was intro-
duced in (Garcı́a-Martı́nez et al., 2016). The spe-
cific setup we have used for the following factored
systems consisted in an architecture that enables
training towards a dual objective: at each timestep
in the output sentence, a word and a PoS-tag are
produced. Each one of these objectives produces a
cost, that is summed in order to compute the gra-
dients to be backpropagated.

The encoder and attention mechanism remain
the same as in the baseline architecture. While
in the baseline a decoder state takes as input the
embedding of the prediction made at the previous
step, a factored NMT decoder unit takes as input a
concatenation of the two previous predictions for
each factor. In this situation, the factored NMT
systems deal with two sets of embeddings on tar-
get side.

Another difference lies in the hidden-to-output
layer. In our setup, we have used an architec-
ture with two different such layers: the first one
takes as input the representation of the previous
prediction of the first factor (word) and the sec-
ond one takes the previous second factor predic-
tion (PoS). Each layer is then passed through a last
feed-forward layer leading to distinct softmax lay-
ers.

While various word representations (Burlot
et al., 2017) can be used in the first factor, our sys-
tem predict at each timestep on the target side a
normalized word and a PoS-tag.

fully infl. norm. words
plain kočky kočka+Noun+7
subword ko- čky ko- čka- Noun+7

Table 2: Different representations of the Czech
word kočky (cats).

5.2 Normalization of Target Morphology
Both Czech and Latvian are morphologically rich
languages, as opposed to the English source. Such
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

baseline 24.24 57.41 52.81 19.89 54.51 58.29
factored 23.77 57.50 52.53 19.95 54.71 58.30
+ nk-best 24.59 57.95 52.08 20.54 54.99 58.06

Table 3: Scores for English-to-Czech systems
Newsdev-2017 Newstest-2017

BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓
baseline 22.48 57.69 52.83 14.86 52.00 62.57
+ n-best 23.11 58.13 52.21 15.22 52.37 62.08
factored 21.33 57.11 53.56 15.10 52.19 62.52
+ nk-best 24.19 58.72 51.89 16.30 53.18 61.11

Table 4: Scores for English-to-Latvian systems

differences between the source and target lan-
guages leads to difficulties. Indeed, an English
adjective, that is invariable, may be translated into
multiple different word forms corresponding to the
same lemma. Such a variety of forms on the target
side leads to serious sparsity issues and makes the
estimate of reliable translation probabilities hard.

To address this issue, both Czech and Latvian
vocabularies have been normalized. The normal-
ization of a MRL consists in selecting the morpho-
syntactic information that should remain encoded
in a word. This selection is motivated by the fact
that a target word contains more specificities than
its source-side counterpart(s), leading to a lack of
symmetry between both languages. For instance,
when translating from English into Czech, target
nouns mark grammatical case, which is removed
in (Burlot et al., 2016) in order to make Czech
nouns look more like their English translation(s).

Such a normalization is usually performed us-
ing hand-crafted rules and requires expert knowl-
edge for each language pair. In this paper, nor-
malized words are obtained with an automatic
and data-driven method5 introduced in (Burlot and
Yvon, 2017a).

In a nutshell, it performs a clustering of the mor-
phologically rich language by grouping together
words that tend to share the same translation(s) in
English. In order to measure this translation sim-
ilarity and using word alignments, the conditional
entropy of the translation probability distribution
over the English vocabulary is computed for each
word form. The model merges two words when-
ever the resulting aggregate cluster does not lead
to an increase of conditional entropy, which guar-
anties a minimal loss of information during the

5The source code is available at github.com/
franckbrl/bilingual_morph_normalizer

clustering procedure.
The normalization model is delexicalized

and operates at the level of PoS. Each word
is represented as a lemma, a coarse PoS
and a sequence of morphological tags (e.g.
kočka+Noun+Sing+Accusative), therefore a
merge consists in grouping into one cluster two
different tag sequences. As a result of this pro-
cedure, we obtain words represented as a lemma
and a cluster identificator (ID), i.e. a coarse PoS
and an arbitrary integer, like kočka+Noun+7
in Table 2. In this example, the cluster ID
Noun+7 stands for a set of fine-grained PoS, like
{ Sing+Nominative, Sing+Accusative, ... }.

In our setup, the cluster ID was systematically
split from the lemma. BPE segmentation was thus
learned and applied to lemmas. Whenever the fac-
tored NMT system predicts a lemma in the first
factor, it is forced to predict a null PoS in the sec-
ond factor. On the other hand, when a split cluster
ID is predicted, the second factor should output
an actual PoS. This specific treatment of the sec-
ond factor is expected to give the system a better
ability to map a word to a PoS that is relevant to
it, thus avoiding, for instance, the prediction of a
verbal PoS for the Czech noun kočka (cat).

The normalization of the Czech data was trained
on the bibtext parallel data used to train the
MT systems (see § 2), except Czeng fiction and
paraweb subcorpora, which lead to over 10M sen-
tences. As for the normalization of Latvian data it
was trained on the same bitext parallel sentences
used to train the MT systems.

5.3 Reinflection

The factored systems predict at each time step a
normalized word and a PoS-tag, which requires a
non-trivial additional step producing sentences in
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Figure 2: Architecture of the neural reinflection model

a fully inflected language. We refer to this last step
as reinflection.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary lookup. In the
context of MRL, deterministic mappings from a
lemma and a PoS to a form are very rare. Instead,
the dictionary often proposes several word forms
corresponding to the same lexical unit and mor-
phological analysis.

A first way to address this ambiguity is to sim-
ply compute unigram frequencies of each word
form, which was done over all the monolingual
data available at WMT’17 for both Czech and Lat-
vian. During a dictionary lookup, ambiguities can
then be solved by taking the most frequent word
form. The downside of this procedure is that it
ignores important information given by the tar-
get monolingual context. For instance, the Czech
preposition s (with) will have different forms ac-
cording to the right-side context: s tebou (with
you), but se mnou (with me). A solution is to let
a word-based system select the right word form
from the dictionary. To this end, k-best hypothesis
from the dictionary are generated. Given a sen-
tence containing lemmas and PoS, we perform a
beam search going through each word and keep-
ing at each step the k-best reinflection hypothesis
according to the unigram model mentioned above.

For Czech word form generation, we used
the Morphodita generator (Straková et al., 2014).
Since we had no such tool for Latvian, all mono-
lingual data available at WMT’17 were automat-

ically tagged using the LU MII Tagger (Paikens
et al., 2013) and we gathered the result in a dictio-
nary. As one could expect, we obtained a large
quantity of word forms (nearly 2.5M), among
which a lot of noise was noticed.

5.4 Experimental Results

The systems we have submitted at WMT’17 are
more specifically the following:

• English-to-Czech baseline: Ensemble of 5
best models.

• English-to-Czech factored: Ensemble of 2
best models with nk-best rescoring using the
single best baseline.

• English-to-Latvian baseline: Ensemble of 3
best models with n-best rescoring using the
single best Nematus system.

• English-to-Latvian factored: Ensemble of 3
best models with nk-best rescoring using the
single best Nematus system.

The results are reported for these systems
in tables 3 and 4, using BLEU, as well as
BEER (Stanojević and Sima’an, 2014) and Char-
acTER (Wang et al., 2016), which have shown a
high correlation with human rankings for MRL
(Bojar et al., 2016).

As mentioned in Section 5.3, k-best hypothesis
from factored systems are rescored using a fully
inflected word-based system. For Czech, we set
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Newstest-2016 Newstest-2017
BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓

unigrams 24.24 57.41 52.81 19.89 54.51 58.29
+ n-best 24.47 57.91 52.16 20.53 54.99 58.05
neural 21.10 56.35 53.35 17.60 53.47 59.34
+ n-best 21.52 56.36 53.52 18.12 53.64 59.21

Table 5: Scores for different English-to-Czech reinflection methods.
Newsdev-2017 Newstest-2017

BLEU ↑ BEER ↑ CTER ↓ BLEU ↑ BEER ↑ CTER ↓
unigrams 22.48 57.69 52.83 14.86 52.00 62.57
+ n-best 22.06 57.58 52.92 15.34 52.52 61.98
neural 17.48 55.38 54.82 12.39 50.75 63.85
+ n-best 17.96 55.69 54.43 12.64 50.89 63.62

Table 6: Scores for different English-to-Latvian reinflection methods.

k to 10. For Latvian, the k = 100 best hypothesis
were taken from the dictionary, in order to mitigate
the poor quality of this dictionary by relying more
on the rescoring system. Additionally to the k-best
hypothesis from the dictionary, we also took the
n-best hypothesis from the factored NMT system
(n = 30), which lead to the rescoring of nk-best
hypothesis by an inflected word based system.

The improvement given by the nk-best setups
show the advantage of using a word based model
to select the right word forms instead of relying on
simple unigram frequencies.

5.5 Reinflection Experiments

To address the disadvantages of the reinflection
methods presented in section 5.3, we investigated
a neural reinflection model. The general architec-
ture is presented in figure 2. The model first takes
as input a n-gram centered on the position to rein-
flect. To each position corresponds a lexical unit
and T PoS-tags, which are represented by embed-
dings li and (tni )n=1..T . These are concatenated
into a context representation xi and transformed
into a hidden representation hi = Whiddenxi+b.

The second input is a candidate inflected form
winflected
i . We represent it as the sequence of its

characters, and use a convolutional layer (Santos
and Zadrozny, 2014) to build its vectorial repre-
sentation e

winflected
i

. The product of these two
representations goes through a sigmoid activation
function. We train the model in a supervised way,
by feeding positive and negative examples of in-
flected forms, with labels 1 and 0. At test time,
the model is given all possible inflected forms ob-
tained in the dictionary, and we choose the one ob-
taining the best score.

However, our first results show accuracies under

the performances of the unigram model presented
in section 5.3, for both Czech and Latvian (see Ta-
bles 5 and 6). In future work, we plan to use such
a model with a beam search.

6 Morphology prediction quality

In this section, we attempt to evaluate the improve-
ment of our factored NMT systems over the base-
lines. To this end, we ran the evaluation introduced
in (Burlot and Yvon, 2017b) over all our WMT
submissions.

The evaluation of the morphological compe-
tence of a machine translation system is performed
on an automatically produced test suite. For each
source test sentence from a monolingual corpus
(the base), one (or several) variant(s) are gener-
ated, containing exactly one difference with the
base, focusing on a specific target lexeme of the
base. These variants differ on a feature that is ex-
pressed morphologically in the target, such as the
person, number or tense of a verb; or the number
or case of a noun or an adjective. This artificial test
set is then translated with a machine translation
system. The machine translation system is deemed
correct if the translations of the base and variant
differ in the same way as their respective source.
Another setup focuses on a word in the base sen-
tence and produces variants containing antonyms
and synonyms of this word. The expected trans-
lation is then synonyms and antonyms bearing the
same morphological features as the initial word.

There are three types of contrasts implying dif-
ferent sorts of evaluation:

• A: We check whether the morphological fea-
ture inserted in the source sentence has been
translated (eg. plural number of a noun). Ac-
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verbs pronouns others mean
System past future neg. fem. plur. noun nb. compar.
NMT baseline 92.6% 86.2% 96.0% 91.4% 79.2% 94.6% 76.2% 88.0%
Factored NMT 94.2% 88.0% 95.4% 91.2% 80.0% 96.2% 75.0% 88.6%

Table 7: Sentence pair evaluation for English-to-Czech (A-set).
coordinated verbs coord.n pronouns to nouns prep. mean

System number person tense case gender number case case
NMT baseline 76.6% 77.0% 69.2% 90.4% 90.8% 92.6% 92.2% 95.3% 85.5%
Factored NMT 77.6% 77.4% 70.6% 89.0% 91.4% 90.8% 91.6% 96.1% 85.6%

Table 8: Sentence pair evaluation for English-to-Czech (B-set).
nouns adjectives verbs mean

System case gender number case number person tense negation
NMT baseline .205 .303 .262 .301 .138 .068 .082 .054 .177
Factored NMT .197 .287 .255 .292 .110 .062 .081 .056 .168

Table 9: Sentence group evaluation for English-to-Czech with Entropy (C-set).
verbs pronouns nouns mean

System past future fem. plur. number
NMT baseline 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
Factored NMT 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%

Table 10: Sentence pair evaluation for English-to-Latvian (A-set).
coordinated verbs coord.n pronouns to nouns prep. mean

System number person tense case gender number case case
NMT baseline 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
Factored NMT 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%

Table 11: Sentence pair evaluation for English-to-Latvian (B-set).
nouns adjectives verbs mean

System case gender number case number person tense
NMT baseline .255 .616 .610 .644 .139 .221 .134 .374
Factored NMT .233 .587 .582 .612 .117 .182 .113 .346

Table 12: Sentence group evaluation for English-to-Latvian with Entropy (C-set).

curacy for all morphological features is aver-
aged over all sentences. (Tables 7 and 10)

• B: We focus on various agreement phenom-
ena by checking whether a given morpholog-
ical feature is present in both words that need
to agree (eg. case of two nouns). Accuracy is
computed here as well. (Tables 8 and 11)

• C: We test the consistency of morphologi-
cal choices over lexical variation (eg. syn-
onyms and antonyms all having the same
tense) and measure the success based on the
average normalized entropy of morphologi-
cal features in the set of target sentences. (Ta-
bles 9 and 12)

The A-set focuses on the morphological ade-
quacy of the output towards the source sentence,
which does not seem to have improved with fac-
tored NMT systems. The main improvement is re-

lated to the morphological fluency of the output (B
and C-sets), although the contrasts are more visi-
ble for Latvian than for Czech.

7 Conclusions

This paper described LIMSI’s submissions to the
News shared task at WMT2017, consisting in
English-to-Czech and English-to-Latvian systems
that address the issues of translating into a mor-
phologically rich language. Further experiments
reported the benefits obtained with an efficient pa-
rameter initialization procedure, as well as data fil-
tering.
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Abstract

This paper describes SYSTRAN’s sys-
tems submitted to the WMT 2017 shared
news translation task for English-German,
in both translation directions. Our sys-
tems are built using OpenNMT1, an open-
source neural machine translation system,
implementing sequence-to-sequence mod-
els with LSTM encoder/decoders and at-
tention. We experimented using mono-
lingual data automatically back-translated.
Our resulting models are further hyper-
specialised with an adaptation technique
that finely tunes models according to the
evaluation test sentences.

1 Introduction

We participated in the WMT 2017 shared news
translation task on two different translation direc-
tions: English→German and German→English.

The paper is structured as follows: Section 2
overviews our neural MT engine. Section 3 de-
scribes the set of experiments carried out to build
the English→German and German→English neu-
ral translation models. Experiments and results
are detailed in Section 3. Finally, conclusions are
drawn in Section 4.

2 Neural MT System

Neural machine translation (NMT) is a new
methodology for machine translation that has led
to remarkable improvements, particularly in terms
of human evaluation, compared to rule-based
and statistical machine translation (SMT) systems
(Crego et al., 2016; Wu et al., 2016). NMT has
now become a widely-applied technique for ma-
chine translation, as well as an effective approach

1http://opennmt.net

for other related NLP tasks such as dialogue, pars-
ing, and summarisation.

Our NMT system (Klein et al., 2017) follows
the architecture presented in (Bahdanau et al.,
2014). It is implemented as an encoder-decoder
network with multiple layers of a RNN with
Long Short-Term Memory (LSTM) hidden units
(Zaremba et al., 2014). Figure 1 illustrates an
schematic view of the MT network.

Source words are first mapped to word vectors
and then fed into a bidirectional recurrent neu-
ral network (RNN) that reads an input sequence
s = (s1, ..., sJ). Upon seeing the <eos> sym-
bol, the final time step initialises a target RNN.
The decoder is a RNN that predicts a target se-
quence t = (t1, ..., tI), being J and I respectively
the source and target sentence lengths. Translation
is finished when the decoder predicts the <eos>
symbol.

The left-hand side of the figure illustrates the
bidirectional encoder, which actually consists of
two independent LSTM encoders: one encoding
the normal sequence (solid lines) that calculates
a forward sequence of hidden states (

−→
h1, ...,

−→
hJ),

the second encoder reads the input sequence in re-
versed order (dotted lines) and calculates the back-
ward sequence (

←−
h1, ...,

←−
hJ). The final encoder out-

puts (h1, ..., hJ) consist of the sum of both en-
coders final outputs. The right-hand side of the
figure illustrates the RNN decoder. Each word ti
is predicted based on a recurrent hidden state hi
and a context vector ci that aims at capturing rele-
vant source-side information.

Figure 2 illustrates the attention layer. It imple-
ments the "general" attentional architecture from
(Luong et al., 2015). The idea of a global atten-
tional model is to consider all the hidden states of
the encoder when deriving the context vector ct.
Hence, global alignment weights at are derived by
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Figure 1: Schematic view of our MT network.

comparing the current target hidden state ht with
each source hidden state hs:

at(s) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

with the content-based score function:

score(ht, hs) = hTt Wahs

Given the alignment vector as weights, the con-
text vector ct is computed as the weighted average
over all the source hidden states.

Figure 2: Attention layer of the MT network.

Note that for the sake of simplicity figure 1
illustrates a two-layers LSTM encoder/decoder
while any arbitrary number of LSTM layers can

be stacked. More details about our system can be
found in (Crego et al., 2016).

3 Experiments

In this section we detail the corpora and training
experiments used to build our English↔German
neural translation models.

3.1 Corpora

We used the parallel corpora made available for
the shared task: Europarl v7, Common Crawl cor-
pus, News Commentary v12 and Rapid corpus of
EU press releases. Both English and German
texts were preprocessed with standard tokenisa-
tion tools. German words were further prepro-
cessed to split compounds, following a similar
algorithm as the built-in for Moses. Additional
monolingual data was also used for both German
and English available for the shared task: News
Crawl: articles from 2016. Basic statistics of the
tokenised data are available in Table 1.

We used a byte pair encoding technique2

(BPE) to segment word forms and achieve open-
vocabulary translation with a fixed vocabulary of
30, 000 source and target tokens. BPE was origi-
nally devised as a compression algorithm, adapted
to word segmentation (Sennrich et al., 2016b).
It recursively replaces frequent consecutive bytes
with a symbol that does not occur elsewhere. Each

2https://github.com/rsennrich/
subword-nmt
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#sents #words vocab. Lmean

Parallel
En 4.6M 103.7M 627k 22.6
De 4.6M 104.5M 836k 22.8
Monolingual
En 20,6M 463,6M 1.18M 22.5
De 34,7M 620,8M 3.36M 17.8

Table 1: English-German parallel and monolin-
gual corpus statistics. Lmean indicates mean sen-
tence lengths. M stand for millions, k for thou-
sands.

such replacement is called a merge, and the num-
ber of merges is a tuneable parameter. Encodings
were computed over the union of both German and
English training corpora after preprocessing, aim-
ing at improving consistency between source and
target segmentations.

Finally, case information was considered by the
network as an additional feature. It allowed us to
work with a lowercased vocabulary and treat re-
casing as a separate problem (Crego et al., 2016).

3.2 Training Details

All experiments employ the NMT system detailed
in Section 2. The encoder and the decoder con-
sist of a four-layer stacked LSTM with 1, 000 cells
each. We use a bidirectional RNN encoder. Size
of word embedding is 500 cells. We use stochastic
gradient descent, a minibatch size of 64 sentences
and 0.3 for dropout probability. Maximum sen-
tence length is set to 80 tokens. All experiments
are performed on NVidia GeForce GTX 1080 on a
single GPU per optimisation work. Newstest2008
(2008) is employed as validation test set and new-
stest from 2009 to 2016 (2009-16) as internal test
sets.

3.2.1 Training on parallel data

Table 2 outlines training work. All parallel data
(P) is used on each training epoch. Row LR indi-
cates the learning rate value used for each epoch.
Note that learning rate was initially set to 1.0
during several epochs until no or little perplexity
(PPL) reduction is measured on the validation set.
Afterwards, additional epochs are performed with
learning rate decayed by 0.7 at each epoch. BLEU
score (averaged over the eight internal test sets) af-
ter each training epoch is also shown. Note that all
BLEU scores shown in this paper are computed

using multi-bleu.perl3. Training time per
epoch is also shown in row Time measured in
number of hours.

As expected, a perplexity reduction is ob-
served for the initial epochs, until epochs 9
(German→English) and 8 (English→German)
where little or no improvement is observed. The
decay mode is then started allowing to fur-
ther boost accuracy (between 1.5 and 2.0 BLEU
points) after 5 additional epochs.

3.2.2 Training on parallel and synthetic data
Following (Sennrich et al., 2016a), we selected
a subset of the available target-side in-domain
monolingual corpora, translate it into the source
side (back-translate) of the respective language
pair, and then use this synthetic parallel data for
training. The best performing models for each
translation direction (epoch 13 on Table 2 of both
translation directions) were used to back-translate
monolingual data. (Sennrich et al., 2016a) mo-
tivate the use of monolingual data with domain
adaptation, reducing overfitting, and better mod-
elling of fluency.

Synthetic corpus was then divided into i dif-
ferent splits containing each 4.5 million sentence
pairs (except for the last split that contains less
sentences). Table 3 shows continuation of the
training work using at each epoch the union of
the entire parallel data together with a split of the
monolingual back-translated data (P+Mi). Hence,
balancing the amount of reference and synthetic
data, summing up to around 9 million sentence
pairs per epoch. Note that training work described
in Table 3 is built as continuation of the model at
epoch 13 on Table 2. Table 3 shows also BLEU
scores over newstest2017 for the best performing
network.

As for the experiments detailed in Table 2, once
all splits of the synthetic corpus were used to train
our models with learning rate always set to 1.0
(5 epochs for German→English and 8 epochs for
English→German), we began a decay mode. In
this case, we decided to reduce the amount of
training examples from 9 to 5 millions due to
time restrictions. To select the training data we
employed the algorithm detailed in (Moore and
Lewis, 2010). It aims at identifying sentences
in a generic corpus that are closer to domain-

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13
German→English
Data P P P P P P P P P P P P P
Time (hours) 24 24 24 24 24 24 24 24 24 24 24 24 24
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.71 0.72 0.73 0.74

PPL (2008) 20.90 17.01 15.38 14.67 14.18 13.75 13.57 13.29 13.00 12.47 12.05 11.49 11.40
BLEU (2009-16) 20.07 22.06 23.02 24.17 24.59 24.40 24.99 25.11 25.42 25.65 26.14 26.48 26.87

English→German
Data P P P P P P P P P P P P P
Time (hours) 24 24 24 24 24 24 24 24 24 24 24 24 24
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.71 0.72 0.73 0.74 0.75

PPL (2008) 20.85 16.52 14.84 13.89 13.62 13.13 12.59 12.66 11.72 11.20 10.94 10.75 10.55
BLEU (2009-16) 15.63 17.41 18.85 19.61 19.92 20.38 20.34 20.55 21.13 21.63 21.70 22.22 22.50

Table 2: Training on parallel data.

Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13
German→English
Data P+M1 P+M2 P+M3 P+M4 P+M5 P’+M’ P’+M’ P’+M’ P’+M’ P’+M’
Time (hours) 45 45 45 45 32 25 25 25 25 25
LR 1.0 1.0 1.0 1.0 1.0 0.71 0.72 0.73 0.74 0.75

PPL (2008) 13.33 13.23 13.26 1347 12.63 12.25 11.87 11.60 11.40 11.33
BLEU (2009-16) 26.85 27.37 27.37 27.01 27.77 27.91 28.34 28.54 28.75 28.73
BLEU (2017) 32.35
English→German
Data P+M1 P+M2 P+M3 P+M4 P+M5 P+M6 P+M7 P+M8 P’+M’ P’+M’ P’+M’ P’+M’ P’+M’
Time (hours) 46 46 46 46 46 46 46 40 25 25 25 25 25
LR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.71 0.72 0.73 0.74 0.75

PPL (2008) 12.87 12.91 12.38 12.23 12.19 12.00 12.26 11.65 11.51 11.19 10.80 10.70 10.58
BLEU (2009-16) 21.81 22.26 22.52 22.65 22.59 22.75 22.79 22.93 23.35 23.56 23.79 23.96 24.07
BLEU (2017) 26.41

Table 3: Training on parallel and synthetic data.

specific data. Figure 3 outlines the algorithm. In
our experiments, parallel and monolingual back-
translated corpus are considered as the generic
corpora (P+M) while all available newstest test
sets, from 2009 to 2017, are considered as the
domain-specific data (T). Hence, we aim at select-
ing from P+M the closest 5 million sentences to
the newstest2009-17 data (2.5 from the P and 2.5
from the M subsets).

Figure 3: Data selection process.

Obviously, we base our selection procedure on

the source-side text of each translation direction as
references for newstest2017 are not available.

Sentences s of the generic corpus are scored
in terms of cross-entropy computed from two
language models: a 3-gram LM trained on the
domain-specific data Hin(s) and a 3-gram LM
trained on a random sample taken from itself
Hout(s). Finally, sentences of the generic corpus
are sorted regarding the computation of the differ-
ence between domain-specific and generic scores
Hin(s)−Hout(s) (score & sort).

3.2.3 Hyper-specialisation on news test sets
Similar to domain adaptation, we explore a post-
process approach, which hyper-specialises a neu-
ral network to a specific domain by running ad-
ditional training epochs over newly available in-
domain data (Servan et al., 2016). In our context,
we utilise all newstest sets (T) (around 25, 000
sentences), as in-domain data and run a single
learning iteration in order to fine tune the result-
ing network. Translations are not available for
newstest2017, instead we use the single best hy-
potheses produced by the best performing system
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in Table 3. In a similar task, (Crego and Senel-
lart, 2016) report translation accuracy gains by
employing a neural system trained over a synthetic
corpus built from source reference sentences and
target translation hypotheses. The authors claim
that text simplification is achieved when translat-
ing with an automatic engine compared to refer-
ence (human) translations, leading to higher accu-
racy results.

Table 4 details the hyper-specialisation training
work. Note that the entire hyper-specialisation
process was performed on approximately 6 min-
utes. We used a learning rate set to 0.7. Fur-
ther experiments need to be conducted for a better
understanding of the learning rate role in hyper-
specialisation work.

Epoch 1 1
German→English
Data T T-2017
Time (seconds) 365 305
LR 0.71 0.71

BLEU (2017) 32, 87 32, 66

English→German
Data T T-2017
Time (seconds) 372 308
LR 0.71 0.71

BLEU (2017) 26, 98 26, 80

Table 4: Hyper-specialisation on news test sets.

Accuracy gains are obtained despite us-
ing automatic (noisy) translation hypotheses to
hyper-specialise: +0.52 (German→English) and
+0.57 (English→German). In order to mea-
sure the impact of using newstest2017 as train-
ing data (sefl-training) we repeated the hyper-
specialisation experiment using as training data
newstest sets from 2009 to 2016. This is, ex-
cluding newstest2017 (T-2017). Slightly lower
accuracy results were obtained by this sec-
ond configuration (last column in Table 4) but
still outperforming the systems without hyper-
specialisation: +0.31 (German→English) and
+0.39 (English→German).

4 Conclusions

We described SYSTRAN’s submissions to the
WMT 2017 shared news translation task for
English-German. Our systems are built using
OpenNMT. We experimented using monolingual
data automatically back-translated. Our resulting
models were successfully hyper-specialised with
an adaptation technique that finely tunes models

according to the evaluation test sentences. Note
that all our submitted systems are single networks.
No ensemble experiments were carried out, what
typically results in higher accuracy results.

Acknowledgements

We would like to thank the anonymous review-
ers for their careful reading of the paper and their
many insightful comments and suggestions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation
by jointly learning to align and translate.
CoRR abs/1409.0473. Demoed at NIPS
2014: http://lisa.iro.umontreal.ca/mt-demo/.
http://arxiv.org/abs/1409.0473.

Josep Crego, Jungi Kim, Guillaume Klein, Anabel Re-
bollo, Kathy Yang, Jean Senellart, Egor Akhanov,
Patrice Brunelle, Aurelien Coquard, Yongchao
Deng, Satoshi Enoue, Chiyo Geiss, Joshua Johan-
son, Ardas Khalsa, Raoum Khiari, Byeongil Ko,
Catherine Kobus, Jean Lorieux, Leidiana Martins,
Dang-Chuan Nguyen, Alexandra Priori, Thomas
Riccardi, Natalia Segal, Christophe Servan, Cyril Ti-
quet, Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou,
and Peter Zoldan. 2016. Systran’s pure neural ma-
chine translation systems. CoRR abs/1610.05540.
http://arxiv.org/abs/1610.05540.

Josep Maria Crego and Jean Senellart. 2016.
Neural machine translation from simpli-
fied translations. CoRR abs/1612.06139.
http://arxiv.org/abs/1612.06139.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Accepted to ACL 2017 Conference Demo Papers.
Association for Computational Linguistics, Vancou-
ver, Canada.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Robert C. Moore and William Lewis. 2010. In-
telligent selection of language model training
data. In Proceedings of the ACL 2010 Con-
ference Short Papers. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 220–
224. http://www.aclweb.org/anthology/P10-2041.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation
models with monolingual data. Proceedings

269



of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics pages 86–96.
http://www.aclweb.org/anthology/P16-1009.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016b. Neural machine translation of
rare words with subword units. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1715–1725.
http://www.aclweb.org/anthology/P16-1162.

Christophe Servan, Josep Maria Crego, and Jean
Senellart. 2016. Domain specialization: a
post-training domain adaptation for neural
machine translation. CoRR abs/1612.06141.
http://arxiv.org/abs/1612.06141.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ÅĄukasz Kaiser, Stephan
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Abstract

In this paper we report on FBK’s par-
ticipation to the English-to-German news
translation task of the Second Conference
on Machine Translation (WMT’17). The
submitted system is based on Neural Ma-
chine Translation using byte-pair encod-
ing segmentation on both source and tar-
get languages for open-vocabulary trans-
lations. Back-translations of news mono-
lingual data are used for improving the
translations fluency on the in-domain data.
With respect to last year’s evaluation, our
baseline outperforms the 2016 best sys-
tem’s baseline on the test sets 2015 and
2016. However, in our set-up back-
translations produced a smaller improve-
ment than expected. The final submission
is given by the combination of 7 systems,
including a system trained only on true
parallel data and two right-to-left systems,
which improves over our single best sys-
tem by 1.5 BLEU points.

1 Introduction

FBK’s participation to the news translations
shared task in WMT 17 focused this year on the
English-German language direction. Our purpose
was to explore the state of the art and build a
competitive neural machine translation [3] sys-
tem in order to gain a practical knowledge of the
available tools. With respect to our participa-
tion in the IWSLT 2016 evaluation campaign, we
switched from the Nematus-Theano framework to
the OpenNMT-Torch framework [16]. The rea-
sons were twofold: higher baseline performance
and significantly faster training.
In our primary submission we used back-
translations [22], BPE-encoding [23] and sys-

tem combination [11]. In this paper, we report
about the tools used for the submitted system
and the choices we have taken in terms of hyper-
parameters and used data.
The presentation is structured as follows: in Sec-
tion 2 we briefly introduce the theoretical back-
ground for NMT. In Section 3 we describe our
baseline system. In Sections 4 and 5 we de-
scribe the details of the back-translations and sys-
tem combination, which have been used for our
final submission. Evaluation results are discussed
in Section 6, while Section 7 is devoted to discus-
sion and conclusions.

2 Neural Machine Translation

Neural machine translation [25] represents the
state of the art for machine translation since the
outstanding results obtained on IWSLT2015 [17]
IWSLT2016 [1, 7] and WMT16 [24, 5] where the
neural models greatly outperformed phrase-based
systems. NMT is based on the encoder-decoder-
attention architecture [3] which jointly learns
the translation and the alignment model with a
sequence-to-sequence learning model. Given a se-
quence of words f1, f2, . . . , fm in the source lan-
guage, they are used to index an embedding look-
up table and retrieve the vectors x1,x2, . . . ,xm

representing the words. The embeddings are pro-
cessed by a bi-directional RNN

−→
h j = g(xj ,

−→
h j−1), j = 1, ..m

←−
h j = g(xj ,

←−
h j+1), j = m, .., 1

hj = merge(
−→
h j ,
←−
h j)

where merge is a function for merging the out-
put of the RNNs, like the vector concatenation or
the point-wise sum, and g is the LSTM [13] or
the GRU [8] function. The sequence of vectors
produced by the bidirectional RNN is the encoded
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representation of the source sentence.
The decoder takes as input the encoder outputs (or
states) and produces a sequence of target words
e1, e2, . . . , el. The decoder works by progres-
sively predicting the probability of the next tar-
get word ei given the previously generated target
words and the source context vector ci. At each
step, the decoder computes a word embeddings
yi−1 of the previous target word, applies one or
more recurrent layers, an attention model function
and a softmax layer. The recurrent layers produce
an hidden state si

si = g(yi−1, si−1)

where, g can be computed with one or more LSTM
or GRU layers. The output of the RNN is then
used by the attention model to weight the source
vectors according to their similarity with it.

αij =
exp(score(si,hj))∑m

k=1 exp(score(si,hk))

The weights are used to compute a weighted av-
erage of the encoder outputs, which represents the
source context

ci =
m∑

j=1

αijhj

The source context vector is then combined with
the output of the last RNN layer in a new vector
zi that is passed as input to the softmax layer to
compute the probability for each word in the vo-
cabulary to be the next word, such that:

p(e | ei−1, ci) ∝ exp(e>zi)

where e> represents the transpose of the one-hot
vector representation of word e. Let Θ be the set
of all the network parameters, then the objective of
the training is to find parameter values maximizing
the likelihood of the training set S, i.e.:

∑

(f ,e)∈S

|e|∑

i=1

log p(ei|e<i, ci; Θ)

3 Baseline

Our baseline is a neural machine translation sys-
tem trained on the four parallel corpora released
for the task. Our preprocessing pipeline involved
normalizing the punctuation, de-escaping the
special characters, tokenization and truecasing for

Table 1: Number of training sentences.
original cleaned

commoncrawl 2,399,123 2,228,833
europarl-v7 1,920,209 1,719,859
news-comm-v12 270,769 255,944
rapid2016 1,329,041 1,277,997

both English and German. We also filtered out
sentence pairs with source or target length greater
than 50 or length ratio in one direction more than
1:9. In Table 1 we report the number of sentences
before and after the cleaning step. The last step of
the preprocessing is the BPE segmentation [23].
We trained 45, 000 BPE merge rules over the
joint parallel data, which resulted in a vocabulary
sizes of 43, 853 words for English and 47, 465 for
German.
The NMT architecture consists of 2 LSTM layers
both in the encoder and in the decoder. We used
LSTM RNNs instead of the GRU RNNs, as they
performed better in our preliminary experiments.
Our result is hence coherent with what reported
in [6]. The word embeddings size and the number
of hidden units for each LSTM layer are fixed to
500. The encoder is a bidirectional LSTM [21]
with 500 hidden units equally divided among
the two directions. The optimizer of choice is
SGD [20] with exponential decay. In preliminary
experiments, using different and smaller datasets,
this optimizer outperformed Adagrad [10] and
Adam [15]. Figure 1 shows the validation scores
after each epoch on the validation sets with the
different optimizers. In [7] Adagrad led to better
results on the IWSLT En-Fr validation set, thus
we argue that the choice of the optimizer depends
on the dataset and the NMT implementation.
The latter is not considered in studies comparing
different optimizers [2]
We set the initial learning rate to 1.0 and the
exponential decay to 0.9. The decay starts from
epoch 9. The results of the baseline are reported in
the first row of Table 3, where they are compared
with our submissions. The model was trained on
a single GPU for 21 epochs with a minibatch size
of 120. Each epoch required about 9 hours.

4 Monolingual Data

In order to leverage monolingual data we fol-
lowed the state-of-the-art practice of using back-
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Figure 1: Comparison between different optimiz-
ers in terms of BLEU. In the top Figure SGD with
exponential decay is the best performing against
Adam and Adagrad in a private dataset. In the
bottom Figure the trend is confirmed on IWSLT
EN-FR data.

translated data. A German-to-English MT system
was used to translate the news monolingual sen-
tences. As we did not plan to participate in the op-
posite direction, we decided to use a phrase-based
MT to performing back-translations.
The system of choice was MMT [4], an open-
source PBMT system for industrial use, which
has been trained using all available parallel data.
The language model was trained on sentences
randomly sampled from the English monolingual
newscrawl data for a total of 1B words. The
log-linear model weights were tuned on 1000
sentences sampled from newstest2013 and new-
stest2014. After tuning, the system obtained
a BLEU score of 25.04 on newstest2015 de-
en. With ModernMT we were able to trans-
late 250, 000 sentences per day on a single CPU.
We translated in total about 30M newscrawl sen-
tences from 2013 to 2016. In a first experi-
ment we trained a model until convergence on this
huge synthetic parallel data and then fine-tuned
on the true parallel data. In this setting, the sys-
tem trained on the synthetic data converged be-
fore finishing the first epoch, and the following

Table 2: Results of the single systems used for
combination

System newstest2015 newstest2016
Sys1 23.95 28.53
Sys2 25.41 29.68
Sys3 25.69 30.21
Sys4 25.26 28.69

fine-tuning reached only 23 Bleu scores on new-
stest2015, thus we decided not to use this data for
the final submission. Our best single system con-
tinued the training of the baseline on a new dataset
consisting of both the parallel sentences and 5M
back-translated parallel sentences randomly sam-
pled from the 30M set.
As we describe in the following section, we used
monolingual data also for the system combination.

5 System Combination

Our primary submission has been produced by
merging the outputs of different systems with
Jane’s system combination tool [11].
For a system combination of m systems we build
m confusion networks that are then merged to
form a single confusion network. For each of the
small networks, only one of the systems is chosen
as the primary system, which is the system that
decides the word order. The sentences from every
secondary systems are then aligned to the primary.
We perform word alignment using METEOR [9],
a tool that uses four criteria for aligning words: 1)
exact match; 2) stem, which matches two words
if their stems computed with the Snowball Stem-
mer [19] are the same; 3) synonym, which uses
the WordNet [18] synsets database; 4) paraphrase,
which matches phrases if they are in an internal
paraphrase table. When no criterion is matched,
there is a match with the empty string.
The confusion networks are initialized with the
primary system sentences, then the words from the
secondary hypothesis are added to the network ac-
cording to the alignment. The final confusion net-
work is obtained by the union of the m networks.
The output sentence is produced from the confu-
sion network by majority voting. Each hypothesis
receives a system weight, and the weights are op-
timized using a development set. In our case the
development set is newstest2015 and the valida-
tion set is newstest2016
The systems involved in the combination are from
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System 2015 2016 2017
Baseline (sys4) 25.26 28.69 24.20
+ Synthetic (sys3) 25.69 30.21 24.80
System Combination 28.10* 32.84 26.30

Table 3: Our results on newstest 2015-17.
∗The system has been tuned on newstest2015.

4 different NMT systems that used different train-
ing data:

1. A NMT system trained on parallel + syn-
thetic1 for 12 epochs

2. An NMT trained on parallel + synthetic right
to left for 11 epochs2

3. The tuning of the baseline for 7 epochs more
on parallel + synthetic data

4. The baseline system

For each system, with the exception of the base-
line, we used the weights of last two epochs.
This gave us an improvement on the validation
set of 0.5 Bleu points. We improved the sys-
tem combination by adding a 5-grams language
model with modified Kneser-Ney smoothing [14]
without pruning, trained on ∼ 500M tokens with
KenLM [12]. This improved the result by another
+0.6 BLEU on the validation.
In Table 2 we present the results of the single sys-
tems on newstest 2015 and 16. As expected, the
systems are quite different also in terms of perfor-
mance, especially for newstest2016, thus we ex-
pected significant improvements.
Surprisingly, we found that our system trained
from scratch on back-translated data performed
worse than the baseline, while the right-to-left sys-
tem trained on the same data is slightly better
on newstest2015 and 1 Bleu point better on new-
stest2016. The best system is the one that was
trained in two phases, during the first phase only
on true parallel data, and continued after 21 epochs
on true plus synthetic parallel sentences.

6 Results

In Table 3 we report the results in terms of Bleu
scores, for the test sets from 2015 to 2017. On

1With synthetic we refer to 5M back-translated sentences
randomly sampled from newscrawl.

2In a right-to-left system the target sentences are in re-
verse order.

newstest2015 the baseline was already in par with
last year’s best single system [24], and the im-
provement obtained by back-translations is only
of +0.4 Bleu scores. The improvement given
by back-translations is more significant on new-
stest2016, for which our system was quite weak
if compared with last year’s best single system,
and it improved by +1.6 Bleu. The improvement
is small also for newstest2017, where it amounts
to +0.6.
In the last row of the table the results of the sys-
tem combination are reported. For newstest2015
we get an improvement of +2.4, but the weights
are optimized according to this dataset. A similar
improvement is obtained on newstest2016, where
we gain +2.6 Bleu scores. The improvement is
considerable but the best single system does not
have state-of-the-art results on this dataset. On
newstest2017 the improvement over our best sin-
gle system is of +1.5 Bleu scores, thus it produced
a final score of 26.30 for which it has been ranked
8th out of 21 systems.
From Tables 2 and 3 we can see that the back-
translations gained a small improvement to our
systems, specially when there has not been a pre-
vious training over only true parallel data (sys1 in
Table 2). This is surely related to the number of
back-translated sentences, which was maybe too
high with respect to the number of parallel sen-
tences. Another issue can be due to the quality of
the back-translations that were done with a PBMT
system, hence underperforming with respect to a
state-of-the-art NMT system.

7 Conclusions

In this paper we have reported on our submis-
sion to the English-German news translation task
of WMT17. We developed several NMT sys-
tems with the OpenNMT open-source tool that
were trained over real and synthetic parallel data.
We used BPE segmentation for open-vocabulary
translation and back-translations to create addi-
tional synthetic translations. The best single sys-
tem, trained on true parallel data and afterwards on
true and synthetic parallel sentence pairs, obtained
state-of-the-art results on newstest2015 but not on
newstest2016 and newstest2017. Additional data
created via back-translations did not pay off as
hoped. The outputs of 4 different systems, includ-
ing a right-to-left system, were combined using
system combination, producing an improvement
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of +1.5 BLEU on this year’s test set.

Acknowledgments

This work has been partially supported by the EC-
funded projects ModernMT (H2020 grant agree-
ment no. 645487) and QT21 (H2020 grant agree-
ment no. 645452).

References
[1] The University of Edinburgh’s systems submis-

sion to the MT task at IWSLT, author=Junczys-
Dowmunt, Marcin and Birch, Alexandra, bookti-
tle=Proceedings of the ninth International Workshop
on Spoken Language Translation (IWSLT), Seattle,
WA, year=2016.

[2] P. Bahar, T. Alkhouli, J.-T. Peter, C. J.-S. Brix, and
H. Ney. Empirical investigation of optimization al-
gorithms in neural machine translation. The Prague
Bulletin of Mathematical Linguistics, 108(1):13–25,
2017.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural ma-
chine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

[4] N. Bertoldi, R. Cattoni, M. Cettolo, M. A. Fara-
jian, M. Federico, D. Caroselli, L. Mastrostefano,
A. Rossi, M. Trombetti, U. Germann, and D. Madl.
MMT: New open source MT for the translation in-
dustry. In Proceedings of The 20th Annual Con-
ference of the European Association for Machine
Translation (EAMT), 2017.

[5] J. Bradbury and R. Socher. Metamind neural ma-
chine translation system for WMT 2016. In Pro-
ceedings of the First Conference on Machine Trans-
lation, Berlin, Germany. Association for Computa-
tional Linguistics, 2016.

[6] D. Britz, A. Goldie, T. Luong, and Q. Le. Massive
exploration of neural machine translation architec-
tures. arXiv preprint arXiv:1703.03906, 2017.

[7] R. Chatterjee, M. Farajian, C. Conforti, S. Jalalvand,
V. Balaraman, M. Di Gangi, D. Ataman, M. Turchi,
M. Negri, and M. Federico. FBK’s neural machine
translation systems for IWSLT 2016. In Proceed-
ings of 13th International Workshop on Spoken Lan-
guage Translation (IWSLT 2016), 2016.

[8] K. Cho, B. Van Merriënboer, D. Bahdanau, and
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Abstract

This paper describes the Johns Hop-
kins University submissions to the shared
translation task of EMNLP 2017 Sec-
ond Conference on Machine Translation
(WMT 2017). We set up phrase-based,
syntax-based and/or neural machine trans-
lation systems for all 14 language pairs
of this year’s evaluation campaign. We
also performed neural rescoring of phrase-
based systems for English-Turkish and
English-Finnish.

1 Introduction

The JHU 2017 WMT submission consists of
phrase-based systems, syntax-based systems and
neural machine translation systems. In this paper
we discuss features that we integrated into our sys-
tem submissions. We also discuss lattice rescoring
as a form of system combination of phrase-based
and neural machine translation systems.

The JHU phrase-based translation systems for
our participation in the WMT 2017 shared trans-
lation task are based on the open source Moses
toolkit (Koehn et al., 2007) and strong baselines
of our submission last year (Ding et al., 2016).
The JHU neural machine translation systems were
built with the Nematus (Sennrich et al., 2016c) and
Marian (Junczys-Dowmunt et al., 2016) toolkits.
Our lattice rescoring experiments are also based
on a combination of these three toolkits.

2 Phrase-Based Model Baselines

Although the focus of research in machine transla-
tion has firmly moved onto neural machine trans-
lation, we still built traditional phrase-based statis-
tical machine translation systems for all language
pairs. These submissions also serve as a baseline

of where neural machine translation systems stand
with respect to the prior state of the art.

Our systems are very simmilar to the JHU sys-
tems from last year (Ding et al., 2016).

2.1 Configuration

We trained our systems with the following set-
tings: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, hierarchical lexicalized re-
ordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)
(Durrani et al., 2013) with 4 count-based sup-
portive features, sparse domain indicator, phrase
length, and count bin features (Blunsom and Os-
borne, 2008; Chiang et al., 2009), a distortion limit
of 6, maximum phrase-length of 5, 100-best trans-
lation options, compact phrase table (Junczys-
Dowmunt, 2012) minimum Bayes risk decoding
(Kumar and Byrne, 2004), cube pruning (Huang
and Chiang, 2007), with a stack-size of 1000
during tuning and 5000 during test and the no-
reordering-over-punctuation heuristic (Koehn and
Haddow, 2009). We optimize feature function
weights with k-best MIRA (Cherry and Foster,
2012).

We used POS and morphological tags as addi-
tional factors in phrase translation models (Koehn
and Hoang, 2007) for the German-English lan-
guage pairs. We also trained target sequence mod-
els on the in-domain subset of the parallel corpus
using Kneser-Ney smoothed 7-gram models. We
used syntactic preordering (Collins et al., 2005)
and compound splitting (Koehn and Knight, 2003)
for the German-to-English systems. We did no
language-specific processing for other languages.

We included Och cluster language model, with
4 additional language models trained on 50, 200,
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Language Pair Sentences
German–English 21,243
Czech–English 21,730
Finnish–English 2,870
Latvian–English 984
Russian-English 11,824
Turkish–English 1,001
Chinese–English 1,000

Table 1: Tuning set sizes for phrase and syntax-
based system

500, and 2000 clusters (Och, 1999) using mkcls.
In addition, we included a large language model
based on the CommonCrawl monolingual data
(Buck et al., 2014).

The systems were tuned on a very large tun-
ing set consisting of the test sets from 2008-2015,
with a total of up to 21,730 sentences (see Ta-
ble 1). We used newstest2016 as development
test set. Significantly less tuning data was avail-
able for Finnish, Latvian, and Turkish.

2.2 Results

Table 2 shows results for all language pairs, except
for Chinese–English, for which we did not built
phrase-based systems. Our phrase-based systems
were clearly outperformed by NMT systems for all
language pairs, by a difference of 3.2 to 8.3 BLEU
points. The difference is most dramatic for lan-
guages with rich morphology (Turkish, Finnish).

3 Syntax-based Model Baselines

We built syntax-based model baselines for both
directions of Chinese-English language pairs be-
cause our previous experiments indicate that
syntax-based machine translation systems gener-
ally outperform phrase-based machine translation
systems by a large margin. Our system setup was
largely based on our syntax-based system setup for
last year’s evaluation (Ding et al., 2016).

3.1 Configuration

Our syntax-based systems were trained with all
the CWMT and UN parallel data provided for the
evaluation campaign. We also used the monolin-
gual data from news crawl 2007-2016, the English
Gigaword, and the English side of Europarl cor-
pus. The CWMT 2008 multi-reference dataset
were used for tuning (see statistics in Table 1).

For English data, we used the scripts from
Moses (Koehn et al., 2007) to tokenize our data,
while for Chinese data we carried out word seg-
mentation with Stanford word segmenter (Chang
et al., 2008). We also normalized all the Chi-
nese punctuations to their English counterparts to
avoid disagreement across sentences. We parsed
the tokenized data with Berkeley Parser (Petrov
and Klein, 2007) using the pre-trained grammar
provided with the toolkit, followed by right bina-
rization of the parse. Finally, truecasing was per-
formed on all the English texts. Due to the lack of
casing system, we did not perform truecasing for
any Chinese texts.

We performed word alignment with fast-align
(Dyer et al., 2013) due to the huge scale of
this year’s training data and grow-diag-final-and
heuristic for alignment symmetrization. We used
the GHKM rule extractor implemented in Moses
to extract SCFG rules from the parallel corpus. We
set the maximum number of nodes (except target
words) in the rules (MaxNodes) to 30, maximum
rule depth (MaxRuleDepth) to 7, and the number
of non-part-of-speech, non-leaf constituent labels
(MaxRuleSize) to 7. We also used count bin fea-
tures for the rule scoring as our phrase-based sys-
tems (Blunsom and Osborne, 2008)(Chiang et al.,
2009). We used the same language model and tun-
ing settings as the phrase-based systems.

While BLEU score was used both for tun-
ing and our development experiments, it is am-
biguous when applied for Chinese outputs be-
cause Chinese does not have explicit word bound-
aries. For discriminative training and development
tests, we evaluate the Chinese output against the
automatically-segmented Chinese reference with
multi-bleu.perl scripts in Moses (Koehn et al.,
2007).

3.2 Results
Our development results on newsdev2017 are
shown in Table 3. Similar to the phrase-based sys-
tem, the syntax-based system is also outperformed
by NMT systems for both translation directions.

4 Neural Machine Translation1

We built and submitted neural machine translation
systems for both Chinese-English and English-
Chinese language pairs. These systems are trained

1All the scripts and configurations that were used to train
our neural machine translation systems can be retrieved at
https://github.com/shuoyangd/nmt4clsp
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Language Pair JHU 2016 Baseline Och LM Och+CC LM Och+CC LM Best NMT
newstest2016 newstest2017

English-Turkish 9.22 9.22 9.11 9.30 9.8 18.1 +8.3
Turkish-English 12.94 13.03 12.92 12.83 12.6 20.1 +7.5
English-Finnish 13.76 14.12 14.04 13.99 14.5 20.7 +6.2
Finnish-English 19.08 19.72 19.36 19.16 20.5 -
English-Latvian - 18.66 18.71 18.85 14.4 20.1 +5.7
Latvian-English - 25.82 26.03 26.12 16.8 20.0 +3.2
English-Russian 23.99 21.45 23.16 25.3 29.8 +4.5
Russian-English 27.88 24.47 27.22 31.5 34.7 +3.2
English-Czech 23.56 23.05 19.1 22.8 +3.7
Czech-English 30.37 29.84 29.98 29.80 26.5 30.9 +4.4
English-German 28.35 28.95 28.39 21.6 28.3 +6.7
German-English 34.50 34.20 33.87 29.7 35.1 +5.4

Table 2: Phrase-Based Systems (cased BLEU scores)

with all the CWMT and UN parallel data provided
for the evaluation campaign and newsdev2017
as the development set. For the back-translation
experiments, we also included some monolin-
gual data from new crawl 2016, which is back-
translated with our basic neural machine transla-
tion system.

4.1 Preprocessing

We started by following the same preprocessing
procedures for our syntax-based model baselines
except that we didn’t do parsing for our training
data for neural machine translation systems. After
these procedures, we then applied Byte Pair En-
coding (BPE) (Sennrich et al., 2016c) to reduce
the vocabulary size in the training data. We set the
number of BPE merging operations as 49500. The
resulting vocabulary size for Chinese and English
training data are 64126 and 35335, respectively.

4.2 Training

We trained our basic neural machine translation
systems (labeled base in Table 3) with Nematus
(Sennrich et al., 2017). We used batch size 80,
vocabulary size of 50k, word dimension 500 and
hidden dimension 1024. We performed dropout
with dropout rate 0.2 for the input bi-directional
encoding and the hidden layer, and 0.1 for the
source and target word embedding. To avoid gra-
dient explosion, gradient clipping constant 1.0 was
used. We chose AdaDelta (Zeiler, 2012) as the op-
timization algorithm for training and used decay
rate ρ = 0.95, ε = 10−6.

We performed early stopping according to the

validation error on the development set. The vali-
dation were carried out every 5000 batch updates.
The early stopping was triggered if the validation
error does not decrease for more than 10 validation
runs, i.e. more than 50k batch updates.

4.3 Decoding and Postprocessing

To enable faster decoding for validation, test and
back-translation experiments (in Section 4.4), we
used the decoder from Marian (Junczys-Dowmunt
et al., 2016) toolkit. For all the steps where de-
coding is involved, we set the beam size of RNN
search to 12.

The postprocessing we performed for the final
submission starts with merging BPE subwords and
detokenization. We then performed de-trucasing
for English output, while for Chinese output we
re-normalized all the punctuations to their Chi-
nese counterparts. Note that for fair comparison,
we used the same evaluation methods for English-
Chinese experiments as we did for the English-
Chinese syntax-based system, which means we do
not detokenzize our Chinese output for our devel-
opment results.

4.4 Enhancements: Back-translation,
Right-to-left models, Ensembles

To investigate the effectiveness of incorporating
monolingual information with back-translation
(Sennrich et al., 2016b), we continued training on
top of the base system to build another system (la-
beled back-trans below) that has some exposure
to the monolingual data. Due to the time and hard-
ware constraints, we only took a random sample of
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Language Pairs Syntax base

single
base

ensemble
back-trans

single
back-trans

ensemble
Chinese-English 16.22 17.81 18.46 17.52 18.16
English-Chinese 14.43 17.22 17.95 17.76 18.60

Table 3: Chinese-English and English-Chinese System Development Results on newsdev2017 (cased
BLEU scores). Bold scores indicate best and submitted systems.

2 million sentences from news crawl 2016 mono-
lingual corpus and 1.5 million sentences from
preprocessed CWMT Chinese monolingual cor-
pus from our syntax-based system run and back-
translated them with our trained base system.
These back-translated pseudo-parallel data were
then mixed with an equal amount of random sam-
ples from real parallel training data and used as the
data for continued training. All the hyperparame-
ters used for the continued training are exactly the
same as those in the initial training stage.

Following the effort of (Liu et al., 2016) and
(Sennrich et al., 2016a), we also trained right-to-
left (r2l) models with a random sample of 4 mil-
lion sentence pairs for both translation directions
of Chinese-English language pairs, in the hope
that they could lead to better reordering on the tar-
get side. But they were not included in the final
submission because they turned out to hurt the per-
formance on development set. We conjecture that
our r2lmodel is too weak compared to both base
and back-trans models to yield good reordering
hypotheses.

We performed model averaging over the 4-best
models for both base and back-trans systems
as our combined system. The 4-best models are
selected among the model dumps performed ev-
ery 10k batch updates in training, and we select
the models that has the highest BLEU scores on
the development set. The model averaging was
performed with the average.py script in Marian
(Junczys-Dowmunt et al., 2016).

4.5 Results

Results of our neural machine translation systems
on newsdev2017 are also shown in Table 3. Both
of our neural machine translation systems output-
perform their syntax-based counterparts by 2-4
BLEU points.

The results also indicate that the 4-best averag-
ing ensemble uniformly performs better than sin-
gle systems. However, the back-translation exper-
iments for Chinese-English system do not improve

performance. We hypothesize that the amount of
our back-translated data is not sufficient to im-
prove the model. Experiments with full-scale
back-translated monolingual data are left for fu-
ture work.

5 Rescoring

We use neural machine translation (NMT) systems
to rescore the output of the phrase-based machine
translation (PBMT) systems. We use two meth-
ods to do this, 500-best list rescoring, and lattice
rescoring. Rescoring was performed on English-
Turkish, and English-Finnish translation tasks. We
combined the baseline PBMT models from Ta-
ble 2, with basic NMT systems.

5.1 NMT Systems

We build basic NMT systems for this task. We
preprocess the data by tokenizing, truecasing, and
applying Byte Pair Encoding (Sennrich et al.,
2015) with 49990 merge operations. We trained
the NMT systems with Nematus (Sennrich et al.,
2017) on the released training corpora. We used
the following settings: batch size of 80, vocabu-
lary size of 50000, word dimension 500, and hid-
den dimension 1000. We performed dropout with
a rate of 0.2 for the input bi-directional encoding
and the hidden layer, and 0.1 for the source and
target word embedding. We used Adam as the op-
timizer (Kingma and Ba, 2014).

We performed early stopping according to the
validation error on the development set. Valida-
tion was carried out every 20000 batch updates.
The early stopping was triggered if the validation
error does not decrease for more than 10 valida-
tion runs, if early stopping is not triggered, we run
for a maximum of 50 epochs.

We create ensembles by averaging the 3 best
validation models with the average.py script in
Marian (Junczys-Dowmunt et al., 2016).
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Language Pair PBMT NMT NMT-Ens N-best Lattice N-best Lattice
newstest2016 newstest2017

English-Turkish 9.2 8.1 8.5 9.4 9.9 9.4 10.4
English-Finnish 14.1 12.6 13.6 14.6 15.5 14.3 16.0

Table 4: Comparison of PBMT, NMT, NMT-Ensembles, and neural rescoring of PBMT output in the
form of N-best lists or lattices (cased BLEU scores)

Figure 1: The neural lattice rescorer pipeline.

5.2 500-best Rescoring

We rescore 500-best candiate lists by first generat-
ing 500-best lists from Moses (Koehn et al., 2007)
using the -N-best-list flag. We then use the
Nematus (Sennrich et al., 2017) N-best list rescor-
ing to rescore the list using our NMT model.

5.3 Lattice Rescoring

We also rescore PBMT lattices. We generate
search graphs from the PBMT system by pass-
ing the -output-search-graph parameter to
Moses. The search graphs are then converted to
the OpenFST format (Allauzen et al., 2007) and
operations to remove epsilon arcs, determinize,
minimize and topsort are applied. Since the search
graphs may be prohibitively large in size, we prune
them to a threshold; we tune this threshold.2

The core difficulty in lattice rescoring with
NMT is that its RNN architecture does not per-
mit efficient recombination of hypotheses on the
lattice. Therefore, we apply a stack decoding al-
gorithm (similar to the one used in PBMT) which
groups hypotheses by the number of target words
(the paper describing this work is under review).
Figure 5.3 describes this pipeline.

5.4 Results

We use newstest2016 as a developement set, and
report the official results from newstest2017.

Tables 5 and 6 show the development set results
for pruning thresholds of .1, .25, and .5 and stack
sizes of 1, 10, 100, 1000. We chose not to use a
stack size of 1000 in our final systems because the
improvement in devset BLEU over a stack size of

2Pruning removes arcs that do not appear on a lattice path
whose score is within than t ⊗ w, where w is the weight of
the FSTs shortest path, and t is the pruning threshold.

.1 .25 .5
1 9.60 9.51 9.11

10 9.82 9.86 9.28
100 9.86 9.90 9.43

1000 9.88 9.92 -

Table 5: Grid search on the pruning (.1, .25,
.5) and stack parameters (1, 10, 100, 1000) for
English-Turkish newstest2016 (cased BLEU)

.1 .25 .5
1 14.85 15.06 14.96

10 14.92 15.30 15.32
100 14.92 15.33 15.49

1000 14.94 15.29 15.53

Table 6: Grid search on the pruning (.1, .25,
.5) and stack parameters (1, 10, 100, 1000) for
English-Finnish newstest2016 (cased BLEU)

100 is not large. For our final English-Turkish sys-
tem, we use a pruning threshold of .25 and a stack
size of 100; for our final English-Finnish system
we use a pruning threshold of .5 and a stack size
of 100.

Table 4 shows development results for the base-
line PBMT, NMT systems, as well as the NMT en-
sembles, 500-best rescoring, and lattice rescoring.
We also report test results for the 500-best rescor-
ing, and lattice rescoring. On newstest2016,
lattice rescoring outperforms 500-best rescoring
by .5-1.1 BLEU, and on newstest2017, lattice
rescoring outperforms 500-best rescoring by 1-
1.7 BLEU. 500-best rescoring also outperforms
PBMT, NMT system, and the NMT ensembles.
While these results are not competitive with the
best systems on newstest2017 in the evalua-
tion campaign, it is interesting to note that lat-
tice rescoring gave good performance among the
models we compared. For future work it is worth
re-running the lattice rescoring experiment using
stronger baseline PBMT and NMT models.
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6 Conclusion

We submitted phrase-based systems for all 14 lan-
guage pairs, syntax-based systems for 2 pairs, neu-
ral systems for 2 pairs, and two types of rescored
systems for 2 pairs. While many of these systems
underperformed neural systems, they provide a
strong baseline to compare the new neural systems
to the previous state-of-the-art phrase-based sys-
tems. The gap between our neural systems and the
top performing ones can be partially explained by
a lack of large-scale back-translated data, which
we plan to include in future work.
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carlos.escolano@tsc.upc.edu, {marta.ruiz,jose.fonollosa}@upc.edu

Abstract

In this paper, we describe the TALP-
UPC participation in the News Task for
German-English and Finish-English. Our
primary submission implements a fully
character to character neural machine
translation architecture with an additional
rescoring of a n-best list of hypothesis us-
ing a forced back-translation to the source
sentence. This model gives consistent im-
provements on different pairs of languages
for the language direction with the low-
est performance while keeping the qual-
ity in the direction with the highest perfor-
mance.

Additional experiments are reported for
multilingual character to character neural
machine translation, phrase-based trans-
lation and the additional Turkish-English
language pair.

1 Introduction

Neural Machine Translation (MT) has been
proven to reach state-of-the-art results in the last
couple of years. The baseline encoder-decoder
architecture has been improved by an attention-
based mechanism citebahdanau:2015, subword
units (Sennrich et al., 2016b), character-based
encoders (Costa-jussà and Fonollosa, 2016) or
even with generative adversarial nets (Yang et al.,
2017), among many others.

Despite its successful beginnings, the neural
MT approach still has many challenges to solve
and improvements to incorporate into the system.
However, since the system is computationally ex-
pensive and training models may last for several
weeks, it is not feasible to conduct multiple exper-
iments for a mid-sized laboratory. For the same

reason, it is also relevant to report negative results
on NMT.

In this system description, we describe our par-
ticipation on German-English and Finnish-English
for the News Task. Our system is a fully character-
to-character neural MT (Lee et al., 2016) system
with additional rescoring from the inverse direc-
tion model. In parallel to our final system, we
also experimented with multilingual character-to-
character system using German, Finnish and Turk-
ish on the source side and English on the target
side. Unfortunately, these last experiments did
not work. All our systems are contrasted with
a standard phrase-based system built with Moses
(Koehn et al., 2007).

2 Char-to-char Neural MT

Our system uses the architecture from (Lee et al.,
2016) where a character-level neural MT model
maps the source character sequence to the target
character sequence. The main difference in the
encoder architecture respect to the standard neu-
ral MT model from (Bahdanau et al., 2015) is
the use of a segmentation-free fully character-level
network that extends initial character-based ap-
proaches like (Kim et al., 2015; Costa-jussà and
Fonollosa, 2016). In the encoder, the network
architecture includes character embeddings, con-
volution layers, max pooling and highway lay-
ers. The resulting character-based representation
is then used as input to a bidirectional recurrent
neural network. The main difference in the de-
coder architecture is that the single-layer feedfor-
ward network computes the attention score of next
target character (instead of word) to be generated
with every source segment representation. And af-
terwards, a two-layer character-level decoder takes
the source context vector from the attention mech-
anism and predicts each target character.

283



3 Rescoring with inverse model

The motivation behind this technique is the idea
that a good translation of a sentence has to be able
to produce the original sentence with high prob-
ability when it is back-translated to the original
source. We expect to be able to produce the source
sentence from the translation with high probabil-
ity only if the information of the source sentence
is preserved.

In this approach, the first direct NMT decoder
uses the standard beam search algorithm to gener-
ate an n-best list of translation hypothesis with its
corresponding score

The list of translation outputs and the source
sentence are then fed to the inverse forced decoder
to calculate the probability of generating the orig-
inal source sentence using each of them as input.

At this point, for each translation candidate we
have two probabilities: the one obtained at the first
translation step and the one obtained from the in-
verse forced decoding. A simple linear combina-
tion of scores is then used to rerank and select
the best translation. Specifically, for this deci-
sion task, we used the rescoring tools provided by
Moses that allow us to create a weighted model
(using a validation set). For each sentence its fi-
nal score is calculated as w1 · s1 +w2 · s2, where
w1 and s1 are the weight and score (logarithm of
the probability) of the translation model, while w2
and p2 are the weight and score (logarithm of the
probability) provided by the forced decoder in the
inverse direction. The hypothesis with the highest
score is then returned as the final translation.

4 System description

In this section we detail experimental corpora, ar-
chitecture and parameters that we used to build our
WMT 2017 submissions. We report additional de-
tails from contrastives systems that we used inter-
nally to compare our submissions.

As mentioned earlier, our submissions use a
char-to-char neural MT architecture for German-
English and Finnish-English. Additional con-
trastive submissions that we did not present in the
WMT evaluation include: a standard phrase-based
MT system built with Moses (Koehn et al., 2007)
and a multilingual char-to-char neural MT system
from the same paper (Lee et al., 2016), where we
train different source languages to the same tar-
get language. The main difference with the multi-
lingual architecture is that the number of convo-

Figure 1: Overview of the architecture. In the im-
age applied to a english-german translation

lutional filters varies. We built contrastive sub-
missions on the phrase-based system for German-
English, Finnish-English and we also built it for a
language pair that we did not present in the eval-
uation which was Turkish-English. Multilingual
char-to-char was only built for German,Finnish
and Turkish to English.

4.1 Data and Preprocess
For the three language pairs that we experimented
with, we used all data parallel data available in
the evaluation1. For German-English, we used:
europarl v.7, news commentary v.12, common
crawl and rapid corpus of EU press releases. We
also used automatically back-translated in-domain
monolingual data (Sennrich et al., 2016a). For
Finnish-English, we used europarl v.8, wiki head-
lines and rapid corpus of EU press releases. For
Turkish-English, we used setimes2. All our sys-
tems falled into the constrained category. Also
note that only for German-English we took advan-
tage of the monolingual corpus provided.

Preprocessing consisted in cleaning empty sen-
tences, limiting sentences up to 50 words, tok-
enization and truecasing for each language us-
ing tools from Moses (Koehn et al., 2007). Ta-
ble 1 shows details about the corpus statistics af-
ter preprocessing. For German and Finnish pairs

1http://www.statmt.org/wmt17/translation-task.html
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LP L Set S W V

DeEn

De

Train 9659106 203634165 1721113
Dev 2999 62362 12674
Test 2169 44085 9895
Eval 3004 60965 12763

En

Train 9659106 210205446 954387
Dev 2999 64503 9506
Test 2169 46830 7871
Eval 3004 64706 9434

FiEn

Fi

Train 2468673 37755811 863898
Dev 3000 47779 16236
Test 2870 43069 15748
Eval 3002 45456 16239

En

Train 2468673 52262051 240625
Dev 3000 63519 9059
Test 2870 60149 8961
Eval 3002 62412 8956

TuEn

Tu

Train 200290 4248508 158276
Dev 1001 16954 6463
Test 3000 54128 15898
Eval 3007 55293 15264

En
Train 299290 4713025 73906
Dev 1001 22136 4318
Test 3000 66394 9503
Eval 3007 67839 9181

Table 1: Corpus Statistics. Number of sentences
(S),words (W), vocabulary (V). M stands for mil-
lions and K stands for thousands.

the evaluation set is news2016 challenge test and
the test set is the news2015 test. For Turkish
news2016 developement and test set were em-
ployed.

Table 2 shows the total vocabulary size in char-
acters (characters) for each language. We also
show the limited vocabulary size that we used to
train (vocabulary) and the coverage of this limited
vocabulary (coverage).

4.2 Parameters and Training Details

• Moses. We used the following parameters:
grow-diag-final word alignment symmetriza-
tion, lexicalized reordering, relative frequen-
cies (conditional and posterior probabilities)
with phrase discounting, lexical weights,
phrase bonus, accepting phrases up to length
10, 5-gram language model with kneser-ney
smoothing, word bonus and MERT optimisa-
tion (Koehn et al., 2007).

• Char-to-char neural MT. For the em-
bedding of the source sentence, we use
set of convolutional layers which number
kernels are (200-200-250-250-300-300-300-
300) and their lengths are (1-2-3-4-5-6-7-8)
respectively. Additionally 4 highway layers
are employed. And a bidirectional LSTM
layer of 512 units for encoding. The maxi-
mum souce sentence’s length is 450 during
training and 500 for decoding both during
training and sampling.

• Multilingual char-to-char neural MT. As
proposed in the original work (Lee et al.,
2016), we implement this model with slightly
more convolutional filters than the char-to-
char model, namely (200-250- 300-300-400-
400-400-400). Also the maximum sentence
lenght used for training is 400 for this model.
The other parameters of the network are set to
the same values than in the bilingual models.

4.3 Results
Table 3 shows results for the systems that we
trained in this evaluation: phrase-based, char-to-
char neural MT with and without inverse model
rescoring and multilingual char-to-char neural
MT. We submitted the best systems from Table 3
for German-English and Finnish-English, which
is the char-to-char neural MT with rescoring of
the inverse model. We computed statistical signfi-
cance based on (Clark et al., 2011). Our proposed
method obtains a better BLEU score with > 95%
statistical significance.

4.3.1 German←→ English
This language pair was trained for 1.000.000 of
updates (batches). We generated a 100 n-best list
and did rescoring using force decoding over the
inverse direction.

4.3.2 Finnish←→ English
This model trained for 900.000 updates (batches)
for both language pairs. Rescoring is applied to
the 100 n-best list using the force decoded proba-
bilities obtained from the inverse model.

4.3.3 Turkish←→ English
This model trained for 200.000 updates. For this
model rescoring did not produce significative im-
provement in the results as seen in 3. Also an-
alyzinfg the results obtained we came to the con-
clusion that the corpus employed of approximately
200.000 sentences was not big enough to train the
char2char model specially when compared with
the resuts obtained using the phrase based model.

4.3.4 Multilingual
This model trained for 1.200.000 updates us-
ing all parallel data provided for the competition
in German-English, Finnish-English, Turkish-
English. As we can see in 3 the results obtained
by the bilingual models outperform the ones ob-
tained by this model. It is also worth to mention
the case performance in Turkish where 0 BLEU

285



Language Pair Characters Vocabulary Coverage(%)
German(DE) DE-EN/EN-DE 2379 300 99
English(EN) DE-EN/EN-DE 2540 300 99
Finnish(FI) FI-EN/EN-FI 439 300 99
English(EN) FI-EN/EN-FI 438 300 99
Turkish(TU) TU-EN/EN-TU 140 140 100
English(EN) TU-EN/EN-TU 160 160 100

Table 2: Characters, vocabulary size and coverage for each language.

System DeEn EnDe FiEn EnFi TuEn EnTu
test eval test eval test eval test eval test eval test eval

Phrase 23.59 22.71 18.25 17.93 9.71 11.35 13.67 15.62 11.10 9.77 7.25 8.33
Char2Char 28.63 32.07 21.08 26.61 14.75 15.75 11.54 11.21 5.87 6.77 6.23 4.73
+Rescoring 28.63 32.07 21.37 26.98 14.75 15.75 11.98 11.63 5.87 6.77 6.23 4.73
Multilingual 24.91 29.81 - - 12.66 13.06 - - 0 0 - -

Table 3: BLEU results. In bold, best results.

score was obtained. This may be also explained
by the limited corpus used for this language pair
compared to the ones employed for German and
Finnish.

System Examples
Truth CHIO : ” goldene Sportpyramide ” fr Bernhard Langer

der Grund war durchaus berzeugend .
Char2Char CHIO : ” Golden Sport Pyradid ” fr Bernhard Langer .

er hatte grndlich berzeugt
+Rescoring CHIO : ” Golden Sport Pyramid ” fr Bernhard Langer .

er war grndlich berzeugt .

Table 4: Examples of German translation with and
without rescoring.

System Examples

Truth
Louis Galicia sanoi , ett Frank ypyi alkuun
hostelleissa, mutta ett skettin ” hnen asiansa sujui-
vat vihdoinkin hyvin ”.
hn oli hyvntahtoinen ja hnell oli suuri sydn .
kyll , tilaisuudessa kteltiin

Char2Char
Louis Galicia sanoi , ett Frank ji aluksi houkuttelui-
hin, mutta hiljattain : ” asiat sujuivat lopultakin
hyvin ”.hn oli ystvllinen henki.kyll annettiin ktti.hn
oli
ystvllinen henki.
kyll annettiin ktti .

+Rescoring
Louis Galicia sanoi , ett Frank ji aluksi houkuttelui-
hin, mutta hiljattain : ” asiat sujuivat vihdoin hyvin
”.
hn oli ystvllinen ja suuri sydmen henki.
kyll annettiin kdellisyytt .

Table 5: Examples of Finnish translation with and
without rescoring.

Table 4 shows several translation output exam-
ples. The first example shows how the rescoring
technique can help when a word has been incor-
rectly spelled. In the second example, we see the
correction of a badly translated word.

Table 5 shows some examples of Finnish trans-
lations. The examples show how even if the
rescoring is not able to generate the correct trans-
lation it is able to produce a more similar word
than the model without rescoring.

5 Conclusions

In this paper, we have described the TALP-UPC
participation in the News Task. Our system im-
plements a char-to-char neural MT with rescoring
of the inverse direction model. This model gives
consistent improvements on different pairs of lan-
guages for the language direction with lowest per-
formance while keeping invariant the language di-
rection with highest performance.
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Abstract

This paper describes LIUM submis-
sions to WMT17 News Translation Task
for English↔German, English↔Turkish,
English→Czech and English→Latvian
language pairs. We train BPE-based at-
tentive Neural Machine Translation sys-
tems with and without factored outputs
using the open source nmtpy framework.
Competitive scores were obtained by en-
sembling various systems and exploiting
the availability of target monolingual cor-
pora for back-translation. The impact
of back-translation quantity and quality is
also analyzed for English→Turkish where
our post-deadline submission surpassed
the best entry by +1.6 BLEU.

1 Introduction

This paper describes LIUM Neural Machine
Translation (NMT) submissions to WMT17
News Translation Task for English↔German,
English↔Turkish, English→Czech and
English→Latvian language pairs. We exper-
imented with and without back-translation data
for English↔German and English↔Turkish
which are respectively described in Sections 3
and 4. For the latter pair, we also present an
analysis about the impact of back-translation
quality and quantity as well as two architectural
ablations regarding the initialization and the
output of recurrent decoder (Section 3).

Experiments for English→Czech and
English→Latvian are performed using Fac-
tored NMT (FNMT) (García-Martínez et al.,
2016) systems. FNMT is an extension of NMT
which aims at simultaneously predicting the
canonical form of a word and its morphological
information needed to generate the final surface

form. The details and results are presented in sec-
tion 5. All submitted systems1 are trained using
the open source nmtpy2 framework (Caglayan
et al., 2017).

2 Baseline NMT

Our baseline NMT is an attentive encoder-decoder
(Bahdanau et al., 2014) implementation. A bi-
directional Gated Recurrent Unit (GRU) (Chung
et al., 2014) encoder is used to compute source
sentence annotation vectors. We equipped the en-
coder with layer normalization (Ba et al., 2016), a
technique which adaptively normalizes the incom-
ing activations of each hidden unit with a learnable
gain and bias, after empirically observing that it
improves both convergence speed and translation
performance.

A conditional GRU (CGRU) (Firat and Cho,
2016; Sennrich et al., 2017) decoder with atten-
tion mechanism is used to generate a probability
distribution over target tokens for each decoding
step t. The hidden state of the CGRU is initialized
using a non-linear transformation of the average
encoder state produced by the encoder. Follow-
ing Inan et al. (2016); Press and Wolf (2017), the
feedback embeddings (input to the decoder) and
the output embeddings are tied to enforce learn-
ing a single target representation and decrease the
number of total parameters by target vocabulary
size × embedding size.

We used Adam (Kingma and Ba, 2014) as the
optimizer with a learning rate of 4e−4. Weights
are initialized with Xavier scheme (Glorot and
Bengio, 2010) and the total gradient norm is
clipped to 5 (Pascanu et al., 2013). When stated,
three dropouts (Srivastava et al., 2014) are ap-
plied after source embeddings, encoder hidden

1Backtranslations and other data can be found at http:
//github.com/lium-lst/wmt17-newstask

2http://github.com/lium-lst/nmtpy
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states and pre-softmax activations respectively.
The training is early stopped if validation set
BLEU (Papineni et al., 2002) does not improve
for a given number of consecutive validations. A
beam size of 12 is used for beam-search decod-
ing. Other hyper-parameters including layer di-
mensions and dropout probabilities are detailed
for each language pair in relevant sections.

3 English↔Turkish

3.1 Training

We use SETIMES2 which consists of 207K paral-
lel sentences for training, newsdev2016 for early-
stopping, and newstest2016 for model selection
(internal test). All sentences are normalized and
tokenized using normalize-punctuation and tok-
enizer 3 from Moses (Koehn et al., 2007). Train-
ing sentences that have less than 3 and more
than 50 words are filtered out and a joint Byte
Pair Encoding (BPE) model (Sennrich et al.,
2016b) with 16K merge operations is learned on
train+newsdev2016. The resulting training set has
200K sentences and 5.5M tokens (Table 1) where
∼63% and ∼50% of English and Turkish vocabu-
laries is composed of a common set of tokens.

Language # BPE Tokens

English 10041 = 6285 Common + 3756 En
Turkish 12433 = 6285 Common + 6148 Tr

Combined 16189

Table 1: Sub-word statistics for English, Turkish
and Combined vocabularies.

All models use 200-dimensional embeddings
and GRU layers with 500 hidden units. The
dropout probability Pdrop is used for all 3 dropouts
and set to 0.2 and 0.3 for EN→TR and TR→EN
respectively. The validation BLEU is computed
after each ∼1/4 epoch and the training stops if no
improvement is achieved after 20 consecutive val-
idations.

Data Augmentation Due to the low-resource
characteristic of EN↔TR, additional training
data has been constructed using back-translations
(BT) (Sennrich et al., 2016a) where target-side
monolingual data is translated to source lan-
guage to form a Source→Target synthetic cor-
pus. newscrawl2016 (1.7M sentences) and

3The tokenizer is slightly modified to fix handling of apos-
trophe splitting in Turkish.

newscrawl2014 (3.1M sentences) are used as
monolingual data for Turkish and English respec-
tively. Although we kept the amount of synthetic
data around ∼150K sentences for submitted sys-
tems to preserve original-to-synthetic ratio, we
present an analysis about the impact of synthetic
data quantity/quality as a follow-up study in Sec-
tion 3.3. All back-translations are produced using
the NMT systems described in this study.

3-way Tying (3WT) In addition to tying feed-
back and output embeddings (Section 2), we ex-
periment with 3-way tying (3WT) (Press and
Wolf, 2017) only for EN→TR where we use the
same embeddings for source, feedback and output
embeddings. A combined vocabulary of∼16K to-
kens (Table 1) is then used to form a bilingual rep-
resentation space.

Init-0 Decoder The attention mechanism (Bah-
danau et al., 2014) introduces a time-dependent
context vector (weighted sum of encoder states)
as an auxiliary input to the decoder allowing
implicit encoder-to-decoder connection through
which the error back-propagates towards source
embeddings. Although this makes it unnecessary
to initialize the decoder, the first hidden state of the
decoder is generally derived from the last (Bah-
danau et al., 2014) or average encoder state (Sen-
nrich et al., 2017) in common practice. To under-
stand the impact of this, we train additional Init-0
EN→TR systems where the decoder is initialized
with an all-zero vector instead of average encoder
state.

3.2 Submitted Systems

Each system is trained twice with different seeds
and the one with better newstest2016 BLEU is
kept when reporting single systems. Ensembles by
default use the best early-stop checkpoints of both
seeds unless otherwise stated. Results for both di-
rections are presented in Table 2.

TR→EN baseline (E1) achieves 14.2 BLEU on
newstest2017. The (E2) system trained with ad-
ditional 150K BT data surpasses the baseline by
∼2 BLEU on newstest2017. The EN→TR system
used for BT is a single (T5) system which is itself
a BT-enhanced NMT. A contrastive system (E3)
with less dropout (Pdrop = 0.2) is used for our fi-
nal submission which is an ensemble of 4 systems
(2 runs of E2 + 2 runs of E3). In overall, an im-
provement of ∼3.7 BLEU over the baseline sys-
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tem is achieved by making use of a small quantity
of BT data and ensembling.

EN→TR baseline (T1) achieves 11.1 BLEU on
newstest2017 (Table 2). (T2) which is augmented
with 150K synthetic data, improves over (T1) by
2.5 BLEU. It can be seen that once 3-way tying
(3WT) is enabled, a consistent improvement of up
to 0.6 BLEU is obtained on newstest2017. We
conjecture that 3WT is beneficiary (especially in a
low-resource regime) when the intersection of vo-
cabularies is a large set since the embedding of a
common token will now receive as many updates
as its occurrence count in both sides of the cor-
pus. On the other hand, the initialization method
of the decoder does not seem to incur a significant
change in BLEU. Finally, using an ensemble of
4 3WT-150K-BT systems with different decoder
initializations (2xT5 + 2xT6), an overall improve-
ment of 4.9 BLEU is obtained over (T1). As a
side note, 3WT reduces the number of parameters
by ∼10% (12M→10.8M).

System 3WT nt2016 nt2017

TR→EN (Pdrop = 0.3)

(E1) Baseline (200K) × 14.2 14.2
(E2) E1 + 150K-BT × 16.6 16.1
(E3) E1 + 150K-BT (Pdrop = 0.2) × 16.4 16.3

Ensemble (2xE2 + 2xE3) × 18.1 17.9

EN→TR (Pdrop = 0.2)

(T1) Baseline (200K) × 10.9 11.1
(T2) T1 + 150K-BT × 12.7 13.6
(T3) T1 + 150K-BT + Init0 × 12.8 13.5
(T4) Baseline (200K) X 11.5 11.6
(T5) T4 + 150K-BT X 13.4 14.2
(T6) T4 + 150K-BT + Init0 X 13.3 14.0

Ensemble (2xT5 + 2xT6) X 14.7 16.0

Table 2: EN↔TR: Underlined and bold scores
represent contrastive and primary submissions re-
spectively.

3.3 Follow-up Work

We dissect the output layer of CGRU NMT (Sen-
nrich et al., 2017) which is conditioned (Equa-
tion 1) on the hidden state ht of the decoder, the
feedback embedding yt−1 and the weighted con-
text vector ct. We experiment with a simple output
(Equation 2) which depends only on ht similar to
Sutskever et al. (2014). The target probability dis-
tribution is computed (Equation 3) using softmax
on top of this output transformed with Wo.

ot = tanh(Whht + yt−1 +Wcct) (1)

ot = tanh(Whht) (2)

P (yt) = softmax(Woot) (3)

System # Sents nt2016 nt2017
Single Ens Single Ens

(B0) Only SETIMES2 200K 11.5 12.8 11.6 13.0
(B1) Only 1.0M-BT-E1 1.0M 13.6 14.5 14.8 16.3

(B2) B0 + 150K-BT-E1 350K 13.2 14.2 14.3 15.4
(B3) BT-E2 13.4 14.1 14.2 14.9

(B4) B0 + 690K-BT-E1 890K 14.8 15.4 15.9 17.1
(B5) BT-E2 14.7 15.6 16.1 16.9

(B6) B0 + 1.0M-BT-E1 1.2M 14.9 15.6 16.2 17.5
(B7) BT-E2 14.9 15.5 16.0 17.0

(B8) B0 + 1.7M-BT-E1 1.9M 14.7 15.4 16.4 17.1
(B9) BT-E2 14.8 15.7 16.1 16.7

Table 3: Impact of back-translation quantity and
quality for EN→TR: all systems are 3WT, (B0) is
the same as (T4) from Table 2.

As a second follow-up experiment, we analyse
the impact of BT data quantity and quality on final
performance. Four training sets are constructed by
taking the original 200K training set and gradually
growing it with BT data of size 150K, 690K, 1.0M
and 1.7M (all-BT) sentences respectively. The
source side of the monolingual Turkish data used
to create the synthetic corpus are translated to En-
glish using two different TR→EN systems namely
(E1) and (E2) where the latter is better than former
on newstest2016 by 2.4 BLEU (Table 2).

The results are presented in Table 3 and 4. First,
(B1) trained with only synthetic data turns out to
be superior than the baseline (B0) by 3.2 BLEU.
The ensemble of (B1) even surpasses our primary
submission. Although this may indicate the im-
pact of training set size for NMT where a large
corpus with synthetic source sentences leads to
better performance than a human-translated but
small corpus, a detailed analysis would be neces-
sary to reveal other possible reasons.

Second, it is evident that increasing the amount
of BT data is beneficial regardless of original-
to-synthetic ratio: the system (B6) achieves
+4.6 BLEU compared to (B0) on newstest2017
(11.6→16.2). The single (B6) is even slightly
better than our ensemble submission (Table 4).
The +2.4 BLEU gap between back-translators E1
and E2 does not seem to affect final performance
where both groups achieve more or less the same
scores.
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Finally, the Simple Output seems to perform
slightly better than the original output formula-
tion. In fact, our final post-deadline submission
which surpasses the winning UEDIN system4 by
1.6 BLEU (Table 4) is an ensemble of four (B6)
systems two of them being SimpleOut. Condition-
ing the target distribution over the weighted con-
text vector ct creates an auxiliary gradient flow
from the cross-entropy loss to the encoder by skip-
ping the decoder. We conjecture that conditioning
only over the decoder’s hidden state ht forces the
network (especially the decoder) to better learn the
target distribution. Same gradient flow also hap-
pens for feedback embeddings in the original for-
mulation (Equation 1).

System Single Ens

LIUM - 16.0
UEDIN - 16.5

(B1) Only BT 14.8 16.3

(B6) SETIMES2 + BT 16.2 17.5
(B6) + SimpleOut 16.6 17.6

Ensemble (2xB6 + 2xB6-SimpleOut) - 18.1

Table 4: Summary of follow-up results for
EN→TR newstest2017: UEDIN is the best
WMT17 matrix entry before deadline while LIUM
is our primary submission (Table 2).

4 English↔German

We train two types of model: first is trained with
only parallel data provided by WMT17 (5.6M
sentences), the second uses the concatenation
(9.3M sentences) of the provided parallel data and
UEDIN WMT16 back-translation corpus 5. Prior
to training, all sentences are normalized, tokenized
and truecased using normalize-punctuation, tok-
enizer and truecaser from Moses (Koehn et al.,
2007). Training sentences with less than 2 and
more than 100 units are filtered out. A joint
Byte Pair Encoding (BPE) model (Sennrich et al.,
2016b) with 50K merge operations is learned on
the training data. This results in a vocabulary of
50K and 53K tokens for English and German re-
spectively.

The training is stopped if no improvement is ob-
served during 30 consecutive validations on new-

4http://matrix.statmt.org
5http://data.statmt.org/rsennrich/

wmt16_backtranslations

stest2015. Final systems are selected based on
newstest2016 BLEU.

4.1 Submitted Systems
EN→DE The baseline which is an NMT with
256-dimensional embeddings and 512-units GRU
layers, obtained 23.26 BLEU on newstest2017
(Table 5). The addition of BT data improved this
baseline by 1.7 BLEU (23.26→24.94). Our pri-
mary submission which achieved 26.60 BLEU is
an ensemble of 4 systems: 2 best checkpoints of
an NMT and 2 best checkpoints of an NMT with
0-initialized decoder (See section 3.1).

DE→EN Our primary DE→EN system (Ta-
ble 5) is an ensemble without back-translation
(No-BT) of two NMT systems with different di-
mensions: 256-512 and 384-640 for embeddings
and GRU hidden units respectively. Our post-
deadline submission which is an ensemble with
back-translation (BT) improved over our primary
system by +4.5 BLEU and obtained 33.9 BLEU on
newstest2017. This ensemble consists of 6 differ-
ent systems (by varying the seed and the embed-
ding and the GRU hidden unit size) trained with
WMT17 and back-translation data.

System # Params nt2016 nt2017

EN→DE Baseline 35.0M 29.11 23.26
+ synthetic 31.08 24.94

primary ensemble 33.89 26.60

DE→EN Baseline 52.9M 33.13 29.42
primary ensemble (No-BT) 33.63 30.10

+ synthetic 37.36 32.20
post-deadline ensemble (BT) 39.07 33.90

Table 5: BLEU scores computed with mteval-
v13a.pl for EN↔DE systems on newstest2016 and
newstest2017.

5 English→{Czech,Latvian}

The language pairs English→Czech and
English→Latvian are translated using a Fac-
tored NMT (FNMT) system where two symbols
are generated at the same time. The FNMT
systems are compared to a baseline NMT system
similar to the one described in Section 2.

5.1 Factored NMT systems
The FNMT system (García-Martínez et al., 2016)
is an extension of NMT where the lemma and the
Part of Speech (PoS) tags of a word (i.e. factors)
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are produced at the output instead of its surface
form. The two output symbols are then combined
to generate the word using external linguistic re-
sources. The low frequency words in the training
set can benefit from sharing the same lemma with
other high frequency words, and also from shar-
ing the factors with other words having the same
factors. The lemma and its factors can sometimes
generate new surface words which are unseen in
the training data. The vocabulary of the target lan-
guage contains only lemmas and PoS tags but the
total number of surface words that can be gen-
erated (i.e. virtual vocabulary) is larger because
of the external linguistic resources that are used.
This allows the system to correctly generate words
which are considered unknown words in word-
based NMT systems.

We experimented with two types of FNMT sys-
tems which have a second output in contrast to
baseline NMT. The first one contains a single hid-
den to output layer (h2o) which is then used by two
separate softmaxes while the second one contains
two separate h2o layers each specialized for a par-
ticular output. The lemma and factor sequences
generated by these two outputs are constrained to
have the same length.

The results reported in Tables 6 and 7 are
computed with multi-bleu.perl which makes them
consistently lower than official evaluation matrix
scores6.

5.2 Training

All models use 512-dimensional embeddings and
GRU layers with 1024 hidden units. The val-
idation BLEU is computed after each 20K up-
dates and the training stops if no improvement is
achieved after 30 consecutive validations. The rest
of the hyperparameters are the same as Section 2.

The NMT systems are trained using all the pro-
vided bitext processed by a joint BPE model with
90K merge operations. The sentences longer than
50 tokens are filtered out after BPE segmenta-
tion. For FNMT systems, BPE is applied on the
lemma sequence and the corresponding factors are
repeated when a split occurs.

We also trained systems with synthetic data
which are initialized with a previously trained
model on the provided bitext only. For these sys-
tems, the learning rate is set to 0.0001 and the val-
idations are performed every 5K updates in order

6http://matrix.statmt.org

to avoid overfitting on synthetic data and forget-
ting the previously learned weights. Two mod-
els with different seeds are trained for NMT and
FNMT systems for ensembling purposes.

5.3 N-best Reranking

We experimented with different types of N-best
reranking of hypotheses generated with beam
search (beam size = 12) using our best FNMT.
For each hypothesis, we generate the surface form
with the factors-to-word procedure, which can be
ambiguous. Since a single {lemma, factors} pair
may lead to multiple possible words, k possible
words are considered for each pair (with k being
10 for Czech and 100 for Latvian). Finally, the
hypotheses are rescored with our best word-based
NMT model to select the 1-best hypothesis.

For English→Latvian, we have also performed
N-best reranking with two Recurrent Neural Net-
work Language Models (RNNLM), a simple
RNNLM (Mikolov et al., 2010) and GRU-based
RNNLM included in nmtpy. The RNNLMs are
trained on WMT17 Latvian monolingual corpus
and the target side of the available bitext (175.2M
words in total). For the FNMT system, the log
probability obtained by our best word-based NMT
model is also used in addition to the RNNLM
scores. The reranking is done using the nbest tool
provided by the CSLM toolkit7 (Schwenk, 2010).
(The score weights were optimized with CON-
DOR (Vanden Berghen and Bersini, 2005) to max-
imize the BLEU score on newsdev2017 set.)

5.4 English→Czech

The English→Czech systems are trained using
approximately 20M sentences from the relevant
news domain parallel data provided by WMT17.
Early stopping is performed using newstest2015
and newstest2016 is used as internal test set. All
datasets are tokenized and truecased using the
Moses toolkit (Koehn et al., 2007). PoS tagging
is performed with Morphodita toolkit (Straková
et al., 2014) as well as the reinflection to go from
factored representation to word. Synthetic data
is generated from news-2016 monolingual corpus
provided by Sennrich et al. (2016a). In order to
focus more on the provided bitext, five copies of
news-commentary and the czeng news dataset are
added to the backtranslated data. Also, 5M sen-

7http://github.com/hschwenk/
cslm-toolkit
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tences from the czeng EU corpus applying modi-
fied Moore-Lewis filtering with XenC (Rousseau,
2013). We end up with about 14M sentences and
322M words for English and 292M for Czech.

System newstest2016 newstest2017

NMT
(CS1) Baseline 18.30 14.90
(CS2) CS1 + synthetic 24.18 20.26
(CE1) Ensemble(CS2) 24.52 20.44

FNMT
(CS3) single h2o layer 17.30 14.19
(CS4) sep. h2o layers 17.34 14.73
(CS5) CS4 + synthetic 22.30 19.34
(CS6) CS5 n-best reranking 23.39 19.83
(CE2) Ensemble(CS5) n-best reranking 24.05 20.22

Table 6: EN→CS. Bold scores represent primary
submissions. Ensemble(CSn) correspond to the
ensemble of 2 systems CSn trained with different
seeds.

5.5 English→Latvian
The English→Latvian systems are trained using
all the parallel data available for the WMT17 eval-
uation campaign. Data selection was applied to
the DCEP corpus resulting in 2M parallel sen-
tences.The validation set consists of 2K sentences
extracted from the LETA corpus and newsdev2017
is used as internal test set.

Monolingual corpora news-2015 and 2016 were
backtranslated with a Moses system Koehn et al.
(2007). Similarly to Czech, we added ten copies
of the LETA corpus and two copies of Europarl
and rapid to perform corpus weighting. The final
corpus contains 7M sentences and 172M words for
English and 143M for Latvian.

All the Latvian preprocessing was provided by
TILDE.8 Latvian PoS-tagging is done with the LU
MII Tagger (Paikens et al., 2013). Since there is no
tool for Latvian to convert factors to words, all the
available WMT17 monolingual data has been au-
tomatically tagged and kept in a dictionary. This
dictionary maps the lemmas and factors to their
corresponding word. After preprocessing, we fil-
ter out training sentences with a maximum length
of 50 or with a source/target length ratio higher
than 3.

5.6 Analysis
We observe that including the synthetic parallel
data in addition to the provided bitext results in
a big improvement in NMT and FNMT for both

8www.tilde.com

System newsdev2017 newstest2017

NMT
(LS1) Baseline 15.25 10.36
(LS2) LS1 + synthetic 21.88 15.26
(LS3) LS2 RNNLM reranking 21.98 15.59
(LE1) Ensemble(LS2) 22.34 15.46
(LE2) Ensemble(LS2) RNNLM reranking 22.46 16.04

FNMT
(LS4) single h2o layer 14.45 10.45
(LS5) sep. h2o layers 14.39 10.69
(LS6) LS5 + synthetic 18.93 13.98
(LS7) LS6 n-best reranking 21.24 15.28
(LS8) LS6 RNNLM reranking 21.79 15.51
(LE3) Ensemble(LS6) n-best reranking 21.90 15.35
(LE4) Ensemble(LS6) RNNLM reranking 21.87 15.53

Table 7: EN→LV. Underlined and bold scores
represent contrastive and primary submissions.
Ensemble(Sn) correspond to the ensemble of 2
systems Sn trained with different seeds.

language pairs (see systems CS2 and CS5 in Ta-
ble 6 and LS2 and LS6 in Table 7). Applying the
ensemble of several models also gives improve-
ment for all systems (CS1-CS2 and LS1-LS4). N-
best reranking of FNMT systems (systems CS6
and LS7) shows bigger improvement when trans-
lating into Latvian than into Czech. This is due to
the quality of the dictionary used for reinflection
in each language. The Morphodita tool for Czech
includes only good candidates, besides a simi-
lar tool is not available for Latvian. The rerank-
ing with RNNLM gives an improvement for the
NMT and FNMT systems when translating Lat-
vian (LS3 and LS8). As a follow-up work after
submission, we ensembled two models applying
reranking for Latvian and got improvements (LE2-
LE4). Finally, the submitted translations for NMT
and FNMT systems obtain very similar automatic
scores. However, FNMT systems explicitly model
some grammatical information leading to differ-
ent lexical choices, which might not be captured
by the BLEU score. Human evaluation shows
for EN-LV task that NMT system obtained 43%
of standardized mean direct assessment score and
FNMT system obtained 43.2% showing a small
improvement in FNMT system. Both systems ob-
tained 55.2% in EN-CS task. Other analysis has
been done (Burlot and Yvon, 2017) about mor-
phology strength showing good results in EN-LV
task. FNMT system helps when the corpus is not
huge, this is the case of EN-LV task but EN-CS
dataset is huge. Therefore, NMT system has al-
ready the information to learn the morphology.
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6 Conclusion and Discussion

In this paper, we presented LIUM machine trans-
lation systems for WMT17 news translation task
which are among the top submissions according
the official evaluation matrix. All systems are
trained using additional synthetic data which sig-
nificantly improved final translation quality.

For English→Turkish, we obtained (post-
deadline) state-of-the-art results with a small
model (∼11M params) by tying all the embed-
dings in the network and simplifying the output
of the recurrent decoder. One other interesting ob-
servation is that the model trained using only syn-
thetic data surpassed the one trained on genuine
translation corpus. This may indicate that for low-
resource pairs, the amount of training data is much
more important than the correctness of source-side
sentences.

For English→Czech and English→Latvian
pairs, the best factored NMT systems performed
equally well compared to NMT systems. How-
ever, it is important to note that automatic met-
rics may not be suited to assess better lexical and
grammatical choices made by the factored sys-
tems.
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Abstract

This article describes the Aalto University
entry to the English-to-Finnish news trans-
lation shared task in WMT 2017. Our sys-
tem is an open vocabulary neural machine
translation (NMT) system, adapted to the
needs of a morphologically complex target
language. The main contributions of this
paper are 1) implicitly incorporating mor-
phological information to NMT through
multi-task learning, 2) adding an attention
mechanism to the character-level decoder,
combined with character segmentation of
names, and 3) a new overattending penalty
to beam search.

1 Introduction

The rich inflection, derivation and compounding in
synthetic languages can result in very large vocab-
ularies. In statistical machine translation (SMT)
large vocabularies cause sparsity issues. While
continuous space representations make neural ma-
chine translation (NMT) more robust towards such
sparsity, it suffers from a different set of prob-
lems related to large vocabularies. A large vo-
cabulary bloats memory and computation require-
ments, while still leaving the problem of out-of-
vocabulary words unsolved.

Subword vocabularies have been proposed as a
solution. While the benefits of using subwords in
SMT have been at best moderate (Virpioja et al.,
2007; Fishel and Kirik, 2010; Grönroos et al.,
2015), subword decoding has become popular in
NMT (Sennrich et al., 2015). A subword vocabu-
lary of a moderate size ensures full coverage of an
open vocabulary. The downside is an increase in
the length of the input and output sequences. Long
sequences cause a large increase in computation

time, especially for architectures using the atten-
tion mechanism.

An alternative approach is the hybrid word-
character decoder presented by Luong and Man-
ning (2016). In the hybrid decoder, a word level
decoder outputs frequent words as they are, while
replacing infrequent words with a special <UNK>
symbol. A second character-level decoder then ex-
pands these <UNK> symbols into surface forms.

In addition to providing moderate length of in-
put and output sequences together with an open
vocabulary, the hybrid word-character decoder
makes it simple to use labels based on the level
of words, provided for example by morphological
analyzers and parsers. In SMT, such tools are typ-
ically used via factored translation models (Koehn
and Hoang, 2007). Factored translation has also
been successfully applied in NMT. For example,
Sennrich and Haddow (2016) augment the source
words with four additional factors: PoS, lemma,
dependency label and subwords. García-Martínez
et al. (2016) use a decomposed generation process,
in which they first output lemma, PoS, tense, per-
son, gender, and number, from which the surface
form is generated using a rule-based morphologi-
cal analyzer.

Neural machine translation provides another
way to utilize external annotations, multi-task
learning (MTL). MTL is a well established ma-
chine learning approach that aims at improving
the generalization performance of a task using
other related tasks (Caruana, 1998). For exam-
ple, Luong et al. (2016) use autoencoding, pars-
ing, and caption generation as auxiliary tasks to
improve English-to-German translation. Eriguchi
et al. (2017) combine NMT with a Recurrent Neu-
ral Network Grammar. The system learns to parse
the target language as an auxiliary task when trans-
lating into English.

We propose an MTL approach inspired by fac-
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tored translation. The output of a morphological
analyzer for the target sentence is used as an aux-
iliary prediction target, while sharing network pa-
rameters to a larger extent than in the approach of
Luong et al. (2016).

This approach has two advantages over factored
models. When training a system using factored
output, embedded gold standard labels are given as
input to the decoder. During translation gold stan-
dard labels are not available, and predicted labels
are instead fed back in. The confidence of the pre-
dictions is not accounted for when feeding back the
labels. This might worsen the problems caused by
exposure bias, i.e., the mismatch between training
and inference (Ranzato et al., 2016). If factored in-
put is used, the external labeling tools need to be
included also in the translation pipeline. In MTL
such tools are only necessary during training.

In terms of computational cost, a factored model
needs to predict the auxiliary labels also during
translation, slowing down inference and compli-
cating the beam search. A factored model might
also need to use a larger beam to avoid hypothe-
ses with the same surface form but different labels
from crowding out more diverse hypotheses. In
MTL, the auxiliary tasks are only performed dur-
ing training, and no changes need to be made to
the inference.

The main contributions of this paper are com-
bining word-level labels from morphological anal-
ysis with a hybrid word-character decoder, and
adding an attention mechanism to the character-
level decoder. We also propose a new overattend-
ing penalty to the beam search.

2 Neural machine translation

Neural machine translation (NMT) is a frame-
work for machine translation that uses a single
neural network trained end-to-end. The recently
proposed encoder-decoder network with attention
mechanism (Bahdanau et al., 2014) has become ac-
cepted as the current standard in NMT.

The first part of the network, the encoder, reads
a source sentence x and encodes it as a sequence
of hidden states s = (s1, s2, . . . , sN ). The en-
coder is often implemented as a bidirectional recur-
rent network with long short-term memory units
(bi-LSTM), in which case each hidden state is the
concatenation of a state from the forward and back-
ward encoders.

The last part of the network, the decoder, is

implemented as a conditional recurrent language
model which models the probability of the target
sentence y as

log p(y | x) =
∑

t

log p(yt |y<t, x)

=
∑

t

log p(yt |ht, ct). (1)

The encoder and decoder are linked by the at-
tention mechanism. At each timestep, the atten-
tion mechanism computes a context vector ct as
a weighted average of the encoder hidden states
s. The weights at,i are determined by a layer that
takes as input the current decoder hidden state ht

and each of the vectors si in turn.

at,i(h, s) =
exp(align(ht, si))∑
j exp(align(ht, sj))

align(ht, si) = v⊤
a tanh(Wa[ht; si]) (2)

In effect, at each timestep the attention mechanism
scans the entire source to decide which parts are rel-
evant to focus on when generating the next output
symbol.

Luong and Manning (2016) extend the word-
level encoder-decoder model by adding character-
level processing of rare words. On the encoder
side, word embeddings for rare source words are
produced by a character-level encoder, instead of
using a universal <UNK> embedding. The hybrid
model ensures an open vocabulary, while keeping
the attended sequence shorter than using characters
or subwords.

On the decoder side, the word-level decoder out-
puts <UNK> for rare words, while storing the
decoder hidden state at that timestep. A separate
character-level decoder expands these tokens into
the surface form. The character-level encoder and
decoder can be trained jointly with the word-level
components, by backpropagating end-to-end.

In separate-path initialization of the character-
level decoder, the word-level LSTM output h is
not used to seed the character-level decoder, but
instead a counterpart vector h̆ is calculated as

h̆t = tanh(W̆ [ct; ht])

3 System description

Our system is based on the open-source Helsinki
Neural Machine Translation (HNMT) software1.

1Available from
https://github.com/robertostling/hnmt .
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Figure 1: Our neural network architecture. In the example, “Forget the hype” is translated into “Unohda
kohu”. On the left side, the hybrid word-character encoder, using bi-LSTM for both levels. On the lower
right side, the word-level attentional LSTM decoder, which predicts both word tokens and auxiliary labels.
Above it, the predicted <UNK> is expanded by the attentional character-level decoder. For clarity,
attention is only drawn for the first timestep of each decoder.

We extend2 HNMT with a hybrid word-character
decoder, multi-task learning, and improved beam
search. An overview of the neural network archi-
tecture can be seen in Figure 1.

Hybrid encoder-decoder. HNMT implements
a hybrid word-character encoder. Instead of the
two-level unidirectional LSTM character-level en-
coders of Luong and Manning (2016), bi-LSTM
encoders are used. The embedding for rare words
is the concatenation of the last states of the forward
and backward character-level encoders.

We extend HNMT with a hybrid word-character
decoder, using separate path initialization of the
character-level decoder. We also add an attention
mechanism to the character-level decoder, yield-
ing the character-level context vector c̆t,tc . The at-
tended sequence is the same as for the word-level
decoder: the word-level encoding s of the source
sentence. To make it possible for the attentional
character-level decoder to copy or transcribe on
a subword-level, we perform character segmenta-
tion preprocessing on capitalized input words (af-
ter truecasing). The segmentation is described in
Section 4.

Multi-task learning. The main task is transla-
2Our fork available from

https://github.com/Waino/hnmt .

tion into the target language surface form, while
the auxiliary tasks consist of predicting the out-
put of the FinnPos morphological analyzer for the
target sentence. The auxiliary tasks provide addi-
tional supervision signals that can help the model
learn grammar and morphology. The tasks share
parameters more closely than the one-to-many
multi-task learning setting defined by Luong et al.
(2016). In addition to sharing the encoder, all parts
of the word level decoder except the final feed-
forward prediction layers are shared. A potential
downside compared to using a separate decoder is
that the label sequence must be of the same length
and synchronous with the surface sequence. This
tightly shared MTL matches perfectly with the hy-
brid word-character decoder, as the labeling is on
the level of words. The work-around of repeating
labels to match the length of a subword sequence
was not explored in this work.

In MTL, the supervision from the labels is softer
than when using a factored model. Uncertain la-
bels could be ignored, by limiting the task to sen-
tences with high-confidence labels. We did not
use this opportunity, as FinnPos labels every in-
put sentence, and does not provide confidence esti-
mates. As all our data D is labeled, we control the
influence of the auxiliary task using a multiplica-
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tive weight on part of the cost function, instead of
the minibatch mixing ratio used by Luong et al.
(2016).

We train the whole model jointly to maximize

E(x,y,a)∈D[log p(y, a | x)]

where a are the labels: the cluster id of the lemma,
the rounded log-frequency of the lemma, the PoS,
and 5 morphological tags: number, case, person,
mood, and tense. Each label is independently pre-
dicted from the concatenation of h and h̆.

Beam search scoring function. We use beam
search during decoding to find the optimal trans-
lation sequence y. Instead of directly maximiz-
ing the probability, we maximize a score function
s(y, x), designed to alleviate two known issues in
NMT: overtranslation and undertranslation.

Undertranslation is reduced by adding length
normalization (lp) and a coverage penalty (cp), fol-
lowing Wu et al. (2016).

Unlike undertranslation, overtranslation is to
some extent inherently reduced by the mono-
tonically increasing generation log-probabilities.
However, the inherent cost is not enough, leading
us to add a penalty for overattending a source token
(oap). The penalty is applied if the most attended
source word has sum attention over 1.0. We use
the maximum function instead of sum, in order not
to increase the strength of the penalty for long in-
put sentences. The overattending penalty is mono-
tonically increasing, which enables us to include it
when pruning active hypotheses.

The overattending penalty is not suitable if the
decoder uses smaller units than the output of the en-
coder. Repeated attention is required if the decoder
must output several subwords for each source to-
ken.

The scoring function is

s(y, x) = − log
(
p(y | x)

)
+ lp(y)

+ cp(y, x) + oap(y, x), (3)

where

lp(y) =
(|y| + λ)α

(1 + λ)α
(4)

cp(y, x) =β

|x|∑

i=1

log
(

min(

|y|∑

j=1

aij , 1.0)
)

(5)

oap(y, x) = − γ max
( |x|

max
i=1

( |y|∑

j=1

aij − 1.0
)
, 0.0

)

(6)

The parameters α, β, γ, and λ control the strengths
of the penalties.

Pruning in beam search. We use three types
of pruning in the beam search.

First, at each step, for each hypothesis to be ex-
tended, we prune the list of candidates for the next
symbol based on local probability, to only keep
beam_width + 1 candidates. This pruning im-
proves speed without affecting the output.

Second, after at least one hypothesis has been
completed, we keep track of the current best nor-
malized score. This allows pruning active hypothe-
ses by comparing their partially normalized score
against the best normalized score, with adjustable
pruning margin. The partially normalized score is
calculated as the sum of the monotonically increas-
ing parts of the scoring function

− log
(
p(y | x)

)
+ oap(y, x)

This pruning may affect the output by removing a
hypothesis with a poor early score that could have
improved later. To gain a speed-up, it is neces-
sary to prune active hypotheses: limiting pruning
to completed hypotheses cannot reduce the num-
ber of hypotheses in early stages, and thus cannot
result in early clearing of the beam.

Completed hypotheses are moved from the
beam to a separate heap. This clears out room in
the beam for active hypotheses, but also means that
the pruning of active hypotheses becomes essential
for early stopping of the beam search.

The third type of pruning is applied to the
heap of completed hypotheses based on normal-
ized score, to only keep n best hypotheses. This
pruning conserves memory and does not affect the
ordering of the results.

4 Data

Our system participates in the constrained condi-
tion of the WMT shared task. As training data,
we used the Europarl-v8, Rapid and Wikititles cor-
pora, extended with backtranslated monolingual
data, resulting in 6 091 184 parallel sentence pairs
after cleaning. The backtranslated sentences were
from the news.2014.fi corpus, translated with a PB-
SMT model, trained with WMT16 constrained set-
tings. Based on initial experiments we decided to
use the full backtranslated set, for a ratio of ca 60%
backtranslated to 40% parallel data, instead of sub-
sampling to balance the ratio.
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newstest2016AB newstest2017

Configuration chrF-1 chrF-2 BLEU chrF-1 chrF-2 BLEU TER

Hybrid decoder with MTL, ensemble of 4 56.79 55.60 21.46 57.30 55.96 20.28 .673
+ repetition removal 57.07 55.59 21.55 57.57 55.92 20.31 –

FlatCat subword decoder, ensemble of 4 55.77 55.41 20.01 54.10 53.98 17.15 .750

Hybrid decoder with MTL, single model 54.69 53.43 18.60 55.17 53.87 17.84 –

Table 1: Results of automatic evaluation. BLEU and chrF scores are percentages. TER from
http://matrix.statmt.org/matrix/systems_list/1871?metric_id=2 .

newstest2016AB

Configuration chrF-1 chrF-2 BLEU

Hybrid decoder with MTL 56.79 55.60 21.46

No morphological tags 55.97 55.20 19.83
No log frequency 55.49 54.26 19.47
No clustered lemma 55.23 53.65 19.37
No PoS-tags 55.05 53.73 19.29

No multi-task learning 54.91 53.48 19.43

No character attention
& name segmentation 52.12 50.80 17.16

No length penalty 56.68 55.52 21.35
No overattending penalty 56.68 55.53 21.33
No coverage penalty 56.43 54.93 20.97
No penalties 55.90 54.21 20.45

Table 2: Results of ablation experiments. All runs
are ensembles of 4, to reduce variability.

Data preprocessing consists of filtering too long
sentences, normalizing misencoded data, normal-
izing punctuation, deduplication, tokenization, sta-
tistical truecasing, filtering of untranslated sen-
tences, and character segmentation of names on the
source side.

Segmenting names into characters, when com-
bined with attention on the character level, al-
lows copying or transliteration on a character-to-
character basis. It is applied using a rough heuris-
tic: we segment any token longer than one char-
acter beginning with an upper case letter or digit.
All segmented characters are marked using re-
served symbols. The first and last characters of the
sequence have distinct symbols separating them
from word-internal characters.

The filtering of untranslated sentences was also
performed using a rough heuristic, by filtering
any sentences containing certain common En-
glish contractions and clitics that do not occur in
Finnish. The target side training data, especially
Europarl, contains hundreds of sentences with En-

glish phrases. A typical reason is discussions on
the wording of English-language documents being
drafted. The filtering was an attempt to alleviate a
failure mode in which the system would instead of
translating attempt (and fail) to output the English
source.

A parallel corpus augmented with gold-standard
labels for MTL is not available. We tag the target
side of the parallel corpus using the statistical tag-
ger FinnPos (Silfverberg et al., 2016). The result-
ing labels are noisy, but nonetheless provide super-
vision for the morphological analysis task.

We postprocess the output of FinnPos. The mor-
pheme tag sequence is split, and tags are grouped
by type. FinnPos lemmas are noisy, containing
many remaining affixes and other mislemmatiza-
tions. We collapse numbers into a single num-
ber symbol, remove special characters, and cluster
the remaining lemmas into 10 000 clusters with
word2vec (Mikolov et al., 2013).

5 Training details

We use the following parameters for the network:
weight of auxiliary task between 0.001 and 0.75,
64 dimensional character embeddings, 256 dimen-
sional word embeddings, 128 dimensional aux em-
beddings, 2*256 dimensional encoder state, 1024
dimensional word decoder state, 1024 dimensional
character decoder state, 256 dimensional attention,
everything except 25k most frequent source words
embedded by character level encoder, 50k most
frequent target words output by word level de-
coder, 10k overlap between word level and char-
acter level vocabularies during training.

For training, we use Adam with initial learning
rate 0.001 and gradient norm clipped to 5.0.

The systems have been tuned towards
characterF-1.0 (Popovic, 2015, 2016). We
optimize the beam search parameters, using a grid
search. The optimal parameters were α 0.012,
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β 0.3, γ 0.2, λ 3, pruning margin 1.4, and weight
0.8 for the character-level cost.

We use an ensemble procedure, in which the
combined prediction is computed as the mean af-
ter the softmax layer of the predictions of 4 models.
The primary system uses systems from 4 runs with
different weights for the auxiliary task. The sys-
tems trained for comparison—a subword system
based on Morfessor FlatCat and the systems in ab-
lation experiments—were ensembled using 4 save
points from a single run.

To include an example of subword NMT, we
also submit our FlatCat system. As preprocess-
ing, the target side has been segmented using Mor-
fessor FlatCat (Grönroos et al., 2014), which was
tuned to produce a subword lexicon of approxi-
mately 60k symbols. Segmenting names into char-
acters is applied in addition to the FlatCat segmen-
tation. The FlatCat segmented system uses WMT
2016 data only, i.e., omits the Rapid corpus.

The FlatCat subword system uses the standard
HNMT decoder. It uses neither the hybrid word-
character decoder nor MTL. We did however use
the improved beam search with penalties.

6 Results

We evaluate the systems using characterF with
β set to 1.0 and 2.0, and cased BLEU using the
mteval-v13a.pl script. We also include Transla-
tion Error Rate (TER) results for the submitted sys-
tems. Our primary system has the best TER score
of all participants.

As the development test set we use both ref-
erence translations of the newstest 2016 set. Ta-
ble 1 shows the submitted ensemble systems, and
the best single model for our primary system. As
our system has a tendency to repeat certain words,
we also evaluate the primary system after a post-
processing step in which consecutive repetitions
are removed.

We perform ablation experiments for all new
components in our system, by removing each of
them separately (non-cumulative effect). Results
are shown in Table 2.

All added components were beneficial. The
largest improvement, +4.3 BLEU, comes from
the attention mechanism in the character decoder,
combined with segmenting names into characters.

Multi-task learning improves BLEU by +2.03.
Not all auxiliary labels are equally important. PoS
tags (+2.17 BLEU) and clustered lemmas (+2.09

BLEU) perform above average, and removing ei-
ther of them yields worse BLEU than not using
MTL at all. The results of both characterF mea-
sures differ in this, ranking not using MTL as
worse than all the partial MTL variants.

The overattending penalty to the beam search
gives a much more modest gain of +0.13 BLEU.
The coverage penalty is the most important of the
beam search penalties. In total, the beam search
heuristics yield an improvement of +1.01 BLEU.

In the human evaluation, our primary system
was ranked in the second of five clusters (tied 3rd

to 5th place).

7 Discussion

All our added components improved the transla-
tion quality.

The largest improvement comes from the modi-
fications intended to enable character-to-character
copying: segmenting names into characters and
character-level attention. However, the simple
heuristic used for selecting words to segment can
make translation more difficult in some cases, e.g.
the names of institutions are typically capitalized,
but translated on a term level. Replacing the heuris-
tic with named-entity recognition or other more ad-
vanced methods is left for future work.

A common type of error made by our system
is overtranslation through repetition. A possible
explanation for the effect is the way that the lev-
els of the hybrid word-character decoder are con-
nected. There is no connection from the character
level back to the word level. The surface forms
generated by the character-level decoder are condi-
tionally independent given the word-level hidden
states, which can be similar to the states at adjacent
time steps. The word-level decoder must decide on
the number of words in an expression, which is a
difficult task if the proportion of <UNK> tokens
becomes large. The overattending penalty is only
partially successful at reducing the repetition, and
increasing the penalty weight deteriorates overall
performance before eliminating the problem.

8 Conclusion

Our results show that translation into a morpho-
logically complex language can be improved us-
ing word-level labels from morphological analysis
combined with a hybrid word-character decoder.
Adding an attention mechanism to the character de-
coder yields a large quality improvement.
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Abstract

This paper describes the AFRL-MITLL
machine translation systems and the im-
provements that were developed during
the WMT17 evaluation campaign. This
year, we explore the continuing prolifera-
tion of Neural Machine Translation toolk-
its, revisit our previous data-selection ef-
forts for use in training systems with these
new toolkits and expand our participation
to the Russian–English, Turkish–English
and Chinese–English translation pairs.

1 Introduction

As part of the 2017 Conference onMachine Trans-
lation (WMT, 2017) news-translation shared task,
the MITLL and AFRL human language technol-
ogy teams participated in the Russian–English,
English–Russian, Turkish–English and Chinese–
English tasks.
Our machine translation systems this year are

a departure from our previous Moses (Koehn
et al., 2007) based systems from WMT16 (Gwin-
nup et al., 2016). We employ systems built with
the Nematus (Sennrich et al., 2017) toolkit as
in our IWSLT2016 (Kazi et al., 2016) systems,
the Nematus-compatible Marian training toolkit
and AmuNMT decoder (Junczys-Dowmunt et al.,
2016) and the OpenNMT (Klein et al., 2017)
toolkit.
For the Russian–English and Turkish–English

language pairs, we submitted an entry comprising
the best systems combined using the Jane system
combination method (Freitag et al., 2014) and the
best-scoring single system for that language pair.

Portions of this work are sponsored by the Air Force Re-
search Laboratory under Air Force contracts FA-8721-05-C-
0002 and FA-8650-09-D-6939-029.

For the Chinese–English and English-Russian lan-
guage pairs, we only submitted our single-best sys-
tem.

2 Data and Preparation

2.1 Data Used
We utilized all available data sources provided for
the language pairs we participated in, including the
Commoncrawl (Smith et al., 2013), Yandex1, UN
v1.0 (Ziemski et al., 2016), SETimes (Tyers and
Alperen, 2010) corpora.

2.2 Data Preparation
The Russian/English files were cleaned to re-
move blank lines, replace carriage returns with
line feed characters, remove wrong-language text,
and correct mixed alphabet spellings, following
techniques outlined in (Young et al., 2016) and
(Schwartz et al., 2014).
The number of non-parallel blank lines in the

Russian/English news commentary files indicated
some sentence alignment errors, so these files were
re-processed using the NLTK Punkt (Kiss and
Strunk, 2006) sentence segmenter and the Cham-
pollion sentence aligner (Ma, 2006) before clean-
ing. Altogether, 9537 of the original 236,314
newscommentary lines were removed during the
clean-up process.
The Chinese files were word-segmented with

Jieba2 and the Stanford Chinese segmenter (Chang
et al., 2008). The Chinese–English parallel data
was cleaned to replace carriage returns and to re-
move wrong-language text. Lines with URLs in
http were also removed, because of a difference
in the Chinese and English tokenization. Alto-
gether, the clean-up process removed 310,121 of
the 21,248,495 lines in the combined file.

1https://translate.yandex.ru/corpus?lang=en
2https://github.com/fxsjy/jieba
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2.3 Subselection
We use our corpus subselection algorithm, defined
in (Gwinnup et al., 2016). We use a vocabulary
of up to 4-grams for subselection, after using byte-
pair encoding (see Section 3) to produce sub-word
units. We believe that selecting from subwords is
especially beneficial in morphologically-complex
languages like Turkish and Russian.
For Russian we conducted monolingual selec-

tion from provided Common Crawl, to match test
sets from 2012-2016 (15K lines total). This corpus
was broken into 571 chunks of one million lines
each, and five thousand lines were selected from
each (2.9M lines total). 3-gram and 4-gram sub-
word subselection vocabulary was used.
For Turkish we conducted monolingual selec-

tion from Common Crawl, to match SE Times and
dev/test 2016 corpora (212K lines total). This cor-
pus was broken into 502 chunks of one million
lines each, and 25 thousand lines were selected
from each (12.5M lines total). 4-gram subword
subselection vocabulary was used.
After this subselection process completed for

various languages we then sampled the first 3000
(e.g. top-scoring) English sentences from each se-
lected chunk. For Russian and Turkish, we utilized
the entire subselected chunk. Final line-counts for
these selected data sets are listed in Table 1.

Language Final Lines

English 8,921,942
Russian 2,856,141
Turkish 5,011,001

Table 1: Final count of subselected lines per
language used in training AFRL’s backtranslation
systems.

3 MT System Descriptions

This year we participated in the Russian–English,
English–Russian, Turkish–English and Chinese–
English translation pairs using a variety of toolkits
and techniques. Of particular note, we employed
byte-pair encoding (Sennrich et al., 2016b) (BPE)
of the source and target training data to address the
out-of-vocabulary(OOV) problem.

3.1 Russian–English
The Russian–English language pair has been our
largest focus since our participation in WMT14.

We spent significant effort building a variety of
systems described as described below.

3.1.1 AFRL Nematus/Marian Systems
Our Nematus/Marian systems follow the general
approach of the WMT16 Edinburgh NMT systems
(Sennrich et al., 2016a) with the following differ-
ences: We use the data selection algorithm de-
scribed in Section 2.3 yielding approximately 5
million additional lines of backtranslated data.
In order to produce this backtranslated data we

performed the following steps: 1) We first used
Edinburgh’s backtranslated data from WMT16 to
produce a Nematus-based Russian–English sys-
tem. 2) Once trained, we used the Amun decoder
to translate the 2.8 million lines of subselected
monolingual Commoncrawl Russian data into En-
glish. 3) The resulting data was then used to train
an English–Russian Marian system that then used
the Amun decoder to translate the 8.9 million lines
of subselected English data to Russian. 4) Follow-
ing this decoding, a final Russian–English system
was trained using Marian with this backtranslated
data. Three separate Marian training runs were
performed with this final data set. Additionally,
a Nematus system was trained for rescoring pur-
poses where the English target data was reversed in
word order. The combination of these final inputs
was optimized with Drem (Erdmann and Gwin-
nup, 2015) to determine feature weights.

3.1.2 AFRL OpenNMT Systems
We trained four OpenNMT systems. Two sys-
tems employed the backtranslated data used in
last year’s University of Edinburgh NMT systems
(Sennrich et al., 2017). The other two systems em-
ployed the subselected data as described in Section
2.3. All systems used 1000 hidden units and 600
unit word embeddings.
The two WMT16-based systems were each

fine-tuned with newstest2012-2015 data. One
system was also incrementally trained with the
same newstest data. The subselected systems
had cased BLEU scores of 30.04 and 30.67 on
newstest2017 while the WMT16-based systems
had BLEU scores of 32.16 and 32.78. They were
all single systems.
Since OpenNMT currently does not support en-

semble decoding, we decided to try doing system
combination on the last four epochs of training.
Taking the best system from the subselected data
then gave a BLEU score of 33.95 while the best
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WMT16-based systems increased to 33.23. Com-
bining the four ensembles of each of those systems
resulted in a score of 34.45BLEU. This last ensem-
ble system combination was done after the submis-
sion deadline.

3.1.3 MITLL Phrase-Based System
While similar to last year’s phrase-based sys-
tem (Gwinnup et al., 2016), this year’s system dif-
fers in a few key ways: 1) We use Moses truecased
training data, to make our tokenization scheme
uniform; 2) We rescore using systems built from
data made available by Edinburgh’s WMT16 Sys-
tem (Sennrich et al., 2016a); 3) We updated our
language models with the new monolingual data
sources, and finally 4) We add an additional 4 mil-
lion lines from the UN v1.0 corpus (Ziemski et al.,
2016) into the parallel training data.
For the last item, we used Moore-Lewis (Moore

and Lewis, 2010) filtering on the English side
of the training data. The in-domain language
model was trained on news.2015.shuffled.en
using a single layer LSTM language model de-
veloped in-house. The out-of-domain language
model (trained on UNv1.0) used the same vocab-
ulary. We compared word vs character-level lan-
guage model results, and noted that character-level
language modeling did a good job of data cleanup
(giving bad scores to personnel records and poorly
formatted data). We swept data selection sizes of
two, four, and eight million, and found the middle
size consistently the best. Our phrase-based sys-
tem results can be summarized in Table 2.

System Cased BLEU

Baseline 24.95
Rescore 27.32
Rescore + UN ML-words 27.80
Rescore + UN ML-chars 27.86
Rescore + UN ML-both 28.05
Resc. + UN ML-both + new LMs 28.41

Table 2: MITLL phrase-based system scores on
newstest2016 measured in cased BLEU.

3.1.4 MITLL OpenNMT Systems
We trained an OpenNMT system with the same
in-domain data as our phrase-based system, using
the default 9 epochs at learning rate 1.0, and re-
ducing the learning rate by 0.7 each epoch there-
after. This yielded a system with 29.07 BLEU on

newstest2016. Creating an n-best list from the
epoch 13 model and rescoring that n-best list with
the models from epoch 11 and 12, combined with
equal weight, yielded 29.55 BLEU.

3.1.5 AFRL Phrase-Based Systems
In order to provide diversity for system combina-
tion, we trained a Moses system with the provided
parallel data and the subselected, backtranslated
data as outlined in Section 3.1.1. We trained a 5-
gram, BPE’d language model from the data used
to train the BigLM used in our WMT15 (Gwinnup
et al., 2015) systems.

3.2 English–Russian
Due to the surprising effectiveness of the Marian
English–Russian translation system used to pro-
duce backtranslated data, we decided to enter this
system in the English–Russian translation task.
This system was used in Step 2 of the Russian–
English training process detailed in Section 3.1.1.
Results of decoding newstest2017 are listed as
entry 3 in Table 7.

3.3 Turkish–English
We apply the techniques employed in building
our Russian–English systems to build Turkish–
English translation systems.

3.3.1 AFRL Nematus/Marian Systems
For the Turkish–English task, the only provided
parallel data was the SETimes corpus (Tyers and
Alperen, 2010) of approximately 220,000 paral-
lel lines. This presented a challenge for our
goal of training a neural-based system similar
to our Russian–English system (Section 3.1.4).
We adopted a multiple step approach as before,
but first starting with a Turkish–English Moses
(Koehn et al., 2007) system built on the SETimes
corpus with BPE applied. An order-5 KenLM
(Heafield, 2011) language model was built on a
BPE’d version of the BigLM employed in our
WMT15 system(Gwinnup et al., 2015). Hierarchi-
cal lexicalized reordering (Galley and Manning,
2008) and an order-5 Operation Sequence Model
(Durrani et al., 2011) were also employed in this
system. Drem (Erdmann and Gwinnup, 2015) was
used to optimize system feature weights using the
Expected Corpus Bleu (ECB) metric.
In the interest of speed, Moses2 (Hoang et al.,

2016) was used to decode the subselected Turk-
ish corpus. An English–Turkish Marian system
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was then trained (with default parameters) with
the provided parallel data and the backtranslated
data from the previous step. This system was then
used to decode the English subselected corpus.
Finally, our non-combination submission system
was trained using both the parallel provided data
and the data generated from the previous back-
translation step. This final Marian system was
trained with a source vocabulary of 70k, target vo-
cabulary of 50k, a 2048-unit RNN hidden layer
and a 512-unit word embedding layer. A Nematus
system was trained with reversed target sentences
to provide right-to-left(r2l) rescoring. Two Mar-
ian left-to-right (l2r) and one Nematus r2l training
instances were run. Each of the 3 final models are
an average of the 8 best-scoringmodel checkpoints
for each distinct training run. These resulting l2r
averaged models were used to ensemble decode
the test set, with the averaged r2l model rescoring
the resulting n-best lists. Finally, the one-best was
output and submitted as System 5 in Table 7.

3.3.2 MITLL OpenNMT Systems
In the final week of the evaluation, to produce a di-
verse system, we attempted backtranslation, itera-
tively. We began with a Moses system trained on
the SETimes corpus. We then took 800K sentences
from news.2016.shuffled for either language.
In training a Turkish to English MT system, we
backtranslated the English news data into Turkish
using the current best English–TurkishMT system.
We then repeated the process in the other direction.
In the interest of time, we used a small network
with 256 sized word embeddings, 512 sized rnn,
and learning rate decay starting at epoch 6. Each
pass took one day. Perplexities converged after 3
iterations. See Table 3 below.

Iter Forward ppl. Backward ppl.

1 26.92 31.72
2 22.65 27.74
3 16.75 27.88

Table 3: MITLLOpenNMTTurkish–English sys-
tem perplexities on newsdev2016.

3.3.3 AFRL Moses Phrase-Based Systems
For contrast, a phrase-based system was built in
the same manner as described in Step 1 of Section
3.3.1, but using the provided and backtranslated
data used in the final step. This system contributed

to the system combination listed as entry 4 of Table
7.

3.4 Chinese–English
3.4.1 MITLL Nematus and OpenNMT

Systems
As in our other systems, we used Moore-Lewis fil-
tering (on characters only here due to time con-
straints) to sort the data. In this case, we used
the entire parallel training corpora provided (25M
lines), and filtered it, since we had no prior knowl-
edge of which corpora were useful. For our Ne-
matus system, we took the top 20 million lines,
using the subselection method as a form of data
“cleanup”. Since this system took a month to train,
for our OpenNMT system we instead extracted
the top 5M sentences, and this system trained
in one week. The Nematus system trained to a
BLEU score of 16.39 on newstest2016, ensem-
bled to 18.59, and the single-best OpenNMT sys-
tem trained to 18.30. (OpenNMT did not have en-
semble decoding implemented at the time of the
evaluation.) We also rescored the Nematus ensem-
bled n-best list with our OpenNMT system. We
used an n-best list size of 12, and achieved a score
of 20.06 (+.06) on newstest2017.

3.4.2 AFRL OpenNMT Systems
Similarly to the Chinese–English systems in the
previous section, we down-sampled the available
parallel data using the algorithms described in
(Gwinnup et al., 2016) resulting in a 5 million
line parallel training set. OpenNMT systems were
trained in the same manner described in Section
3.1.2. The outputs of the 8 best-scoring epochs
were ensembled using system combination again
in the same manner as the Russian–English sys-
tems. This resulting system is listed as entry 6 in
Table 7.

3.4.3 AFRL Marian Systems
Again for contrast, we experimented using 5 mil-
lion lines of down-selected data from the paral-
lel UN corpus as in Section 3.4.2. We character-
segmented all Chinese characters on the source
side of the data, then applied a BPE model to any
remaining non-Chinese words. This BPE model is
the same as the one learned from and applied to the
target side of the parallel training data. Interest-
ingly, this approach limited the source vocabulary
to only 22,000 terms. The target vocabulary is a
more typical 40K due to the application of BPE.
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Marian was used to train models with 1024,
2048, and 3072 hidden units in the RNN layer. We
saw a performance gain when increasing the num-
ber of units from 1024 to 2048, but not from 2048
to 3072 (at least for this experiment). These scores
are shown in the Table 4.

RNN width cased BLEU

1024 17.75
2048 18.81
3072 18.84

Table 4: Chinese–English Marian systems
with different RNN hiddenunit widths decoding
newstest2017 measured in cased BLEU.

3.5 System Combination
Jane System Combination (Freitag et al., 2014)
was used to combine a variety of systems for our
Russian–English and Turkish–English combina-
tion submissions. We show the individual system
combination inputs and final scores for Russian–
English in Table 5 and Turkish–English in Ta-
ble 6. It is important to note that our single-best
Russian–English submission did not contribute to
the system-combination entry as this system was a
late addition at the end of the evaluation period.
For each system combination, five experiment

replicates were run to account for variance in the
combination process. The resulting best replicate
was submitted. Results are shown in Table 7.

4 Conclusion

We present a series of improvements to our
Russian–English systems and apply these lessons
learned to creating Turkish–English and Chinese–
English systems.
While researchers in recent years have been

searching for principled methods to combine the
strengths of statistical and neural MT, we find that
carefully devised system combination and ensem-
bling provides provides aggregate improvement.
Thus, “borrowing” the Jane system combination
technique allows one to combine old and new for
better BLEU.

Opinions, interpretations, conclusions and recommen-
dations are those of the authors and are not necessarily en-
dorsed by the United States Government. Cleared for public
release on 22 June 2017. Originator reference number RH-
17-117218. Case number 88ABW-2017-3080.
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Abstract

We describe the neural machine trans-
lation system submitted by the Univer-
sity of Rochester to the Chinese-English
language pair for the WMT 2017 news
translation task. We applied unsuper-
vised word and subword segmentation
techniques and deep learning in order to
address (i) the word segmentation prob-
lem caused by the lack of delimiters be-
tween words and phrases in Chinese and
(ii) the morphological and syntactic differ-
ences between Chinese and English. We
integrated promising recent developments
in NMT, including back-translations, lan-
guage model reranking, subword splitting
and minimum risk tuning.

1 Introduction

This paper presents the machine translation (MT)
systems submitted by University of Rochester to
the WMT 2017 news translation task. We partic-
ipated in the Chinese-to-English and Latvian-to-
English news translation tasks, but will focus on
describing the system submitted for the Chinese-
to-English task.

Chinese-to-English is a particularly challenging
language pair for corpus-based MT systems due
to the task of finding an optimal word segmenta-
tion for Chinese sentences as well as other linguis-
tic differences between Chinese and English sen-
tences. For example the fact that there may exist
multiple possible meanings for characters depend-
ing on their context and that individual characters
can be joined together to build compound words
exacerbate the aforementioned segmentation prob-
lem. Additionally, translation performance is also
affected by the frequent dropping of subjects and

infrequent use of function words in Chinese sen-
tences.

We used both word-level and morphological
feature-based representations of Chinese to deal
with data sparsity and reduce the size of the Chi-
nese vocabulary. We experimented with both sub-
phrase-based and character-based systems. Both
RNN-based and 5-gram language models were
trained with data extracted from the English news
corpora provided and are used to rerank hypothe-
ses proposed by the decoder.

The paper is organized as follows: in Section 2
we introduce our system and preprocessing meth-
ods for the Chinese language. Our main learning
framework training settings are explained in Sec-
tion 3. Our NMT, SMT, and submission results are
presented in Section 4. The paper ends with some
concluding remarks.

2 System Description

In this section we briefly introduce our prepro-
cessing methods and the general encoder-decoder
framework with attention (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2014) used in
our system. We closely followed the neural ma-
chine translation model proposed by Chorowski
et al. (2015).

A neural machine translation model (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014) aims at building an end-
to-end neural network framework, which takes as
input a source sentence X = (x1, ...,xTX

) with
length of TX , and outputs its translation Y =
(y1, ...,yTY

) with length of TY , where xt and yt

are the source and target language tokens, respec-
tively. The framework is constructed as a compos-
ite of an encoder network and a decoder network.

310



Figure 1: Illustration of the encoder-decoder
framework from Bahdanau et al. (2014).

2.1 Morphological Analyzer

Word segmentation is considered an important
first step for Chinese natural language processing
tasks since individual Chinese words can be com-
posed of multiple characters with no space appear-
ing between words.

We employed the Jieba morphological analyzer
(Junyi, 2013) to segment the source Chinese sen-
tences into words. Jieba decomposes Chinese sen-
tences into sequences of words by constructing a
graph for all possible word combinations and finds
the most probable sequence based on statistics de-
rived from training data. For unknown words, an
HMM-based model is used with the Viterbi algo-
rithm.

2.2 Rare-Morpheme (BPE) Algorithm

If we simply apply the Chinese morphological an-
alyzer to segment Chinese sentences into individ-
ual words and feed the words into our encoder,
overfitting will occur; some words are so rare, that
they only appear altogether with others. Thus, we
enforced a thresholded on frequent words and ap-
plied the byte-pair-encoding (BPE) algorithm pro-
posed by Gage (1994) and applied by Sennrich
et al. (2016b) to NMT to further reduce the spar-
sity of our language data and to reduce the number
of rare and out-of-vocabulary tokens.

2.3 Encoder

The encoder reads a sequence of source language
tokens X = (x1, . . . ,xTX

), and outputs a se-
quence of hidden states H = (h1, . . . , hTX

). A
bidirectional recurrent neural network (BiRNN)
(Bahdanau et al., 2014) consisting of a forward
recurrent neural network (RNN) and a backward

RNN, is used to give additional positional repre-
sentational power to the encoder. The lower part
of Figure 1 illustrates the BiRNN structure.

The forward network reads the input sentence in
a forward direction

−→
ht =

−→
φx(ix(xt),

−−→
ht−1) (1)

where for each input token xt, ix(·) : X → Rn

is a continuous embedding, that maps the t-th in-
put token to a vector ix(xt) in a high dimensional
space Rn. A forward recurrent activation function−→
φx updates each forward hidden state

−→
ht , using the

embedded token ix(xt) and the information of the
previous hidden state

−−→
ht−1.

Similarly, the reverse network reads the sen-
tence in a reverse direction (right to left)

←−
ht =

←−
φx(ix(xt),

←−−
ht+1) (2)

and generates a sequence of backward hidden
states.

The encoder utilizes information from both the
forward RNN and the backward RNN to generate
the hidden states H = (h1, . . . , hTX

). For every
input token xt, we concatenate its corresponding
forward hidden state vector and the backward hid-

den state vector, such that ht =




−→
ht

←−
ht


.

2.4 Decoder
The upper part of Figure 1 illustrates the decoder.
The decoder computes the conditional distribution
over all possible translations based on the context
information provided by the encoder (Bahdanau
et al., 2014). More specifically, the decoder RNN
tries to find a sequence of tokens in the target lan-
guage that maximizes the following probability:

log p(Y |X) =

TY∑

t=1

log p(yt|y1, . . . ,yt−1, X) (3)

Each hidden state st in the decoder is updated by

st = φy(iy(yt−1), st−1, ct), (4)

where iy is the continuous embedding of a token
in the target language. ct is a context vector related
to the t-th output token, such that

ct =

TX∑

l=1

hl · atl (5)
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Figure 2: Illustration of Attention Mechanism
from Luong et al. (2015).

and

atl =
exp(etl)∑TX

k=1 exp(etk)
(6)

Here, atl indicates the importance of the hidden
state annotation hl regarding to the previous hid-
den state st−1 in the decoder RNN. etk measures
how “matching” the input at position k and the
output at position t are (Bahdanau et al., 2014;
Chorowski et al., 2015); it is defined by a soft
alignment model falign, such that

etk = falign(st−1, hk). (7)

Finally, each conditional probability in Equation 3
is generated by

p(yt|y1, . . . ,yt−1, X) = g(yt−1, st, ct) (8)

for some nonlinear function g.

2.5 Attention Mechanism
The soft-alignment mechanism falign weighs each
vector in the context set C = (c1, . . . , cTY

) ac-
cording to its relevance given what has been trans-
lated (Bahdanau et al., 2014; Cho et al., 2014;
Sutskever et al., 2014). It is commonly imple-
mented as a feedforward neural network with a
single hidden layer. This procedure can be under-
stood as computing the alignment probability be-
tween the t-th target symbol and k-th source sym-
bol.

The hidden state annotation ht, together with
the previous target symbol yt−1 and the context
vector ct, is fed into a feedforward neural network
to result in the conditional distribution and the
whole network, consisting of the encoder, decoder
and soft-alignment mechanism, is then tuned end-
to-end to minimize the negative log-likelihood us-
ing stochastic gradient descent. In our system, the
source sentenceX is a sequence of sub-phrase and

sub-word tokens extracted by the morphological
analyzer and BPE algorithms, and the target sen-
tence Y is represented as a sequence of sub-words.

2.6 Minimum Risk Tuning

We applied minimum risk training (Shen et al.,
2016) to tune the model parameters post conver-
gence of the cross-entropy loss by minimizing
the expected risk for sentence-level BLEU scores
where the risk is defined to be

R(θ) =

S∑

s=1

Ey|x(s);θ[∆(y,y(s))] (9)

=

S∑

s=1

∑

y∈Y (x(s))

P (y|x(s);θ)∆(y,y(s)) (10)

for candidate translations Y (x(s)) for x(s). De-
tails regarding methods to solve this problem can
be found in Shen et al. (2016).

3 Experimental Settings

In this section, we describe the details of the ex-
perimental settings for our system.

3.1 Corpora and Preprocessing

Our model was trained on all available training
parallel corpora for the ZH-EN language pair. The
training data consists of approximately 2, 000, 000
sentence pairs. We removed sentence pairs from
our data when the source or target side is more
than 50 tokens long. A set of 50, 000, 000 sen-
tences was sampled from the News Crawl 2007-15
data and was used to train our target side (English)
language model. Additionally, we backtranslated
a subset of these sentences and used the result-
ing source-target sentences to augment our train-
ing data.

Our training and development data were lower-
cased and preprocessed using the Moses tokenizer
script (Koehn et al., 2007), Jieba, and BPE. We
set the upper bound on the target vocabulary to
30, 000 sub-words and two additional tokens re-
served for 〈EOS〉 and 〈UNK〉. For the source
vocabulary, we constrained the size of BPE sym-
bol vocabulary to 30, 000 tokens.

3.2 Synthetic Training Data

Sennrich et al. (2016a) introduced the augmen-
tation of a parallel corpus by leveraging target-
side monolingual data and empirically showed
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that treating back-translations as additional train-
ing data reduced overfitting and increased fluency
of the translation model. We sampled monolingual
sentences from the same news data used to con-
struct our language models. Due to computation
and time constraints, we were only able to aug-
ment our training data by an additional 190,000
sentence pairs. We hypothesize that increasing the
number of back-translated sentences in our train-
ing set will further improve our system’s perfor-
mance.

3.3 Neural Baseline

Our NMT baseline is an encoder-decoder model
with attention and dropout implemented with Ne-
matus (Sennrich et al., 2017) and AmuNMT
(Junczys-Dowmunt et al., 2016). This base-
line system without pre-tokenization or lan-
guage model scoring achieves 17.32 uncased
BLEU on news-test2017 and 19.78 after source-
segmentation with the BPE algorithm.

We used beam search with a beam width of
8 to approximately find the most likely transla-
tions given a source sentence before introducing
features proposed by our language models and
reranking with the default Moses (Koehn et al.,
2007) implementation of K-best MIRA (Cherry
and Foster, 2012). Both language models were
trained on the English news data. Our unigram-
pruned 5-gram language model was trained with
KenLM (Heafield, 2011), and our RNN-based lan-
guage model was trained with RNNLM (Mikolov
et al., 2011) with a hidden layer size of 300.

3.4 Statistical Baseline

For our SMT baseline, we trained a standard
phrase-based system on input segmented with
Jieba: Berkeley Aligner (IBM Model 1 and HMM,
both for 5 iterations); phrase table with up to 5
tokens per phrase, 40-best translation options per
source phrase, and Good-Turing smoothing; 4-
gram language model and pruning of singleton n-
grams; and the default K-best MIRA reordering.

This baseline system achieves an uncased
BLEU score of 7.46 on news-test2017.

4 Experimental Results

We compared the performance of our system to
several state-of-the-art algorithms. Our systems
(Character-level BiRNN, Morphological Subword
BiRNN) are marked in a bold font. It can be

System Score
Moses Baseline (word) 7.5
Neural Baseline (word) 17.3
Neural Baseline (subword) 19.8
BiRNN (character) 12.5
BiRNN (word + subword) 21.6

Table 1: Test Results. Uncased BLEU scores of
the trained models computed over all sentences on
the development and test sets.

seen that our system outperformed the baselines,
whether using words or subwords as the input to-
kens. The experiments also showed that the rare-
morpheme algorithm significantly reduced some
potential overfitting, compared to the character-
level BiRNN.

4.1 Error Analysis

Error analysis on the validation set shows that the
two main sources of errors produced by the base-
line are missing and incorrect words. These is-
sues are addressed in our model by applying mor-
phological segmentation in combination with BPE
and adding new backtranslated data to the train-
ing set. Our model’s translation error rate (0.716)
is strictly lower than that of our baseline’s output
(0.743). We attribute this reduction in error rate
to our system being able to more robustly model
multi-character words in Chinese.

5 Conclusion

We describe the University of Rochester neural
machine translation system for WMT’17 Chinese-
English news translation task, which employs
recent developments in the machine translation
field. Our results show that applying word and
morpheme-aware tokenization, minimum risk tun-
ing, and language model reranking to an existing
MT framework help to improve the overall trans-
lation quality of the model.

Machine translation is a dynamic area, and there
are many opportunities for further exploration.

• Other objectives: Modify the encoder-
decoder trainer and add secondary tasks for
multi-task training (e.g. source sentence tag-
ging) for explicit use of linguistic features.

• Sentence reordering: Reorder the training
data in various ways to encourage the model
to learn a more robust translation model.
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• Source-side monolingual data: Leverage
source-side monolingual data to improve
translation performance.
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Abstract

This paper describes the LMU Mu-
nich English→German machine transla-
tion systems. We participated with neural
translation engines in the WMT17 shared
task on machine translation of news, as
well as in the biomedical translation task.
LMU Munich’s systems deliver compet-
itive machine translation quality on both
news articles and health information texts.

1 Introduction

The Center for Information and Language Pro-
cessing at LMU Munich has a strong track record
at building statistical machine translation (SMT)
systems for various language pairs, e.g. for trans-
lation between English and German, Czech, Ro-
manian, Russian, or French. LMU has fre-
quently participated in WMT machine translation
shared tasks in recent years (Bojar et al., 2016,
2015, 2014, 2013), competing (and also collabo-
rating) internationally in an open evaluation cam-
paign with other leading research labs from both
academia and industry.

Research on various different types of machine
translation models has previously been conducted
at LMU. Core SMT paradigms for LMU’s past
shared task participations include phrase-based
models (Cap et al., 2015, 2014b; Weller et al.,
2013; Sajjad et al., 2013), hierarchical phrase-
based models (Huck et al., 2016; Peter et al.,
2016), operation sequence models (Durrani et al.,
2013), and hybrids of statistical approaches with
rule-based and deep syntactic components (Tam-
chyna et al., 2016b).

At this year’s EMNLP 2017 Second Confer-
ence on Machine Translation (WMT17),1 LMU
participated in two shared tasks: the shared task

1http://www.statmt.org/wmt17/

on machine translation of news and the biomed-
ical translation task. We submitted the output
of our English→German machine translation sys-
tems. The system for the news task was trained
under “constrained” conditions, employing only
permissible resources as defined by the shared
task organizers. The system for the biomedical
task builds upon our news task system, but was
domain-adapted towards the medical domain via
the usage of additional parallel training data from
the in-domain sections of the UFAL Medical Cor-
pus v.1.0.

We have trained neural machine translation
(NMT) models this year. Neural network mod-
els for machine translation (Sutskever et al., 2014;
Bahdanau et al., 2014) are now largely successful
for many language pairs and domains. This has
for instance become apparent with the University
of Edinburgh’s excellent results in the WMT16
news translation shared task with neural systems
(Sennrich et al., 2016a), which outperformed most
other submitted systems, including Edinburgh’s
own traditional SMT engines (Williams et al.,
2016). LMU’s English→German neural machine
translation systems confirm this trend. We have
achieved competitive performance—in terms of
translation quality as measured with BLEU (Pap-
ineni et al., 2002)—in both shared tasks that we
participated in.2

A unique characteristic of the LMU
English→German NMT systems is a linguis-
tically informed, cascaded word segmentation
technique that we developed and applied to the
German target language side of the training data.
Amongst other aspects, SMT research at LMU is

2Our LMU Munich primary system is ranked second
in BLEU on the submission website, http://matrix.
statmt.org/matrix/systems_list/1869, being
outpaced by Edinburgh’s WMT17 NMT setup only. In the
human evaluation the LMU Munich primary system is ranked
first (Bojar et al., 2017).
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focusing on investigating linguistically informed
methods that improve machine translation into
target languages which exhibit a more complex
morphosyntax than English (Huck et al., 2017b;
Tamchyna et al., 2016a; Ramm and Fraser, 2016;
Weller-Di Marco et al., 2016; Braune et al.,
2015; Cap et al., 2014a; Fraser et al., 2012). We
are taking advantage of our group’s longstand-
ing experience regarding handling of complex
morphosyntax in SMT, now enriching NMT
with novel techniques that specifically tackle
target-side morphosyntax.

In the following section of this paper (Sec-
tion 2), we sketch our linguistically motivated tar-
get word segmentation technique. Then we de-
scribe how we trained and configured our neural
machine translation systems (Section 3). Before
concluding the paper, we present empirical results
on the two translation tasks, which involve ma-
chine translation of news articles and of health in-
formation texts (Section 4).

2 Target-side Word Segmentation

Compounding and morphological variation are
ubiquitous in the German language and have tradi-
tionally been challenging for machine translation
into German. We believe that specifically target-
ing complex morphosyntactic phenomena in the
output language is not only essential in traditional
phrase-based machine translation, but keeps being
valuable in NMT. Most previous work in NMT has
focused on linguistically agnostic subword split-
ting, typically with the primary rationale of limit-
ing the vocabulary size, which is required in NMT
for efficiency considerations.

LMU is utilizing a more linguistically-informed
target word segmentation approach. By doing so,
we hope to achieve three major goals: better vo-
cabulary reduction; reduction of data sparsity; and
better open vocabulary translation.

We cascade three different word splitting meth-
ods on the German target side.

1. First we apply a suffix splitter that sepa-
rates common German morphological suf-
fixes from the word stems. We modified the
German Snowball stemming algorithm from
NLTK3 for that purpose. Rather than strip-
ping suffixes, our modified code splits them

3http://www.nltk.org/_modules/nltk/
stem/snowball.html

off. It otherwise behaves just like the Snow-
ball stemming algorithm.

2. Next we apply the empirical compound split-
ter as described by Koehn and Knight (2003)
and as implemented in the Perl script which
is part of the Moses toolkit (Koehn et al.,
2007). We choose a fairly aggressive con-
figuration of the compound splitter4 in order
to reduce the vocabulary size more than with
its parameters as typically chosen for previ-
ous phrase-based translation setups in which
German compound splitting was used.

3. Since the vocabulary size is still a bit large
after suffix splitting and compound splitting,
we adopt segmentation using the Byte Pair
Encoding (BPE) technique (Gage, 1994; Sen-
nrich et al., 2016c) on top of the other two
word splitters. This last step is performed
only for efficiency reasons in NMT. Without
BPE, the vocabulary size is still almost 100K.
We preferred something around 50K, which
is more tractable in practice. Suffix splitting
and compound splitting alone are not suit-
able for arbitrary reduction of the vocabulary
size. However, we believe that they are more
adequate word segmentation techniques than
BPE is. So we prefer to split with those lin-
guistically motivated methods, as far as prac-
ticable.

Special marker symbols allow us to revert the
segmentation in postprocessing. We also intro-
duce a case marker that is placed before any
compound-split word in order to restore upper and
lower casing, respectively, since the compound
splitting approach modifies the casing of com-
pound parts to the version of each part that (stand-
alone) appears most frequently in the corpus.

We were running a comprehensive series of ex-
periments with different target word segmentation
strategies on Europarl data beforehand, and we
found our cascaded word segmentation to perform
clearly better than using BPE only. We further-
more tried prefix splitting, but the results looked
less encouraging. Our Europarl results also sug-
gested that the suffix splitting contributes more to
improvements in translation quality than the com-
pound splitting does. Huck et al. (2017a) provides
further details. For our WMT17 shared task sys-
tems, we eventually decided to apply both suffix

4-min-size 4 -min-count 2 -max-count
999999999
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splitting and compound splitting, but to omit pre-
fix splitting.

The English source side is simply BPE-
segmented.

3 Neural Translation System Setup

We utilize the Nematus implementation (Sennrich
et al., 2017) to build encoder-decoder NMT sys-
tems with attention and gated recurrent units. We
configure dimensions of 500 for the embeddings
and 1024 for the hidden layer. We train with the
Adam optimizer (Kingma and Ba, 2015), a learn-
ing rate of 0.0001, batch size of 50, and dropout
with probability 0.2 applied to the hidden layer,
but not to source, target, and embeddings. We val-
idate every 10 000 updates and do early stopping
when the validation cost has not decreased over
ten consecutive control points.

Our initial baseline NMT system is trained us-
ing only data from the Europarl corpus (Koehn,
2005) and no other resources, with the Europarl
test2006 set used for validation. We tok-
enize and frequent-case the data with the stan-
dard scripts from the Moses toolkit (Koehn et al.,
2007). For our Europarl-trained baseline, sen-
tences of length >50 after tokenization are ex-
cluded from the training corpus, all other sen-
tences (1.7 M) are kept in training.

The German compound split model and BPE
merge operations are extracted from the Europarl
data. In our cascaded word segmentation pipeline,
the compound split model is extracted from the
training data only after suffix splitting has been ap-
plied. Similarly, the BPE operations are extracted
after suffix splitting and compound splitting have
been applied to the German side of the training
corpus. We set the amount of merge operations for
BPE to 50K. On the English source side, we apply
BPE separately, also with 50K merge operations.

3.1 News Translation Task
For the shared task on machine translation of news
(Bojar et al., 2017), we successively improved our
initial baseline by incrementally applying the fol-
lowing steps:

1. Adding the News Commentary (NC) and
Common Crawl (CC) parallel training data
as provided for WMT17 by the organizers of
the news translation shared task. We initial-
ize the optimization on the larger corpus with
the Europarl-trained baseline model.

2. Adding synthetic training data. The use of
automatically translated monolingual data as
a supplementary training resource has proved
to be effective in SMT for phrase-based, hi-
erarchical, and neural systems (Ueffing et al.,
2007; Lambert et al., 2011; Huck et al.,
2011; Huck and Ney, 2012; Sennrich et al.,
2016b). Sennrich et al. have publicly shared
their backtranslations of monolingual WMT
News Crawl corpora, which they created for
their WMT16 participation (Sennrich et al.,
2016a). We exploit the full amount of back-
translations of German data into English.5

We concatenate the synthetic data and the
human-generated parallel training data (Eu-
roparl + NC + CC). The optimization is ini-
tialized with the pre-trained model from the
preceding step.

3. Fine-tuning towards the domain of news ar-
ticles. We employ the newstest develop-
ment sets from the years 2008 to 2014 as a
training corpus. We reduce the learning rate
to 0.000001, initialize with the pre-trained
model from the preceding step, and optimize
on only the small Devsets2008-14 cor-
pus.

4. Right-to-left reranking. We rerank an n-
best list from the system in the preceding
step with a right-to-left (r2l) model, where
the order of the target sequence is reversed.
Liu et al. (2016) have proposed right-to-left
reranking for NMT. Earlier work by Freitag
et al. (2013) had already established that re-
verse word order models can be beneficial in
phrase-based and hierarchical phrase-based
translation. Freitag et al. (2013) utilized re-
verse word order models by means of a sys-
tem combination framework (Freitag et al.,
2014), though.

Validation is done on newstest2015 for
each of the extended setups. The preprocessing
pipeline is not altered when more training data is
appended. Particularly, we keep applying the com-
pound split model and BPE operations that have
been extracted from only the Europarl corpus, and
keep sticking to the vocabulary from Europarl. We
force the system to suppress UNK tokens in infer-
ence at test time.

5http://data.statmt.org/rsennrich/
wmt16_backtranslations/en-de/
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system
newstest 2015

BLEU
2016
BLEU

2017
BLEU

baseline, Europarl-trained 19.4 22.8 18.3
+ NC & CC corpora 26.0 30.2 24.5
+ synthetic data 27.8 32.3 26.1
+ fine-tuning on Devsets2008-14 28.2 32.3 26.6
+ r2l reranking 28.6 33.4 27.1

Table 1: English→German translation results on
newstest sets (case-sensitive BLEU). Extensions
are applied incrementally.

system
devtest Cochrane

BLEU
NHS24
BLEU

fine-tuning on Devsets2008-14 29.1 26.3
fine-tuning on Medical 35.0 29.5
+ r2l reranking 35.8 30.3

Table 2: English→German translation results on
HimL biomedical sets (case-sensitive BLEU).

3.2 Biomedical Translation Task
For the biomedical translation task (Yepes et al.,
2017), we started off with the pre-trained NMT
model after step 2 of our news task system engi-
neering and applied the following steps:

1. Fine-tuning towards the domain of health in-
formation texts. We employ the in-domain
sections of the UFAL Medical Corpus v.1.0
as a training corpus.6 We set the learning
rate to 0.00001, initialize with the pre-trained
model, and optimize on only the in-domain
medical data.

2. Right-to-left reranking. An ensemble of
domain-adapted r2l models worked best.

The HimL (Haddow et al., 2017) tuning sets are
used for validation, and we tested separately on the
Cochrane and NHS24 parts of the HimL devtest
set.7

4 Empirical Results

We evaluate case-sensitive with BLEU (Pap-
ineni et al., 2002), computed over postpro-
cessed hypotheses against the raw references with
mteval-v13a. The results are reported in Ta-
ble 1 for the news translation task and in Table 2
for the biomedical translation task.

In the news translation task, the Europarl-
trained baseline does not get close to state-of-the-
art performance on newstest sets. However,

6https://ufal.mff.cuni.cz/ufal_
medical_corpus

7http://www.himl.eu/test-sets

this seems to be mostly due to a domain mismatch
(Huck et al., 2015). Once we add in the News
Commentary and Common Crawl parallel data,
we are able to massively improve the translation
quality, by around six to seven BLEU points. Syn-
thetic data gives us a boost of about another two
BLEU points. After fine-tuning on Devsets2008-
14 towards news articles, we observe a further gain
of 0.4 BLEU on newstest2015 but no gain on
newstest2016. Reranking with a right-to-left
model is effective on all test sets again, with im-
provements in the range of 0.4 to 1.1 BLEU.

Two LMU submissions have been judged by hu-
mans in the manual evaluation for the WMT17
news translation task (Bojar et al., 2017): the
output of our final setup with r2l reranking
(as a primary submission; “LMU-nmt-reranked”),
and the single system output without reranking
(as a contrastive submission; “LMU-nmt-single”).
Our primary submission is placed first amongst
all evaluated systems. We conjecture that our
linguistically-informed target word segmentation
approach has contributed to a positive assessment
by human evaluators. Interestingly, the contrastive
submission was rated significantly worse, affirm-
ing the utility of r2l reranking.

A few example translations from our primary
submission for the news task are shown in Table 3.

For the translation of health information texts,
it is again crucial to adapt the NMT system to the
domain. When applying the engine fine-tuned on
out-of-domain news data (Devsets2008-14)
to Cochrane and NHS24 devtest sets, we see quite
a gap as compared to fine-tuning on the in-domain
sections of the UFAL Medical Corpus. Right-to-
left reranking improves the results by 0.8 BLEU

for the biomedical task.

5 Conclusion

LMU Munich has participated with English→
German neural machine translation systems in the
WMT17 shared tasks on machine translation of
news and of biomedical texts. A distinctive fea-
ture of LMU’s NMT systems is a linguistically
informed, cascaded target word segmentation ap-
proach. The LMU systems are very competitive
in terms of translation quality, achieving top ranks
amongst the participants in both tasks. Of all
English→German systems manually evaluated in
the news task, LMU’s primary submission has re-
ceived the highest human judgment scores.
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source (preproc.) the Kurdish community in Germany is expecting tens of thousands of people to arrive at short
notice in search of protection , fleeing from Turkey to Germany .

LMU-nmt (plain) die kurdisch $$e Gemeind $$e in #U deutsch @@ Land rechnet damit , dass zehntaus $$end $$e
Mensch $$en #L kurz @@ Frist $$ig auf der Such $$e nach dem Schutz eintreff $$en , der aus
der Türkei nach #U deutsch @@ Land gefloh $$en ist .

LMU-nmt (postproc.) Die kurdische Gemeinde in Deutschland rechnet damit, dass zehntausende Menschen kurzfristig
auf der Suche nach dem Schutz eintreffen, der aus der Türkei nach Deutschland geflohen ist.

reference Die Kurdische Gemeinde Deutschland rechnet kurzfristig mit zehntausenden Schutzsuchenden,
die aus der Türkei nach Deutschland flüchten.

source (preproc.) the situation only worsened over the past year when the world &apos; biggest producer , China ,
dumped steel into the global market en masse as a result of weakening domestic demand .

LMU-nmt (plain) die Lag $$e verschlechtert $$e sich nur im vergang $$en $$en Jahr , als der #L Welt @@ größt
$$e Produzent , China , infolg $$e der schwä ## chelnd $$en #U binn @en@ nach @@ Frag $$e
#L Mass @en@ Haft Stahl in den global $$en Markt geworf $$en hat .

LMU-nmt (postproc.) Die Lage verschlechterte sich nur im vergangenen Jahr, als der weltgrößte Produzent, China,
infolge der schwächelnden Binnennachfrage massenhaft Stahl in den globalen Markt geworfen
hat.

reference Im vergangenen Jahr verschärfte sich die Lage weiter, als das weltgrößte Erzeugerland China
angesichts der schwächelnden heimischen Nachfrage massenhaft Stahl auf den Weltmarkt warf.

source (preproc.) analysts fear that separatist groups that had been more or less vanquished in recent years , like the
Oro ## mo Liberation Front or the Og ## aden National Liberation Front , may try to exploit the
turbulence and rearm .

LMU-nmt (plain) Analyst $$en befürcht $$en , dass separatist $$isch $$e Grupp $$en , die in den letzt $$en Jahr
$$en mehr oder wenig $$er bezwung $$en word $$en war $$en , wie die Oro ## mo @-@ #U
Befreiung @s@ Front oder der O ## gad $$en National $$e #U Befreiung @s@ Front , versuch
$$en könnt $$en , die Turbulenz $$en und die Aufrüst $$ung auszunutz $$en .

LMU-nmt (postproc.) Analysten befürchten, dass separatistische Gruppen, die in den letzten Jahren mehr oder weniger
bezwungen worden waren, wie die Oromo-Befreiungsfront oder der Ogaden Nationale Be-
freiungsfront, versuchen könnten, die Turbulenzen und die Aufrüstung auszunutzen.

reference Analytiker befürchten, dass Separatisten wie die Oromo-Befreiungsfront oder die Nationale Be-
freiungsfront des Ogaden, die in den letzten Jahren mehr oder weniger bezwungen wurden, die
Turbulenzen ausnützen und sich wieder bewaffnen könnten.

source (preproc.) these cele ## bri ## ties are not relatives of famous people , or reality stars , or kids these days
who know how to make a good S ## n ## ap ## chat video ( although Jen ## ner is all of these
things ) .

LMU-nmt (plain) dies $$e Pro ## minent $$en sind kein $$e Verwandt $$en berühmt $$er Mensch $$en oder Re
## ality @-@ Star $$s oder Kind $$er dies $$er Tag $$e , die wiss $$en , wie man ein gut $$es
Sna ## p ## ch ## at @-@ Video mach $$en kann ( obwohl J ## enn $$er all dies $$e Ding $$e
ist ) .

LMU-nmt (postproc.) Diese Prominenten sind keine Verwandten berühmter Menschen oder Reality-Stars oder Kinder
dieser Tage, die wissen, wie man ein gutes Snapchat-Video machen kann (obwohl Jenner all diese
Dinge ist).

reference Diese Berühmtheiten sind nicht mit berühmten Personen verwandt oder Reality Stars oder Ju-
gendliche von heute, die wissen, wie man ein gutes Snapchat-Video dreht (auch wenn davon alles
auf Jenner zutrifft).

source (preproc.) the specialists from the 3 ## 4th police inspectorate were able to prove that the thieves , who had
travelled to Germany to commit the crimes , had committed four crimes .

LMU-nmt (plain) die Spezialist $$en der 34. #U Polizei @@ Inspektion konnt $$en beweis $$en , dass die Dieb
$$e , die nach #U deutsch @@ Land gereist war $$en , um die Verbrech $$en zu begeh $$en ,
vier Straftat $$en begang $$en hatt $$en .

LMU-nmt (postproc.) Die Spezialisten der 34. Polizeiinspektion konnten beweisen, dass die Diebe, die nach Deutsch-
land gereist waren, um die Verbrechen zu begehen, vier Straftaten begangen hatten.

reference Die Spezialisten des Kriminalkommissariats 34 können den Dieben, die eigens zur Begehung von
Straftaten nach Deutschland eingereist waren, vier Taten nachweisen.

Table 3: Example translations, produced with LMU Munich’s primary machine translation system for the
news task. The table shows the preprocessed English source, the plain system output, the postprocessed
system output, and the German reference translation for every 479th sentence from the newstest2017
evaluation set (excluding the very first of them, sentence 479, since it is too short to be interesting). ##
is a BPE split-point, $$en is the suffix en, #U and #L are upper and lower case indicators for the first
word of compounds, @@ indicates a compound merge-point, @s@ indicates a compound merged with
the letter s between the parts, etc.
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Abstract 

The paper describes a rule-based machine 
translation system adapted to English to Finnish 
translation. Although the translation system 
participates in the shared task of news transla-
tion in WMT 2017, the paper describes the 
strengths and weaknesses of the approach in 
general.  

1 Credits 

We are grateful to Pasi Tapanainen from Connexor OY 
for allowing us to use the en-fdg analyser of English as 
well as the Constraint Grammar (CG-3)1 environment 
for a number of translation phases.  

2 Introduction 

The translation system described here is in 
stark contrast to the majority of systems partici-
pating in this conference. There are a number of 
reasons why we are interested in developing 
rule-based translation systems. One is the obser-
vation that, if we use statistical or neural transla-
tion systems, we will exclude 99.8 percent of 
languages out of development. Digitalization is 
supposed to break barriers between language 
groups, but in fact it currently increases them. 
The current hype on neural methods still acceler-
ates the break between the small group of domi-
nant languages and the less-resourced ones. If we 
want to avoid the break, we do not see any other 
way out than to put efforts in developing such 
systems that are affordable for less-resourced 
languages. At the same time, efforts for finding 
ways to overcome the problems of statistical sys-
tems are needed (Tiedemann et al 2016). 

The approach described here deals with the 
English to Finnish translation system. However, 
the basic components of the system were devel-
oped with the language pair Swahili and English, 
for which Hurskainen developed rule-based 
translation systems to both directions (Hurskai-
nen 1992, 1996, 2004, 2006, 2007, 2012).  

                                                      
1 CG-3 is also termed as FDG-3, because within this envi-
ronment it is possible to write also functional dependency 
rules. 

A number of approaches for constructing rule-
based systems have been studied. These include 
OpenLogos (Scott and Barreiro 2009; Barreiro et 
al 2011), Apertium (Forcada 2006), Grammatical 
Framework (Ranta 2011), and Nooj (Silbertztein 
2015). Common to these approaches is the use of 
grammatical knowledge and lexicon of lan-
guages in translation. Although the approach that 
we have used has much in common with those, 
we did not implement any of them directly. The 
main reason is that we find it useful to have full 
control of all phases of the translation process, so 
that corrections can be made instantly at the cor-
rect point of the process. For the same reason we 
did not adapt such resources as Omorfi (Pirinen 
2015). Instead we developed our own system for 
generating Finnish word forms. 

The system described here deliberately avoids 
any statistical elements in translation process. 
The basic assumption is that running text can al-
ways be decomposed into structured units, and 
that these units can be described on more or less 
general level. The translation is not performed on 
the basis of surface word forms, but rather as a 
controlled sequence of operations, where the text 
in source language is processed into surface form 
of the target language. The basic components in 
the system are the lexicon and grammar of both 
languages. 

On the abstract level, the language can be de-
scribed by means of tags, each of which repre-
sents various degrees of abstractness. For exam-
ple, POS tags are the most abstract ones, each 
representing a large set of members, whereas 
word lemmas are least abstract, and morphologi-
cal tags are somewhere in between. The combi-
nation of the tags constitutes the knowledge, on 
the basis of which the text is converted into the 
surface form of the target language. 

There are two guiding principles in this trans-
lation system. First, each word form should be 
given all linguistically correct interpretations. 
Second, all such operations that are conditional 
of context, such as selection, deletion, replace-
ment, and adding, should be done in the envi-
ronment, where context-sensitive rules can be 
written for controlling the process. For this rea-
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son, Constraint Grammar (Karlsson 1990, 1995; 
Karlsson et al 1995; Tapanainen 1996; Bick and 
Didriksen 2015) is in important role in the sys-
tem.  

Below is a description of various phases of the 
translation process. 

3 Analysis of source text 

The source text is first morphologically ana-
lysed, disambiguated and provided with syntactic 
description. In analysing the English text, we 
used the en-fdg parser (Järvinen and Tapanainen 
1997). The parser has a fairly covering vocabu-
lary, and it performs surface-syntax parsing as 
well as dependency parsing. However, it makes 
mistakes, and wrong assignments especially in 
POS categories are detrimental to translation re-
sults. Since we had no access to the source code 
of the parser, we had to devise our own mecha-
nism to correct the mistakes.  

The example sentence in (1) is used through-
out in this paper. 
 
(1) 
1 He he subj:>2 @SUBJ %NH PRON PERS NOM SG3 
2 will will v-ch:>3 @+FAUXV %AUX V AUXMOD 
3 be be v-ch:>4 @-FAUXV %AUX V INF 
4 hanging hang main:>0 @-FMAINV %VA ING 
5 out out phr:>4 @ADVL %EH ADV 
6 on on loc:>4 @ADVL %EH PREP 
7 stages stage pcomp:>6 @<P %NH N NOM PL 
8 for for subj:>11 @ADVL %EH PREP 
9 years year pcomp:>8 @<P %NH N NOM PL 
10 to to pm:>11 @INFMARK> %AUX INFMARK> 
11 come come mod:>7 @-FMAINV %VA V INF 

 
The en-fdg parser performs two types of syn-

tactic mapping, and we had to choose one of 
them. Because the rule system, which we were 
going to use in the translation system, makes use 
of relative distances, we decided to use the sur-
face-syntax option. The precise distances that the 
dependency parsing produces would probably 
not have much helped in translation. The modi-
fied form is in (2). 
 
(2) 
"<*he>" "he" %SUBJ CAPINIT PRON PERS NOM SG3 
"<will>" "will" %+FAUXV V AUXMOD 
"<be>" "be" %-FAUXV V INF 
"<hanging>" "hang" %-FMAINV ING 
"<out>" "out" %ADVL ADV 
"<on>" "on" %ADVL PREP 
"<stages>" "stage" %<P N PL NOM 
"<for>" "for" %ADVL PREP 
"<years>" "year" %<P N PL NOM 
"<to>" "to" %INFMARK> INFMARK> 
"<come>" "come" %-FMAINV V INF 
 

4 Isolation of multiword expressions  

Multiword expressions (MWE) are becoming 
an increasingly important component in machine 
translation. There is no covering list of MWEs of 
English, because the concept is very fluid. Many 
clusters of words can be successfully treated in 
more than one way. The general rule is that if 
translation through the normal rule system does 
not succeed, consider treating the cluster as a 
MWE. Treating a structure, which also could be 
handled with normal rules, as a MWE, often 
helps in disambiguation, because the MWE is 
given the lexical representation in target lan-
guage for all members of the structure. In gen-
eral, it is more safe to use MWE treatment is 
cases where both options are possible, 

For this reason, MWEs are isolated prior to in-
serting the glosses (i.e. lexical words) of the tar-
get language. These MWEs are given the appro-
priate lexical interpretation (3). 
 
(3) 
"<*he>" "he" %SUBJ CAPINIT PRON PERS NOM SG3  
"<will>" "will" %+FAUXV V AUXMOD  
"<be>" "be" %-FAUXV V INF  
"<hanging_out>" "hang_out" { hengailla V67 , 
roikkua V52-A } %-FMAINV ING  
"<on>" "on" %ADVL PREP  
"<stages>" "stage" %<P N PL NOM  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina , tuleviksi vuosiksi } ADV  

 
We have used the CG-3 rule formalism (Tap-

anainen 1996) for implementing the MWEs, be-
cause it has a sophisticated system for control-
ling the rule application on the basis of context. 
It also removes all grammatical information on 
words, which are not relevant in further pro-
cessing. 

In English to Finnish MT, it is sensible to 
identify four types of MWEs, (a) those which 
have no inflection, (b) those where the first ele-
ment (noun) carries the information on inflec-
tion, (c) those where the last element (noun) car-
ries the information on inflection, and (d) those 
where the verb carries the needed information. In 
handling MWEs, it is also possible, and often 
needed, to add such new information that helps 
in achieving grammatically correct translation. 

The rules for isolating MWEs are ordered so 
that the longer one wins. Problematic are such 
cases, where there are two contiguous MWE 
candidates with one or more shared members. 
This much discussed problem can be solved by 
adding context-based restrictions to rules for 
controlling rule application. 
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Although the different types of error-free CG 
rules are tedious to write manually, they can be 
produced with scripts from lexical lists. 

5 Adding lexical glosses 

The next step is to enrich each analysed word 
with the lexical representation of the target lan-
guage. This is done so, that the POS category of 
the analysed word is found first, and then the lex-
ical information is added from the lexicon of that 
POS category. In total, 13 POS categories are 
used in the system. Especially when translating 
from English, the identification of the correct 
POS category is important, because English is 
extremely ambiguous in this respect. 

For making semantic disambiguation easier, 
the lexical glosses are ordered so that the most 
likely interpretation is the first one. There is no 
safe method for deciding which gloss should be 
considered as default, and often only thorough 
testing will help or statistical evidence can be 
used. Jörg Tiedemann has kindly helped in 
providing frequency lists produced using auto-
matic word alignment (Östling and Tiedemann, 
2016) on parallel corpora (mainly Europarl, Wik-
ipedia headlines but also from OPUS2). Bilingual 
word lists are extracted from the aligned corpora 
and ranked by Dice scores and raw frequencies. 
Such words are discarded that include non-
alphabetic characters and co-occurrence thresh-
olds are used to further reduce the noise in the 
data. Separate lists are extracted for English mul-
ti-word-units that are aligned to single Finnish 
words and also for frequently aligned multi-word 
units on both sides.  There is also a lemmatised 
version of the data. Lexical glosses are added in 
(4). 
 
(4) 
"<*he>" "he" { *hän Np9 FRONT , hänen , NO-
GLOSS , itse N8 FRONT } %SUBJ CAPINIT PRON 
PERS NOM SG3  
"<will>" "will" { NOGLOSS , aikoa V52-D , 
tulla V67 } %+FAUXV V AUXMOD  
"<be>" "be" { olla V67b BE , eivät ole , ei 
ole , NOGLOSS , joka Np13 , jotka Np14 } %-
FAUXV V INF  
"<hanging_out>" "hang_out" { hengailla V67 , 
roikkua V52-A } %-FMAINV ING  
"<on>" "on" { NOGLOSS M-ADE , NOGLOSS M-ILL , 
NOGLOSS M-PAR , NOGLOSS M-ELA , NOGLOSS M-ALL 
, NOGLOSS M-ESS , NOGLOSS M-INE } %ADVL PREP  
"<stages>" "stage" { vaihe N48 , lava N9 , 
näyttämö N2 FRONT } %<P N PL NOM  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina , tuleviksi vuosiksi } ADV  

                                                      
2 Data available from http://opus.lingfil.uu.se and 
http://www.statmt.org/wmt16/translation-task.html  

 
Because Finnish is a highly inflecting lan-

guage, the lexicon needs precise instruction on 
inflection. Nouns and adjectives need a unique 
code for inflection in each case, in gradation, and 
in front/back concordance. Verbs have a large 
number of inflected forms, and also they follow 
gradation and front/back concordance rules. Not 
all of this need to be included into the transfer 
lexicon, but some anyway. For example, for tran-
sitive verbs it is useful to mark whether their pre-
ferred object case is partitive or accusative. 
Many of them use both, however, but in specific 
contexts. In addition to object argument, many 
verbs have also other arguments that require a 
certain case in inflection. Also such information 
should be added to the lexicon. 

Compound words are common in Finnish, and 
their handling can be done in two places. The 
safest way is to handle them as MWEs. Howev-
er, because compounding in Finnish is very pro-
ductive, also more general methods should be 
provided. Compounds in Finnish are such that 
only the last member, the head, of the compound 
inflects. Therefore, it is possible to mark com-
pound word candidates, which, if required con-
textual criteria are fulfilled, will be selected as 
first parts of the compound and later joined to-
gether with the second member. Even more than 
one member of compound words can thus be 
combined. This works with such English com-
pounds that are composed of consecutive words 
without of-genitive structure. 

For such words, for which there is no lexical 
gloss in the system, there is a default that the 
form in source language is copied as a gloss. It is 
given an inflection code according to the form of 
its last part. 

Adding the lexical information is implemented 
using the Beta rewriting language. 

6 Semantic disambiguation 

Perhaps the most challenging phase in the cur-
rent translation system is the semantic disambig-
uation. Much of the complexity comes directly 
from the source language English, the analysis of 
which does not offer many clues for performing 
semantic disambiguation. For example, English 
verbs do not mark whether they are transitive or 
intransitive, and the same verb functions in both 
roles. This creates a recurrent semantic disam-
biguation problem. The solution must be found 
on the basis of presence or absence of the object 
in the sentence. Also, the presence or absence of 
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the agent in passive sentences helps in disambig-
uation. The distinction between transitive and in-
transitive verbs is one of the few cases, where ra-
ther global rules can be written on semantic dis-
ambiguation. Most of the rules are on a low lev-
el, applying to relatively few cases. 

An example of complicated rules is to identify 
whether the word with starts a relative clause or 
whether it is in some other role. The identifica-
tion alone does not suffice. One should also 
know whether it should be translated with singu-
lar or plural form. 

The rules on punctuation are different in Eng-
lish and Finnish. These differences can be han-
dled as part of semantic disambiguation. 

Such words that can occur as proper nouns and 
ordinary words are a problem in translation. A 
partial solution is that such words that have a 
capital initial letter and are not sentence-initial 
are likely to occur in both roles and are marked 
as proper name candidates. Then, on the basis of 
the strict list and environment, the candidates are 
selected as proper names. However, this method 
does not work, if the word is sentence-initial, be-
cause in this position all words start with a capi-
tal letter. 

If the language analyser would add the so-
called supersenses to the analysis, the rule writ-
ing would become easier. Such comprehensive 
supersense categories have been established for 
English (Schneider and Noah 2015; Hollenstein 
et al 2016). The current system makes use of 
such sense categories as TIME, PLACE, ANI-
MACITY, HUMANNESS, TRANSITIVITY 
etc.. However, these categories are not part of the 
analyser, but they are implemented in the transfer 
rule system. The further development of the sys-
tem might reveal, that more clustering should be 
made. 

When semantic disambiguation rules are ap-
plied, the rest of readings are handled so that the 
first interpretation is selected and the rest are re-
moved. Except for a few specific cases, the sys-
tem does not leave ambiguity to the readings (5). 
 
(5) 
"<*he>" "he" { *hän Np9 FRONT } %SUBJ CAPINIT 
PRON PERS NOM SG3  
"<will>" "will" { NOGLOSS } %+FAUXV V AUXMOD  
"<be>" "be" { NOGLOSS } %-FAUXV V INF  
"<hanging_out>" "hang_out" { hengailla V67 } 
%-FMAINV ING  
"<on>" "on" { NOGLOSS } M-ADE %ADVL PREP  
"<stages>" "stage" { näyttämö N2 FRONT } %<P 
N PL NOM  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina } ADV 

7 Controlling singular and plural 

One could expect that singular matches with 
singular and plural with plural in two languages. 
This is not the case, however. A typical case is 
that whereas English uses plural forms in nouns 
that have a number as a modifier, Finnish uses 
singular. Also adjective and pronoun modifiers 
in such structures are in singular. 

The en-fdg parser does not mark the number in 
adjectives and some verb forms, which is why 
such tags must be controlled in great detail. 

8 Adding inflection tags 

Because Finnish is a highly inflecting lan-
guage, and English is not, there is little such in-
formation inherited from the analysis of the 
source language that can be used in constructing 
the correct Finnish word forms. Therefore, such 
instructions must be added, mostly on the basis 
of the information added in lexical mapping. 

Adding inflection tags takes place in two 
phases. First, the primary constituents of the sen-
tence are tagged. Such constituents include the 
verb, the subject, the object, the indirect object, 
and various modifiers of the verb. 

In the second phase, adjective, pronoun, and 
number modifiers are given inflection tags on the 
basis of the inflection tag given to the noun head 
in the first phase of tagging. 

Because rule writing for such a complex net-
work is prone to multiple simultaneous map-
pings, the rules are hierarchically ordered and re-
application is prevented. The rules are ordered 
according to approximate security, the most se-
cure ones first and the least secure ones last. By 
the secure rule we mean the likelihood that the 
rule works correctly in all contexts. There is no 
strict dichotomy between secure rules and other 
rules. Rather there is a continuum. Added inflec-
tion tags, some redundant, are displayed in (6). 
 
(6) 
"<*he>" "he" { *hän Np9 FRONT } %SUBJ CAPINIT 
PRON PERS NOM SG3  
"<will>" "will" { NOGLOSS } %+FAUXV V AUXMOD 
SG PRES  
"<be>" "be" { NOGLOSS } %-FAUXV V INF SG PRES  
"<hanging_out>" "hang_out" { hengailla V67 } 
%-FMAINV ING SG PRES  
"<on>" "on" { NOGLOSS } M-ADE %ADVL PREP  
"<stages>" "stage" { näyttämö N2 FRONT } %<P 
N PL NOM ADE  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina } ADV  
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9 Marking stem boundary 

There are 107 different inflection classes for 
Finnish nominals and verbs. The list of Ko-
timaisten Kielten Tutkimuskeskus (Research 
Centre of National Languages) has fewer catego-
ries, but they are insufficient for describing all 
word types. The number of inflection categories 
could certainly be reduced by applying a finite 
state machine for controlling part of variation. 

There was no linguistic theory behind select-
ing the stem boundary marking. The solution was 
purely practical. The boundary mark was put to 
the point, which made it possible to produce all 
inflected forms of the word type. 

10 Converting inflection tags to surface 
forms  

Each inflection tag is converted to near-
surface form using Beta-rules. The system first 
checks the inflection code, marks it as checked, 
and then looks for the other codes of that inflec-
tion class. If the path leads successfully to a sur-
face form suffix, it is added after the suffix tag. 

The process is not simple, however, because 
the reading may have two or three inflecting 
words, and each must be given the correct inflec-
tion. The danger of mixing the suffixes is avoid-
ed by joining the found suffix immediately to the 
word. A second, and possibly third, round is then 
run for finding the correct suffixes for the rest of 
words in that reading. 

The suffixes are joined to the whole lexical 
word and not directly to the stem. This is done, 
because sometimes the correct front form can be 
decided only when the final part of the lexical 
word is present. Note that the inflection suffixes 
are not necessarily final. By default, suffixes are 
given the back vowel treatment (7). If the word 
requires front vowel treatment, conversion rules 
modify the suffix accordingly (8). 
 
(7) 
"<*he>" "he" { *h:än :Np9 FRONT } %SUBJ 
CAPINIT PRON PERS NOM SG3  
"<will>" "will" { NOGLOSS } %+FAUXV V AUXMOD 
PRES SG  
"<be>" "be" { NOGLOSS } %-FAUXV V INF PRES SG  
"<hanging_out>" "hang_out" { hengail:la+ee 
:V67 } %-FMAINV ING PRES SG  
"<on>" "on" { NOGLOSS } M-ADE %ADVL PREP  
"<stages>" "stage" { näyttämö:+illa :N2 FRONT 
} %<P N PL ADE  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina } ADV 

11 Front/back concordance  

The decision on whether the ending of the 
word gets a front or back vowel treatment is 
done on the basis of the vowel structure of the 
word. In addition to this, the end part of the lexi-
cal word may affect the precise surface form of 
the word. For example, the rule may require that 
the back vowels of the suffix must be converted 
to corresponding front vowels. This conversion 
is not always one-to-one process, because a back 
vowel may have two corresponding front forms. 
This can be decided on the basis of the last vowel 
of the lexical word. Therefore the full lexical 
word must be present when conversion rules are 
applied. Front vowel conversion is displayed in 
(8). 
 
(8) 
"<*he>" "he" { *h:än } %SUBJ CAPINIT PRON 
PERS NOM SG3  
"<will>" "will" { NOGLOSS } %+FAUXV V AUXMOD 
PRES SG  
"<be>" "be" { NOGLOSS } %-FAUXV V INF PRES SG  
"<hanging_out>" "hang_out" { hengail+ee } %-
FMAINV ING PRES SG  
"<on>" "on" { NOGLOSS } M-ADE %ADVL PREP  
"<stages>" "stage" { näyttämö:+illä } %<P N 
PL ADE  
"<for_years_to_come>" "for_year_to_come" { 
tulevina vuosina } ADV 

12 Controlling word order 

POS tags are the most important keys in con-
trolling the word order in target language. In the 
current language pair, the most important fea-
tures that require word reordering are the prepo-
sitions and the of-genitive. Finnish most often 
uses postpositions, and it does not have equiva-
lent for of-genitive. Also, passive structures with 
agent are missing in Finnish, which causes com-
plex changes in word order. 

We have written the reordering rules with Perl. 
In order to simplify rule-writing, we have moved 
the POS tag to the beginning of the reading of 
each word and changed the whole input into sen-
tence-per-line format. Using this format, it is 
fairly easy to write new reordering rules. For 
each word type applies the same description, and 
only the POS tag changes. In case additional in-
formation is needed, it is available in the descrip-
tion of the word. 

13 Discussion 

The current translation system tries to make 
maximal use of the lexicon and grammar of 
source and target languages. A sentence in 
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source language is converted through subsequent 
phases into target language. No purely statistical 
choices are used. In order to reduce unnecessary 
rule writing, defaults are used where feasible. 

Such rules that need contextual control for 
their application are implemented using the CG3 
environment. Such cases are, apart from the pars-
ing component of English, the correction module 
for the output of the parser, the isolation and 
treatment of MWEs, the semantic disambigua-
tion, the control of singular and plural forms, and 
the modules for adding primary and secondary 
tags for facilitating inflection. The rest of rules 
are implemented using rewriting rules in Beta or 
Perl, whichever is feasible in each case. 

The periodic development with this language 
pair was started in 2015, using IT and medical 
domains as test environments. The work with 
news texts started in March 2017, and the work 
with this domain is just in the beginning. Espe-
cially the vocabulary of the domain is very de-
fective, and also the isolation of MWEs needs 
much work. 

Our own estimation of the feasibility of the 
rule-based approach to the current task is that the 
more grammatical the sentences are, the better 
the result. The ordinary news reporting can be 
translated satisfactorily, but sport news and other 
types of less grammatical texts are a big prob-
lem. 
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Abstract

We describe the machine translation sys-
tems developed at the National Research
Council of Canada (NRC) for the Russian-
English and Chinese-English news trans-
lation tasks of the Second Conference on
Machine Translation (WMT 2017). We
conducted several experiments to explore
the best baseline settings for neural ma-
chine translation (NMT). In the Russian-
English task, to our surprise, our best-
performing system is one that rescores
phrase-based statistical machine transla-
tion outputs using NMT rescoring fea-
tures. On the other hand, in the Chinese-
English task, which has far more paral-
lel training data, NMT is able to outper-
form SMT significantly. The NRC MT
systems is the best constrained system in
Russian-English (out of nine participants)
and the fourth best constrained system in
Chinese-English (out of twenty partici-
pants) in WMT 2017 human evaluation.

1 Introduction

We present NRC’s submission to the Russian-
English and Chinese-English news translation task
of WMT 2017. In contrast to last year, when we
participated in the Russian-English task only, with
our well-developed phrase-based statistical ma-
chine translation system (Lo et al., 2016; Larkin
et al., 2010; Foster et al., 2009), this year we built
large-scale state-of-the-art neural machine transla-
tion (NMT) systems for these two language pairs
to facilitate further understanding and discussion
of NMT.

Russian-English and Chinese-English are both
challenging language pairs for machine transla-

∗Work performed while at NRC.

tion. Russian is a highly inflectional and free word
order language. The skewed Russian to English
word type ratio introduces a data sparsity prob-
lem that cannot be solved by discarding word in-
flections, since they play an important role in dis-
ambiguating the meaning of sentences. Chinese
does not have clear word boundaries. The number
of Chinese word types created by automatic word
segmentation software is high, while naive char-
acter segmentation would result in a skewed Chi-
nese to English sentence length ratio. These char-
acteristics make it difficult for machine translation
systems to learn the correct association between
words in Chinese and English.

Since this was the first time we deployed NMT
models in an evaluation, we first tried to repli-
cate the results of previous work (Sennrich et al.,
2016a). Our NMT systems are based on Nema-
tus (Sennrich et al., 2017). We used automatic
back-translation (Sennrich et al., 2016b) of a sub-
selected monolingual News corpus as additional
training data, and all the training data is seg-
mented into subword units using BPE (Sennrich
et al., 2016c). We also experimented with perva-
sive dropout as implemented in Nematus.

For Russian-English, our WMT16 PBMT sys-
tem scored higher than all the NMT systems we
built this year. We therefore experimented with
using the NMT systems as features for rescoring
the 1000-best output from our WMT16 PBMT
system. This strategy yielded almost 2 BLEU
point improvement over the PBMT baseline. For
Chinese-English, we exploited different domain
adaptation techniques to boost the system perfor-
mance on in-domain news translation. We also in-
tegrated various regularization methods to avoid
the systems overfitting to the small development
set.

The NRC Russian-English and Chinese-English
news translation systems achieve competitive per-
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formance (third place in both language pairs) in
the preliminary automatic evaluation of WMT
2017. In this paper, we discuss the lessons learned
in building large-scale state-of-the-art NMT sys-
tems.

2 Russian-English news translation

We used all the Russian-English parallel cor-
pora available for the constrained news translation
task. They include the CommonCrawl corpus, the
NewsCommentary v12 corpus, the Yandex cor-
pus and the Wikipedia headlines corpus. In total,
2.6 million parallel Russian-English sentences are
used to train the baseline system. We use the news
translation test set of WMT 15 as development set
and that of WMT 16 as test set. The Russian and
English texts in the training/development/test cor-
pora were kept in their original true case and to-
kenized, then the Russian and English texts were
combined to train a BPE model with vocabulary
size of 30k.

2.1 NMT baseline system

Our NMT baseline system is developed using Ne-
matus (Sennrich et al., 2017). The dimension of
word embeddings is set to 512 and that of the hid-
den layers is set to 1024. We train the models with
rmsprop (Tieleman and Hinton, 2012), reshuffling
the training corpus between epochs. We use mini-
batches of size 100 and validate the model every
8000 minibatches against BLEU on the WMT 15
news translation test set. We perform early stop-
ping on the baseline system. We use AmuNMT
C++ decoder (Junczys-Dowmunt et al., 2016a)
with a beam size of 4.

2.2 Synthetic training data

In statistical machine translation, large monolin-
gual corpora in the output language have tradi-
tionally been used for training language models
to make the system output more fluent. However,
it is difficult to integrate language models in cur-
rent NMT architectures. Instead of ignoring such
large monolingual corpora, Sennrich et al. (2016b)
exploited large corpora in the output language by
translating a subset of them into the input lan-
guage and then using the resulting synthetic sen-
tence pairs as additional training data. We trans-
lated monolingual English text into Russian us-
ing an English to Russian NMT system mirroring

the one described in Section 2.1,1 and then em-
ployed the machine-translated Russian and perfect
English sentence pairs as additional data to train
the Russian-English MT system.

To select sentences for back-translation, we
used a semi-supervised convolutional neural net-
work classifier (Chen and Huang, 2016). We
sampled two million sentences from the English
monolingual News Crawl 2015 & 2016 corpora
according to their classifier scores, which reflect
their similarity to the the English half of our de-
velopment set.

2.3 Pervasive dropout

Pervasive dropout prevents the NMT system from
overfitting. We apply the variant of Gal and
Ghahramani (2016) pervasive dropout that is im-
plemented in Nematus to all layers in the network.
This variant has the characteristic that the random
dropout is applied at the token level, instead of at
the word-type level. We set the dropout probabil-
ity for the source words, target words and embed-
ding layers to 0.15. For the hidden layers, we set
the dropout probability to 0.3.

2.4 Minimum risk training

Minimum risk training (MRT) (Shen et al., 2016)
allows model optimization to arbitrary loss func-
tions, which do not need to be differentiable, thus
enabling direct model tuning against automatic
MT evaluation metrics. It uses the MT evaluation
metric as the loss function and minimizes the ex-
pected loss on the training data at sentence-level.
We experimented with further model optimization
using MRT on the whole training corpus against
sentence BLEU at the final stage.

2.5 Greedy model averaging

A common practice for avoiding overfitting to
the training data is ensembling the last few mod-
els saved as checkpoints. Recently, Junczys-
Dowmunt et al. (2016b) showed that one can
see nearly the same benefits by performing a
component-wise average of all parameters across
checkpoints. We extended this technique by using
a greedy strategy to average a wider range of mod-
els. Instead of considering only the last few saved
models, we considered 30 saved models having
the best BLEU performance on the validation set
one-by-one. For each checkpoint, in descending

1 This scores 21.05 BLEU on the WMT 15 test set.
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order of BLEU score, we add the checkpoint to
our running average to create a model candidate.
We then use the candidate to decode our develop-
ment set. If this results in improved BLEU, we
accept the candidate, and it becomes our new run-
ning average. We find that this process generally
selects between 5 and 8 checkpoints to include in
the average.

2.6 Portage - NRC WMT16 PBMT system
The core of the NRC WMT16 MT system (Lo
et al., 2016) is Portage (Larkin et al., 2010).
Portage is a conventional log-linear phrase-based
SMT system.

The system was trained on all the Russian-
English parallel training corpora and WMT 12 and
WMT 13 Russian-English news translation test set
and tuned on the WMT 14 test set. Both the Rus-
sian and English text in the parallel and monolin-
gual corpora in the training/development/test cor-
pora were tokenized and lowercased.

The system employed Russian lemmatization
extensively in building word alignments for trans-
lation models, a hierarchical distortion model, a
sparse feature model and neural network joint
models or NNJMs (Devlin et al., 2014). The
system also made extensive use of monolingual
English corpora in building language models.
Last but not least, it had comprehensive Russian
OOV handling, which included a fallback Russian
lemma-based phrase table and a Russian translit-
eration model.

2.7 Rescoring and truecasing
We rescored 1000-best lists output from the
phrase-based decoder using a rescoring model
(Och et al., 2004; Foster et al., 2009) consisting
of 13 features: 3 NMT models, 2 language mod-
els, 5 NNJMs and 3 n-best features. The rescoring
model was tuned using n-best MIRA (Cherry and
Foster, 2012).

The three NMT systems used as rescoring fea-
tures were: 1) baseline further trained with syn-
thetic data, 2) dropout baseline further trained with
synthetic data and with dropout turned off, and 3)
the previous model optimized to the development
set using minimum risk training.

The five NNJM rescoring features include two
Russian-word NNJMs and three Russian-lemma
ones. Following Devlin et al. (2014), we take
advantage of the rescoring framework to have
our NNJMs view each candidate translation from

dev test
single

System best ave.
a: baseline 23.6 24.8 23.8
b: (a)+synthetic 25.6 26.3 25.3
c: dropout baseline 26.3 26.3 25.6
d: (c)+synthetic 27.7 27.8 26.6
e: (d)+mrt 27.8 27.8 26.1
f: WMT16 Portage 28.2 – 28.6
g: (f) rescored by (d) 29.9 – 29.6
h: (f) final rescoring – – 30.4

Table 1: Selected results from our Russian-
English development experiments. The ave. col-
umn shows the result of greedy model averaging,
where applicable.

perspectives not available during decoding. The
Russian-lemma NNJMs are rescored using nor-
mal, target-to-source, and right-to-left perspec-
tives. The Russian-word NNJMs are rescored
using normal and right-to-left perspectives. The
choice of which perspectives to include was made
based on empirical devtest (WMT 16) perfor-
mance.

The two language models were: a left-to-right
6-gram LM and a right-to-left 6-gram LM. Both
were trained on the WMT 16 monolingual English
training corpus,

The final output was truecased and detokenized
in the same way as described in Lo et al. (2016).

2.8 Results

Table 1 shows the results of selected models from
our development experiments. It can be seen
that synthetic training data generated by back-
translation of large output language monolingual
corpora consistently improves the baseline by 1.4
to 2 BLEU. However, this result is rather disap-
pointing by comparison with the exciting improve-
ment reported in Sennrich et al. (2016a), i.e. 3-4
BLEU.

Another disappointing result is that model aver-
aging does not work well with the dropout mod-
els. We can see model averaging yields around 1
BLEU gain on non-dropout systems. However, the
improvement achieved by model averaging drops
to 0-0.1 BLEU on dropout systems. In other ex-
periments not shown here, we also saw no im-
provement from ensembling the checkpoints of
our dropout systems.
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Figure 1: Russian-English learning curve on development set in cased BLEU of selected models: a)
NMT baseline, b) NMT baseline further trained with synthetic data, c) NMT dropout baseline, d) NMT
dropout baseline further trained with synthetic data while dropout is turned off, e) NMT dropout baseline
with synthetic data optimized to sentence-level BLEU on the training data using MRT, f) our WMT16
PBMT submission and g) the PBMT rescored by one of the rescoring features.

The most interesting observation in our experi-
ments is that the dropout baseline continues to im-
prove over the course of many weeks. Figure 1
shows the learning curve of the selected models
for all 7 weeks of development. Line (c) of this
figure shows that the dropout baseline continues
training and improving until the end of the eval-
uation campaign, achieving a development BLEU
score that is 2.7 BLEU points beyond our best sin-
gle NMT system that does not use dropout. This
system can be further improved by adding syn-
thetic data, as in line (d), however, we found that
we needed to switch dropout off after adding the
synthetic data.

Although in figure 1 we see that none of the
NMT systems manage to beat our WMT16 PBMT
submission, the more interesting result is that there
is more than 1.8 BLEU gain on the development
set and 1.1 BLEU gain on the test set by rescor-
ing the PBMT 1000-best list using just one of our
NMT systems and no other features, as in line (g).
The final rescoring with weighted collections of
NMT systems, language model features, NNJM
features and n-best features shows 1.8 BLEU im-
provement over the WMT 16 submission on the
test set.

3 Chinese-English news translation

We used all the Chinese-English parallel corpora
available for the constrained news translation task.
They include the UN corpus, the NewsCommen-
tary v12 corpus and the CWMT corpus. In to-
tal, 25 million parallel Chinese-English sentences
were used to train the baseline system. We used
half of the WMT 17 news translation development
set as our development set and the other half as
internal test set. The English texts in the train-
ing/development/test corpora were tokenized and
lowercased while the Chinese texts in the train-
ing/development/test corpora were segmented us-
ing the ICTCLAS segmenter (Zhang et al., 2003).
Then the Chinese and English text were combined
to train a BPE model with vocabulary size of 90k.

3.1 NMT baseline system

Our Chinese-English NMT baseline system is
similar to the Russian-English baseline as de-
scribed in section 2.1: Nematus-based, word em-
beddings with 512 dimensions, hidden layers with
1024 dimensions, etc.
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Figure 2: Chinese-English learning curves on the internal test set in uncased BLEU for selected mod-
els: a) NMT baseline, b) further trained with in-domain data selected by bilingual LM cross-entropy
difference (xent), c) further trained with synthetic data, d) further trained with cost weighting, e) further
trained with in-domain data selected by semi-supervised convolutional neural network classifier (sscnn),
f) greedy model averaging and g) optimized against sentence-level BLEU on the intersection of the sub-
sets of data selected by xent and sscnn using MRT.

3.2 Data selection and domain adaptation

Since the majority of the 25 million sentence pairs
in the training corpus are general domain, we ex-
perimented with different data selection and do-
main adaptation techniques to further train the
NMT system with data that are similar to the de-
velopment set so as to perform better in the news
domain.

Axelrod et al. (2011) introduced the bilingual
language model cross-entropy difference as a sim-
ilarity function for identifying sentence pairs from
general-domain training corpora that are close to
the target domain. We built four language models
using the input and output sides of the training cor-
pora and the development set respectively to select
3 million sentence pairs from the training corpora
that are close to the news domain.

However, the development set, which consists
of only 1k sentence pairs, is too tiny to be a suit-
able corpus for building the in-domain language
models that will enable the bilingual LM cross-
entropy difference data selection method to work
effectively. Therefore, we also experimented with
the semi-supervised convolutional neural network
method in Chen and Huang (2016) to select 1 mil-

lion sentence pairs from the training corpora that
are close to the news domain.

Finally, we experimented with a cost weighting
domain adaptation technique (Chen et al., 2017).
This technique trains a domain classifier concur-
rently with the NMT system, and uses the classi-
fier probabilities to weight training instances ac-
cording to their similarity to the development set.

3.3 Synthetic training data

We generated synthetic Chinese and perfect En-
glish sentence pairs in a process similar to that
described in section 2.2. We first used a semi-
supervised convolutional neural network classifier
(Chen and Huang, 2016) to sample 20 million sen-
tences from the English monolingual News Crawl
2015 & 2016 corpora according to the develop-
ment set. We then translated the selected sentences
using a English-Chinese NMT baseline trained
out-of-the-box using only the parallel corpora.

3.4 Greedy model averaging

Greedy model averaging is performed as described
in section 2.5.
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System test
baseline 17.2
+biLM cross-entropy (xent) DS 18.7
+synthetic 19.7
+cost weighting DA 20.1
+sscnn DS 20.7
+greedy model averaging 21.2
+xent∩sscnn mrt 21.4
ensemble 24.2
rescoring 25.6

Table 2: Selected results in uncased BLEU from
our Chinese-English development experiments.

3.5 Minimum risk training

In contrast to the way in which we carried out
MRT for the Russian-English system in sec-
tion 2.4, we optimized the Chinese-English sys-
tem using MRT against sentence BLEU only on
the intersection of the subsets of corpora selected
by the LM cross-entropy and the semi-supervised
CNN in section 3.2. The size of the intersection of
the two subsets of corpora is 300k sentence pairs.

3.6 Ensembling, rescoring and truecasing

Applying different combinations of the techniques
described in section 3.1 to 3.5, we built 14 dif-
ferent NMT systems. Their uncased BLEU on
the test set ranged from 19.8 to 21.4. We ensem-
bled all the systems together using Simplex-tuned
weights.

We rescored 500-best lists output from the en-
sembled NMT system using a rescoring model
(Och et al., 2004; Foster et al., 2009) consisting of
82 features: IBM models, RNN language models
(Mikolov et al., 2010), n-gram language models
trained on different data subsets, neural network
joint models (NNJMs) (Devlin et al., 2014) and
word, n-gram, word alignment posteriors (Foster
et al., 2009), etc. The rescoring model was tuned
using n-best MIRA (Cherry and Foster, 2012).

The final output was truecased and detokenized
using heuristic methods.

3.7 Results

Figure 2 shows that all the components we de-
scribed in section 3.2 to 3.5 help improve the NMT
system. The uncased BLEU on the test set in ta-
ble 2 shows that all the data selection and domain
adaptation methods improve the NMT systems by
0.4 to 1.5 BLEU. Similar to the results we ob-

served in our Russian-English NMT systems, syn-
thetic training data generated by back-translation
of large output language monolingual corpora im-
proved the NMT system score by 1 BLEU.

The most important observation in our exper-
iments is that ensembling of NMT systems de-
veloped by different techniques achieves around 3
BLEU improvement and rescoring the n-best out-
put from NMT systems also shows 1.4 BLEU gain
on the test set.

4 Conclusion

We have presented the NRC submissions to the
WMT 2017 Russian-English and Chinese-English
news translation task. The Russian-English sub-
mitted system is our WMT 16 PBMT system
rescored by three NMT models and other rescor-
ing features. Our Chinese-English submitted sys-
tem is an ensemble of fourteen NMT models
rescored by a large set of additional features. Our
system achieved the highest score for the Russian-
English (among nine participants) and the fourth
highest score for Chinese-English (among twenty
participants) constrained news translation tasks in
WMT 2017 human evaluation.

Our experiences in WMT 2017 illustrate the
sharp divide between large- and medium-scale
data scenarios when working with neural MT.
For Russian-English, we found ourselves relying
on techniques that are usually intended for low-
resource scenarios, such as pervasive dropout and
rescoring a phrase-based system. This is sur-
prising, as 2.5 million sentence pairs would have
been considered a large-data scenario in the not-
too-distant past. Meanwhile, for Chinese-English,
we were able to achieve strong individual neural
systems, which were further strengthened by en-
sembling across various data selection and data
weighting techniques. Our results also highlight
the necessity to speed up convergence in the pres-
ence of dropout, so that it does not take weeks to
train a single model.
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Abstract

We introduce the Helsinki Neural Machine
Translation system (HNMT) and how it
is applied in the news translation task at
WMT 2017, where it ranked first in both
the human and automatic evaluations for
English–Finnish. We discuss the success
of English–Finnish translations and the
overall advantage of NMT over a strong
SMT baseline. We also discuss our sub-
missions for English–Latvian, English–
Chinese and Chinese–English.

1 Introduction

The Helsinki Neural Machine Translation system
(HNMT) is a full-featured system for neural ma-
chine translation, with a particular focus on mor-
phologically rich languages. We participated in
the WMT 2017 shared task on news translation,
obtaining the highest BLEU score for English–
Finnish translation, while also performing well
on English–Latvian and acceptably on English–
Chinese and Chinese–English.

In addition to our participation in the shared
task, this paper also details some of the other
methods we have implemented and evaluated with
HNMT, many of which yielded negative results
and were subsequently not used in our submis-
sions for the shared task.

1.1 HNMT

HNMT is based on the attentional encoder–
decoder model due to Bahdanau et al. (2014). This
is a rather minimalistic framework for NMT, and
many extensions have been proposed. Of particu-
lar interest are those that allow proper and efficient

∗The software is available from https://github.
com/robertostling/hnmt under the GNU General
Public License version 3.

handling of morphologically rich languages, such
as Finnish. We combine two such approaches: the
hybrid character/word model of Luong and Man-
ning (2016), which is used for the source language
encoder, and the byte-pair encoding (BPE) tech-
nique of Sennrich et al. (2016c), which is used
for the target language decoder and has been suc-
cessfully used for Finnish previously (Sánchez-
Cartagena and Toral, 2016). As BPE can be added
as a simple pre- and post-processing step, it does
not affect the structure of the translation model.
This means that our system can be used with char-
acter, word and BPE level generation on the tar-
get side. The structure of the network, thus, con-
sists of three Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layers:

1. A character-level encoder that transforms
out-of-vocabulary source tokens into the
same vector space as the source word embed-
dings.

2. A token-level bidirectional encoder that
transforms a sequence of source word em-
beddings (or outputs from network (1) in case
of OOV items) into an encoded sequence of
the same length.

3. A character-, token- or BPE-level decoder
that works as language model conditioned
(via an attention mechanism) on the encoded
source sequence from (2).

HNMT is implemented using Theano (Theano De-
velopment Team, 2016), which supports efficient
training with a GPU. For optimization we use
minibatch stochastic gradient descent with Adam
(Kingma and Ba, 2015) for learning rate adapta-
tion.
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2 Tricks from the NMT arsenal

We have implemented and evaluated a number
of proposed extensions to the basic attentional
encoder–decoder model. Basic experiments were
carried out on English–Finnish data, unless speci-
fied otherwise.

2.1 Layer normalization

Layer normalization (Ba et al., 2016) has been
proposed as a technique for speeding up train-
ing of recurrent network models. We have imple-
mented it into HNMT as the modified LSTM de-
scribed by equations (20)–(22) in Ba et al. (2016).
However, as preliminary experiments did not in-
dicate any consistent effect of using layer normal-
ization we did not include it in our evaluation.

2.2 Variational dropout

Gal and Ghahramani (2016) proposed a method
for regularization of recurrent neural networks.
This has also been implemented in HNMT, but
preliminary experiments on Finnish did not in-
dicate any improvement over the baseline sys-
tem. While Sennrich et al. (2016a) reported large
improvements for the Romanian news translation
task at WMT 2016, the amount of training data
is lower than what is available for Finnish, which
should explain some of the difference. They also
apply dropout on the word level, whereas the
HNMT application currently only drops recurrent
states.

2.3 Context gates

Context gates (Tu et al., 2017) introduce an ex-
plicit model for selecting to which extent the tar-
get sentence generation should focus on the source
sentence or the target context, giving the network a
chance to tune the balance between adequacy and
fluency. While we obtained better cross-entropy
on the development set, particularly early during
training, the BLEU and chrF3 evaluations on de-
velopment data made us decide against the slower
context gates in the final run.

2.4 Coverage decoder

Wu et al. (2016) present an empirically determined
method for using the attention vectors produced
during decoding in the search algorithm, to bias
the decoder towards translations with reasonable

length and good coverage of the source sentence.1

We performed a grid search of the parameter space
for the length, coverage and overtranslation penal-
ties, but did not find any that resulted in higher
BLEU scores on the development set than the de-
coder without penalties.

2.5 Forward-Backward reranking
It is trivial to train a translation model to generate
translations either from the beginning or the end
of the target sentence. HNMT supports selecting
translation direction, and combined with its n-best
list and reranking features it is simple to gener-
ate candidate translations in both directions and to
combine them based on their scores. This led to
some minor improvements in our English–Finnish
translations.

2.6 Ensembling
HNMT supports two general modes of ensem-
bling, as well as their combination:

• Proper ensembling where p(w) =
1
M

∑M
m=1 pm(w) is used to predict tar-

get symbol w, given predictions pm(w) for
each model m in the ensemble.

• Parameter averaging where the model’s pa-
rameter vector θ is computed as 1

N

∑M
m=1 θm

for each model m. This only works if the
different θm are relatively similar, typically
because they were saved at different points
during the same training process.

The overhead for proper ensembling is linear in
the number of ensembled systems, both for train-
ing (assuming one is building an ensemble of sepa-
rately trained models) and inference, while param-
eter averaging is essentially free. HNMT allows
proper ensembling of groups of models where the
parameters are averaged within each group. This
flexible structure allows a number of setups, which
are explored further in Section 3.2.

3 English–Finnish

In our experiments, we used all English–Finnish
parallel data sets provided by WMT except the
Wiki headlines, which is a small and rather noisy
data set that did not contribute anything in our
experiments from last year. We also added sub-
stantial amounts of backtranslated data that has

1The HNMT implementation of this was contributed by
Stig-Arne Grönroos.
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been shown to help especially in neural machine
translation (Sennrich et al., 2016b) but also in sta-
tistical MT (Tiedemann et al., 2016). Table 1
lists some basic statistics of the backtranslated
data sets we created out of WMT’s monolingual
Finnish news data from 2014 and from 2016. We
applied our best constrained phrase-based SMT
model for Finnish to English from last year (Tiede-
mann et al., 2016) that uses a factored model with
multiple translation paths, morphological tags and
pseudo-tokens for case-markers that correspond
to English prepositions (Tiedemann et al., 2015).
The system scored 20.5% lowercased BLEU on
the newstest 2016 data, which was the second-best
system for the task in 2016.

sentences Finnish English
news2014 1,378,833 17,117,137 23,818,547
news2016 4,144,406 55,637,304 76,161,439

Table 1: Backtranslated Finnish news data.

3.1 Preprocessing and postprocessing

We trained our models on tokenized and true-
cased data, except for the character-level mod-
els which were trained on raw untokenized data.
For the former, we applied Moses tools for Uni-
code/punctuation normalisation, tokenization and
truecasing using a model trained on the parallel
training data.

We tested three different types of word segmen-
tation: basic word-based segmentation, supervised
morphological segmentation using OMorFi (Piri-
nen, 2015) and byte-pair encoding (BPE) (Sen-
nrich et al., 2016c). For the latter, we opted for
a fine-grained segmentation that results in a small
vocabulary of 20,000 tokens when trained on the
parallel data, expecting BPE to handle various
cases of compound splitting and morphological
segmentation. We always used the same BPE-
based segmentation and did not try to optimize the
BPE parameters in any way.

During development, we observed that the En-
glish development files contained a lot of verb
form contractions (of the type wouldn’t), but that
such contracted forms appear rarely in the training
data. Therefore, we also added a preprocessing
routine to transform the contracted forms to their
uncontracted equivalents.

Finally, we found that our tokenizer/detokenizer
pipeline for Finnish did not handle the hy-
phen/dash distinction correctly. In Finnish, the ‘-’

sign can be used with spaces on both sides, with-
out spaces, with a space only on the left, and with
a space only on the right, as in the following ex-
amples:

(1) a. Draamaa Riossa - suomalaisnostaja
pyörtyi. . .
‘Drama in Rio - Finnish lifter
fainted. . . ’

b. Kempinski-hotelli
‘Kempinski[-]hotel’

c. kissa ja hiiri -leikkiä
‘cat and mouse [-]game’

d. öljy- ja kaasutoiminnot
‘oil[-] and gas functions’

The tokenizer always introduces spaces on both
sides, which means that the detokenizer is then un-
able to retrieve the original configuration. In order
to remedy this problem, we applied a postprocess-
ing step to the translated data. After detokeniz-
ing the output, for every hyphen sign, the four to-
kenization variants were generated and scored by
the hybrid-to-character system; we then chose the
tokenization variant with the highest score.

3.2 NMT Models
In preliminary experiments, we focused on dif-
ferent segmentation strategies for the source and
target sides as well as on different proportions of
backtranslations and parallel data. The models
were evaluated on newsdev2015 using lowercased
BLEU and chrF3.2 Table 2 shows some results.

In these experiments, we found BPE to be use-
ful on the target side, but not so much on the
source side. Character-level decoders are favoured
by character-level evaluation scores such as chrF3,
whereas BLEU favours decoders using larger units
such as BPE. The best results were obtained
with a combination of backtranslated and paral-
lel data; using all backtranslations was slightly
better than restricting the amount of backtransla-
tions to match the size of the parallel data. The
model based on supervised morphological seg-
mentation followed by BPE encoding (OMorFi)
yielded promising chrF3 results, but lagged be-
hind in terms of BLEU. Further investigation is
needed on the benefits and shortcomings of com-
bining these segmentation approaches.

2The HNMT-internal BLEU computation is based on
https://github.com/vikasnar/Bleu and on the
NLTK tokenizer. The reported results are thus not directly
comparable with official WMT results.
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BLEU chrF3
Encoder Decoder None Only Balanced All None Only Balanced All
BPE BPE 11.9 14.4 15.7 15.5 43.7 47.2 48.3 48.5
BPE Char 9.2 13.0 13.7 14.0 41.0 47.8 48.4 48.6
Hybrid BPE 12.2 13.8 15.4 15.3 43.4 47.0 48.1 49.0
Hybrid Char 11.6 13.1 14.1 14.2 46.3 47.2 48.2 49.0
Hybrid OMorFi — — — 14.3 — — — 49.2

Table 2: Development results with different segmentation strategies for the source language encoder and
the target language decoder and different proportions of backtranslated and parallel data (None = 2.5M
sentences of parallel data + 0 sentences of backtranslated data; Only = 0 + 5.5M; Balanced = 2.5M +
2.5M; All = 2.5M + 5.5M).

BLEU chrF3 M SP/M AVG
12.8 48.8 1 1 N/A
13.6 49.7 1 4 +
13.8 49.8 1 4 −
14.1 50.0 3 1 N/A
14.4 50.2 3 4 +
14.6 50.4 3 4 −

Table 3: Development results with different en-
sembling setups. Each configuration consists of M
models, with SP/M savepoints per model, where
the savepoints may be averaged (+AVG) or in-
cluded as equal members in the ensemble (-AVG).

The model based on a hybrid encoder and
a BPE decoder did not yield the best results
in this preliminary evaluation, but showed the
most robust performance across different evalua-
tion types, training configurations and evaluation
data (in particular, it outperformed other models
on the newstest2015 set). Therefore, four of our
five submissions use that configuration. For com-
parison, we also submitted a system based on a
character-level decoder.

We also investigated the effect of different en-
sembling combinations, and the result can be
found in Table 3. In general, proper ensembling
is better than savepoint averaging, but savepoint
averaging is better than nothing. Further experi-
ments revealed that the difference between an en-
semble of averaged savepoints from independent
models setup (second row from the bottom) and
an ensemble of several savepoints each from inde-
pendent models (bottom row) is not consistent, so
we use the former (faster) variant for our official
submissions.

The submitted character-decoder system uses
256 dimensions for word embeddings, 64 for char-
acter embeddings, 512 encoder state dimensions,
1024 decoder state dimensions, and 256 attention
dimensions. We train four independent models for
72h each, and the savepoint with the best heldout

chrF3 score is used (in practice we do not observe
any significant overfitting, so this amounts to us-
ing nearly 72h of training for all models). Train-
ing data are the unprocessed versions of all paral-
lel and backtranslated data. For decoding, we used
proper ensembling of the four models, and averag-
ing of the four last savepoints of each model (states
were saved after each 5000 training batches).

The submitted BPE-decoder systems use the
same model size as the character-decoder sys-
tem. Again, we train four independent models
for 72h each, using the preprocessed and BPE-
encoded data, with hyphen retokenization applied
as a postprocessing step. We provide two con-
trastive systems: one without input normalization,
which shows a decrease of 0.3 BLEU, and one
without hyphen retokenization, which shows a de-
crease of 0.9 BLEU (see Table 4).

We also propose an extended system that is
based on the four models above and four addi-
tional backwards models (i.e., trained right-to-
left). At test time, we generate a 10-best list of
forward translations and a similar one of back-
ward translations. We choose the best translation
that occurred in both lists, or if the lists are dis-
joint, the translation with the highest likelihood
according to the model (forward or backward) that
generated it. This reranking only provided +0.1
BLEU; 48% of translations were chosen from the
forward model, 22% from the backward model,
and 30% occurred in both lists. This system has
been ranked first in the automatic and manual eval-
uations.

3.3 SMT Baselines

Besides the neural MT models, we also trained
various phrase-based SMT models to contrast our
results with another popular paradigm. In par-
ticular, we were interested to see the effect of
BPE segmentation and backtranslation on statis-
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Decoder IN HR Direction BLEU
Char + N/A fw 19.1
BPE + + fw 20.6
BPE − + fw 20.3
BPE + − fw 19.7
BPE + + fw+bw 20.7

Table 4: Submitted HNMT systems with official
results. They vary with respect to decoder type,
input normalization (IN), hyphen retokenization
(HR), direction (forward or backward). The best
result was submitted for manual evaluation, where
it ranked #1 (tied with one unconstrained system).

tical MT. Both techniques are popular in neural
MT but their impact on statistical MT has not
been evaluated properly before. Therefore, we
started a systematic comparison of different se-
tups including various types of segmentations and
data collections. All systems are based on Moses
(Koehn et al., 2007) and we use standard con-
figurations for training non-factored phrase-based
SMT models using KenLM for language modeling
(Heafield, 2011) and BLEU-based MERT for tun-
ing. The only difference to the standard pipeline is
the use of efmaral (Östling and Tiedemann, 2016),
an efficient implementation of fertility-based IBM
word alignment models with a Bayesian extension
and Gibbs sampling.3 Table 5 summarizes the
results of our SMT experiments during develop-
ment.

The first observation is that BPE (and also su-
pervised morphological segmentation) is not very
helpful. This is somewhat surprising as we expect
a similar problem as with neural MT in the sense
that the productive and rich morphology in Finnish
causes problems due to data sparseness. We can
see that some models benefit from BPE (see back
and opus) especially if tuning is done on the word
level and not on BPE-segmented output. However,
we have to admit that we did not attempt to opti-
mize the segmentation level and it can well be that
the small BPE vocabulary in our setup is not work-
ing well for SMT.

Another observation is that the operation-
sequence model does not lead to significant (or
any) improvements. This is in contrast to related
work and may be due to data sparseness again due
to the morphological richness of Finnish.

The biggest surprise is the positive effect of
backtranslated data. The models trained on those

3Software available from https://github.com/
robertostling/efmaral.

newsdev15 segmentation LM
data src trg tuning news +CC
WMT word word word 12.51 13.74
WMT word BPE word 12.16 –
WMT word morf word 11.58 –
WMT BPE BPE BPE 11.91 –
WMT BPE BPE word 12.24 12.95
back word word word 12.69 13.69
back BPE BPE BPE 12.73 –
back BPE BPE word 12.92 13.50
WMT+back word word word – 14.62
WMT+back BPE BPE BPE 12.94 –
WMT+back BPE BPE word 13.40 14.44
+osm word word word – 14.04
+osm BPE BPE word 12.85 14.58
opus word word word 14.05 15.54
opus BPE BPE word 14.45 15.63
+osm word word word – 15.82
+osm BPE BPE word – 15.57
newstest17
WMT+back BPE BPE word – 16.2
opus+osm BPE BPE word – 17.3

Table 5: Phrase-based SMT tested on newsdev
2015 and newstest 2017 (lowercased BLEU). Dif-
ferent types of segmentation in source language
text (src), target language text (trg) and dur-
ing minimum-error rate training (tuning): word-
based, byte-pair encoding (BPE) and OMorFi-
based (morf). Different data sets for training:
Europarl and Rapid2016 (WMT), backtranslated
Finnish news (back) and all available data sets in-
cluding parallel corpora from OPUS (opus). Ad-
ditional component: operation-sequence model
(osm).

data sets only are in fact better than the ones
trained on the official training data provided by
WMT. This demonstrates the strong domain mis-
match between training and test data and the use
of in-domain data, even very noisy ones, seems to
lead to visible benefits. In combination, we can
see substantial improvements over the individual
models, which demonstrates the use of backtrans-
lation even for SMT.

Another common outcome in SMT is the strong
impact of language models. We can confirm this
once again. Adding a second language model
trained on common-crawl data (CC) has a strong
influence on translation quality as we can see by
the BLEU scores in Table 5.

In the manual evaluation, our best SMT system
shared 6th rank with four other systems (interest-
ingly a mix of phrase-based, rule-based and neural
systems), of which two were constrained like ours.
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3.4 NMT with Pre-translated Data

We were also interested in the combination of
SMT and NMT using the pre-translation approach
proposed by Niehues et al. (2016). In their model,
SMT-based translations of the source text are sim-
ply concatenated to the input to make it possi-
ble for an NMT system to draw information from
other MT models. Niehues et al. show that the
attention model is capable of learning the connec-
tions between the pre-translated part and the orig-
inal source language input to jointly influence the
generated target language translations. The ap-
proach is straightforward and interesting because
it may improve the faithfulness (or adequacy) of
the translation engine, which can be a problem in
neural encoder–decoder models.

One challenge is that training data has to be
translated completely to make it possible to learn
the final NMT model. One of the problems dis-
cussed by Niehues et al. is the issue of overfitting
to the SMT-based translation if the SMT model is
trained on the same data set as will be used for
learning the NMT model. They propose to weaken
the phrase table by removing longer segments and,
hence, reducing the capacity of the SMT model to
create very generic translation options.

In our setup, we use a different strategy: Instead
of using the same data sets for training and trans-
lating, we use the backtranslated news data to train
a model that can be used to translate the parallel
WMT data (Europarl and Rapid2016). With this,
we get the same domain-mismatch as during test
time with a realistically weak model that avoids
over-trusting its capacity when training the NMT
model in pre-translated data. Furthermore, we use
a WMT-model trained on Europarl and Rapid2016
to translate the backtranslated news data from En-
glish back to Finnish again. The latter may be a
problem because of the significant noise added due
to the double backtranslation but we do not want
to discard the important news data completely.

Another difference in our setup is that we use
BPE-segmented SMT models to obtain segmented
output that we can use directly to be concatenated
with the original (BPE-segmented) source. We
mark the pre-translated part with a special suf-
fix and then train a standard attention-based NMT
model. We use similar parameters as for our stan-
dard NMT experiments: 256-dimensional word
embeddings, encoder states and attentions, 512-
dimensional decoder states, and a vocabulary of
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Figure 1: Attention with pre-translated data.

50,000 in source and target language. It turns out
that, indeed, the model learns to look at both the
source language and the pre-translated text, as we
can see in the attention plot in Figure 1.

Unfortunately, the training process is very slow
due to the extended input sequence and, hence,
converges very slowly. No useful model could be
submitted before the official deadline. Our final
system tested after the official submission is an en-
semble of four independently trained models with
savepoint averaging over the last four savepoints
and reaches a lowercased BLEU score of 17.34%
on newsdev 2015 and 20.92% on newstest 2017 in
our internal evaluations (but only 19.8% BLEU in
the official on-line system). Even tough this looks
quite encouraging compared to the SMT scores,
it is still below the plain NMT models, which is,
of course, a bit disappointing. However, the re-
sults are not directly comparable and there is some
variation that needs to be accounted for. More de-
tailed analyses are required to study the possible
contributions by the pre-translations. Further in-
vestigations of attention plots may reveal whether
the model still overfits to the SMT output, which
could be a good reason why it underperforms in
the end. The additional complexity and the in-
creased length of the input sequences are certainly
other reasons for the negative outcome. It also
seems that the strong performance of the NMT
model also with respect to adequacy make it dif-
ficult to improve it further with a weaker SMT
model.

3.5 Manual Evaluation

The outputs of the best SMT and NMT systems
were partially reviewed and compared by a profes-
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sional translator. The impression of the reviewer
was that the perceived quality of NMT far exceeds
that of SMT, mainly due to the superior fluency of
NMT. The BLEU scores of the systems also in-
dicate a significant quality difference in favor of
NMT. However, single-reference BLEU scores are
known to be unreliable indicators of quality for
morphologically complex languages (Bojar et al.,
2010), and they are also known to favor SMT over
other MT methods (Callison-Burch et al., 2006).
Due to this, it is possible that the BLEU scores,
impressive as they are, do not reflect the real qual-
itative impact of NMT for English–Finnish MT.

To explore whether single-reference evaluation
underestimates NMT quality, a sample of 68 sen-
tences was extracted from the test set. Both SMT
and NMT translations of the sample were poste-
dited with minimal changes to the same quality
level as the reference translation. The minimally
edited MT was then used as a TER reference to
obtain a more reliable estimate of the MT qual-
ity. The sample was chosen from sentences where
SMT has a sentence-level TER that is at least 10
points lower than the corresponding NMT TER,
since such differences can indicate evaluation er-
rors. The sample was also restricted to sentences
with an SMT TER lower than 40 to reduce poste-
diting workload and filter out low-quality MT.

When postedited MT was used as a refer-
ence, total TER/BLEU for the sample changed
from 24.7/50.2 to 12.5/76.0 for SMT and from
48.4/25.0 to 18.3/70.5 for NMT. While the score
improved for both SMT and NMT, the improve-
ment is clearly much larger for NMT. The test
was then repeated for another sample of 68 sen-
tences from the test set, this time selected from
the sentences where NMT had lower sentence-
level TER. The purpose of this sample was to see
if evaluation errors affect single-reference scores
for SMT to the same extent as for NMT. With
the second sample, total TER/BLEU changed
from 58.9/22.1 to 42.5/39.3 for SMT and from
28.2/48.5 to 12.1/77.01 for NMT, so the result was
even more favorable for NMT. While the sample
size was small, these results strongly suggest that
single-reference BLEU scores indeed underesti-
mate NMT quality.

4 English–Latvian

Training models for English–Latvian was a rather
spontaneous decision and we did not spend a lot

of time optimizing our settings. Backtranslations
were produced with simplistic Latvian–English
models. We used a quickly trained character-level
NMT model to translate Latvian news data from
2016 and a standard phrase-based SMT model to
translate parts of 2014-2016 news data. The statis-
tics of the backtranslations are given in Table 6.

SMT Sentences Latvian English
news2014 330,152 6,469,914 7,611,259
news2015 330,644 6,484,318 7,624,202
news2016 313,180 6,161,332 7,239,953
NMT Sentences Latvian English
news2016 2,059,647 33,447,392 45,262,908

Table 6: Backtranslated Latvian news data using
SMT and NMT.

4.1 NMT Models

We submitted one NMT system that follows the
basic BPE-decoder system for English–Finnish in
terms of model size and training settings. It is
trained on the preprocessed versions of the par-
allel data and the NMT-based backtranslations.
This system yielded a case-sensitive BLEU score
of 16.8. We again applied hyphen retokeniza-
tion as a postprocessing step, although it was
less useful here than for Finnish (+0.1 BLEU).
Again, we trained four independent models and
used savepoint-averaging. For time reasons and
given the low impact of forward-backward rerank-
ing observed for Finnish, we refrained from sub-
mitting such a system for English–Latvian.

4.2 SMT Baselines

The SMT models we trained use the provided data
sets for training translation models and language
models (including a second language model based
on common crawl data) with the same tools as for
our English–Finnish systems. We applied BPE to
all data sets again with a rather fine-grained seg-
mentation into 20,000 types on training data. Ta-
ble 7 summarizes the results of our models on the
newstest data from 2017.

We can see that the backtranslated data sets
do not work very well in the Latvian case. A
small improvement can be observed when com-
bined with the provided training data but the qual-
ity of the backtranslations is too poor to have a
strong impact on translation quality.
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newstest 2017 BLEU
SMT WMT 13.29
SMT back 11.94
SMT WMT+back 13.74
SMT official score (WMT+back) 14.7
NMT official score (WMT+back) 17.3

Table 7: Statistical MT for English–Latvian tested
on newstest 2017 (lowercased BLEU). The offi-
cial score in the on-line evaluation system (low-
ercased) is surprisingly different from our own
evaluations. The manual evaluation for English–
Latvian produced no statistically significant rank-
ing.

5 English–Chinese and Chinese–English

For English/Chinese, we performed experiments
with the HNMT system only. We trained both
English–Chinese and Chinese–English models,
using all of the available parallel training data
from the WMT/CWMT news translation task. Af-
ter cleaning, 24,954,952 sentence pairs remained.
Using the standard Moses tools, we tokenized and
truecased the English data. Two methods were
used for Chinese word segmentation, as detailed
below.

All the models are trained by a hybrid
character–word level encoder and a character-level
decoder. The final submissions are generated by
ensembles with parameters averaging. The offi-
cial BLEU scores of these two tasks are shown in
Table 8. The manual evaluation ranked our system
in a shared last place (shared with four other sys-
tems) for Chinese–English, while it was ranked #9
(better than two unconstrained online systems) for
English–Chinese.

5.1 Translating Chinese into English

Chinese is a language without word boundaries,
so word segmentation is necessary before us-
ing our hybrid encoder with Chinese source sen-
tences. There are different segmentation meth-
ods at different granularities, and they will lead
to different translations. In the work of Su et al.
(2017), they proposed a lattice-based recurrent en-
coder which applied three segmentations at differ-
ent granularities (from the CTB, PKU and MSRA
corpora). In our model, we just tried two seg-
mentations: One is a fine-grained method imple-
mented in Zpar (Zhang and Clark, 2011), the other
is a coarse-granularity method by THULAC (Sun
et al., 2016). The model with THULAC segmen-

newstest 2017 BLEU
English–Chinese 23.9
Chinese–English 15.9

Table 8: HNMT official results on English–
Chinese language pair news translation task.

tation achieved a slightly lower BLEU score com-
pared to the model with Zpar segmentation. Thus,
we did not train more models on THULAC seg-
mentation data after 6-day training. Unlike our re-
sults with English–Finnish translation, our exper-
iments with BPE using a 30,000 size vocabulary
did not yield any improvements.

The final submission uses Zpar for segmenta-
tion, a hybrid encoder with 60,000 item vocab-
ulary, and a character-level decoder. We use di-
mensionalities of 256 for both word and character
embedding, encoder LSTM and attention. The de-
coder uses an LSTM of size 512. We use a single
model with parameters averaged from savepoints
at 6, 9, 10, 12 and 14 days to generate the final
submission. This is a rather unusual setup and dif-
ferent from the Finnish and Latvian submissions,
but it shows parameter averaging works even when
days have passed between savepoints. The beam
size in the decoding is set to 10.

5.2 Translating English into Chinese

In addition to translating English into Chinese or-
thography (using Chinese characters, Hanzi), we
also explored translating into romanized Chinese
(using the Pinyin system), and then disambiguat-
ing the Pinyin to Hanzi with a 3-gram language
model. This reduces the vocabulary to the circa
1300 syllables in Standard Mandarin. However,
the final disambiguation step introduces new er-
rors that were not outweighed by the easier task
of predicting Pinyin output, and we did not pursue
this method.

For our official submission, we used a hy-
brid encoder with 50,000 vocabulary size, and a
character-level decoder. Again, we used a single
model with parameters averaged from savepoints
at 6, 7.5 and 11.5 days.

6 Conclusions

This paper introduces the Helsinki Neural Ma-
chine Translation system (HNMT) and its suc-
cesful application to the news translation task in
WMT 2017. The models we trained handle well
the translation into morphologically complex lan-
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guages such as Finnish and our submission scored
best among the participants in the English–Finnish
task. The evaluations show that the neural mod-
els are superior to the strong SMT baselines that
exploit the same tricks such as backtranslated data
and automatic word segmentation. Manual inspec-
tions suggest that the advantage of NMT is even
underestimated by single-reference BLEU scores.
We also applied our models to English–Latvian
and English–Chinese (in both directions) with a
more moderate success. This is not very surpris-
ing for Latvian, for which we only invested about
a week to set up the experiments and to train the
models. For Chinese, manual evaluation will be
important to judge the outcome of our systems
fairly.
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Tackling sparse data issue in machine translation
evaluation. In Proceedings of the ACL 2010 Con-
ference Short Papers. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 86–91.
http://www.aclweb.org/anthology/P10-2016.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of bleu in ma-
chine translation research. In In EACL. pages 249–
256.

Yarin Gal and Zoubin Ghahramani. 2016. A theoreti-
cally grounded application of dropout in recurrent
neural networks. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
29, Curran Associates, Inc., pages 1019–1027.
http://papers.nips.cc/paper/6241-a-theoretically-
grounded-application-of-dropout-in-recurrent-
neural-networks.pdf.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation.
Association for Computational Linguistics, Edin-
burgh, UK, pages 187–197.

Sepp Hochreiter and Jürgen Schmidhu-
ber. 1997. Long short-term memory.
Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In The Interna-
tional Conference on Learning Representations.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL’07: Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics, Demonstration Session. Association for Com-
putational Linguistics, pages 177–180.

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Berlin, Germany, pages 1054–1063.

Jan Niehues, Eunah Cho, Thanh-Le Ha, and Alex
Waibel. 2016. Pre-translation for neural machine
translation. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 1828–
1836. http://aclweb.org/anthology/C16-1172.
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Abstract

This paper describes the joint submis-
sion of the QT21 projects for the
English→Latvian translation task of the
EMNLP 2017 Second Conference on Ma-
chine Translation (WMT 2017). The sub-
mission is a system combination which
combines seven different statistical ma-
chine translation systems provided by the
different groups.

The systems are combined using either
RWTH’s system combination approach,
or USFD’s consensus-based system-
selection approach. The final submission
shows an improvement of 0.5 BLEU

compared to the best single system on
newstest2017.

1 Introduction

Quality Translation 21 (QT21) is a European ma-
chine translation research project with the aim
of substantially improving statistical and machine
learning based translation models for challenging
languages and low-resource scenarios.

Members of the QT21 project have jointly built
a combined statistical machine translation system,
in order to achieve high-quality machine transla-
tion from English into Latvian.

Core components of the QT21 combined sys-
tem for the WMT 2017 shared task for ma-
chine translation of news 1 are seven individual

1http://www.statmt.org/wmt17/
translation-task.html

English→Latvian translation engines which have
been set up by different project partners.

The outputs of all these individual engines are
combined using the system combination approach
as implemented in Jane, RWTH’s open source sta-
tistical machine translation toolkit (Freitag et al.,
2014a). The Jane system combination is a mature
implementation which previously has been suc-
cessfully employed in other collaborative projects
and for different language pairs (Peter et al., 2016;
Freitag et al., 2013, 2014b,c).

As an alternative way of combining our sys-
tems, all outputs have been merged as the form of a
n-best list and a consensus-based system-selection
applied to obtain as best translation hypothesis the
candidate that is most similar to the most likely
translations amongst those systems.

2 Preprocessing

The training data was pre-processed using a cus-
tom language-specific tokeniser and the Moses
truecaser (truecase.perl). For tokenisation, we
used the Tilde’s regular expression-based to-
keniser for Latvian and English that takes into ac-
count language-specific characteristics (e.g., ab-
breviations, contractions, date, time, and numer-
ical expressions, etc.) and non-translatable enti-
ties (e.g., phone numbers, e-mail addresses, XML
tags, URLs, file paths, various identifiers and
codes, etc.). Only the first word in each sentence
was truecased.

The data (backtranslation included) is fur-
ther cleaned using a simple language identifier
from Shuyo (2010). We simply removed sentence
pairs whose targets cannot be identified by the
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tool. The number of sentences being removed is
approximately 50000.

3 Translation Systems

Each group contributed one or more systems. In
this section the systems are presented in alphabetic
order.

3.1 CUNI

The CUNI component of the system was built
using Neural Monkey2 (Helcl and Libovický,
2017), a flexible sequence-to-sequence toolkit im-
plementing primarily the Bahdanau et al. (2015)
model but useful also in multi-modal translation
and multi-task training.

We used essentially the baseline setup of the
system as released for the WMT17 NMT Training
Task3 (Bojar et al., 2017) for an 8GB GPU card.
This involves BPE (Sennrich et al., 2016) with
30k merges, maximum sentence length for both
source and target limited to 50 (BPE) tokens, no
dropout and embeddings (both source and target)
of 600, vocabulary shared between encoder and
decoder, attention and conditional GRU (Firat and
Cho, 2016). We experimented with the RNN size
of the encoder and decoder and increased them
to 800 instead of 600, at the expense of reducing
batch size to 10. The batch size of 30 with this
enlarged model would still fit into our GPU card
but this run was prematurely interrupted due to a
hardware failure and we noticed that it converges
slower in terms of sentence pairs (not in terms of
wallclock time), so we opted for a more efficient
use of the training data by taking the smaller batch.

We trained on 5245514 sentence pairs mixing
the genuine parallel data and synthetic data, as de-
scribed in Section 2. Neural Monkey does not
shuffle the corpus, so we shuffled it beforehand
and kept the order identical for all training epochs.

The training ran for 15 days on NVIDIA
GeForce GTX 1080 and processed 4.7 epochs but
the best model (according to BLEU scores on the
development set, “devset-b”) was actually reached
after 11M sentence pairs (early epoch 3), after 7
days.

Neither ensembling nor beam-search was used
for the run, because they were not yet available

2http://ufal.mff.cuni.cz/neuralmonkey
3http://www.statmt.org/wmt17/

nmt-training-task/

in Neural Monkey. Instead, the translations were
generated using greedy search.

3.2 KIT

The neural machine translation models from KIT
are built with the OpenNMT framework (Klein
et al., 2017), which is a multi-layer LSTM encoder
decoder network. We trained the models with 2.1
million parallel sentence pairs concatenated with
2.8 million pairs from backtranslation provided by
University of Edinburgh. The networks have 1024
hidden units for each of 2 LSTM layers for both
encoder and decoder. Furthermore, we experiment
a number of features with the baseline:

First, we found out that using a context gate to
mask activities between the decoder hidden state
and the source context vector before producing the
distribution at each time step (Tu et al., 2016a)
is simple yet beneficial for performance. Sec-
ond, we strengthen the attentional network with a
coverage vector accumulating the previous atten-
tional information, similar to the work of Mi et al.
(2016) and Tu et al. (2016b).

Using the two techniques helps improve the
BLEU score on the newsdev2017 set by 1.1 (to-
kenized) BLEU. By using ensembling 3 networks
with different configs and rescoring using a model
trained with reversed target sentences, we man-
aged to reach 26.96 BLEU score for the develop-
ment set, which yields 2.8 point of improvement
compared to the baseline model. Details about the
effect of each technique is described in Pham et al.
(2017)

3.3 LIMSI

LIMSI’s intput to this system combination con-
sists of two NMT systems, both trained with the
NMTPY framework (Caglayan et al., 2017) on bi-
text, then on synthetic parallel data. All of them
were rescored with a Nematus system (Sennrich
et al., 2017b). More details about these systems
can be found in (Burlot et al., 2017b,a).

The first system, named baseline, is a BPE-to-
BPE system. Bilingual sub-word units (Sennrich
et al., 2016) were trained on the bitext parallel
data with 90k merge operations. All the param-
eters of the neural network were initialized with
Xavier. The system was optimized with Adam,
dropout was enabled on source embeddings, en-
coder states, as well as output layer. The whole
training process took approximately 1.5 months.
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newsdev2017/1 newsdev2017/2 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Tilde smt 21.3 59.6 57.8 56.5 20.8 61.4 58.5 56.0 15.3 70.6 67.2 51.6
CUNI neuralmonkey 18.9 63.2 62.6 54.8 19.8 63.9 62.1 54.6 13.6 73.2 69.3 50.2
UvA 16.6 70.0 71.9 52.2 16.4 68.8 71.3 51.9 12.0 78.1 76.4 47.9
KIT 26.8 53.4 49.6 60.2 26.8 54.5 49.5 60.0 18.3 66.5 60.5 54.4
UEDIN NMT 25.7 55.1 51.6 59.5 25.6 56.4 50.4 59.4 17.8 67.9 66.7 53.5
UEDIN rescored by KIT 25.9 54.8 52.0 59.6 26.3 55.8 51.3 59.6 17.9 67.7 64.5 53.8
LIMSI factored 24.3 57.3 53.2 58.6 24.8 57.4 52.1 58.5 17.1 69.0 61.5 53.3
System Combination 27.4 53.1 50.9 60.2 27.9 53.9 51.0 59.9 18.8 66.0 67.8 54.3

Table 1: Results of the individual systems for the English→Latvian task. BLEU [%] and TER [%] scores
are case-sensitive.

The results shown in Table 1 correspond to an en-
semble of our three best models, which produced
n-best hypothesis. Finally, these hypothesis were
rescored using a Nematus system trained on the
same data as the baseline and with similar hyper-
parameters.

The second system is an experiment with fac-
tored NMT, which is part of the NMTPY frame-
work (Garcı́a-Martı́nez et al., 2016). The hyper-
parameters mentioned above for the baseline also
hold for this system. The specific setup we have
used consisted in an architecture that enables train-
ing towards a dual objective: at each time-step in
the output sentence, a normalized word and a PoS-
tag are produced. To obtain the first factor vocabu-
lary, all target words have been normalized (Burlot
and Yvon, 2017a), i.e. all grammatical informa-
tion that is redundant wrt. English has been re-
moved from the words. In a nutshell, the normal-
ization system performs a clustering of the mor-
phologically rich language by grouping together
words that tend to share the same translation(s) in
English. As a result, words are represented by a
lemma and a cluster identificator containing the
morphological features that have been merged. In
our setup, the cluster identificator was systemati-
cally split from the lemma. BPE segmentation was
thus learnt and applied to lemmas.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary lookup. In the
context of morphologically rich languages, deter-
ministic mappings from a lemma and a PoS to
a form are very rare. Instead, the dictionary of-
ten proposes several word forms corresponding to
the same lexical unit and morphological analysis.
To address this issue, we let a word-based sys-
tem select the right word form from the dictionary.
To this end, k-best hypothesis from the dictionary
were generated, as well as the n-best hypothesis

from the factored NMT system, leading to nk-best
rescoring.

Our factored NMT system is an ensemble of
two best models and rescoring is performed with
our single best Nematus model.

3.4 Tilde

The Tilde system is a Moses phrase-based SMT
system that was trained on the Tilde MT plat-
form (Vasiļjevs et al., 2012). The system was
trained using all available parallel data - 1.74
million unique sentence pairs after filtering, and
3 million unique sentence pairs that were ac-
quired by re-translating a random selection of in-
domain monolingual sentences with a neural ma-
chine translation system (Pinnis et al., 2017). The
system has a 5-gram language model that was
trained using KenLM (Heafield, 2011) on all avail-
able monolingual data (27.83 million unique sen-
tences).

3.5 UEDIN

The University of Edinburgh’s system is an atten-
tional encoder-decoder (Bahdanau et al., 2015),
trained using the Nematus toolkit (Sennrich et al.,
2017c).

As training data, we used all parallel and syn-
thetic data, which was tokenized, truecased, and
filtered as described in Section 2. After filtering,
the data was segmented into subword units us-
ing byte-pair-encoding (BPE), for which we used
90,000 operations, jointly learned over both sides
of the parallel corpora.

We used word embeddings of size 512 and hid-
den layers of size 1024, with the size of the source
and target network vocabularies fixed to the size
of the respective BPE vocabularies. In order to
reduce the size of the models, the target-side em-
bedding weights were tied with the transpose of

350



the output weight matrix (Press and Wolf, 2017).
We used a deep transition architecture inspired by
the one proposed by Zilly et al. (2016) for lan-
guage modelling. In experiments conducted dur-
ing feature development, we found that this gave
consistent improvements across multiple language
pairs. We also applied layer normalisation (Ba
et al., 2016) to all recurrent and feed-forward lay-
ers, except for layers that are followed by a soft-
max. In preliminary experiments, we found that
using layer normalisation led to faster convergence
and resulted in slightly better performance.

We trained the models with adam (Kingma and
Ba, 2015), using a learning rate of 0.0001 and
mini-batch size of 80. Training was automatically
stopped when the validation cross-entropy failed
to reach a new minimum for 10 consecutive save-
points (saving every 10000 updates).

For our final system, we trained eight indepen-
dent models: four left-to-right and four right-to-
left. We used results on newsdev2017 to select
one checkpoint from each model. An ensemble
of the four left-to-right models was used to gen-
erate a 50-best list, which was rescored using the
right-to-left models.

For a more detailed description of the system,
see Sennrich et al. (2017a).

3.6 UvA: syntactically aware NMT with
GCNs

We focus on exploiting structural information on
the source side, i.e. in the encoder. We hy-
pothesize that an encoder that incorporates syntax
will lead to more informative representations of
words, and that these representations, when used
as context vectors by the decoder, will lead to an
improvement in translation quality. Our model
(Bastings et al., 2017) is an attentive encoder-
decoder (Bahdanau et al., 2015) where in the en-
coder side we exploit the power of GCNs (Kipf
and Welling, 2016) to induce syntactically-aware
representations (Marcheggiani and Titov, 2017).
GCNs operate by convolving nodes in a neigh-
bourhood defined by a graph. In our case, a node
corresponds to a position in the source sentence
which is initially represented by a BiRNN hidden
state. We then define a syntactic neighbourhood
by following edges in an automatically produced
dependency parse. Instead of relying on linear or-
der only (as the BiRNN does), the GCN allows
the encoder to ‘teleport’ over parts of the source

the

the

a

a

large

large

big
huge

home

building

house
house

Figure 1: System A: the large building; System B:
the large home; System C: a big house; System D:
a huge house; Reference: the big house.

sentence connecting words that are potentially far
apart. The model might not only benefit from this
teleporting capability however; also the nature of
the relations between words (i.e. dependency re-
lation types and directionality) may be useful, and
the GCN exploits this information.

4 System Combination

We conducted experiments with two methods for
system combination that only require the trans-
lated hypotheses. This allows us choose the con-
tributing systems without any restrictions.

4.1 Confusion Network

System combination produces consensus transla-
tions from multiple hypotheses which are obtained
from different translation approaches, i.e., the sys-
tems described in the previous section. A system
combination implementation developed at RWTH
Aachen University (Freitag et al., 2014a) is used to
combine the outputs of the different engines. The
consensus translations outperform the individual
hypotheses in terms of translation quality.

The first step in system combination is the gen-
eration of confusion networks (CN) from I in-
put translation hypotheses. We need pairwise
alignments between the input hypotheses, which
are obtained from METEOR (Banerjee and Lavie,
2005). The hypotheses are then reordered to match
a selected skeleton hypothesis in terms of word or-
dering. We generate I different CNs, each having
one of the input systems as the skeleton hypothe-
sis, and the final lattice is the union of all I gener-
ated CNs. In Figure 1 an example of a confusion
network with I = 4 input translations is depicted.
Decoding of a confusion network finds the best
path in the network. Each arc is assigned a score of
a linear model combination of M different mod-
els, which includes word penalty, 3-gram language
model trained on the input hypotheses, a binary
primary system feature that marks the primary hy-
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newsdev2017/1 newsdev2017/2 newstest2017
Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

KIT 20best Bleu 25.8 54.5 51.3 59.3 26.0 55.4 51.0 58.8 17.8 66.9 61.6 53.8
KIT 20best ChrF 25.4 55.0 50.5 59.6 25.7 56.0 50.4 59.2 17.6 68.0 60.9 53.9
KIT 20best Beer 26.0 54.1 50.2 60.0 26.3 55.0 50.6 59.6 18.0 66.7 60.8 54.2
LIMSI Factored 12best Bleu 19.7 60.4 55.7 55.4 19.9 61.0 54.8 55.3 14.2 71.7 63.9 50.8
LIMSI factored 12best ChrF 19.7 60.3 55.4 55.6 19.8 61.1 54.5 55.4 14.2 71.7 63.7 50.9
LIMSI factored 12best Beer 19.8 60.3 55.5 55.6 19.8 61.0 54.7 55.4 14.2 71.7 63.8 50.9
LIMSI factored 100best Bleu 21.5 59.1 55.5 55.9 21.3 59.8 54.8 55.7 15.3 70.7 63.6 51.2
LIMSI factored 100best ChrF 21.9 58.6 54.3 57.1 21.7 59.4 53.6 56.9 15.4 70.5 62.9 52.0
LIMSI factored 100best Beer 21.7 58.7 54.3 57.1 21.6 59.4 53.7 56.9 15.5 70.4 62.9 52.1
Consensus-based System-selection Bleu 19.8 72.5 60.1 51.8 20.5 72.9 59.7 51.6 17.4 69.7 61.9 53.3
Consensus-based System-selection ChrF 26.5 54.1 49.3 60.4 26.8 54.6 48.9 60.2 18.3 67.1 59.9 54.5
Consensus-based System-selection Beer 27.1 53.0 49.6 60.5 27.3 53.8 49.1 60.3 18.6 66.2 60.0 54.6
System Combination 27.4 53.1 50.9 60.2 27.9 53.9 51.0 59.9 18.8 66.0 67.8 54.3
System Combination + Cons-based Beer 27.4 52.7 50.0 60.5 27.7 53.6 51.7 60.2 18.7 66.1 62.0 54.4

Table 2: USFD rescoring and combination experiments English→Latvian task. BLEU [%] and TER [%]
scores are case-sensitive.

pothesis, and a binary voting feature for each sys-
tem. The binary voting feature for a system is 1 if
and only if the decoded word is from that system,
and 0 otherwise. The different model weights for
system combination are trained with MERT (Och,
2003) and optimized towards 8·BLEU −TER.

4.2 Consensus-based System Selection
As a secondary solution for system combination,
we used USFD’s consensus-based n-nbest list se-
lection approach (Blain et al., 2017) for system
combination by combining each system’s output
in the form of a n-best list. Inspired by DeNero
et al. (2009)’s work on consensus-based Minimum
Bayes Risk (MBR) decoding which compares dif-
ferent types of similarity metrics (BLEU, WER,
etc.) under a SMT setup, USFD designed a re-
ranking approach to empirically evaluate the effect
of consensus on the varying n-best list in NMT.

Given a n-best list, each translation hypoth-
esis is scored against the other MT candidates
of the search space towards an automatic met-
ric. In our experiment we considered three au-
tomatic metrics amongst the most widely used
and which have been shown to be well corre-
lated with human judgments (Bojar et al., 2016):
BLEU, BEER (Stanojevic and Simaan, 2014) or
CHRF (Popovic, 2015). The entire list of MT can-
didates is then entirely re-ranked according to the
averaged score of each candidate. Different from
most re-ranking approaches which make use of ad-
ditional information usually treated as new model
components and combined with the existing ones,
we here focus only on the MT candidates. The
difference between the consensus-based n-best list
selection and an oracle translation is the absence

of reference translation: each translation hypothe-
sis is scored against all the other hypotheses used
as references while in an oracle translation each
translation hypothesis is scored against a single
reference. This results in obtaining as best transla-
tion hypothesis the candidate that is most similar
to the most likely translations.

5 Experimental Evaluation

Since only one development set was provided we
split the given development set into two parts:
newsdev2017/1 and newsdev2017/2. The first part
was used as development set while the second
part was our internal test set. The single systems
and the system combintaion are optimized for the
newsdev2017/1 set.

The single system scores in Table 2 show that
the KIT system is the strongest single system
closely followed by the UEDIN NMT system.
The rescoreing of the UEDIN NMT nbest lists by
KIT showed only a small improvement on new-
stest2017. The system combination of all these
systems showed an improvement of 1.1 BLEU on
newsdev2017/2 and 0.5 BLEU on official test set,
newstest2017.

Table 3 shows a comparison between all sys-
tems by scoring the translation output against each
other in TER and BLEU. We see that the outputs of
the two best performing systems KIT and UEDIN
are very close.

6 Morphology Evaluation

In order to get some insight regarding the qual-
ity of the morphological correctness of the outputs
produced by the systems involved in the combina-
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CUNI KIT LIMSI Tilde UEDIN UEDIN r. UvA USFD Average
CUNI - 38.1 32.4 23.9 37.8 38.2 22.3 40.2 33.3
KIT 43.8 - 49.3 29.9 60.1 62.6 28.3 77.0 49.3
LIMSI 49.8 33.2 - 26.1 48.6 49.4 27.5 56.7 41.4
Tilde 57.0 47.4 52.7 - 30.1 30.2 19.4 31.6 27.3
UEDIN 45.1 25.6 35.1 48.9 - 91.1 28.5 76.2 53.2
UEDIN rescored by KIT 44.5 23.8 34.3 48.4 5.4 - 28.7 78.4 54.1
UvA 62.9 56.6 57.5 65.8 57.1 56.7 - 30.3 26.4
USFD 42.0 13.9 28.1 45.9 15.8 14.2 54.7 - 55.8
Average 49.3 34.9 41.5 52.3 33.3 32.5 58.8 30.7

Table 3: Comparison of system outputs against each other, generated by computing BLEU and TER

on the system translations for newstest2017. One system in a pair is used as the reference, the other as
candidate translation; we report the average over both directions. The USFD system is similar to the
”Consensus-based System-selection Beer” in Table 2. The upper-right half lists BLEU [%] scores, the
lower-left half TER [%] scores.

verbs pronouns nouns mean
System past future fem. plur. number
Tilde smt 68.8% 70.4% 56.0% 71.8% 65.0% 66.4%
UvA 75.2% 84.2% 46.4% 80.8% 66.8% 70.7%
UEDIN NMT 74.6% 83.6% 57.0% 88.6% 69.4% 74.6%
LIMSI NMT 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
LIMSI factored 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%
KIT 74.2% 89.0% 56.6% 89.8% 71.6% 76.2%

Table 4: Sentence pair evaluation (A-set).

coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Tilde smt 49.6% 32.8% 50.2% 47.6% 24.0% 25.4% 19.0% 48.5% 37.1%
UvA 61.8% 52.4% 63.2% 31.6% 36.8% 38.8% 36.6% 50.9% 46.5%
UEDIN NMT 70.6% 60.8% 72.0% 30.2% 46.4% 44.8% 43.4% 56.7% 53.1%
LIMSI NMT 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
LIMSI factored 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%
KIT 73.4% 64.8% 74.0% 37.4% 51.4% 49.8% 48.8% 55.0% 56.8%

Table 5: Sentence pair evaluation (B-set).

nouns adjectives verbs mean
System case gender number case number person tense
Tilde smt .436 .755 .735 .768 .254 .337 .258 .506
UvA .295 .629 .613 .643 .157 .187 .160 .383
UEDIN .234 .598 .596 .628 .115 .190 .114 .354
LIMSI NMT .255 .616 .610 .644 .139 .221 .134 .374
LIMSI factored .233 .587 .582 .612 .117 .182 .113 .346
KIT .244 .599 .594 .633 .102 .186 .108 .352

Table 6: Sentence group evaluation with Entropy (C-set).
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tion, we ran the evaluation method introduced in
(Burlot and Yvon, 2017b). The evaluation of the
morphological competence of a machine transla-
tion system is performed on an automatically pro-
duced test suite. For each source test sentence
from a monolingual corpus (the base), one (or sev-
eral) variant(s) are generated, containing exactly
one difference with the base, focusing on a spe-
cific target lexeme of the base. These variants dif-
fer on a feature that is expressed morphologically
in the target, such as the person, number or tense
of a verb; or the number or case of a noun or an
adjective. This artificial test set is then translated
with a machine translation system. The machine
translation system is deemed correct if the trans-
lations of the base and variant differ in the same
way as their respective source. Another setup fo-
cuses on a word in the base sentence and produces
variants containing antonyms and synonyms of
this word. The expected translation is then syn-
onyms and antonyms bearing the same morpho-
logical features as the initial word.

There are three types of contrasts implying dif-
ferent sorts of evaluation:

• A: We check whether the morphological fea-
ture inserted in the source sentence has been
translated (eg. plural number of a noun). Ac-
curacy for all morphological features is aver-
aged over all sentences.

• B: We focus on various agreement phenom-
ena by checking whether a given morpholog-
ical feature is present in both words that need
to agree (eg. case of two nouns). Accuracy is
computed here as well.

• C: We test the consistency of morphologi-
cal choices over lexical variation (eg. syn-
onyms and antonyms all having the same
tense) and measure the success based on the
average normalized entropy of morphologi-
cal features in the set of target sentences.

The results for the A-set are shown in Table 4
and reflect the adequacy of an output towards the
source, or the quantity of morphological informa-
tion that has been well conveyed from the source.
Certain morphological features indicate rather low
contrasts between statistical and neural systems
(verb tense and pronoun gender), which shows
the relevance of SMT systems in the combination.

Sets B and C are more forcused on target mono-
lingual phenomena, such as agreement, and as-
sess the level of fluency of a system output. Here,
the observed contrasts between statistical and neu-
ral systems are far more obvious: all B-set SMT
scores are below 50%, whereas NMT scores are
always above. Here again, the superior perfor-
mance of KIT is noticed, at least for sets A and B.
As for the C-set, LIMSI factored, KIT and UEDIN
show a comparable high confidence in their mor-
phology predictions across lexical variety.

6.1 Consensus-based re-ranking

We report in Table 2 the results of the consensus-
based approach for either system re-ranking or
system combination.

First, we applied our approach on both KIT and
LIMSI-factored outputs. While we never outper-
form original systems’ performances, we observe
that increasing the n-best size does help with a sig-
nificant difference between LIMSI’s system 12-
or 100-best. One would note that in both cases,
consensus-based n-best list re-ranking with BEER

seems to be performing the best amongst all met-
rics.

Then, we applied our approach at system-level
by combining the outputs of all systems described
in Section 3. Once again, we observe better perfor-
mance with BEER compared to the other two met-
rics, reaching similar results as the system combi-
nation based on confusion network. The only no-
ticeable exception being the CTER score on new-
stest2017 which is significantly lower compared
to the other system combination, most likely the
benefit of using character-based metrics.

Finally, we combined both consensus-based se-
lection confusion-based combination and although
we observe similar performance to each system in-
dividually but a worse CTER.

7 Conclusion

Our combined effort shows again that the com-
bination of different SMT systems results in a
better overall system. The final result improved
by 0.5 BLEU points. Consensus-based re-ranking
showed a performance close to the confusion net-
work approach.
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Abstract

This paper describes the statistical
machine translation system developed
at RWTH Aachen University for the
English→German and German→English
translation tasks of the EMNLP 2017
Second Conference on Machine Transla-
tion (WMT 2017). We use ensembles of
attention-based neural machine translation
system for both directions. We use the
provided parallel and synthetic data to
train the models. In addition, we also cre-
ate a phrasal system using joint translation
and reordering models in decoding and
neural models in rescoring.

1 Introduction

We describe the statistical machine transla-
tion (SMT) systems developed by RWTH
Aachen University for the German→English and
English→German language pairs of the WMT
2017 evaluation campaign. After testing multiple
systems and system combinations we submitted
an ensemble of multiple NMT networks since it
outperformed every tested system combination.

This paper is organized as follows. In Section 2
we describe our data preprocessing. Section 3 de-
picts the generation of synthetic data. Our transla-
tion software and baseline setups are explained in
Section 4, including the attention-based recurrent
neural network ensemble in Subsection 4.1 and
phrasal joint translation and reordering (JTR) sys-
tem in Subsection 4.2. Our experiments for each
track are summarized in Section 5.

2 Preprocessing

We compared two different preprocessings for
German→English for the attention-based recur-
rent neural network (NMT) system. The first pre-

processing is similar to the preprocessing used in
our WMT 2015 submission (Peter et al., 2015),
which was optimized for phrase-based translation
(PBT).

Secondly, we utilize a simplified version which
uses tokenization, frequent casing, and simple cat-
egories only. Note, that the changes in prepro-
cessing have a huge negative impact on the PBT
system, while slightly improving the NMT system
(Table 1). We therefore use the simplified version
for all pure NMT experiments and use the old pre-
processing for all other systems.

The phrasal JTR system uses the preprocess-
ing technique that is optimized for PBT, as it re-
lies on phrases as translation candidates. The pre-
processing is similar to the one used in the WMT
2015 submission, but without any pre-ordering of
source words. The English→German NMT sys-
tem utilizes only the simplified preprocessing.

3 Synthetic Source Sentences

To increase the amount of usable parallel train-
ing data for the phrase-based and the neural ma-
chine translation systems, we translate a subset of
the monolingual training data back to English in
a similar way as described by (Bertoldi and Fed-
erico, 2009) and (Sennrich et al., 2016b).

We create a baseline German→English NMT
system as described in 4.1 which is trained with all
parallel data to translate 6.9M English sentences
into German. For the other direction we use this
newly created synthetic data and the parallel cor-
pus to train a baseline English→German system,
which in turn is used to translate additional 4.4M
sentences from English to German.

Further, we append the synthetic data created by
(Sennrich et al., 2016a). This results in additional
4.2M sentences for the German→English system
and 3.6M for the opposite direction.
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newstest2015 newstest2016 newstest2017
Systems PP BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

PBT WMT15 27.9 52.7 53.9 60.5 33.6 47.8 49.1 63.5 28.9 52.2 54.3 60.8
PBT simple 26.6 54.3 55.3 59.1 31.4 49.4 50.8 62.1 27.1 53.7 56.1 59.4
NMT WMT15 27.3 53.0 52.7 59.7 32.1 48.4 48.4 62.8 27.7 53.0 53.0 59.9
NMT simple 27.7 52.3 52.4 59.8 32.1 47.9 47.8 62.7 27.9 52.3 52.5 60.2

Table 1: Compares the performance of the preprocessing (PP) optimized for phrase-based systems
(WMT15) or a very simple setup (simple), as described in Section 2 on a PBT and a Neural Machine
Translation (NMT) system.

newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Baseline 27.7 52.3 52.4 59.8 32.1 47.9 47.8 62.7 27.9 52.3 52.5 60.2
+ fertility 28.2 51.8 51.9 60.2 32.9 47.1 47.3 63.2 28.6 51.5 51.7 60.6

+ synthetic data 29.9 50.1 49.3 61.4 36.7 44.0 44.0 65.2 30.6 49.7 49.6 61.8
+ 2-layers decoder 30.7 49.7 48.3 61.8 37.5 43.6 43.4 65.5 31.8 49.1 49.1 62.3

+ filtered 30.8 49.7 48.5 61.8 37.9 43.1 42.8 65.8 31.7 49.1 48.9 62.2
+ anneling scheme 31.1 49.8 48.4 61.9 37.9 43.6 43.1 65.7 32.2 48.9 48.6 62.4

Base system 31.3 49.5 48.2 62.0 37.9 43.6 43.1 65.7 32.1 49.1 48.7 62.4
+ connected all LSTM cells 30.7 49.8 49.0 61.5 37.4 43.9 43.5 65.4 31.7 49.3 48.9 62.2
+ fertility 31.1 49.8 48.4 61.9 37.9 43.6 43.1 65.7 32.2 48.9 48.6 62.4
+ alignment feedback 31.3 49.8 48.3 61.9 37.7 43.6 43.2 65.6 32.2 49.1 48.4 62.4
Ensemble 32.0 48.9 47.5 62.3 38.8 42.7 42.5 66.2 33.1 48.3 47.7 63.0

Table 2: Results of the individual systems for the German→English task. The base system contains
synthetic data, 2-decoder layers, filtered rapid data, and was trained with annealing learning rate instead
of merging. Details are explained in Section 4.1.

4 SMT Systems

For the WMT 2017 evaluation campaign, we have
employed two different translation system archi-
tectures for the German→English direction:

• phrasal joint translation and reordering

• attention-based neural network ensemble

The word alignments required by some models are
obtained with GIZA++ (Och and Ney, 2003). We
use mteval from the Moses toolkit (Koehn et al.,
2007) and TERCom to evaluate our systems on
the BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) measures. Additional we use BEER

(Stanojević and Sima’an, 2014) and CTER (Wang
et al., 2016). All reported scores are case-sensitive
and normalized.

4.1 Attention-Based Recurrent Neural
Network

The best performing system provided by the
RWTH is an attention-based recurrent neural net-
work (NMT) similar to (Bahdanau et al., 2015).
We use an implementation based on Blocks (van
Merriënboer et al., 2015) and Theano (Bergstra
et al., 2010; Bastien et al., 2012).

The encoder and decoder word embeddings are
of size 620. The encoder consists of a bidi-
rectional layer with 1000 LSTMs with peephole
connections (Hochreiter and Schmidhuber, 1997a)
to encode the source side. Additionally we ran
experiments with two layers using 1000 LSTM
nodes each where we optionally connect all inter-
nal states of the first LSTM layer to the second.
The data is converted into subword units using
byte pair encoding with 20000 operations (Sen-
nrich et al., 2016c).

During training a batch size of 50 is used. The
applied gradient algorithm is Adam (Kingma and
Ba, 2014) with a learning rate of 0.001 and the four
best models are averaged as described in the be-
ginning of (Junczys-Dowmunt et al., 2016). Later
experiments are done using Adam followed by an
annealing scheme for learning rate reduction for
SGD, as described in (Bahar et al., 2017).

The network is trained with 30% dropout for up
to 500K iterations and evaluated every 10000 iter-
ations on newstest2015. Decoding is done using a
beam search with a beam size of 12.

If the neural network creates a special num-
ber token, the corresponding source number with
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the highest attention weight is copied to the tar-
get side. The synthetic training data is created and
used as described in Section 3.

In addition, we tested methods to provide the
alignment computation with supplementary infor-
mation comparable with (Tu et al., 2016; Cohn
et al., 2016). We model the word fertility and feed-
back the information of the last alignment points
using a conventional layer with a window size of 5.

The final system was an ensemble of multiple
systems each trained with slightly different set-
tings as shown in Table 2 and 4.

4.2 Phrasal Joint Translation and
Reordering System

The phrasal Joint Translation and Reordering
(JTR) decoder is based on the implementation of
the source cardinality synchronous search (SCSS)
procedure described in (Zens and Ney, 2008).
The system combines the flexibility of word-level
models with the search accuracy of phrase can-
didates. It incorporates the JTR model (Guta
et al., 2015), a language model (LM), a word class
language model (wcLM) (Wuebker et al., 2013),
phrasal translation probabilities, conditional JTR
probabilities on phrase level and additional lexical
models for smoothing purposes. The phrases are
annotated with word alignments to allow for the
application of word-level models.

A more detailed description of the translation
candidate generation and the search procedure is
given in (Peter et al., 2016). The phrase extrac-
tion and the estimation of the translation mod-
els are performed on all bilingual data excluding
the rapid2016 corpus, the newstest2008-2013 and
newssyscom2009 corpora and the first part of the
synthetic data (Section 3). The non-synthetic data
was filtered to contain only sentences with 4 un-
aligned words at most. In total, this results in
3.57M parallel and 6.94M synthetic sentences.

4.2.1 JTR Model

A JTR sequence (f̃ , ẽ)Ĩ1 is an interpretation of a
bilingual sentence pair (fJ

1 , e
I
1) and its word align-

ment bI1. The joint probability p(fJ
1 , e

I
1, b

I
1) can be

modeled as:

p(fJ
1 , e

I
1, b

I
1) = p((f̃ , ẽ)Ĩ1)

=

Ĩ∏

i=1

p((f̃ , ẽ)i|(f̃ , ẽ)i−1
i−n+1).

The Viterbi alignments for both translation direc-
tions are obtained using GIZA++ (Och and Ney,
2003), merged and then used to convert the bilin-
gual sentence pairs into JTR sequences. A 7-
gram JTR joint model (Guta et al., 2015), which
is responsible for estimating the translation and
reordering probabilities, is trained on those. It is
estimated with interpolated modified Kneser-Ney
smoothing (Chen and Goodman, 1998) using the
KenLM toolkit (Heafield et al., 2013).

4.2.2 Language Models
The phrase-based translation system uses two lan-
guage models (LM) that are estimated with the
KenLM toolkit (Heafield et al., 2013) and inte-
grated into the decoder as separate models in the
log-linear combination: A 5-gram LM and a 7-
gram word-class language model (wcLM). Both
use interpolated modified Kneser-Ney smoothing.
For the word-class LM, we train 200 word classes
on the target side of the bilingual training data us-
ing an in-house tool (Botros et al., 2015) similar
to mkcls (Och, 2000). We have not tuned the
number of word classes, but simply used 200, as it
has proved to work well in previous systems. With
these class definitions, we apply the technique de-
scribed in (Wuebker et al., 2013) to estimate the
wcLM on the same data as the conventional LM.

Both models are trained on all monolingual cor-
pora, except the commoncrawl corpus, and the tar-
get side of the bilingual data (Section 4.2), which
sums up to 365.44M sentences and 7230.15M run-
ning words, respectively.

4.2.3 Log-Linear Features in Decoding
In addition to the JTR model and the language
models, JTR conditional models for both direc-
tions (Peter et al., 2016) are included into the log-
linear framework. They are computed offline on
the phrase level. Moreover, the system incorpo-
rates phrase translation models estimated as rela-
tive frequencies for both directions.

Because the JTR models are trained on Viterbi
aligned word-pairs, they are limited to the context
provided by the aligned word pairs and sensitive to
the quality of the word alignments. To overcome
this issue, we incorporate IBM 1 lexical models
for both directions. The models are trained on all
available bilingual data and the synthetic data, see
Section 3.

The heuristic features used by the decoder are
an enhanced low frequency penalty (Chen et al.,
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2011), a penalty for unaligned source words and
a symmetric word-level distortion penalty. Thus,
different phrasal segmentations have the same re-
ordering costs if they are equal in their word align-
ments. An additional word bonus helps to control
the length of the hypothesized translation by coun-
teracting the language model, which prefers trans-
lations to be rather short.

The decoder also incorporates a gap distance
penalty (Durrani et al., 2011). All parameter
weights are optimized using MERT (Och, 2003)
towards the BLEU metric.

An attention-based recurrent neural model is
applied as an additional feature in rescoring 1000-
best lists, see Section 4.2.4.

4.2.4 Attention-based Recurrent Neural
Network in Re-Ranking

An attention-based recurrent neural network sim-
ilar to those in Subsection 4.1 is used within the
log-linear framework for rescoring 1000-best lists
generated by the phrasal JTR decoder. The model
is trained on 6.96M sentences of the synthetic
data.

The network uses the 30K most frequent words
as source and target vocabulary, respectively. The
decoder and encoder word embeddings are of
size 500, the encoder uses a bidirectional LSTM
layer with 1K units (Hochreiter and Schmidhuber,
1997b) to encode the source side. An LSTM layer
with 1K units is used by the decoder.

Training is performed for up to 300K iterations
with a batch size of 50 and Adam (Kingma and
Ba, 2014) is used as the optimization algorithm.
The parameters of the best four networks on news-
test2015 with regards to BLEU score are averaged
to produce the final model used in reranking.

4.2.5 Alignment-based Recurrent Neural
Network in Re-Ranking

Besides the attention-based model, we apply re-
current alignment-based neural networks in 1000-
best rescoring. These networks are similar to the
ones used in rescoring in (Alkhouli et al., 2016).

We use a bidirectional alignment model that has
a bidirectional encoder (2 LSTM layers), a uni-
directional target encoder (1 LSTM layer), and
an additional decoder LSTM layer. The model
pairs each target state computed at target posi-
tion i − 1 with its aligned bidirectional source
state. The alignment information is obtain using
GIZA++ in training, and from the 1000-best lists

during rescoring. The paired states are fed into
the decoder layer. The model predicts the discrete
jump from the previous to the current source po-
sition. The model is described in (Alkhouli and
Ney, 2017).

We also use a bidirectional lexical model to
score word translation. It uses an architecture sim-
ilar to that of the alignment model, with the ex-
ception that pairing is done using the source states
aligned to the target position i instead of i−1. We
also add weighted residual connections connecting
the target states and the decoder states in the lex-
ical model. We train two variants of this model,
one including the target state, and one dropping it
completely.

All models use four 200-node LSTM layers
with the exception of the lexical model that in-
cludes the target state, which uses 350 nodes per
layer. We use a class-factored output layer of 2000
classes, where 1000 classes are dedicated to the
most frequent words, while the remaining 1000
classes are shared. This enables handling large
vocabularies. The target vocabulary is reduced to
269K words, while the source vocabulary is re-
duced to 317K words

4.3 System Combination

System combination is applied to produce consen-
sus translations from multiple hypotheses obtained
from different translation approaches. The con-
sensus translations typically outperform the indi-
vidual hypotheses in terms of translation quality.
A system combination implementation developed
at RWTH Aachen University (Freitag et al., 2014)
is used to combine the outputs of the different en-
gines.

The first step in system combination is the
generation of confusion networks (CN) from I
input translation hypotheses. We need pair-
wise alignments between the input hypothe-
ses. The alignments are obtained by METEOR
(Banerjee and Lavie, 2005). The hypotheses are
then reordered to match a selected skeleton hy-
pothesis regarding the order of words. We gen-
erate I different CNs, each having one of the input
systems as the skeleton hypothesis. The final lat-
tice is the union of all I-many generated CNs.

The decoding of a confusion network consists
of finding the shortest path in the network. Each
arc is assigned a score of a linear model combi-
nation of M different models, which includes a
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newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Phrasal JTR + LM 29.7 52.5 50.5 61.3 33.9 48.0 46.5 64.2 29.4 53.1 51.6 61.2
+ wcLM 30.3 51.9 50.4 61.5 34.2 47.3 46.3 64.4 30.0 52.2 51.2 61.4

+ attention NMT 31.3 51.1 49.3 61.9 35.3 46.5 45.3 64.6 31.0 51.3 50.4 61.7
+ attention NMT 31.0 51.2 49.5 61.8 35.0 46.7 45.3 64.7 30.6 51.7 50.5 61.7
+ alignment NMT (x3) 30.9 51.0 49.6 61.8 35.3 46.5 45.6 64.8 30.7 51.6 50.7 61.7

+ attention NMT 31.3 50.9 49.3 61.9 35.3 46.4 45.3 64.8 30.9 51.2 50.2 61.8
NMT ensemble 32.0 48.9 47.5 62.3 38.8 42.7 42.5 66.2 33.1 48.3 47.7 63.0
System Combination 31.9 49.4 48.0 62.1 38.0 43.5 43.1 65.8 32.7 48.6 48.1 62.7

Table 3: Results of the individual systems for the German→English task. The system combination
contains the system in line 3, 6, and 7.

word penalty, a 3-gram LM trained on the input
hypotheses, a binary primary system feature that
marks the primary hypothesis and a binary voting
feature for each system. The binary voting feature
for the system outputs 1 if the decoded word ori-
gins from that system and 0 otherwise.

The model weights for the system combination
are trained with MERT.

5 Experimental Evaluation

We have mainly focused on building a strong
German→English system and run most experi-
ments on this task. We used newstest2015 as the
development set.

After switching the preprocessing as described
in Section 2, we have added the word fertil-
ity, which improves the baseline system by about
0.8 BLEU on newstest2016 as shown in Table 2.
Adding the synthetic data as described in Section 3
gives a gain of 3.8 BLEU on newstest2016. Chang-
ing the number of layers in the decoder from one
to two improves the performance by additional 0.8
BLEU. Filtering the rapid data corpus by scor-
ing all bilingual sentences with an NMT system
trained on all parallel data and removing the sen-
tences with the worst scores improves the sys-
tem on newstest2016 by 0.4 BLEU, but yield only
in a small improvement on newstest2015. Sur-
prisingly, it even decreases the performance on
newstest2017, as observed at a later point in time.
Switching from merging the 4 best networks in
a training run to continuing the training with an
annealing scheme for learning rate reduction for
SGD, as described in (Bahar et al., 2017), has
barely changed the performance on newstest2016.
Nevertheless, we have decided to keep on using it,
since it slightly helped on newstest2015.

We have used this, without the word fertility, as

a base setup to train multiple systems with slightly
different settings for an ensemble. In the first set-
ting we use all LSTM states of the first decoder
layer as input for the second decoder layer. This
actually hurts the performance. Adding the word
fertility or the alignment feedback as additional in-
formation does not have a large impact. Note, that
the word fertility helpes when it is added to the
baseline system - we are not sure why the effect
disappears. Combining systems in one ensemble
improves the system again by 1.1 BLEU on news-
test2016.

We also combined the NMT system with the
strongest phrasal JTR system and a few other com-
binations as well, but none of them has been able
to improve over the NMT ensemble (Table 3). We
therefore used the NMT system as our final sub-
mission. In the table, we can see that using three
alignment-based models is comparable to using
a single attention-based model. Note, however,
that these models have relatively small LSTM lay-
ers of 200 and 350 nodes per layer. Meanwhile,
the attention model uses 1000-node LSTM layers.
When added on top of the alignment-based mix,
the attention model only improves the mix slightly.

For the English→German system we have sim-
ply used the three best working NMT systems
from the German→English setup and combined
them in an ensemble. The word fertility and align-
ment feedback extensions also did not improve the
performance, but the ensemble increased the over-
all performance by 1 BLEU on newstest2016. Due
to computation time limitations, we did not suc-
ceed in building a phrasal JTR system on time.

6 Conclusion

The RWTH Aachen University has participated
with a neural machine translation ensemble for the
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newstest2015 newstest2016 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

NMT 26.7 54.7 50.9 60.0 31.8 48.4 46.6 63.6 25.4 56.2 52.8 59.5
+ fertility 26.8 54.8 50.5 60.1 31.5 48.6 46.7 63.4 25.3 56.2 52.9 59.5
+ alignment feedback 26.3 55.5 51.5 59.7 31.3 48.8 47.0 63.3 25.1 56.7 53.1 59.3
Ensemble 27.4 54.1 50.2 60.4 32.8 47.4 45.7 64.1 26.0 55.5 51.9 59.9

Table 4: Results of the individual systems for the English→German task.

German→English and English→German WMT
2017 evaluation campaign. All networks are
trained using all given parallel data, back-
translated synthetic data, two LSTM layers in the
decoder. The rapid corpus has been filtered to
remove the most unlikely sentences. Adam fol-
lowed by annealing scheme of learning rate reduc-
tion is used for optimization. Four networks are
combined for the German→English ensemble and
three for the English→German ensemble. In ad-
dition, we have submitted a phrasal JTR system,
which has come close to the performance of a sin-
gle neural machine translation network for news-
test2017. Using system combination has not im-
proved the performance of the best neural ensem-
ble.
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Abstract

We present our experiments in the scope of
the news translation task in WMT 2017,
in three directions: German→English,
English→German and English→Latvian.
The core of our systems is the encoder-
decoder based neural machine translation
models , enhanced with various modeling
features, additional source side augmen-
tation and output rescoring. We also ex-
periment various methods in data selection
and adaptation.

1 Introduction

We participate in the WMT 17 shared task on news
translation with three directions: English-German,
German-English and English-Latvian. The core of
our submissions is the neural attentional encoder-
decoder model, which we enhanced with different
features such as context gates for more efficient
attention and the coverage vector for maintaining
attentional information during translation. Sev-
eral techniques to integrated additional informa-
tion into the source text have be investigated: Pre-
translation with statistical systems, mono-lingual
data and phrase-table entries. Finally, we com-
bined different models using n-best lists reranking.

2 Data

This section describes the preprocessing steps for
the parallel and monolingual corpora for the lan-
guage pairs involved in the systems as well as the
data selection methods investigated.

2.1 German↔English
As parallel data for our German↔English sys-
tems, we used Europarl v7 (EPPS), News Com-
mentary v12 (NC), Rapid corpus of EU press
releases, Common Crawl corpus, and simulated

data. Except for the common crawl corpus, no
special preprocessing was applied, but only tok-
enization and true-casing. For the common crawl
corpus, we applied noise filtering using SVM as
shown in Mediani et al. (2011). Around 900K sen-
tence pairs are filtered out using this technique.

Synthetic data is motivated by Sennrich et al.
(2015a). In order to exploit the monolingual data,
we used the back-translation technique. We ran-
domly select sentences from the data as much as
our parallel data, and translate them with an in-
verse NMT system from the target to the source
language. We use this synthetic data as an ad-
ditional parallel training data. Summing all cor-
pora, the preprocessed and noise-filtered parallel
data reaches 8.3M sentences for each language.

For German monolingual data, we use News
Crawl data. For English, we use News Crawl
and News Discussions corpus. Same as for paral-
lel data, only tokenization and true-casing are ap-
plied.

Once the data is preprocessed, we applied byte-
pair encoding (BPE) (Sennrich et al., 2015b) on
the corpus. In this work, we deploy two different
operation sizes, 40K and 80K.

2.1.1 Monolingual data selection
We experimented with using domain adaptation
techniques to select monolingual data for back-
translation. In particular, we concatenated all
news-test data sets up until 2013 to form our in-
domain corpus, and used news-shuffle as back-
ground data. We used the method by Axelrod
et al. (2015), a class-based extension of the widely
used cross-entropy difference based data selection
method by Moore and Lewis (2010). For word
clustering, we used Clustercat (Dehdari et al.,
2016) with 20 classes. We selected an amount of
data equal to the available bilingual training data.
Backtranslation was done as in (Sennrich et al.,
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2015a). We attempted this approach for both sys-
tems with English and German as target language.
However, we did not observe any improvements
over selecting monolingual data at random, and
did not employ this method for our final system.

2.1.2 Parallel data selection
From previous MT evaluation campaigns (Cho
et al., 2016), we notice that NMT systems work
well when we do fine tuning on in-domain data
after training our models on out-of-domain data.
Since a clear in-domain corpus is not available in
this task, we conducted parallel data selection ex-
periments to build an in-domain corpus.

We followed the approach described in (Peris
et al., 2016) to extract an in-domain data set from
News Commentary corpus. More specifically, an
LSTM-based neural network was utilized to clas-
sify every sentence in the general corpus whether
we should include it into the in-domain corpus or
not. The network is trained using a “golden” cor-
pus as the in-domain one. We took the WMT de-
velopment sets from 2008 to 2013, c.a. 16K sen-
tence pairs, to be the golden corpus for this train-
ing. The outcome is the merge of the development
sets and the selected sentences from News Com-
mentary, resulting in c.a. 100K sentence-pair in-
domain corpus.

2.2 English→Latvian

The parallel corpus English-Latvian contains 2.9
million sentences which are proprocessed by
TILDE1 with language specific tokenizers. The
Latvian text is only true-cased on the first letter
of the sentence. We also further clean the data by
using the language detection library Shuyo (2010)
and remove the lines that the target sentences can-
not be recognized as Latvian by the tool, resulting
in about 25K sentences removed. Aside from the
main data provided by the organizer, we exploit
the synthetically translated monolingual data (only
the news2016 part), which is provided by Univer-
sity of Edinburgh with a Moses phrase-based sys-
tem. The training data used for the final system
consists of 5 million sentences in total. For vali-
dation, we use the the first 2, 000 sentences of the
Leta corpus (the rest included in the training data)
and use the newsdev2017 set (2, 003 sentences) for
testing. We train a BPE (Sennrich et al., 2015b)
model on the training data (including the back-

1www.tilde.com

translated part) with 40K operations, which is po-
tentially helpful for a morphologically rich target
language.

3 NMT Frameworks

Our systems consist of multiple neural encoder-
decoder models trained using two different toolk-
its.

3.1 Nematus
We initially used the nematus2 toolkit, in which
we used the hyperparameters following previous
works (Sennrich et al., 2017): minibatch size of
80, maximum sentence length of 50, word em-
bedding size of 650, a one layer GRU with size
1,024 in the encoder and a conditional GRU de-
coder with hidden layer size 1,024. The gradi-
ents are scaled with norm of 1.0 and the gradi-
ent update method being used is Adam (Kingma
and Ba, 2014) with learning rate 0.0001. Models
are trained until the BLEU score on the validation
set stops increasing. Checkpoints are saved every
20K iterations.

3.2 OpenNMT
We also employed the Torch-based (Collobert
et al., 2011) toolkit OpenNMT (Klein et al.,
2017) 3. All models trained with this toolkit have
two LSTM layers of 1,024 units each, and we also
use the input-feeding method as described in (Lu-
ong et al., 2015). For optimization, the gradi-
ents are scaled at 5, and we experimentally use
Adam with a high learning rate of 0.001 and then
reduce it to 0.0005 when the perplexity of the
model does not decrease anymore. Checkpoints
are saved every epoch (all of the sentences are
seen). We also enhanced the toolkits with differ-
ent features, namely the Context Gate for atten-
tional model (Tu et al., 2016a) and using coverage
information during learning to translate (Tu et al.,
2016b; Sankaran et al., 2016).

3.2.1 Context gates for machine translation
In conditional language models such as neural ma-
chine translation, the decoder makes prediction
based on two sources of input: the decoder in-
put at the current time step and the context vec-
tor queried by the attentional model. As analysed
by (Tu et al., 2016a), it could be beneficial for the

2https://github.com/rsennrich/nematus
3Our implementation for the WMT project can be found

at https://github.com/isl-mt/OpenNMT
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translation model to be able to control the influ-
ence of each prediction source. Concretely, inad-
equate translation can happen due to the bias over
the current decoder input. We followed the au-
thors to integrate a soft gating mechanism to al-
leviate this problem. Specifically, in our neural
translation model, given the target hidden state ht
and the source context vector ct, an attentional hid-
den state is formed by concatenation (Luong et al.,
2015).

Alternatively, we use ht and ct to learn a soft
context mask that prevents the activation of both
states. The mentioned states are then masked with
learned gates, and concatenated before being fed
into the final linear regression layer.

Note that the authors (Tu et al., 2016a) built
their model on top of the conditional GRU based
network from Bahdanau et al. (2014), while ours
are essentially an multi-layer LSTM decoder with
an additional attention layer. Such difference leads
to the minor change in terms of implementation,
which may not replicate the same improvement as
the original work.

3.2.2 Coverage mechanism for attention
model

Various works have pointed out that the attention
neural machine translation model can be benefit by
constraining the attentional process to adequately
cover the source words (Sankaran et al., 2016; Tu
et al., 2016b; Mi et al., 2016; Luong et al., 2015).
Different proposals share similar ideas which is to
incorporate alignment information from the pre-
vious time steps into the attentional neural net-
work. Our experiment inherits the neural fertility
model from (Tu et al., 2016b) which uses an ex-
plicit vector to keep track of the alignment infor-
mation. At every time step, the network makes an
attentional decision with the help of the coverage
vector, which is in turn updated using the align-
ment vector and the source context with a simple
Gated Recurrent Unit (GRU).

4 Integration of Additional Resources

In this section, we show several techniques we ap-
plied in order to integrate additional resources into
the translation. First, we integrate monolingual
information using a multi-lingual NMT approach.
In addition, we extracted information from PBMT
systems.

4.1 Monolingual Data

When the encoder of an NMT system of a well-
chosen architecture considers words across differ-
ent languages, the model is expected to learn a
good representation of the source words in a joint
embedding space, in which words carrying sim-
ilar meaning would have a close distance from
each other. In turn, the shared information across
source languages could help improve the choice
of words in the target side. For example, the word
Flussufer in German and the word bank in English
should be projected in the joint embedding space
in close proximity. This information might help to
choose the French word rive over banque.

To make an attention NMT for single language
pair translation to support a multilingual NMT that
shared the common semantic space, (Ha et al.,
2016b) suggested language-specific coding. Basi-
cally, language codes are appended to every word
in source and target sentences and indicate the
original language of the word. This information
will be then passed to the training process of the
NMT system. For example, an English-German
sentence pair excuse me and entschuldigen Sie
become en excuse en me and de entschuldigen
de Sie. By doing so, they can train a single

multilingual system that translates from several
source languages to one or several target lan-
guages. When we have n English-German sen-
tence pairs and m French-German sentence pairs,
for example, we can train a single NMT system
with a parallel corpus of n + m sentence pairs.
Then we can use the trained model to either trans-
late from English or from French to German.

The aforementioned multilingual NMT can be
used wisely as a novel way to utilize the mono-
lingual data, which is not a trivial task in NMT
systems. Particularly, if we want to translate from
English to German, we can use a corpus in Ger-
man as an additional German-German data similar
to the way we utilize the French-German parallel
corpus. Thus, the encoder is shared between the
source and the target languages (English and Ger-
man), and the attention is also shared across lan-
guages to help the decoder selects better German
words in the target side. The system implemented
this idea is referred as a mix-source system.

For this evaluation, we apply the idea of
that multilingual NMT approach in the English-
German direction in order to make use of the Ger-
man monolingual corpus and gain additional im-
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provements.

4.2 Pre-translation
One of the main problems of current NMT
system is its limited vocabulary (Luong et al.,
2014), generating difficulties when translating rare
words. While the overall performance of NMT
is significantly better on many tasks compared to
SMT (Bojar et al., 2016), the translation of words
seen only a few times is often not correct. In
contrast, PBMT is able to memorize a transla-
tion it has observed only once in the training data.
Therefore, we tried to combine the advantages
of NMT and PBMT using pre-translation as de-
scribed in (Niehues et al., 2016).

In the first step, we translate the source sentence
f using the PBMT system generating a translation
eSMT . Then we use the NMT system to find the
most probable translation e∗ given the source sen-
tence f and the PBMT translation eSMT . Thus,
we create a mixed input for the NMT system con-
sisting of both sentences by concatenating them.
This scheme, however, may lead to errors when
the source and target languages have a same word
in surface, but with different meanings, e.g. die in
English is a verb, while it is an article in German.
In order to prevent such errors, we use a separate
vocabulary for each language. Using the BPE of
the input (Sennrich et al., 2015b), we are able to
encode any input words as well as any translation
of the PBMT system. Thereby, the NMT is able
to learn to copy translations of the PBMT system
to the target side. The pre-translation method is
applied on the German→ English direction.

4.3 Integration of Selected Phrase Pairs
One main drawback of the aforementioned ap-
proach is that all training data as well as the test
data has to be translated using a phrase-based MT
system. Therefore, this is a time-consuming ap-
proach.

In a second approach to integrate information
for rare words from the phrase-based MT system,
we relied only on the phrase table. Using this tech-
nique, we annotate rare words with their possible
translation according to the phrase table. In the
first step, we need to identify the words for which
we want to provide a possible translation. Then
we need to select a translation from the phrase ta-
ble and, finally, we need a method to provide the
translation of the word optional to the NMT sys-
tem.

In our approach, we consider all words that
were split into several words by the byte pair en-
coding as rare words. For these words, we search
their possible translations in the phrase table. We
took the phrase pair with the longest source phrase
that covers the word. If there are several transla-
tion options for this source phrase, we select the
one where the log-sum of all fours probabilities in
the phrase table is the highest.

We integrate this information into the source
sentence, by appending the source phrase and the
translation from the phrase table. We also annotate
the beginning and end of the phrase with a spe-
cial character. When we have the source sentence
Obama empfän@@ gt Netanyahu and a phrase
pair empfän@@ gt ‖‖‖ receives in the phrase ta-
ble, we will generate the following input for the
NMT system: Obama # empfän@@ gt ## receives
# Netanyahu

5 System Combination

Combination of different neural networks often
leads to better performance, as shown in vari-
ous applications of neural networks and previous
NMT submissions in evaluation campaigns (Bo-
jar et al., 2016). A successful technique is to en-
semble different checkpoints of a model or models
with different random initialization. While this is a
very helpful technique, it has a potential drawback
that it can only be performed easily for models us-
ing the same input and output representations.

In order to further extend the variety of models,
we combine the output of several ensemble mod-
els by an n-best list combination. A first approach
is to generate an n-best list from all or several of
the models. Afterwards, we combine the n-best
lists into a single one by creating the union of the
n-best lists. Since every model only generated a
subset of the joint list, we rescored the joint list by
each model. Finally, we used a combination of all
the scores to select the best entry for every source
sentence. In previous work (Cho et al., 2017), it
was shown that it is often sufficient to use the n-
best list of the best model and rescore this n-best
list with the different models. In our experiments,
we used n = 50 for the n-best list size.

For systems to be combined, we use the NMT
system generated by different frameworks (de-
scribed in Section 3), as well as the pre-translation
and multi-lingual systems (described in Section
4). We also combine systems using different BPE
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sizes. In addition, we use a system that generates
the target sentence in the reversed order (Sennrich
et al., 2015a; Liu et al., 2016; Huck et al., 2016).

After joining the n-best lists and rescoring it us-
ing the different systems, we have k scores for ev-
ery entry in the n-best lists. In our experiments,
we use two different techniques to combine the
scores. The first method is to use the sum of all
scores. Especially, if the performance of the differ-
ent models is similar, we do not need to weigh the
different models. Similar to the ensemble methods
we can reach a good performance by using equal
weights. In a second approach, we use the List-
Net algorithms (Cao et al., 2007; Niehues et al.,
2015) to find the optimial weights for the individ-
ual models.

5.1 ListNet-based Rescoring

In order to find the optimal weights for the dif-
ferent models, we use the ListNet algorithm (Cao
et al., 2007; Niehues et al., 2015). This technique
defines a probability distribution on the permuta-
tions of the list based on the scores of the indi-
vidual models and another one based on a refer-
ence metric. In this set of experiments, we use the
BLEU+1 score introduced by (Liang et al., 2006).
Then we measure the cross entropy between both
distributions as the loss function for our training.
We trained the weights for the different models
on the validation set also used during training the
NMT systems.

Using this loss function, we can compute the
gradient and use stochastic gradient descent. We
use batch updates with ten samples and tune the
learning rate on the development data.

The range of the scores of the different toolk-
its may greatly differ. Therefore, we rescaled all
scores observed on the development data to the
range of [−1, 1] prior to rescoring.

6 Results

In this section, we describe the systems used
to generate the final hypothesis for official test
set. We participated in German→English, En-
glish→German, and English→Latvian translation
tasks.

6.1 German→English

All German to English translation system are
trained on the parallel data as well as back-
translated data (Sennrich et al., 2015a) randomly

selected from the monolingual news data. We
use newstest2013 as validation data. Using this
data, we train our initial system with the Nema-
tus toolkit and a byte pair encoding size of 40K
operations (Nematus 40K). The translation for all
Nematus based systems are generated with ensem-
bled system of different checkpoints. Although
we also attempted to select the data for backtrans-
lation as described in Section 2.1, initial experi-
ments did not show improvements on the transla-
tion quality. Therefore, we use the randomly se-
lected data for the remaining experiments.

In addition, we build a system with a reverse
target order (R2L) (Liu et al., 2016) and the pre-
translation. The pre-translation was generated by
the PBMT system used in WMT 2016 (Ha et al.,
2016a). Both performed slightly better than the
baseline system.

When increasing the size of BPE operation to
80K, we observe the improvements on the transla-
tion quality, by 1.4 BLEU points.

In addition to Nematus, we also used the Open-
NMT framework to build a network. For this
language pair, we used the context gate, but not
the coverage model. In contrast to the Nema-
tus based systems, we did not ensemble different
checkpoints. When using OpenNMT this tech-
nique did not yield an improvement in translation
performance. When OpenNMT is trained using
40K BPE units (single system), we reach a BLEU
score of 38.39. The default architecture of Open-
NMT - utilizing two hidden layers - is deemed to
be one reason for its outstanding performance.

In addition, we build a system using rare words
annotated with their translations. In contrast to the
baseline OpenNMT system, this configuration uti-
lizes only half the hidden size. For comparison, a
baseline system using this hidden size achieved a
BLEU score of 36.91 on newstest2016. Although
we did not improve the performance over the base-
line, it was beneficial to use the system in the com-
bination.

Finally, we generated an n-best list using the
best performing system OpenNMT 40K. Then we
used all the other models to rescore this n-best
lists. The scores are combined linearly. The
weights were optimized using the ListNet algo-
rithm on newtest 2015. This resulted to the best
performance of 39.10. The combination of all
models improve the translation performance by
another 0.7 BLEU points.
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System News2015 News2016
Nematus 40K 29.64 35.96
R2L 36.67
PreMT 36.86
Nematus 80K 37.38
OpenNMT 40K 31.48 38.39
RareWords 29.73 36.50
ListNet 32.33 39.10

Table 1: Experiments for German→English

6.2 English→German
Table 2 shows the results of the English→German
translation task. The scores are reported in BLEU
scores and evaluated on test2016. We used Open-
NMT framework on the preprocessed data (paral-
lel, sampled, back-translated as in Section 2.1).
For all experiments, we used BPE operation at
40K.

The systems differ in the training method and
the architectures. In the first series of experiments
Forward, training sentences are seen in their nat-
ural direction (left-to-right in this case). For this
type of experiments, we trained with two archi-
tectures: normal and with context gates. The Con-
text Gate system got a small improvement over the
normal one. The two architectures share the same
vocabularies and ensembling them helped us to get
more improvements. In the second series of ex-
periments R2L the target sentences were reversed
in order (right-to-left). And the third type is the
mix-source systems described in Section 4.1 and
in (Ha et al., 2016b). In addition, we also used a
pre-translation system. The systems have different
vocabularies and they were eventually combined
using our ListNet-based rescoring (Section 5.1).

For each type of experiments, we conducted fine
tuning on the small in-domain corpus mentioned
in Section 2.1.2, and the best adapted model based
on its BLEU score on test2015 was picked for the
ensembling andor rescoring. In all systems except
for pre-translation, we observed considerable im-
provements, around 1 BLEU point, when applying
fine tuning (c.f. Adapted column).

Finally, we rescored and combined four adapted
systems (Forward Ensembled, R2L, Mix-source
and Pre-translation) to get our submission system
to the campaign. It achieved 33.17 BLEU points
on test2016, 0.9 BLEU points better than the For-
ward Ensembled system and 1.6 BLEU points bet-
ter than our best single system (R2L).

System Baseline Adapted
Forward Normal 30.20 31.27
Forward Context Gate 30.44 31.36
Forward Ensembled 30.68 32.22
R2L 30.54 31.56
Mix-source 30.11 31.11
Pre-translation 30.67 -
Rescoring - 33.17

Table 2: Experiments for English→German

6.3 English→Latvian

The result of the English→Latvian translation task
is illustrated in table 3. Our baseline models are
trained with both frameworks using the concatena-
tion of the actual parallel and back-translated data.
We use dropout of 0.2 for both frameworks. For
Nematus, the convergence was seen after about
540K iterations (about 9 epochs), with the best
validation and test BLEU score achieved of 19.92
and 22.95 respectively. With OpenNMT, we ob-
tained 20.62 and 24.11 BLEU points for the val-
idation and test set, after training for 8 epochs (4
with high learning rate of 0.001, 2 with 0.0005 and
last 2 with 0.00025.

Regarding the two enhancement features men-
tioned above, the simple Context Gate improved
the scores by 0.2 and 0.6 on the two sets respec-
tively, while integrating the coverage mechanism
in the attention model yields a further 1.1 and
0.5 BLEU scores. The decoder recurrent network
has always received previous context information
through input-feeding. Surprisingly, the coverage
vector still manages to improve the model perfor-
mance. We assume that the gain comes from a
stronger attention network, which has more pa-
rameters than the cosine similarity between the
hidden state and the context, and the fact that the
coverage vector can maintain a longer past atten-
tional information compared to input-feeding.

It is notable that even though the improvement
has been observed, it is not consistent throughout
the sets. One possible explanation is the difference
between the development (from Leta) and the test
set (from news) in terms of domain and difficulty.

Regarding the consistency between BLEU
score and perplexity, the model with higher BLEU
score does not necessarily have lower perplexity
(across different settings, for example baseline vs.
coverage) even though we choose the model with
the best perplexity for reporting BLEU scores.
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This is the case even when these models share the
same vocabulary. We can see that perplexity is
a good measure to choose models within a single
run, even though it is not informative to compare
models with different network topologies.

By ensembling the three models, we man-
aged improving the translation performance by 1.3
BLEU points. Our final submission is done by
using another model trained with reversed target
sentences to rescore the n-best list (n = 20) gen-
erated by the ensembled system, which improves
about 0.4 BLEU.

System LetaDev News2016
Nematus 40K 19.92 22.95
OpenNMT 40K 20.62 24.11
+ Context Gate 20.88 24.71
+ Coverage Mode 21.91 25.20
Ensemble (3 models) - 26.54
+ Reranking R2L - 26.96

Table 3: Experiments for English→Latvian

7 Conclusion

In conclusion, we described our experiments in the
news translation task in WMT 2016, in which we
attempted to try out several techniques across dif-
ferent language pairs. The model-wise modifica-
tions such as context gate and coverage provided
slight improvement, while we find out that NMT
models can benefit greatly from adaptation and
pre-translation. As observed in previous works,
the most consistent gain mostly comes from sys-
tem ensembling/combination and reranking.
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Abstract

The paper describes Tilde’s English-
Latvian and Latvian-English machine
translation systems for the WMT 2017
shared task in news translation. Both con-
strained and unconstrained systems are de-
scribed. Our constrained systems were
ranked as the best performing systems ac-
cording to the automatic evaluation re-
sults. The paper gives details to how we
pre-processed training data, the NMT sys-
tem architecture that we used for training
the NMT models, the SMT systems and
their usage in NMT-SMT hybrid system
configurations.

1 Introduction

The year 2016 marked the first time when neu-
ral machine translation (NMT) systems achieved
significantly better results than statistical machine
translation (SMT) systems for most of the trans-
lation directions in the news translation shared
task of the WMT conference. This was achieved
due to a number of architectural and data pre-
processing novelties that the winning systems in-
corporated, for instance, the use of an attention
mechanism in the decoder of the NMT system
(Bahdanau et al., 2014), back-translation of ad-
ditional in-domain monolingual data for domain
adaptation of the NMT system after training of
a broad domain model or during re-training of
the whole NMT model, use of sub-word units to
address the problem of out-of-vocabulary word
translation, and others (Sennrich et al., 2016).

Since then, a number of further advances have
been made in machine translation and related
fields. A lot of effort has been invested in the
search for the best hyper-parameter configurations
and neural network architectures for NMT sys-

tem training (Britz et al., 2017). In particular,
the use of long short-term memory (LSTM) cells
and deep architectures has shown to allow increas-
ing translation quality. Parallel to that, a num-
ber of novelties in neural network architectures
have been introduced for other sequence process-
ing tasks, some of which, like the multiplica-
tive LSTM (MLSTM) units (Krause et al., 2016),
promise advantages even over deep recurrent net-
work architectures. For data pre-processing, we
have shown that the language agnostic word split-
ting method using byte pair encoding (BPE) in-
consistently splits words for morphologically rich
languages and that the method can be improved
by linguistically motivating word splitting (Pinnis
et al., 2017b).

For the WMT 2017 shared task in news trans-
lation, we build upon the NMT toolkit Nematus
(Sennrich et al., 2016) that achieved the best re-
sults in the WMT 2016 shared task. We also in-
corporate in our systems the latest advancements
in the field, for instance, MLSTM recurrent lay-
ers, morphology-driven word splitting, better han-
dling of unknown and rare words with robust
NMT models, and hybrid methods. The improve-
ments over the baseline NMT model have allowed
us to develop the best scoring systems for the
English-Latvian and Latvian-English translation
directions.

The paper is further structured as follows: Sec-
tion 2 provides an overview of our WMT 2017
systems, Section 3 describes the data and the dif-
ferent data processing workflows used for prepar-
ing the data for training, Section 4 describes SMT
systems that were used in NMT-SMT hybrid sys-
tem configurations, Section 5 describes the NMT
architecture used for training of our NMT systems,
Section 6 describes the hybrid NMT-SMT system
architecture, Section 7 describes our evaluation re-
sults, and Section 8 concludes the paper.
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2 System Overview

For the WMT 2017 shared task, we developed
both constrained and unconstrained MT systems.
In total, we submitted five systems:

• Constrained English-Latvian and Latvian-
English NMT-SMT hybrid systems.

• Unconstrained English-Latvian and Latvian-
English NMT-SMT hybrid systems trained
on significantly larger corpora.

• An unconstrained English-Latvian SMT sys-
tem that achieves higher automatic evaluation
results than the NMT-SMT hybrid systems.

3 Data

For training of MT systems, we used the
WMT 2017 training data, however, for the un-
constrained systems we also used resources from
the Tilde Data Library.1 All data were fil-
tered using our data filtering methods (see Sec-
tion 3.1), pre-processed with standard and custom
pre-processing tools (see Section 3.2), and supple-
mented with synthetic data (see Section 3.3). For
tuning and for decision-making during the devel-
opment, we used the newsdev2017 data set that
was provided by the WMT 2017 organisers.

3.1 Data Filtering

Our previous research in NMT system develop-
ment has shown that NMT systems are more sen-
sitive to the noise present in the training data (Pin-
nis et al., 2017a) than SMT systems, therefore,
we performed parallel data filtering to reduce po-
tential non-parallelities and the negative effect of
noise on the NMT systems. The filtering consisted
of the following steps:

1. Long sentence filtering (longer than 1500
symbols or 80 tokens).

2. Sentence length difference filter (sentence
pairs with a length ratio smaller than 0.3 were
filtered out).

3. Incorrect language filtering using a language
detection tool (Shuyo, 2010).

1Tilde Data Library is a parallel and mono-
lingual data repository of the Tilde MT platform
(http://www.tilde.com/mt/).

4. Low content overlap filter using the cross-
lingual alignment tool MPAligner (Pinnis,
2013).

5. Bad encoding filter that filtered out sentences
containing foreign and corrupt symbols.

6. Digit mismatch filter that showed to be an ef-
fective method for dealing with sentence seg-
mentation issues in a number of corpora (in-
cluding the Digital Corpus of European Par-
liament).

Training data statistics for both constrained and
unconstrained systems are shown in Table 1.

3.2 Data Pre-processing
After filtering, all training data were pre-processed
using the following steps:

1. Normalisation of punctuation. Only one
standard of quotation marks and apostrophes
were used, hyphenated tokens were split and
the hyphens were replaced with a special
symbol.

2. Identification of non-translatable entities. E-
mail addresses, URLs, file addresses and
XML tags were identified and replaced with
place-holders.

3. Tokenisation. For tokenisation, we used the
Tilde’s regular expression-based tokeniser.

4. Truecasing. The Moses truecase.perl was
used to truecase the first word of each sen-
tence.

5. Morphology-driven word splitting (Pinnis
et al., 2017b). Tokens were split using
a morphological analyser and further pro-
cessed with byte pair encoding (BPE) (Sen-
nrich et al., 2015) to ensure an open vocab-
ulary. For both languages, we used mor-
phological analysers that were developed by
Deksne (2013) using finite state transducer
technology.

6. Factorisation. Following the work of Sen-
nrich and Haddow (2016), who showed
that linguistic input features allow increasing
NMT system translation quality, we devel-
oped our NMT systems using factored mod-
els. Therefore, the source data were fur-
ther factored using a language-specific tag-
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Scenario Lang. Before filtering (Total / Unique) After filtering (Unique)
pair Parallel Monolingual Parallel Monolingual

Constrained
en-lv 4.51M / 1.92M 38.13M / 28.81M 1.61M 27.75M
lv-en 4.51M / 1.92M 369.85M / 335.55M 1.61M 330.23M

Unconstrained
en-lv 39.28M / 15.78M 128.28M / 87.60M 12.69M 81.68M
lv-en 39.28M / 15.78M 416.36M / 360.01M 12.69M 351.99M

Table 1: Training data statistics (sentence counts) for SMT and NMT systems before and after filtering

ger or parser. For Latvian, we used an aver-
aged perceptron-based morpho-syntactic tag-
ger (Nikiforovs, 2014) that was trained on
the data from Pinnis and Goba (2011). For
English, we used the lexicalized probabilistic
parser (Klein et al., 2002) from the Stanford
CoreNLP toolkit (Manning et al., 2014).

3.3 Synthetic Data

Similarly to the method by Pinnis et al. (2017b)
that allows training NMT models that are more
robust to unknown and rarely occurring words,
we supplemented the parallel training data with
synthetic parallel training sentences. To create
the synthetic corpus, we performed word align-
ment on the parallel corpus using fast-align (Dyer
et al., 2013). Then, we randomly replaced one
to three unambiguously (one-to-one) aligned con-
tent words with unknown word <UNK> place-
holders. Finally, we copied factor information
from the original factored source sentence to the
synthetic sentence.

Using the filtered and the synthetic training
data, we trained initial target-to-source NMT mod-
els (see Section 5 for details on the NMT architec-
ture). Then, we shuffled the available in-domain
monolingual data (news articles or news commen-
tary in the target language) and for each system
back-translated a part of the monolingual data
from the target language into the source language
in order to create additional synthetic source-to-
target parallel corpora. The data were selected
such that the amount would approximately cor-
respond to the original training data. Exper-
iments with different back-translated data pro-
portions showed that the best results could be
achieved with a proportion of 1-to-1.

The back-translated parallel corpora were also
supplemented with sentence pairs where con-
tent words with unambiguous alignments were
randomly replaced with unknown word place-
holders. Finally, the additional synthetic data were

Lang. Synth. Re- Total
pair <UNK> transl.

sent. sent.

(C)
en-lv 1.48M 3.09M 6.19M
lv-en 1.48M 3.09M 6.19M

(U)
en-lv 11.66M 21.69M 46.04M
lv-en 11.66M 21.36M 45.71M

Table 2: Synthetic data and final NMT model
training data statistics

added to the existing training data. The statistics
of the synthetic corpora and the final training data
for NMT system training are given in Table 2. It
can be seen that the synthetic data creation process
increased the size of the training data four times.

4 SMT Systems

SMT systems were trained using Moses (Koehn
et al., 2007) in the Tilde MT platform (Vasiļjevs
et al., 2012). All systems were trained using the
filtered training data (see Table 1). Word align-
ment was performed using fast-align (Dyer et al.,
2013). All SMT systems feature 7-gram trans-
lation models and the wbe-msd-bidirectional-fe-
allff 2 reordering models. The systems have two
language models that were trained using KenLM
(Heafield, 2011) - an in-domain language model
trained on the news article and news commentary
corpora and an out-of-domain language model
trained on the remaining monolingual data. The
systems were tuned using MERT on the news-
dev2017 data set.

5 NMT System Architecture

The NMT system architecture is based on the im-
plementation available with the Nematus toolkit
that was used by Sennrich et al. (2016) to produce

2More about the different types of reorder-
ing models in Moses can be found online at
http://www.statmt.org/moses/?n=FactoredTraining.BuildReo
rderingModel
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Factor English Latvian
Word part 350 360
Position 5 5
Lemma 125 125
Part-of-speech tag 10 -
Syntactic function 10 -
Morpho-syntactic tag - 10

Table 3: Dimensionality of each factor in the en-
coder’s embedding layer

the top-scoring results for multiple language pairs
in the WMT 2016 shared task in news translation.
It is an encoder-decoder model with attention. The
main distinction of our model is the use of mul-
tiplicative long short-term memory cells (Krause
et al., 2016) instead of gated recurrent units (GRU)
in the encoder and in the first cell of the decoder.
We also use linguistic input features as described
by Sennrich and Haddow (2016). I.e., each factor
of a word part has its own embedding vector and
in order to obtain one embedding vector for the
whole word part, the individual embedding vec-
tors are concatenated.

In more detail, the encoder’s embedding layer
has a total of 500 dimensions, which are split
among the different input factors as specified in
Table 5. It accommodates a vocabulary of 25 thou-
sand sub-word units. The embedding layer is fol-
lowed by a bidirectional MLSTM layer with 1024
dimensions for gates and cell states.

The decoder has a similar architecture to the
implementation in the Nematus toolkit (Sennrich
et al., 2017) which improves on the original
attention-based NMT model (Bahdanau et al.,
2014) by conditioning the attention weights on the
previously decoded word in addition to the hidden
state at the previous time-step. This is achieved by
first computing an intermediate state

ŝt = GRU(st−1, eyt−1),

then using it to compute the attention context

ct = attention(ŝt, h),

where st−1 and eyt−1 are the decoder’s hidden
state and the embedding of the decoded word at
the previous time-step respectively, and h is the
annotation matrix produced by the encoder. The
hidden state is then calculated as

st = GRU(ŝt, ct).

We modify this scheme by using an MLSTM cell
to calculate the intermediate state

(ŝt, zt) = MLSTM(st−1, zt−1, eyt−1),

where ŝt and zt are the MLSTM cell’s output and
hidden states respectively.

Similarly to the encoder, all of the gates and in-
termediate states of the decoder have a dimension-
ality of 1024. The decoder’s embeddings have a
dimensionality of 500.

For training, we also used dropout with the rate
of 0.2 for hidden layers, and 0.1 for input and
output embedding layers. For optimisation, we
used Adadelta (Zeiler, 2012) with a learning rate
of 0.0001, and we also used gradient clipping with
a threshold of 1.

After training, 5 to 7 models that achieved the
highest mixed metric evaluation results on the tun-
ing data (i.e., the newsdev2017 data set) were se-
lected for ensemble decoding with a beam size of
12.

6 Hybrid System Architecture

After developing the initial NMT models, a pre-
liminary manual analysis of the translations of the
English-Latvian constrained system showed that
only 34-44% of named entities within the tuning
set were translated correctly. At the same time,
the SMT system was able to handle approximately
70% of named entities correctly. Taking into ac-
count that our previous research in hybrid machine
translation system development has shown that
SMT systems in hybrid NMT-SMT system sce-
narios can handle rare and unknown word transla-
tion in hybrid scenarios better than the NMT mod-
els (Pinnis, 2016) alone, we decided to chain the
NMT and SMT systems into a hybrid NMT-SMT
system set-up. In the hybrid set-up, a sentence is at
first translated with the NMT system, after which
rare and unknown words that are left untranslated
by the NMT system are translated with the SMT
system.

The hybrid translation method performs trans-
lation in six steps as follows (see Table 4 for an
example of a sentence processed through all of the
hybrid translation steps):

1. First, rare and unknown words are identified
in the source sentence and replaced by un-
known word place-holders. Words are con-
sidered rare if they consist of at least one sub-
word unit (or a sub-word unit bigram), which
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Translation step Example sentence
Source text Šodien skatieties Ikaunieces-Admidiņas startu Rio spēlēs.

Pre-processed text šodien skat@@ ieties I@@ kaun@@ iec@@ es - Ad@@ mi@@ di@@ ņas
start@@ u Rio spēlē@@ s .

Text with identified
rare words

šodien skat@@ ieties βIDβ - βIDβ start@@ u Rio spēlē@@ s .

NMT translation watch the βIDβ - βIDβ start at the Rio Games today .

Moses XML with
untranslated rare
words

<nmt translation="watch the">šodien skatieties
</nmt>Ikaunieces <nmt translation="-">-</nmt>Admidiņas <nmt
translation="start at the Rio Games today">šodien startu Rio
spēlēs</nmt><nmt translation=".">.</nmt>

Moses XML with
identified
untranslated person
names

<nmt translation="watch the">šodien skatieties </nmt><ne
translation="Ikauniece" prob="1.0">Ikaunieces</ne> <nmt
translation="-">-</nmt><ne translation="Admidina||Admidins"
prob="0.95||0.05">Admidiņas</ne> <nmt translation="start
at the Rio Games today">šodien startu Rio spēlēs</nmt><nmt
translation=".">.</nmt>

SMT translation watch the Ikauniece - Admidina start at the Rio Games today .

Post-processed
translation

Watch the Ikauniece-Admidina start at the Rio Games today.

NMT only transl.
(for comparison)

Today, look at the start of the Isolence-Admidias in the Rio
Games.

Table 4: Example of the NMT-SMT hybrid translation process

Lang. BPE BPE
pair count 2-gram

(C)
en-lv 25 1
lv-en 35 0

(U)
en-lv 100 1
lv-en 125 1

Table 5: Rare word detection thresholds

occurrence count in the training data is be-
low a certain threshold. The thresholds for
our submitted systems were empirically iden-
tified by analysing the hybrid method’s per-
formance on the tuning data. The thresholds
are given in Table 5.

2. Then, the pre-processed sentence is trans-
lated with the NMT system. Our NMT mod-
els have been trained to leave the unknown
word place-holders untranslated, i.e., to pass
them through to the target side (Pinnis et al.,
2017b). The capability of the NMT system to
pass the place-holders through unchanged is
vital for the further steps to work.

3. After translation, the NMT model’s produced
attention matrix is used to perform word
alignment. Here, we also identify which
source words correspond to each place-

holder on the target side.

4. Then, a Moses XML document is prepared
for the sentence such that the Moses SMT
system will have to translate only the words
that were replaced by the place-holders but
leave the remaining part as it was translated
by the NMT system.

5. Then, for the Latvian-English unconstrained
system, we use a person name and surname
dictionary to look-up translations of untrans-
lated person names. The translations from
the dictionary are merged in the Moses XML
document so that the SMT system would be
constrained to the translations found in the
dictionary.

6. Finally, the Moses XML document is trans-
lated with the SMT system.

In the hybrid set-up, the same pre-processing
and post-processing steps are used as for the in-
dividual NMT and SMT systems.

7 Results

We evaluated all MT systems using multiple au-
tomatic evaluation metrics including BLEU (Pa-
pineni et al., 2002), BEER 2.0 (Stanojevic and
Sima’an, 2014), CharacTER (Wang et al., 2016),

378



Scenario Lang. pair System BLEU (CS) BEER 2.0 CharacTER TER (CS)

(C)

en-lv
SMT 12.98 (12.36-13.60) 0.5086 0.6642 0.7582
NMT †19.49 (18.71-20.28) 0.5478 0.5877 0.6741
Hybrid †19.52 (18.70-20.34) 0.5482 0.5853 0.6729

lv-en
SMT 15.47 (14.88-16.06) 0.5219 0.6606 0.7272
NMT †20.01 (19.31-20.64) 0.5494 0.6088 0.6725
Hybrid †20.06 (19.45-20.71) 0.5496 0.6081 0.6721

(U)

en-lv
SMT 20.43 (19.57-21.28) 0.5491 0.6126 0.6954
NMT 20.04 (19.22-20.78) 0.5563 0.5832 0.6634
Hybrid 20.08 (19.30-20.85) 0.5567 0.5827 0.6630

lv-en
SMT 19.05 (18.42-19.67) 0.5515 0.6233 0.6928
NMT †22.02 (21.38-22.63) 0.5677 0.5838 0.6450
Hybrid †22.06 (21.41-22.74) 0.5683 0.5833 0.6442

Table 6: Automatic evaluation results of Tilde’s systems (CS stands for case sensitive evaluation; the
results are significant compared to the SMT system with p = 0.01†; the BLEU scores are given with a
95% confidence interval that was calculated using bootstrap resampling (Koehn, 2004))

and TER (Snover et al., 2006). The automatic
evaluation results (see Table 6) on the new-
stest2017 data set show that for English-Latvian
the constrained NMT system and for Latvian-
English both the constrained and unconstrained
NMT systems achieve significantly better results
than the SMT systems. The difference between the
quality of the unconstrained English-Latvian SMT
and NMT systems is not statistically significant.

Since the automatic metrics have shown not to
be sufficient to evaluate MT systems of the two
different paradigms (Pinnis et al., 2017a), we also
performed (blind) human comparative evaluation
of the SMT and NMT system translations. Five
professional translators were given the source sen-
tence and translations of two MT systems and
asked to select, which system (NMT, SMT, or nei-
ther) produces a better translation. The evaluation
was performed on the tuning data set. In total,
200-250 sentences were evaluated in each eval-
uation task. The results in Figure 1 show that
the NMT system translations are preferred more
than the translations of the SMT systems. Accord-
ing to the methodology by Skadiņš et al. (2010),
the results are weakly sufficient for all scenar-
ios (except the Latvian-English unconstrained sce-
nario for which the results are strongly sufficient)
to conclude that the NMT systems produce better
translations than the SMT systems.

The results also show that there is an insignif-
icant quality increase for the hybrid systems over
the NMT systems. The increase is minimal as only
sentences that contain words with rare word parts

are translated differently. However, the hybrid
scenario (and the components used in the hybrid
scenario) allows us to integrate the NMT systems
in our existing SMT infrastructure for formatting-
rich document translation, which is a vital require-
ment for us to provide NMT services for cus-
tomers.

Compared to other submitted systems, it is evi-
dent (see Table 7) that our constrained NMT-SMT
hybrid systems significantly outperform other sub-
mitted systems.

8 Conclusions

In the paper, we have described English-Latvian
and Latvian-English MT systems that were devel-
oped by Tilde for the WMT 2017 shared task in
news translation. In total, we submitted five sys-
tems: four NMT-SMT hybrid systems (two con-
strained and two unconstrained systems) and one
unconstrained English-Latvian SMT system that
achieves similar translation quality as the NMT
system according to automatic evaluation.

We have documented the methodology used to
prepare the data for training of the systems, the
SMT and NMT system training set-ups, the work-
flow for chaining the NMT and SMT systems into
a hybrid NMT-SMT system, as well as our evalu-
ation efforts.

The automatic and manual evaluation results
show that three out of four NMT systems signif-
icantly outperform the SMT systems. Although
the hybrid systems did not produce a significant
improvement, the minimal improvement is con-
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Figure 1: Results of the human comparative evaluation of Tilde’s SMT and NMT systems

Lang. pair System BLEU (CS) BEER 2.0 CharacTER TER (CS)

en-lv
Tilde (hybrid) †19.52 (18.74-20.31) 0.5482 0.5853 0.6729
QT21 combination 18.03 (17.32-18.73) 0.5403 0.6455 0.7034
KIT primary 17.72 (17.01-18.39) 0.5428 0.6051 0.6992

lv-en
Tilde (hybrid) †20.83 (20.13-21.49) 0.5496 0.6081 0.6641
UEDIN NMT 20.02 (19.39-20.63) 0.5462 0.6308 0.6719
JHU SMT 17.67 (17.11-18.30) 0.5281 0.6485 0.7068

Table 7: Automatic evaluation results of the top three English-Latvian and Latvian-English constrained
systems submitted for the WMT 2017 shared task on news translation (CS stands for case sensitive
evaluation; the results are significant compared to other systems with p = 0.01†; the BLEU scores are
given with a 95% confidence interval that was calculated using bootstrap resampling (Koehn, 2004))

sistent across all language pairs. The results also
showed that in terms of automatic evaluation our
submitted NMT-SMT hybrid systems significantly
outperform the systems submitted by other partic-
ipants of the shared task.
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Mārcis Pinnis, Rihards Krišlauks, Daiga Deksne, and
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Abstract

This paper describes the neural machine
translation systems of the University of
Latvia, University of Zurich and Univer-
sity of Tartu. We participated in the WMT
2017 shared task on news translation by
building systems for two language pairs:
English↔German and English↔Latvian.
Our systems are based on an attentional
encoder-decoder, using BPE subword seg-
mentation. We experimented with back-
translating the monolingual news corpora
and filtering out the best translations as ad-
ditional training data, enforcing named en-
tity translation from a dictionary of par-
allel named entities, penalizing over- and
under-translated sentences, and combining
output from multiple NMT systems with
SMT. The described methods give 0.7 - 1.8
BLEU point improvements over our base-
line systems.

1 Introduction

We describe the neural machine translation (NMT)
systems developed by the joint team of the Univer-
sity of Latvia, University of Zurich and Univer-
sity of Tartu (C-3MA). Our systems are based on
an attentional encoder-decoder (Bahdanau et al.,
2015), using BPE subword segmentation for open-
vocabulary translation with a fixed vocabulary
(Sennrich et al., 2016a). This paper is organized
as follows: In Section 2 we describe our transla-
tion software and baseline setups. Section 3 de-
scribes our contributions for improving the base-
line translations. Results of our experiments are
summarized in Section 4. Finally, we conclude in
Section 5.

2 Baseline Systems

Our baseline systems were trained with two
NMT and one statistical machine translation
(SMT) framework. For English↔German we
only trained NMT systems, for which we used
Nematus (NT) (Sennrich et al., 2017). For
English↔Latvian, apart from NT systems, we ad-
ditionally trained NMT systems with Neural Mon-
key (NM) (Helcl and Libovickỳ, 2017) and SMT
systems with LetsMT! (LMT) (Vasiļjevs et al.,
2012).

In all of our NMT experiments we used a shared
subword unit vocabulary (Sennrich et al., 2016b)
of 35000 tokens. We clipped the gradient norm
to 1.0 (Pascanu et al., 2013) and used a dropout
of 0.2. Our models were trained with Adadelta
(Zeiler, 2012) and after 7 days of training we per-
formed early stopping.

For training the NT models we used a maximum
sentence length of 50, word embeddings of size
512, and hidden layers of size 1000. For decoding
with NT we used beam search with a beam size of
12.

For training the NM models we used a max-
imum sentence length of 70, word embeddings
and hidden layers of size 600. For decoding with
NM a greedy decoder was used. Unfortunately, at
the time when we performed our experiments the
beam search decoder for NM was still under de-
velopment and we could not reliably use it.

3 Experimental Settings

3.1 Filtered Synthetic Training Data

Increasing the training data with synthetic back-
translated corpora has proven to be useful in pre-
vious work (Sennrich et al., 2016a). The method
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Source šodien , 21 : 16
Hypothesis Sheodiennial
Perplexity 70455722055883
Source lai izdzı̄votu , nepieciešams aizpildı̄t ap 65 % , bet valsts apmaksā 10 % .
Hypothesis it is necessary to fill around 65th and the state is paid to the population .
Perplexity 86070783032565
Source potenciāli zaudētie mūža gadi ir gadi , kurus cilvēks būtu nodzı̄vojis lı̄dz kādam

noteiktam vecumam ,ja nebūtu miris nelaimes gadı̄jumā , kādas slimı̄bas vai cita
iemesla dēļ ( lı̄dz 64 gadu vecumam ) .

Hypothesis potential annualised annuity is a year that would have survived to a particular old age
if it is not dead in an accident or for another reason to be in the age of 64 years old .

Perplexity 73076722556165

Source tiekoties ar cilvēkiem Latvijā , ” veiksmes stāsts ” neesot jūtams .
Hypothesis ” we are talking about the people of Europe , ” he said .
Perplexity 3.0285224517174
Source liela daļa Latvijas iedzı̄votāju ir piederı̄gi tā saucamajai ” krievu pasaulei ” , vai vismaz

Krievija viņus saredz kā tai piederı̄gus - tie ir ne tikai Krievijas pilsoņi , bet arı̄
krievvalodı̄gie , un tie kuriem ir pievilcı̄ga Krievija un tās vērtı̄bas .

Hypothesis a part of the Latvian population is a small and Russian world , or at least Russia sees them
as being belonging to them - it is not only Russia ’ civil , but also Russian and well known
to live in the Russian civil society .

Perplexity 3.0276750775676

Table 1: Example sentences translated from Latvian into English that were filtered out from the back-
translated news data.

consists of training the initial NMT systems on
clean parallel data, then using them to trans-
late monolingual data in the opposite direction
and generate a supplementary parallel corpus with
synthetic input and human-created output sen-
tences. Nevertheless, more is not always better,
as reported by Pinnis et al. (2017), where they
stated that using some amount of back-translated
data gives an improvement, but using double the
amount gives lower results, while still better than
not using any at all.

We used each of our NMT systems to back-
translate 4.5 million sentences of the monolingual
news corpora in each translation direction. First
we removed any translations that contained at least
one <unk> symbol. We trained a language model
(LM) using CharRNN1 with 4 million sentences
from the monolingual news corpora of the target
languages, resulting in three character-level RNN
language models - English, German and Latvian.
We used these language models to get perplexity

1Multi-layer Recurrent Neural Networks (LSTM, GRU,
RNN) for character - level language models in Torch
https://github.com/karpathy/char-rnn

scores for all remaining translations. The transla-
tions were then ordered by perplexity and the best
(lowest) scoring 50% were used together with the
sources as sources and references respectively for
the additional filtered synthetic in-domain corpus.
We chose scoring sentences with an LM instead
of relying on neural network weights because 1)
it is fast, reliable and ready to use without having
to modify both NMT frameworks, and 2) it is an
unbiased approach to score sentences when com-
pared to having the system score its output by it-
self.

To verify that the perplexity score resembles
human judgments, we took a small subset of the
development sets and asked manual evaluators to
rate each translation from 1 to 5. We sorted the
translations by manual evaluation scores and auto-
matically obtained perplexities, and calculated the
overlap between the better halves of each. Results
from this manual evaluation in Table 2 show that
the LM perplexity score is good enough to sep-
arate the worst from the best translations, even
though the correlation with human judgments is
low.
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Some extreme examples of sentences translated
from Latvian into English are listed in Table 1.
The first one is just gibberish, the second is En-
glish, but makes little sense, the third one demon-
strates unusual constructions like annualised an-
nuity. The last two examples have a good perplex-
ity score because they seem like good English, but
when looking at the source, it is clear that in the
fourth example there are some parts that are not
translated.

As a result, the filtering approach brought an
improvement of 1.1 - 4.9 BLEU (Papineni et al.,
2002) on development sets and 1.5 - 2.8 BLEU
on test sets when compared to using the full back-
translated news corpora.

En→De De→En En→Lv Lv→En
55% 56% 58% 56%

Table 2: Human judgment matches with LM per-
plexity for filtering on 200 random sentences from
the newsdev2017 dataset.

3.2 Named Entity Forcing
For our experiments with English↔German we
enforced the translation of named entities (NE) us-
ing a dictionary which we built on the training data
distributed for WMT 2017.

First, we performed named entity recognition
(NER) using spaCy2 for German and NLTK3 for
English. The reason for using different tools is that
the spaCy output for English differed largely from
the German one. NLTK performed much more
similarly to the German spaCy output and, thus,
it was easier to find NE translation pairs. We only
considered NEs of type “person”, “organisation”
and “geographic location” for our dictionary.

Then we did word alignment using GIZA++
(Och and Ney, 2003) with the default grow-diag-
final-and alignment symmetrization method. We
created an entry in our translation dictionary for
every pair of aligned (multi-word) NEs. Per entry
we only kept the three most frequent translation
options. Since there was still a lot of noise in the
resulting dictionary, we decided to filter it auto-
matically by removing entries that:

• did not contain alphabetical characters
e.g. filtering out “2/3” aligned to “June”

2Industrial-Strength Natural Language Processing in
Python - https://spacy.io/

3Natural Language Toolkit - http://www.nltk.org/

• started with a dash
e.g. filtering out “-Munich” aligned to “Ham-
burg”

• were longer than 70 characters or five tokens
e.g. filtering out “Parliament’s Committee on
Economic and Monetary Affairs and Indus-
trial Policy ” aligned to “EU”

• differed from each other in length by more
than 15 characters or two tokens
e.g. filtering out “Georg” aligned to “Georg
von Holtzbrinck”

When translating we made use of the align-
ment information given by the attention mecha-
nism when translating with our NMT systems. We
identified all NEs in the source text using the same
tools as for the training data. For every source NE
expression we searched for the most likely aligned
translations by our systems via the attention ma-
trix. We only considered source-translation pairs
for which the attention to each other was highest
in both directions.

Finally, for every such NE expression we
checked whether there was a translation in our NE
dictionary. If yes, we swapped the translation gen-
erated by our systems with the one in the dictio-
nary. If not, we copied the NE expression from
the source sentence to the target sentence. Since
the attention is only given on the subword level,
we needed to merge the subword units together
before comparing the translations in the NE dic-
tionary with the ones our systems produced. To
avoid swapping too many correct translations, we
defined some language-specific rules which, for
example, took care of different cases in German.

We initially tested our approach on the new-
stest2016 data (using our baseline system for the
translation). For a qualitative perspective we
looked at all of the NEs that were recognized in
this text. We evaluated how many of them were
changed by our algorithm and how many of these
changes were positive, how many were negative
and how many changed a wrong NE to another
wrong NE. The results of this evaluation can be
seen in Table 3. For newstest2017 this approach
gave a BLEU score improvement of 0.14 - 0.16.

3.3 Coverage Penalties
Under-translation and over-translation problems
are results of lacking coverage in modern NMT
systems (Tu et al., 2016). Attempts to address
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Figure 1: Attention alignment visualization of a translation, in which the strongest alignments are con-
nected with the final token. Reference translation: the coldest morning since June , brief local showers .,
hypothesis translation: the House will also vote on a resolution on the situation in the EU .

System En→De De→En
Values abs rel (%) abs rel (%)
# recogn. NEs 4546 - 4201 -
# changed NEs 178 3.92 192 4.57
neg→ pos 116 65.17 160 83.33
pos→ neg 53 29.78 22 11.46
neg→ neg 9 5.06 10 5.21

Table 3: Performance of NE enforcing on
newstest2016 data. The table shows how many
NEs were recognized, how many of those were
changed by our algorithm and how many of the
changes were positive, negative or neutral.

these issues include both changes at training time
and decoding time. Coverage penalty (Wu et al.,
2016) is an example of a decoding time modifica-
tion aimed at the under-translation problem. We
designed coverage penalty variations that affect
the over-translation issue as well.

More specifically, the coverage penalty is a part
of the scoring function s(Y,X) that we use to rank
candidate translations in beam search:

s(Y,X) = log(P (Y |X)) + cp(X;Y )

Coverage penalty from (Wu et al., 2016) is de-
fined as follows:

cp(X;Y ) = β ∗
|X|∑

i=1

log(min(

|Y |∑

j=1

pi,j , 1.0)) (1)

where |Y | is the index of the last target word gen-
erated on the current beam search step, |X| is the
number of source words, and pi,j is the attention
probability of the j-th target word yj on the i-th
source word xi.

This expression penalizes the hypothesis if the
sum of target word attentions on source words is
below 1 (it is assumed that each target word is in-
fluenced by an attention probability mass equals
to one; considering per word fertility might be a
better choice), so it aims at reducing the under-
translation problem. We extended equation 1 to
penalize the hypothesis if the sum of target word
attentions on source words not only below, but also
above 1; we call it the coverage deviation penalty:

cdp(X;Y ) = β ∗
|X|∑

i=1

log(abs(1−
|Y |∑

j=1

pi,j)) (2)

We also designed a perplexity penalty that im-
plements the assumption that each target word
should not be aligned with all source words by
a little amount, but with some concrete parts of
the source sentence. It penalizes the hypotheses
where the target words have a high entropy of the
attention distribution and called it the dispersion
penalty:

dp(X;Y ) = β ∗ −
|X|∑

i=1

pi,|Y | ∗ log(pi,|Y |) (3)

Table 4 shows BLEU results. The dispersion
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penalty with optimal weight improves BLEU con-
siderably, with the change being statistically sig-
nificant. We also tried combining different types
of penalties, but got not improvements.

BLEU change
β 0.2 0.4 1 3 5 7
cp +0.3 -1.0 -3.0 - - -
cdp +0.0 +0.0 +0.1 -0.2 - -
dp +0.0 +0.0 +0.2 +0.5 +0.7 +0.6

Table 4: En→Lv BLEU score improvements with
respect to different penalty types and values of β.
Best score improvements are in bold

3.4 Hybrid System Combination

For translating between English↔Latvian we used
all 3 systems in each direction and obtained the at-
tention alignments from the NMT systems. For
each direction we chose one main NMT system to
provide the final translation for each sentence and,
judging by the attention alignment distribution,
tried to automatically identify unsuccessful trans-
lations. Two main types of unsuccessful transla-
tions that we noticed were when the majority of
alignments are connected to only one token (ex-
ample in Figure 1) or when all tokens strongly
align one-to-one, hinting that the source may not
have been translated at all (example in Figure 2).
In the case of an unsuccessful translation, the hy-
brid setup checks the attention alignment distribu-
tion from the second NMT system and outputs ei-
ther the sentence of that or performs a final back-
off to the SMT output. This approach gave a
BLEU score improvement of 0.1 - 0.3.

3.5 Post-processing

In post-processing of translation output we aimed
to fix the most common mistakes that NMT sys-
tems tend to make. We used the output attention
alignments from the NMT systems to replace any
<unk> tokens with the source tokens that align
to them with the highest weight. Any consecutive
repeating n-grams were replaced with a single n-
gram. The same was applied to repeating n-grams
that have a preposition between them, i.e., victim
of the victim. This approach gave a BLEU score
improvement of 0.1 - 0.2.

System En→De De→En
Dataset Dev Test Dev Test
Baseline NT 27.4 21.0 31.9 27.2
+filt. synth. 30.7 22.5 36.8 28.8
+NE forcing 30.9 22.7 36.9 29.0

Table 5: Experiment results for translating be-
tween English↔German. Submitted systems are
in bold.

4 Results

The results of our English↔German systems are
summarized in Table 5 and the results of our
English↔Latvian systems - in Table 6. As men-
tioned in the subsections of Section 3 - each im-
plemented modification gives a little improvement
in the automated evaluation. Some modifications
gave either no improvement for one or both lan-
guage pairs or lead to lower automated evaluation
results. These were either used for only the lan-
guage pair that did show improvements on the de-
velopment data or not used at all in the final setup.

System En→Lv Lv→En
Dataset Dev Test Dev Test
Baseline NM 11.9 11.9 14.6 12.8
Baseline NT 12.2 10.8 13.2 11.6
Baseline LMT 19.8 12.9 24.3 13.4
+filt. synth. NM 16.7 13.5 15.7 14.3
+filt. synth. NT 16.9 13.6 15.0 13.8
NM+NT+LMT - 13.6 - 14.3

Table 6: Experiment results for translating be-
tween English↔Latvian on development (news-
dev2017) and test (newstest2017). Submitted sys-
tems are in bold.

4.1 Shared Task Results

Table 7 shows how our systems were ranked in
the WMT17 shared news translation task against
other submitted primary systems in the constraint
track. Since the human evaluation was performed
by showing evaluators only the reference trans-
lation and not the source, the human evaluation
rankings are the same as BLEU, which also con-
siders only the reference translation. One excep-
tion is the ranking for En→Lv, where an insuf-
ficient amount of evaluations were performed to
cover all submitted systems, resulting in a tie for
the 1st place across all but one submitted systems.
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Figure 2: Attention alignment visualization of a translation, in which the all alignments are strong and
mainly connected to only one-to-one. Reference translation: Keplers izmēra zvaigžņu griešanās ātrumu
Plejādes zvaigznājā ., hypothesis translation: Kepler measures spin rates of stars in Pleiades cluster

System
Rank

BLEU Human
Cluster Ave %

De→En 6 of 7 6-7 of 7 7 of 7
En→De 10 of 11 9-11 of 11 9 of 11
En→Lv 11 of 12 1-11 of 12 11 of 12
Lv→En 5 of 6 4-5 of 6 4 of 6

Table 7: Automatic (BLEU) and human ranking
of our submitted systems (C-3MA) at the WMT17
shared news translation task, only considering pri-
mary constrained systems. Human rankings are
shown by clusters according to Wilcoxon signed-
rank test at p-level p≤0.05, and standardized mean
DA score (Ave %).

5 Conclusions

In this paper we described our submissions to
the WMT17 News Translation shared task. Even
though none of our systems were on the top of
the list by automated evaluation, each of the im-
plemented methods did give measurable improve-
ments over our baseline systems. To complement
the paper, we release open-source software4 and
configuration examples that we used for our sys-
tems.

4Scripts for Tartu Neural MT systems for WMT 17 -
https://github.com/M4t1ss/C-3MA
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Abstract

This paper describes the University of
Edinburgh’s submissions to the WMT17
shared news translation and biomedical
translation tasks. We participated in 12
translation directions for news, translating
between English and Czech, German, Lat-
vian, Russian, Turkish and Chinese. For
the biomedical task we submitted systems
for English to Czech, German, Polish and
Romanian. Our systems are neural ma-
chine translation systems trained with Ne-
matus, an attentional encoder-decoder. We
follow our setup from last year and build
BPE-based models with parallel and back-
translated monolingual training data. Nov-
elties this year include the use of deep ar-
chitectures, layer normalization, and more
compact models due to weight tying and
improvements in BPE segmentations. We
perform extensive ablative experiments,
reporting on the effectivenes of layer nor-
malization, deep architectures, and differ-
ent ensembling techniques.

1 Introduction

We participated in the WMT17 shared news trans-
lation task for 12 translation directions, translat-
ing between English and Czech, German, Latvian,
Russian, Turkish and Chinese, and in the WMT17
shared biomedical translation task for English to
Czech, German, Polish and Romanian.1 We sub-
mitted neural machine translation systems trained
with Nematus (Sennrich et al., 2017). Our setup
is based on techniques described in last year’s sys-
tem description (Sennrich et al., 2016a), includ-
ing the use of subword models (Sennrich et al.,
1 We provide trained models and training commands at
http://data.statmt.org/wmt17_systems/

2016c), back-translated monolingual data, (Sen-
nrich et al., 2016b), and re-ranking with right-to-
left models.

This year, we experimented with deep network
architectures, new ways to include monolingual
data, and different ensembling variants. Other
novelties include obtaining more compact models
via better BPE segmentation and by weight tying
(Press and Wolf, 2017), and speeding up model
training with layer normalization (Ba et al., 2016)
and adam (Kingma and Ba, 2015).

We perform extensive ablative experiments
across language pairs to evaluate the effectiveness
of each of these approaches. When comparing this
year’s baseline models to our best results, we show
consistent increases in scores of 2.2–5 BLEU for
our 12 news task language pairs. Among the con-
strained submissions to the news task, our submis-
sions are ranked tied first for 11 out of the 12 trans-
lation directions in which we participated. For the
biomedical task, we obtained the highest BLEU for
all our submitted systems.

For the 6 language pairs for which we partici-
pated both in WMT16 and WMT17, we also show
the scores of last year’s systems. We observe solid
improvements with increases of 1.5–3 BLEU for
single models. Some of these improvements are
due to differences in training data, preprocessing
and hyperparameters, but most of the increase is
due to layer normalization and deeper models. It
is worth mentioning that our deeper models were
trained on single GPUs, showing that the benefits
of deeper models can be harnessed with limited
hardware resources.

2 Novelties

Here we describe the main differences to last
year’s systems.
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2.1 Subword Segmentation

Like last year, we use joint byte-pair encoding
(BPE) for subword segmentation (Sennrich et al.,
2016c) (except for ZH↔EN, where we train two
separate BPE models). Joint BPE introduces un-
desirable edge cases in that it may produce sub-
word units that have only been observed in one
side of the parallel training corpus, and may thus
be out-of-vocabulary at test time. To prevent this,
we have modified our BPE script to only produce
subword units at test time that have been observed
in the source side of the training corpus.2 Out-
of-vocabulary subword units are recursively seg-
mented into smaller units until this condition is
met.

We use the same technique to disallow rare sub-
word units (words occurring less than 50 times in
the training corpus), both at test time and in the
training corpus, both on the source-side and the
target-side. This reduces the number of vocabu-
lary symbols reserved for spurious, low-frequency
subword units, and allows for more compact mod-
els. For example, for EN↔DE, using 90000 joint
BPE operations, this filtering reduces the network
vocabulary size for English from 80581 to 51092,
with only a minor increase in sequence length
(+0.2%). In preliminary experiments, this did
not significantly affect BLEU, but slightly reduced
the number of spurious OOVs produced – on
EN→DE, unigram precision for OOVs increased
from 0.34 to 0.36 on newstest2015 (N = 1168).

2.2 Layer Normalisation and Adam

This year, we use layer normalisation (Ba et al.,
2016) for all systems. We apply layer normalisa-
tion to all recurrent and feed-forward layers, ex-
cept for layers that are followed by a softmax.
As SGD optimization algorithm, we use adam
(Kingma and Ba, 2015) instead of adadelta (Zeiler,
2012), which we used last year.

In preliminary experiments, we found that both
adam and layer normalisation lead to faster con-
vergence, and result in better performance.

2.3 Deep Architectures

Miceli Barone et al. (2017) describe different deep
recurrent architectures for neural machine trans-
lation. We use some of these architectures for
our shared task submissions. We mainly use a
deep transition architecture, but some runs use a
2
https://github.com/rsennrich/subword-nmt

stacked architecture. Implementations of both of
these architectures are available in Nematus.

For completeness, we here reproduce the de-
scription of the relevant deep architectures from
(Miceli Barone et al., 2017). Note that some
results reported by Miceli Barone et al. (2017)
were obtained after the shared task submission,
which explains why we did not choose the best-
performing architecture, BiDeep.

2.3.1 Deep Transition Architecture
As in a baseline shallow Nematus system, the en-
coder is a bidirectional recurrent neural network.
However, instead of being a simple GRU transi-
tion (Cho et al., 2014), the recurrence transition is
itself composed of multiple GRU transitions with
independently trainable parameters, all of which
are executed sequentially for each input word.

Let Ls be the encoder recurrence depth, then for
the i-th source word in the forward direction the
forward source word state

−→
h i ≡

−→
h i,Ls is com-

puted as

−→
h i,1 = GRU1

(
xi,
−→
h i−1,Ls

)

−→
h i,k = GRUk

(
0,
−→
h i,k−1

)
for 1 < k ≤ Ls

where the input to the first GRU transition is the
word embedding xi, while the other GRU transi-
tions have no external inputs. Note that each GRU
transition is not internally recurrent, recurrence
only occurs at the level of the whole multi-layer
transition cell, as the previous word state

−→
h i−1,Ls

enters the computation in the first GRU transition.
The reverse source word states are computed sim-
ilarly and concatenated to the forward ones to
form the bidirectional source word states C ≡{[−→

h i,Ls

←−
h i,Ls

]}
.

The deep transition decoder is obtained by ex-
tending the baseline decoder in a similar way.
Note that the baseline decoder of Nematus has al-
ready a transition depth of two, with the first GRU
transition receiving as input the embedding of the
previous target word and the second GRU transi-
tion receiving as input a context vector computed
by the attention mechanism. We extend this de-
coder architecture to an arbitrary transition depth
Lt as follows

sj,1 = GRU1 (yj−1, sj−1,Lt)

sj,2 = GRU2 (ATT(C, sj,1), sj,1)

sj,k = GRUk (0, sj,k−1) for 2 < k ≤ Lt
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where yj−1 is the embedding of the previous target
word and ATT(C, si,1) is the context vector com-
puted by the attention mechanism. GRU transi-
tions other than the first two do not have external
inputs. The target word state vector sj ≡ sj,Lt is
then used by the feed-forward output network to
predict the current target word.

In our experiments we use an encoder recur-
rence depth Ls = 4 and a decoder recurrence
depth Lt = 8.

2.3.2 Stacked architecture
For our stacked architecture we use a variation of
the one proposed by Zhou et al. (2016) with resid-
ual connections between the stack layers.

The forward encoder consists of a stack of GRU
recurrent neural networks, the first one processing
words in the forward direction, the second one in
the backward direction, and so on, in alternating
directions. For an encoder stack depth Ds, and
a source sentence length N , the forward source
word state −→w i ≡ −→w i,Ds is computed as

−→w i,1 =
−→
h i,1 = GRU1

(
xi,
−→
h i−1,1

)

−→
h i,2k = GRU2k

(−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = GRU2k+1

(−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1

for 1 < j ≤ Ds

where we assume that source word indexes i start
at 0 and

−→
h 0,k and

−→
h N+1,k are zero vectors. Con-

trary to the deep transition encoder, each GRU
transition here is a recurrent cell by itself. Note the
residual connections: at each level above the first
one, the word state of the previous level −→w i,j−1 is
added to the recurrent state of the GRU cell

−→
h i,j

to compute the the word state for the current level
−→w i,j . The backward encoder has the same struc-
ture, except that the first layer of the stack pro-
cesses the words in the backward direction and
the subsequent layers alternate directions. The
forward and backward word states are then con-
catenated to form bidirectional word states C ≡
{[−→w i,Ds

←−w i,Ds ]}.
The stacked decoder has a similar structure,

without any direction alternation. While the base
GRU in the decoder is a conditional GRU with two

Table 1: BLEU scores for EN↔TR when adding
copied monolingual data.

TR→EN EN→TR
system 2016 2017 2016 2017
baseline 20.0 19.7 13.2 14.7
+copied 20.2 19.7 13.8 15.6

transitions, we use simple GRUs on higher layers.
The "external" input to the higher layers is the con-
catenation of the state below and the context vec-
tor from the base RNN (Wu et al., 2016).

Where we have used the stacked architecture,
we set both encoder and decoder depths to 4.

2.4 Monolingual Data

Like last year, we use back-translated monolingual
data to augment our training data sets. We use
two different training regimes to incorporate this
monolingual data. In the mixed approach, we mix
the synthetic and parallel data from the beginning
of training, whilst in the fine-tuned approach we
train a system using only the parallel data, then
when this has converged we continue training us-
ing the parallel/synthetic mix. In both cases, the
mixing proportions are set to 1:1, over-sampling
from the smaller corpus where necessary. We find
that the mixed approach is faster overall to train,
although the fine-tuned approach has the advan-
tage that the intermediate model could be adapted
to a different domain using appropriate in-domain
data.

For EN↔TR, we also experiment with a novel
approach for incorporating target-side monolin-
gual data. This consists of copying a monolingual
corpus to convert it into a bitext where the source
and target sides are identical. This copied bitext
is then mixed with the parallel and back-translated
data in order to train the NMT system; no distinci-
ton is made between the copied, back-translated,
and parallel data during training. The mixing pro-
portions of parallel, copied, and back-translated
data we use in the EN↔TR experiments are 1:2:2,
and we use the same monolingual data for both
the copied and the back-translated corpora. More
details can be found in Currey et al. (2017).

Table 1 shows the results of using the copied
monolingual data while training. All systems are
trained using parallel and back-translated data.
Adding the copied monolingual data either yields
modest improvements or does no damage, so we
adopt this strategy for all EN↔TR experiments.
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In preliminary experiments, we applied the
same approach for EN↔LV (in a 1:1:1 ratio).
Compared to our baseline EN↔LV systems, the
addition of copied monolingual led to a slight de-
crease in translation quality (around 0.5 BLEU) on
the devset and a slight improvement (0.1 BLEU)
on the newstest2017 set.

2.5 Memory Efficiency
We reduce the memory footprint of our models
by reducing the vocabulary sizes (Section 2.1),
and by tying the weights of the target-side embed-
ding and the transpose of the output weight matrix,
which have the same dimensionality in our archi-
tecture (Press and Wolf, 2017). Using these tech-
niques, we were able to train deep models on sin-
gle GPUs (equipped with 8–12GB memory) with-
out requiring model parallelism.

3 System Overview

3.1 Data and Preprocessing
All our systems are constrained and use data from
the website of the shared task.3

For preprocessing, we use the Moses tokenizer
with hyphen splitting ("-a" option), and perform
truecasing with Moses scripts (Koehn et al., 2007).
For subword segmentation, we use 90000 joint
BPE operations, filtered according to section 2.1.
The preprocessing pipeline was different for Rus-
sian and Chinese (because of non-Latin scripts).
For EN→LV, we used the data that was pre-
pared for the QT21 system combination (Peter
et al., 2017). The variations are described in the
language-specific sections below.

3.2 Baseline Systems
We train all systems with Nematus (Sennrich et al.,
2017), which implements an attentional encoder-
decoder with small modifications to the model in
Bahdanau et al. (2015). We use word embedding
sizes of 500 or 512, and hidden layer size 1024.
We adapt the size of the network vocabulary to the
size of the BPE vocabulary of the respective lan-
guage.

We use adam (Kingma and Ba, 2015) as opti-
mizer with a learning rate of 0.0001, and a batch
sizes of 60 or 80 (depending on GPU memory).
We filter out sentences with a length greater than
50 subwords. We tie the weights of the target-side
3http://data.statmt.org/wmt17/
translation-task.html

embedding and the transpose of the output weight
matrix (Press and Wolf, 2017). We stop training
when the validation cross-entropy fails to reach
a new minimum for 10 consecutive save-points
(saving every 10000 updates) and select the final
model as the one having the best BLEU on valida-
tion.

For ensembling, we contrast two strategies:

• checkpoint ensembles, i.e. using the last N
checkpoints of a single training run, which is
a cheap way of obtaining an ensemble, and
which we used in last year’s submission.

• independent ensembles, i.e. training N
models independently, potentially with dif-
ferent hyperparameters, which is more ex-
pensive, but likely to yield more diversity.

4 Experiments

4.1 Chinese↔ English

For this language pair, we use all the available
parallel data, except for 2000 sentence pairs from
news-commentary which we hold back for valida-
tion. The English side is preprocessed using the
same pipeline as for other language pairs, train-
ing a single BPE model with 59500 merge opera-
tions. For the Chinese side, we segment it using
the Jieba4 segmenter, except for Books 1–10 and
data2011 which were already segmented. We then
learn a BPE model on the segmented Chinese, also
using 59500 merge operations.

For training the ZH→EN system we augment
the parallel data with back-translation of the WMT
news2016 monolingual corpus, translated using
a shallow Nematus system built from the paral-
lel data only. Since there was no monolingual
news release for Chinese, we use LDC Chinese
Gigaword (4th edition) to create synthetic data for
EN→ZH, again using a shallow Nematus system
for back-translation. In total we have approx-
imately 24M parallel sentences, plus 20M sen-
tences of synthetic data for ZH→EN and 8.5M for
EN→ZH.

For ZH→EN we run 3 separate training runs
in each direction (i.e. target left-right and tar-
get right-left). One run in each direction uses
the stacked model architecture, and the fine-tuned
training regime, whereas the other two use the
deep transition architecture with a mixed training
4https://github.com/fxsjy/jieba
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regime. Initially we used a 2000 sentence por-
tion of news-commentary for validation, but dur-
ing the fine-tuning phase of the fine-tuned runs
we switch to the development set released for
the task (newsdev2017). For the mixed runs, we
found that training converged and started to overfit
the news-commentary validation set, so we restart
with newsdev2017 as validation and ran to conver-
gence. The final system is an ensemble of the best
validation BLEU model from each of the three tar-
get left-right runs, rescored with the three target
right-left runs, and reranked.

For EN→ZH we use the same training setup,
with three runs for each target direction, and the
same mix of models and training regimes. We
use news-commentary as the validation set, ex-
cept during the fine-tuning phase, where we use
newsdev2017. The final system is an ensemble
of four target left-right systems (the best valida-
tion BLEU model from each of the three runs, plus
the same from the first run before fine-tuning),
rescored with a similar ensemble of target right-
left models and reranked. The final output is post-
processed by removing all spaces (except when
there was an ascii letter on either side) and then
converting ascii full-stops and commas to their ap-
propriate CJK unicode equivalents.

4.2 Czech↔ English

To create the parallel corpus, we take the whole
of CzEng 1.6pre (Bojar et al., 2016), plus the lat-
est WMT releases of Europarl, News-commentary
and CommonCrawl. We clean the corpus by run-
ning langid5 over both sides and rejecting any par-
allel sentences whose English sides are not la-
belled as English, or whose Czech sides are not la-
belled as Czech, Slovak or Slovenian, by langid.6

The rest of the preprocessing pipeline is the same
as the general case (Section 3.1).

The parallel training data is augmented with
synthetic parallel data created from the WMT
news2016 monolingual corpus, back-translated
using Edinburgh’s WMT16 systems.7 This pro-
vides about 20M synthetic parallel sentences for
CS→EN and nearly 6M for EN→CS.

For CS→EN we use the stacked model archi-
tecture for all systems, training 4 target left-right

5https://github.com/saffsd/langid.py
6 Since langid does not use an estimate of prior language

probability, this is a crude way of improving recall.
7 The binary models are available at http://data.
statmt.org/rsennrich/wmt16_systems/

systems and 4 target right-left. The first of the left-
right systems use the fine-tuned training regime,
whereas the rest are all trained using the mixed
regime. The final system is an ensemble of the
left-right systems, with 12-best lists rescored with
the right-left systems and reranked.

The same number of left-right and right-left
models are used for EN→CS, with 2 of the left-
right models using the fine-tuned training regime
and the rest the mixed training regime. One of
these fine-tuned models uses the stacked architec-
ture whilst all the other EN→CS models use the
deep transition architecture. Once again, the fi-
nal system is an ensemble of the left-right models,
rescored and reranked with the right-left systems.

4.3 German↔ English

For the German-to-English and English-to-
German system we use the pre-processed training
data sets for the shared news translation task
provided by the task organizers,8 and supplement
them with synthetic training data (Sennrich et al.,
2016b) created by back-translating ca. 10 million
sentences each from the 2016 monolingual news
crawl data sets available through the web site
for the shared task. For back-translation, we use
Edinburgh’s WMT16 systems.

Eight independent deep models are trained for
each translation direction: four producing the
translation left-to-right; four producing it right-to-
left. The left-to-right models are ensembled to
produce an n-best list of 50 translation hypothe-
ses (beam size 50), which are then re-ranked by an
ensemble of the four right-to-left models.

4.4 Latvian↔ English

For EN→LV, we use the parallel data that was
prepared for the QT21 system combination (Pe-
ter et al., 2017). The main differences from the
standard preprocessing pipeline described in Sec-
tion 3.1 are the use of a custom tokenizer with
Latvian-specific handling of abbreviations, dates,
numeric expressions, etc. and data filtering to re-
move noisy sentence pairs. For LV→EN, we ap-
ply the standard preprocessing pipeline after fil-
tering the parallel corpus to remove the noisy sen-
tence pairs identified during EN→LV preparation.
In both cases, we reserve the first 2000 sentences
of the (unfiltered) LETA news corpus for use as

8http://data.statmt.org/wmt17/
translation-task/preprocessed/de-en/
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a validation set during system development (with
newsdev2017 used as a test set).

To produce LV→EN and EN→LV synthetic
data we back-translate the WMT monolingual En-
glish and Latvian news 2016 corpora, respectively.
We use phrase-based systems for back-translation,
since these produced better translations (accord-
ing to BLEU) than our preliminary parallel-only
neural systems. The EN→LV synthetic data was
subsequently filtered using the same method as for
the original parallel data.

For the final system, we train eight indepen-
dent models: four left-to-right and four right-to-
left, from which we chose one model checkpoint
from each based on the score on newsdev2017.
The 50-best output from a left-to-right ensemble
was rescored using the right-to-left models. When
scoring translation candidates, we normalise the
log probabilities by translation length, adjusted
according to the method described in Wu et al.
(2016). We optimise the length penalty (i.e., the
alpha value in Wu et al. (2016)) on newsdev2017,
setting it to 0.6 for EN→LV and 0.7 for LV→EN.

Our EN→LV models are also used in the QT21
system combination. For a description of the com-
bined system and results, see Peter et al. (2017).

4.5 Russian↔ English

We use the following resources from the WMT
parallel data: News Commentary v12, Common
Crawl, Yandex Corpus and UN Parallel Corpus
V1.0. We do not use Wiki Headlines. To in-
crease the consistency between English and Rus-
sian segmentation despite the differing alphabets,
we transliterate the Russian vocabulary into Latin
characters with ISO-9 to learn the joint BPE en-
coding, then transliterate the BPE merge opera-
tions back into Cyrillic. We apply the concatena-
tion of the Cyrillic and Latin merge operations to
the English and Russian side.

In order to incorporate in-domain parallel train-
ing data, we also use Edinburgh’s WMT16 sys-
tems to backtranslate monolingual data. We
translate the Russian (7.1M sentence) and En-
glish (20.4M sentences) News Crawl articles from
2016, which is combined with human-translated
parallel data in a 1:1 mix. We used the deep tran-
sition architecture for our experiments.

For the final system, we train eight independent
models: four left-to-right and four right-to-left,
from which we choose one model checkpoint from

each based on the score on newsdev2017. The
50-best output from a left-to-right ensemble was
rescored using the right-to-left models. There was
a preprocessing error in the RU→EN backtransla-
tion data and this is the reason that the submission
result is worse than the corrected results published
in this paper.

4.6 Turkish↔ English

We use all of the available parallel training data to
train our TR↔EN systems. This consists of about
200k parallel sentences after preprocessing. The
preprocessing is as described in section 3.1, with
the exception of the subword segmentation. For
both directions, we do not include the modifica-
tions to subword segmentation described in sec-
tion 2.1; i.e. we do not disallow rare subword
units in the training corpus. This is done because
of the relatively small amount of training data for
this language pair.

In addition to the parallel training data, target-
side monolingual data is incorporated into our sys-
tems. For both languages, we randomly select
about 400k sentences from the WMT News Crawl
2016 corpus for this purpose. The same mono-
lingual data is used as both back-translated and
copied data (see section 2.4), and we use a mixed
training regime for all experiments. We create the
back-translated corpus using a shallow NMT sys-
tem trained on the parallel training data.

We use the stacked model architecture for all
systems. We train eight models for each trans-
lation direction: four left-to-right and four right-
to-left. We ensemble the left-to-right models and
take the 50 best translation hypotheses; these are
reranked using an ensemble of the right-to-left
models.

4.7 Biomedical Task Systems

4.7.1 Overview
The systems for EN→PL and EN→RO are created
specifically for the WMT17 biomedical task us-
ing a similar model to the systems created for the
news task. We use all the parallel data provided
in the UFAL Corpus released for this task, first re-
moving any parallel sentences where either side
contains no ascii letters, then running the prepro-
cessing pipeline as described in Section 3.1. For
Romanian, we apply normalisation of “t-comma”
and “s-comma” characters.

For EN→CS and EN→DE, our systems are
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based on earlier work, so are created using differ-
ent data sets. For EN→CS, our starting point is the
Edinburgh WMT16 system, whereas for EN→DE
we use all available data from OPUS9 (gathered in
May 2015) plus a small (10,000 sentence) corpus
of translated Cochrane abstracts.

4.7.2 Synthetic Data

As in the news task, we seek to improve perfor-
mance of the generic system by using in-domain
training data, synthesising new data when there is
insufficient naturally-occurring parallel data. We
first tried fine-tuning with the EMEA corpus (drug
information leaflets), but this did not give good re-
sults, probably because it is relatively small and
not sufficiently close to the domain of interest.

Turning to back-translation as a source of par-
allel data for fine-tuning, we find that there is no
good source of in-domain target language data.
So, since the development and test sets are drawn
from the websites of NHS 24 and Cochrane, we
apply the following procedure in order to generate
in-domain synthetic data:

1. Crawl the NHS 24 websites
(www.nhsinform, www.nhs24.com,
www.scot.nhs.uk) and the Cochrane
websites (www.cochrane.org and
www.cochranelibrary.com) to create
English corpora of about 64k and 174k
segments, respectively.

2. Machine translate each of these crawled cor-
pora into the 4 target languages (Czech, Ger-
man, Polish and Romanian). For all except
for Polish, we used Edinburgh WMT16 sys-
tem. For Polish we use a shallow Nematus
system trained on OPUS.

3. Apply Moore-Lewis selection (Moore and
Lewis, 2010), using the translated Cochrane
and NHS 24 crawls as in-domain data, to
select from the monolingual CommonCrawl
corpus (Buck et al., 2014) in each of the 4
languages. We restrict to sentences between
10 and 80 tokens long in CommonCrawl. We
select corpora of between 4M and 10M sen-
tences in each of 2 domains, by 4 languages.

4. Back-translate the selected corpora to En-
glish, again using either the Edinburgh
WMT16 system for the language pair in
question, or a Nematus system trained from
OPUS.

9http://opus.lingfil.uu.se/

An additional complication for Romanian is that
the CommonCrawl corpus is particularly inconsis-
tent in its use of diacritics (this is a problem we
have observed to a lesser extent in other Romanian
corpora). To fix this, we train a “diacritiser” for
Romanian, which is actually an NMT system map-
ping Romanian text with diacritics stripped, to cor-
rect Romanian text. As training data for the dia-
critiser we use the Europarl, DGT and SETIMES2
corpora from OPUS. The diacritiser is applied to
the CommonCrawl text selected above.

For the Romanian system we combine the cor-
pora selected by both Cochrane and NHS 24, and
train a single adapted system, for Polish we just
use the corpus selected by the NHS 24 data, and
for German and Czech we used the separate se-
lected corpora to create adapted systems for each
of Cochrane and NHS 24. We show the effect of
this domain adaptation in Section 5.

4.7.3 System Details
For all language pairs, we use the HimL tuning
sets for validation, and the HimL test sets as de-
vtest sets.10

EN→CS We use shallow Nematus models, fine-
tuned from Edinburgh’s WMT16 system. There
are separate fine-tuning runs for NHS 24 and
Cochrane, each using 4M sentences randomly se-
lected from CzEng, the synthetic corpus described
above, and the EMEA corpus. The final system is
an ensemble of the final 4 checkpoints.

EN→DE This is similar to EN→CS, except that
the generic training corpus consists of about 44M
sentence pairs from OPUS. For fine-tuning we use
the synthetic corpus, EMEA, and 10M sentences
randomly selected from the generic corpus. For
Cochrane, we add 10k parallel sentences of ab-
stracts from the Cochrane website.

EN→PL We use the UFAL corpus (39M sen-
tence pairs) as the generic corpus, and the syn-
thetic data and EMEA as the in-domain data (19M
sentence pairs). The final system is an ensem-
ble of four target left-right systems, reranked with
two target left-right systems. One of each of the
left-right and right-left systems uses the fine-tuned
training regime and the stacked model architec-
ture, whereas the others use the mixed regime and
deep transition architecture. In the reranking, we
apply a heuristic to remove hypotheses consisting
10http://www.himl.eu/test-sets
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Table 2: BLEU scores for translating news into English (WMT 2016 and 2017 test sets – WMT 2017 dev
set is used where there was no 2016 test)

CS→EN DE→EN LV→EN RU→EN TR→EN ZH→EN
system 2016 2017 2016 2017 2017d 2017 2016 2017 2016 2017 2017d 2017
WMT-16 single system 30.1 25.9 36.2 31.1 — — 26.9 29.6 — — — —
baseline 31.7 27.5 38.0 32.0 23.5 16.4 27.8 31.3 20.2 19.7 19.9 21.7
+layer normalization 32.6 28.2 38.6 32.1 24.4 17.0 28.8 32.3 19.5 18.8 20.8 22.5
+deep model 33.2 28.9 39.6 33.5 24.4 16.6 29.0 32.7 20.6 20.6 22.1 22.9
+checkpoint ensemble 33.8 29.4 39.7 33.8 25.7 17.7 29.5 33.3 20.6 21.0 22.5 23.6
+independent ensemble 34.6 30.3 40.7 34.4 27.5 18.5 29.8 33.6 22.1 21.6 23.4 25.1
+right-to-left reranking 35.6 31.1 41.0 35.1 28.0 19.0 30.5 34.6 22.9 22.3 24.0 25.7
WMT-17 submissiona — 30.9 — 35.1 — 19.0 — 30.8 — 20.1 — 25.7
a In some cases training did not converge until after the submission deadline. The contrastive/ablative results shown were obtained with the converged systems; this line reports the BLEU

score for the system output submitted by the submission deadline.

Table 3: BLEU scores for translating news out of English (WMT 2016 and 2017 test sets – WMT 2017
dev set is used where there was no 2016 test)

EN→CS EN→DE EN→LV EN→RU EN→TR EN→ZH
system 2016 2017 2016 2017 2017d 2017 2016 2017 2016 2017 2017d 2017
WMT16 single system 23.7 19.7 31.6 24.9 — — 24.3 26.7 — — — —
baseline 23.5 20.5 32.2 26.1 20.8 14.6 25.2 28.0 13.8 15.6 30.5 31.3
+layer normalization 23.3 20.5 32.5 26.1 21.6 14.9 25.8 28.7 14.0 15.7 31.6 32.3
+deep model 24.1 21.1 33.9 26.6 22.3 15.1 26.5 29.9 14.4 16.2 32.6 33.4
+checkpoint ensemble 24.7 22.0 33.9 27.5 23.4 16.1 27.3 31.0 15.0 16.7 32.8 33.5
+independent ensemble 26.4 22.8 35.1 28.3 24.7 16.7 28.2 31.6 15.5 17.6 35.4 35.8
+right-to-left reranking 26.7 22.8 36.2 28.3 25.0 16.9 – – 16.1 18.1 35.7 36.3
WMT-17 submissiona – 22.8 – 28.3 – 16.9 – 29.8 – 16.5 – 36.3
a In some cases training did not converge until after the submission deadline. The contrastive/ablative results shown were obtained with the converged systems; this line reports the BLEU

score for the system output submitted by the submission deadline.

of many repeated quotes, as well as a length nor-
malisation trick (Wu et al., 2016). For the latter,
we optimise alpha on the HimL test sets, setting it
to 0.6 for NHS24 and 1.2 for Cochrane.

EN→RO The generic data for this system is the
UFAL corpus (about 62M sentence pairs) with our
in-domain set consisting of the synthetic data cre-
ated as above and EMEA (about 11M sentence
pairs). The final system is an ensemble of three
deep target left-right systems, reranked with three
target right-left systems. The first of the left-right
runs used the stacked architecture, and the fine-
tuned training regime, whereas the others used the
deep transition architecture and mixed training.
We again use the length normalisation trick, with
alpha set to 0.7 for NHS 24.

5 Results

The main results for the news translation task
are shown in Tables 2 and 3. We report case-
sensitive, detokenized BLEU, using the NIST
BLEU scorer.11 For Chinese output, we split to

11
https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/generic/mteval-v13a.pl

characters using the script supplied for WMT17
before running BLEU.

For reporting single system scores, we arbitar-
rily choose the first system that we trained, out of
the systems using the mixed training regime. In
some cases we obtained improvements after the
submission deadline, either due to longer training
or preprocessing changes. In these cases the con-
trastive/ablative results show the best-performing
systems, but we include the BLEU of the submit-
ted system for completeness.

For the biomedical systems, we show results on
the HimL test sets (“devtest”) as well as the final
released test sets in Table 4. The “+right-to-left
reranking” system also introduces the tuned length
normalisation.

For the language pairs for which we participated
both in WMT16 and WMT17, we also show the
scores of last year’s systems. We observe solid
improvements over these, with improvements of
1.5–3 BLEU for single models. Some of these
improvements are visible in our baseline systems,
which indicates that they are due to differences in
training data, preprocessing and hyperparameters.

We have highlighted the performance improve-

396



Table 4: Contrastive experiments for biomedical task. Submitted system marked in bold.

EN→PL EN→RO
devtest test devtest test

system Coch NHS24 Coch NHS24 Coch NHS24 Coch NHS24
baseline 19.8 24.3 26.2 18.2 35.4 29.5 36.8 23.0
+layer normalization 20.3 24.8 25.5 20.2 34.4 29.9 35.6 24.7
+deep model 20.6 24.5 25.9 20.2 36.7 30.0 37.8 27.3
+checkpoint ensemble 21.3 26.3 28.4 21.3 37.3 29.9 39.1 27.0
+independent ensemble 22.2 27.8 28.1 21.6 39.1 32.8 40.5 28.3
+right-to-left reranking 22.1 28.2 28.6 22.5 39.5 34.9 40.8 29.0
WMT17 submissiona – – 29.0 23.2 – – 41.2 29.3

a For the submitted systems we show the BLEU scores provided by the organisers, which used a different tokenisation to the other scores in the table. The
outputs are all obtained using the +right-to-left reranking system

ments of two architecture variants, layer normal-
ization and deep models, which lead to improve-
ments in BLEU across most language pairs. We
also show contrastive results for ensembling, com-
paring checkpoint ensembles to more expensive
independent ensembles. We find that checkpoint
ensembles generally yield performance improve-
ments over a single model, but that independent
ensembles are consistently more effective. Right-
to-left reranking yielded an average improvement
of 1 BLEU in our 2016 experiments; this year,
improvements are smaller, and between 0 and 1
BLEU. We attribute this to the stronger perfor-
mance of single models.

To show the effect of our domain adaptation for
the biomedical task, we display results in Table 5
with and without the synthetic data. In this table,
the “generic” system uses just the provided paral-
lel data, with the stacked architecture. After train-
ing to convergence on this data, we then fine-tune
the best model (selected by BLEU) using a 50-50
mixture of in-domain data (synthetic plus EMEA)
and the generic parallel data. We report BLEU us-
ing the NIST scorer, for the best single model and
an ensemble of the last four checkpoints, compar-
ing the generic and the fine-tuned systems. Note
that the system shown here is a different run to the
single system shown in Table 4.

We can see that the adaptation has a positive ef-
fect on BLEU on all of the EN→PL test sets, how-
ever in EN→RO the effect is more mixed. We note
that there are improvements on the correspond-
ing single best models, but there seems to be a
problem with the checkpoint ensemble for NHS
24. Looking more closely at the output we can
see that when the BLEU score drops, the output is
around 10% longer, due to the increased propor-
tion of “nonsense” sentences. The checkpoint en-
semble is perhaps being more affected by volatility

in training, as it selects models based on iteration
count, rather than heldout performance.

An independent analysis of our EN→CS and
EN→LV news systems’ performance with regard
to morphology can be found in Burlot and Yvon
(2017).

6 Conclusions

This paper describes the University of Edinburgh’s
submissions to the WMT17 shared news transla-
tion and biomedical translation tasks. We per-
form extensive ablation experiments to report the
effectiveness of different architecture choices and
ensembling techniques. We report strong base-
lines that use both parallel and (back-translated)
monolingual data, and already outperform our last
year’s submissions to WMT 2016. On top of these,
we find that layer normalization and deep mod-
els lead to improvements across most language
pairs. We also report performance gains from en-
sembling and re-ranking with right-to-left models,
and find that gains have decreased slightly com-
pared to last year’s systems, despite using the more
expensive strategy of ensembling independently
trained models.

Among constrained submissions to the news
task, our submissions are ranked tied 1st for 11 out
of 12 translation directions in which we partici-
pated: EN→{CS, RU, LV, TR, ZH}, and {CS, DE,
LV, RU, TR, ZH}→EN. In the biomedical task, we
obtained the highest BLEU across all submissions,
for all language/domain combinations that we sub-
mitted.
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Abstract

This paper describes the Neural Machine
Translation systems of Xiamen University
for the translation tasks of WMT 17. Our
systems are based on the Encoder-Decoder
framework with attention. We partici-
pated in three directions of shared news
translation tasks: English→German and
Chinese↔English. We experimented with
deep architectures, different segmentation
models, synthetic training data and target-
bidirectional translation models. Experi-
ments show that all methods can give sub-
stantial improvements.

1 Introduction

Neural Machine Translation (NMT) (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015) has achieved great success in recent years
and obtained state-of-the-art results on various
language pairs (Zhou et al., 2016; Sennrich
et al., 2016a; Wu et al., 2016). This paper de-
scribes the NMT systems of Xiamen University
(XMU) for the WMT 17. We participated in
three directions of shared news translation tasks:
English→German and Chinese↔English. We use
two different NMTs for shared news translation
tasks:

• MININMT: A deep NMT system (Zhou
et al., 2016; Wu et al., 2016; Wang et al.,
2017) with a simple architecture. The de-
coder is a stacked Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber,
1997) with 8 layers. The encoder has two
variants. For English-German translation,
we use an interleaved bidirectional encoder
with 2 columns. Each column consists of
4 LSTMs. For Chinese-English translation,

we use a stacked bidirectional encoder with 8
layers.

• DL4MT: Our reimplementation of dl4mt-
tutorial1 with minor changes. We also use a
modified version of AmuNMT C++ decoder2

for decoding. This system is used in the
English-Chinese translation task.

We use both Byte Pair Encoding (BPE) (Sennrich
et al., 2016c) and mixed word/character segmenta-
tion (Wu et al., 2016) to achieve open-vocabulary
translation. Back-translation method (Sennrich
et al., 2016b) is applied to make use of monolin-
gual data. We also use target-bidiretional trans-
lation models to alleviate the label bias prob-
lem (Lafferty et al., 2001).

The remainder of this paper is organized as fol-
lows: Section 2 describes the architecture of MIN-
INMT. Section 3 describes all experimental fea-
tures used in WMT 17 shared translation tasks.
Section 4 shows the results of our experiments.
Section 5 shows the results of shared translation
task. Finally, we conclude in section 6.

2 Model Description

Deep architectures have recently shown promis-
ing results on various language pairs (Zhou et al.,
2016; Wu et al., 2016; Wang et al., 2017). We also
experimented with a deep architecture as depicted
in Figure 1. We use LSTM as the main recurrent
unit and residual connections (He et al., 2016) to
help training.

Given a source sentence x = {x1, . . . , xS} and
a target sentence y = {y1, . . . , yT }, the encoder
maps the source sentence x into a sequence of
annotation vectors {xi}. The decoder produces

1https://github.com/nyu-dl/
dl4mt-tutorial

2https://github.com/emjotde/amunmt

400



Attention

... ... ... ...

Annotation

x1 x2 x3 </s>

... ... ... ...

</s> y1 y2 y3

Softmax

y1 y2 y3 </s>

Figure 1: The architecture of our deep NMT system, which is inspired by Deep-Att (Zhou et al., 2016)
and GNMT (Wu et al., 2016). Both the encoder and decoder adopt LSTM as its main recurrent unit. We
also use residual connections (He et al., 2016) to help training, but here we omit it for clarity. We use
black lines to denote input connections while use blue lines to denote recurrent connections.

translation yt given the source annotation vectors
{xi} and target history y<t.

2.1 Encoder

2.1.1 Interleaved Bidirectional Encoder

The interleaved bidirectional encoder was intro-
duced by (Zhou et al., 2016), which is also used
in (Wang et al., 2017). Like (Zhou et al., 2016),
our interleaved bidirectional encoder consists of
two columns. In interleaved bidirectional encoder,
the LSTMs in adjacent layers run in opposite di-
rections:

−→x i
t = LSTMf

i (
−→x i−1

t ,−→s i
t+(−1)i) (1)

←−x i
t = LSTMb

i(
←−x i−1

t ,←−s i
t+(−1)i+1) (2)

Here x0
t ∈ Re is the word embedding of word xt,

xi
t ∈ Rh is the output of LSTM unit and sit =

(cit,m
i
t) denotes the memory and hidden state of

LSTM. We set both e and h to 512 in all our ex-
periments. The annotation vectors xi ∈ R2h are
obtained by concatenating the final output −→x Lenc

and←−x Lenc of two encoder columns. In our experi-
ments, we set Lenc = 4.

2.1.2 Stacked Bidirectional Encoder

To better exploit source representation, we adopt a
stacked bidirectional encoder. As shown in Figure
1, all layers in the encoder are bidirectional. The

calculation is described as follows:

−→x i = LSTMf
i (x

i−1
t ,−→s i

t−1) (3)
←−x i = LSTMb

i(x
i−1
t ,←−s i

t+1) (4)

xi = [−→x iT ;←−x iT ]T (5)

To reduce parameters, we reduce the dimension of
hidden units from h to h/2 so that xi ∈ Rh. The
annotation vectors are taken from the output xLenc

of top LSTM layer. In our experiments, Lenc is set
to 8.

2.2 Decoder
The decoder network is similar to GNMT (Wu
et al., 2016). At each time-step t, let y0

t−1 ∈ Re

denotes the word embedding of yt−1 and y1
t−1 ∈

Rh denotes the output of bottom LSTM from pre-
vious time-step. The attention network calcu-
lates the context vector at as the weighted sum of
source annotation vectors:

at =

S∑

i=1

αt,i · xi (6)

Different from GNMT (Wu et al., 2016), we use
the concatenation of y0

t−1 and y1
t−1 as the query

vector for attention network, as described follows:

ht = [y0
t−1

T
;y1

t−1
T
]T (7)

et,i = vT
a tanh(Waht +Uaxi) (8)

αt,i =
exp(et,i)∑S
j=1 exp(et,j)

(9)
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This approach is also used in (Wang et al., 2017).
The context vector at is then fed to all decoder
LSTMs.

The probability of the next word yt is simply
modeled using a softmax layer on the output of
top LSTM:

p(yt|x,y<t) = softmax(yt,y
Ldec
t ) (10)

We set Ldec to 8 in all our experiments.

3 Experimental Features

3.1 Segmentation Approaches

To enable open-vocabulary, we use two ap-
proaches: BPE and mixed word/character segmen-
tation.

In most of our experiments, we use BPE3 (Sen-
nrich et al., 2016c) with 50K operations. In
our preliminary experiments, we found that BPE
works better than UNK replacement techniques.

For English-Chinese translation task, we apply
mixed word/character model (Wu et al., 2016) to
Chinese sentences. We keep the most frequent
50K words and split other words into characters.
Unlike (Wu et al., 2016), we do not add any pre-
fixes or suffixes to the segmented Chinese charac-
ters. In post-processing step, we simply remove
all the spaces.

3.2 Synthetic Training Data

We apply back-translation (Sennrich et al., 2016b)
method to use monolingual data. For English-
German and Chinese-English translation, we sam-
ple monolingual data from the NewsCrawl2016
corpora. For English-Chinese translation, we sam-
ple monolingual data from the XinhuaNet2011
corpus.

3.3 Target-bidirectional Translation

For Chinese-English translation, we also use a
target-bidirectional model (Liu et al., 2016; Sen-
nrich et al., 2016a) to rescore the hypotheses.

To train a target-bidirectional model, we reverse
the target side of bilingual pairs from left-to-right
(L2R) to right-to-left (R2L). We first output 50
candidates from the ensemble of 4 L2R models.
Then we rescore candidates by interpolating L2R
score and R2L score with uniform weights.

3https://github.com/rsennrich/
subword-nmt

3.4 Training
For all our models, we adopt Adam (Kingma and
Ba, 2015) (β1 = 0.9, β2 = 0.999 and ε = 1×
10−8) as the optimizer. The learning rate is set
to 5 × 10−4. We gradually halve the learning rate
during the training process. As a common way to
train RNNs, we clip the norm of gradient to a pre-
defined value 5.0. The batch size is 128. We use
dropout (Srivastava et al., 2014) to avoid overfit-
ting with a keep probability of 0.8.

4 Results

4.1 Results on English-German Translation

System Test (BLEU)
Baseline 25.7

+Synthetic 26.1
+Ensemble 26.7

Table 1: English-German translation results on
newstest2017.

Table 1 show the results of English-German
Translation. The baseline system is trained on
preprocessed parallel data4. For synthetic data,
we randomly sample 10M German sentences from
NewsCrawl2016 and translate them back to En-
glish using an German-English model. However,
we found random sampling do not work well. As
a result, for Chinese-English translation, we se-
lect monolingual data according to development
set. We first train one baseline model and continue
to train 4 models on synthetic data with different
shuffles. Next we ensemble 4 models and get the
final results. We found this approach do not lead
to substantial improvements.

4.2 Results on Chinese-English Translation

System Test (BLEU)
Baseline 23.1

+Synthetic 23.7
+Ensemble 25.3

+R2L reranking 26.0

Table 2: Chinese-English translation results on
newstest2017.

We use all training data (CWMT Corpus, UN
Parallel Corpus and News Commentary) to train a

4http://data.statmt.org/wmt17/
translation-task/preprocessed/de-en/
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baseline system. The Chinese sentences are seg-
mented using Stanford Segmenter5. For English
sentences, we use the moses tokenizer6. We filter
bad sentences according to the alignment score ob-
tained by fast-align toolkit7 and remove du-
plications in the training data. The preprocessed
training data consists of 19M bilingual pairs. As
noted earlier, the monolingual data is selected us-
ing newsdev2017. We first train 4 L2R models
and one R2L model on training data, then we fine-
tune our model on a mixture of 2.5M synthetic
bilingual pairs and 2.5M bilingual pairs sampled
from CWMT corpus. As shown in Table 2, we ob-
tained +1.6 BLEU score when ensembling 4 mod-
els. When rescoring with one R2L model, we fur-
ther gain +0.7 BLEU score.

4.3 Results on English-Chinese Translation

System Test (BLEU)
Baseline 30.4

+Synthetic 34.3
+Ensemble 35.8

Table 3: English-Chinese translation results on
newstest2017.

Table 3 show the results of English-Chinese
Translation. We use our reimplementation of
DL4MT to train English-Chinese models on
CWMT and UN parallel corpus. The preprocess-
ing steps, including word segmentation, tokeniza-
tion, and sentence filtering, are almost the same
as Section 4.2, except that we limited the vocab-
ulary size to 50K and split all target side OOVs
into characters. For synthetic parallel data, we use
SRILM8 to train a 5-gram KN language model on
XinhuaNet2011 and select 2.5M sentences from
XinhuaNet2011 according to their perplexities.
We obtained +3.9 BLEU score when tuning the
single best model on a mixture of 2.5M synthetic
bilingual pairs and 2.5M bilingual pairs selected
from CWMT parallel data randomly. We further
gain +1.5 BLEU score when ensembling 4 mod-
els.

5https://nlp.stanford.edu/software/
segmenter.shtml

6http://statmt.org/moses/
7https://github.com/clab/fast_align
8http://www.speech.sri.com/projects/

srilm/

5 Shared Task Results

Table 4 shows the ranking of our submitted sys-
tems at the WMT17 shared news translation task.
Our submissions are ranked (tied) first for 2 out of
3 translation directions in which we participated:
EN↔ZH.

Direction BLEU Rank Human Rank
EN→DE 4 2-9 of 16
ZH→EN 2 1-3 of 16
EN→ZH 2 1-3 of 11

Table 4: Automatic (BLEU) and human ranking
of our submitted systems at WMT17 shared news
translation task.

6 Conclusion

We describe XMU’s neural machine translation
systems for the WMT 17 shared news translation
tasks. All our models perform quite well on all
tasks we participated. Experiments also show the
effectiveness of all features we used.
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Abstract

We describe the JAIST phrase-based ma-
chine translation systems that participated
in the news translation shared task of the
WMT17. In this work, we participated in
the Turkish-English translation, in which
only a small amount of bilingual training
data is available, so that it is an exam-
ple of the low-resource setting in machine
translation. In order to solve the prob-
lem, we focus on two strategies: build-
ing a bilingual corpus from comparable
data and exploiting existing parallel data
based on phrase pivot translation. In or-
der to utilize the strategies to enhance ma-
chine translation on the low-resource set-
ting most effectively, we introduce a sys-
tem combining the extracted corpus, the
pivot translation, and the direct training
data. Experimental results showed that our
combined systems significantly improved
the baseline models, which were trained
on the small bilingual data.

1 Introduction

We participated in the WMT 17 news translation
shared task for the Turkish-English language pair.
The amount of bilingual training data for this lan-
guage pair is small, which means that this ma-
chine translation task poses the problem of a low-
resource setting. The problem causes a bottleneck
for current data-driven machine translation meth-
ods including phrase-based and neural-based ma-
chine translation because there are few large bilin-
gual corpora for most language pairs in the world
(Irvine, 2013; Wang et al., 2016).

In our systems, we focus on two strategies to
enhance machine translation for the low-resource
setting: building a bilingual corpus from compa-

rable data, and exploiting existing parallel cor-
pora based on the phrase pivot translation (Wu
and Wang, 2007; Cohn and Lapata, 2007; Utiyama
and Isahara, 2007). First, we built a bilingual cor-
pus for Turkish-English based on parallel titles of
Wikipedia articles. The parallel titles were ex-
tracted from Wikipedia articles’ titles and inter-
language link records. Bilingual articles were col-
lected based on the title pairs. Then, bilingual
sentences were extracted from the article pairs us-
ing the Microsoft sentence aligner (Moore, 2002).
Second, we exploited the phrase pivot translation
method using six pivot languages to bridge the
translation between Turkish and English. Finally,
the two resources of the extracted corpus and the
pivot translation were utilized with the direct bilin-
gual training data in a combined system. Our
combined systems achieved a significant improve-
ment compared with the baseline model, which
was trained on the direct bilingual data. The code
and datasets used in our systems can be found at
the repository.1

2 Methods

We describe approaches used in our systems. The
Turkish-English bilingual data in this shared task
embodies only 207k parallel sentences, which is
an instance of machine translation task in low-
resource setting. Our goal is to enhance the
phrase-based machine translation on the low-
resource setting by using two approaches: build-
ing a Turkish-English bilingual corpus from com-
parable data, and exploiting existing parallel cor-
pora based on the phrase pivot translation method.
The two approaches were then combined to en-
hance machine translation on the low-resource set-
ting most effectively.

1https://github.com/nguyenlab/WMT17-JAIST
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2.1 Building A Turkish-English Bilingual
Corpus from Comparable Data

We built a bilingual corpus for Turkish-English
from comparable data to improve machine trans-
lation on the low-resource setting. We used
Wikipedia, a free accessible resource containing
articles in the same domain and topics in different
languages, to build the corpus. In order to build
a bilingual corpus from Wikipedia, we based on
parallel titles of Wikipedia articles. Then, pairs of
articles were crawled based on the parallel titles.
Finally, sentences in the article pairs were aligned
to extract parallel sentences. We describe these
steps in more detail in this section.

Extracting Parallel Titles The content of
Wikipedia can be obtained from their database
dumps.2 In order to extract parallel titles of
Wikipedia articles, we used two resources for each
language from the Wikipedia database dumps: the
articles’ titles and IDs in a particular language
(ending with -page.sql.gz) and the interlanguage
link records (file ends with -langlinks.sql.gz).

Collecting Parallel Articles After parallel titles
of Wikipedia articles were extracted, we collected
the article pairs using the parallel titles. We imple-
mented a Java crawler for collecting the articles.
The collected data was then preprocessed includ-
ing sentence split and word tokenization using the
Moses scripts.3

Sentence Alignment For each article pair, bilin-
gual sentences were aligned using the Microsoft
bilingual sentence aligner (Moore, 2002), one of
the most powerful sentence alignment algorithms
as shown in (Singh and Husain, 2005). After the
sentence alignment step, we obtained a Turkish-
English bilingual corpus with 48k parallel sen-
tences, which is presented in Table 1.

Turkish English
Input articles 188,235 192,512
Input sentences 2,030,931 3,023,324
Bilingual articles 184,154 184,154
Aligned articles 22,100 22,100
Aligned sentences 48,554 48,554

Table 1: Building a bilingual corpus of Turkish-
English from Wikipedia.

2https://dumps.wikimedia.org/backup-index.html
3https://github.com/moses-

smt/mosesdecoder/tree/master/scripts/tokenizer

From the results, for 184k input bilingual arti-
cles, a small ratio of 22k articles were aligned.
One of the main reasons is the characteristic of
Wikipedia bilingual articles, in which each arti-
cle in a language of a bilingual article pair is cre-
ated separately by different authors with differ-
ent styles of writing, background knowledge, etc.
This leads to various challenges for aligning par-
allel sentences such as: the small portion of over-
lap in the article pair’s content, the unbalance of
sentence length, the unbalance of numbers of sen-
tences in the articles. Further investigations on the
Wikipedia data as well as different aligners and
methods are needed to improve the performance
on this task.

2.2 Phrase Pivot Translation
In order to enhance machine translation for the
low-resource setting, we exploited existing bilin-
gual corpora using the phrase pivot translation
method (Cohn and Lapata, 2007; Utiyama and Isa-
hara, 2007; Wu and Wang, 2007). In the phrase
pivot translation method, source-pivot and pivot-
target bilingual corpora are used to train phrase ta-
bles. Then, the source and target phrases are con-
nected via common pivot phrases.

Given a source phrase s and a target phrase
t of the source-pivot phrase table TSP and the
pivot-target phrase table TPT , the phrase trans-
lation probability is estimated via common pivot
phrases p based on the following feature function.

φ(t|s) =
∑

p∈(TSP )∩(TPT )

φ(p|s)φ(t|p) (1)

Previous research showed the effectiveness of
this method when source-target bilingual corpora
are unavailable or in a limited amount.

In our systems, we used bilingual data sets of
the SETIMES2 corpus (Tiedemann, 2009)4, the
same resource of the Turkish-English training data
in this shared task, for training phrase pivot trans-
lation. We used six pivot languages to bridge
the translation between Turkish and English: Bul-
garian, Bosnian, Greek, Macedonian, Romanian,
and Albanian. The bilingual corpora for the pivot
translation are presented in Table 2.

For phrase pivot translation, we implemented
the triangulation method of (Wu and Wang, 2007)
using Java. One of the issues of the triangulation

4http://opus.lingfil.uu.se/SETIMES2.php
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No. Pivot tr-pvt pvt-en tr-en en-tr
1 bg 206k 213k 393k 490k
2 bs 133k 138k 321k 374k
3 el 206k 226k 390k 472k
4 mk 202k 207k 387k 469k
5 ro 205k 212k 382k 457k
6 sq 206k 227k 379k 446k

Table 2: Bilingual corpora for Turkish-English
pivot translation (the number of parallel sen-
tences) and the number of pivoted phrase pairs
in Turkish-English (tr-en) and English-Turkish
(en-tr); Pivot languages: bg (Bulgarian), bs
(Bosnian), el (Greek), mk (Macedonian), ro (Ro-
manian), sq (Albanian); tr-pvt (pvt-en): the bilin-
gual corpus of Turkish and the pivot language
(pivot-English)

method is that the number of pivoted phrase pairs
is exploded (El Kholy et al., 2013). Therefore, we
filtered the pivoted phrase tables by using a n-best
technique in which for a set of n best target phrases
was extracted for each source phrase (n was set to
10 in our experiments).

2.3 Combining Additional Resources

We exploited two resources to enhance machine
translation for the low-resource setting: a bilingual
corpus extracted from Wikipedia, and bilingual
corpora of Turkish and English paired with the six
pivot languages. Our goal now is to utilize the re-
source most effectively. We introduce a system
incorporating the following components. First,
we trained a phrase table based on the Wikipedia
bilingual corpus, called align component. Sec-
ond, using the phrase pivot translation, we ob-
tained pivoted phrase table, called the pivot com-
ponents. Additionally, we trained a phrase ta-
ble using the Turkish-English training data, called
baseline component. The components were com-
bined to generate a phrase table for decoding. We
adapted the linear interpolation (Sennrich, 2012)
for combining phrase tables. Equation 2 describes
the combination of the components.

p(t|s) =λdpd(t|s) + λapa(t|s)
+ λp1p1(t|s) + λp2p2(t|s) + λp3p3(t|s)
+ λp4p4(t|s) + λp5p5(t|s) + λp6p6(t|s)

(2)
Where pd(t|s), pa(t|s) stand for the translation

probability of the baseline and the align compo-
nents, respectively. pi(t|s), i = 1..6 stand for the

translation probability of the six pivoted phrase ta-
bles.

The interpolation parameters λd, λa, and
λpi(i = 1..6) in which λd + λa + λpi = 1 were
tuned based on the interpolation method (Sen-
nrich, 2012) using the development set (news-
dev2016) provided by the shared task.

3 Experiments

We describe the data sets, settings, and results of
our systems in this section. We discuss the exper-
imental results on three settings: building a bilin-
gual corpus, using phrase pivot translation, and us-
ing the system combining the two components.

3.1 Training Data

We used the training, development, and test sets
provided by the WMT 17 shared task. The
Turkish-English training data contain 207k paral-
lel sentences. For the development set, we used
the dev2016. We evaluated our systems on the
tst2016, and submitted the translation output for
the tst2017 test set.

For monolingual datasets to train language
models, we used the monolingual datasets pro-
vided by the shared task: 40M sentences of Turk-
ish and 40M sentences of English.

3.2 Baseline Systems

We conducted baseline experiments for phrase-
based machine translation using the Moses toolkit
(Koehn et al., 2007). The word alignment was
trained using GIZA++ (Och and Ney, 2003) with
the configuration grow-diag-final-and. 5-gram
language models of Turkish and English were
trained using KenLM (Heafield, 2011). For tun-
ing, we used the batch MIRA (Cherry and Foster,
2012). The system’s outputs were evaluated using
the NIST-BLEU on the online system.5

3.3 Experimental Results

The results of the JAIST systems are presented in
Table 3 and Table 4. We discuss the results for the
three different settings.

3.3.1 Building A Bilingual Corpus
Although the aligned Wikipedia corpus contains
a small number of parallel sentences (48k) com-
pared with the direct training data (207k), the
phrase-based models trained on the Wikipedia

5http://matrix.statmt.org/
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Model newsdev2016 newstest2016 newstest2017
baseline 12.28 12.3 12.0
align 7.67 8.1 7.9
pivot (bs) 7.47 11.0 7.6
baseline-align 13.35 12.9 (+0.6) 12.7 (+0.7)
baseline-pivot(bs) 12.39 13.1 (+0.8) 12.4 (+0.4)
baseline-pivot(bs)-align 13.02 13.0 (+0.7) 12.7 (+0.4)
baseline-pivot(6)-align 14.04 13.7 (+1.4) 13.1 (+1.1)

Table 3: Experimental results on the Turkish-English (BLEU); baseline (align): the system trained on
the baseline (the aligned Wikipedia) bilingual corpus; pivot (bs), pivot (6): the phrase pivot translation
system using one pivot language (bs: Bosnian) or using all of the 6 pivot languages; baseline-pivot(6)-
align: the combined system of the baseline, align, and 6 pivot components.

Model newsdev2016 newstest2016 newstest2017
baseline 8.66 9.3 9.9
align 5.96 6.3 6.6
pivot (bs) 6.01 8.2 6.3
baseline-align 8.87 9.3 10.0 (+0.1)
baseline-pivot 9.01 9.6 (+0.3) 9.7
baseline-pivot(bs)-align 8.98 9.6 (+0.3) 9.9
baseline-pivot(6)-align 10.11 9.7 (+0.4) 10.4 (+0.5)

Table 4: Experimental results on the English-Turkish translation (BLEU).

corpus showed a quite promising result: 7.9
BLEU point on the Turkish-English and 6.6 BLEU
point on the English-Turkish. When the base-
line model was combined with the align model,
we achieved a significant improvement: +0.6 and
+0.7 BLEU points on the Turkish-English of the
newstest2016 and newstest2017, respectively. The
results showed the effectiveness of the extracted
corpus to enhance machine translation on the low-
resource setting. Nevertheless, the task becomes
more challenging on the English-Turkish. Al-
though the Wikipedia corpus showed the contribu-
tion on the Turkish-English translation, there was
no improvement on the English-Turkish transla-
tion when we achieved only +0.1 BLEU point on
the newstest2017.

3.3.2 Phrase Pivot Translation

For the phrase pivot translation models, using one
pivot language (bs: Bosnian) showed the com-
petitive performance on the newstest2016 of the
Turkish-English: 11.0 BLEU point vs. 12.3 BLEU
point (baseline), or 8.2 BLEU point vs. 9.3 BLEU
point (baseline) on the English-Turkish.

When the pivot model (using one pivot lan-
guage of Bosnian) was combine with the base-
line model, we achieved the improvement on both
translation directions: +0.8 BLEU point on the
Turkish-English, and +0.3 BLEU point on the
English-Turkish of the newstest2016. For the new-
stest2017, we achived the improvement only on

the Turkish-English (+0.4 BLEU point).
The results confirmed the contribution of the

phrase pivot translation. Nevertheless, there was
no improvement on some cases. Therefore, we
seek to the combination of all components: the
baseline, align, and pivot components (from one
pivot language to six pivot languages).

3.3.3 Combined Systems

We would like to exploit the components most ef-
fectively to improve machine translation on the
low-resource setting. The baseline, align, and
pivot components were combined in a model.
When using one pivot language (Bosnian), we
achieved the improvement in most cases: +0.7
and +0.4 BLEU points on the newstest2016 and
newstest2017 of the Turkish-English. For the
English-Turkish, we achieved the improvement of
+0.3 BLEU point on the newstest2016; however,
there was no improvement on the newstest2017,
in which the pivot model did not showed the con-
tribution.

Interestingly, using six pivot languages showed
the significant improvement in all settings. For
the Turkish-English, we achieved +1.4 and +1.1
BLEU points on the newstest2016 and new-
stest2017, respectively. For the English-Turkish,
the combined system showed +0.4 BLEU point
(newstest2016) and +0.5 BLEU point (new-
stest2017).

We submitted our systems using the settings
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that combine the baseline, align, and six pivot lan-
guages in the phrase pivot translation.

4 Conclusion

We describe our phrase-based machine transla-
tion systems for Turkish-English participated in
the WMT 17 news translation shared task. In
this work, our goal is to enhance machine trans-
lation for the low-resource setting for Turkish-
English, in which a only small training bilingual
data is available. Two approaches were exploited
in our systems: building a bilingual corpus from
Wikipedia, and utilizing existing bilingual corpora
using the phrase pivot translation method. In order
to exploit the extracted data most effectively, we
introduce a combined system of the aligned cor-
pus, the pivot data, and the direct training data. We
achieved a significant improvement on the new-
stest2016 and newstest2017. The results showed
the effectiveness of the extracted corpus and the
pivot translation in improving machine transla-
tion on the low-resource setting. We released the
Wikipedia corpus, which can be used to improve
machine translation on Turkish-English in future
work.
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Abstract 

We describe the Sogou neural machine 

translation systems for the WMT 2017 

Chinese↔English news translation 

tasks. Our systems are based on a multi-

layer encoder-decoder architecture 

with attention mechanism. The best 

translation is obtained with ensemble 

and reranking techniques. We also pro-

pose an approach to improve the named 

entity translation problem. Our Chi-

nese→English system achieved the 

highest cased BLEU among all 20 sub-

mitted systems, and our English→Chi-

nese system ranked the third out of 16 

submitted systems.1 

1 Introduction 

End-to-end neural machine translation (NMT) has 

recently been introduced as a promising paradigm 

with the potential to address many shortcomings 

of traditional statistical machine translation (SMT) 

systems, and has obtained state-of-the-art perfor-

mance for several language pairs (Cho et al., 2014; 

Sutskever et al., 2014; Bahdanau et al., 2015; 

Sennrich et al., 2016a; Wu et al., 2016; Zhou et al., 

2016). In this paper, we describe the Sogou NMT 

systems submissions for the WMT 2017 Chi-

nese→English and English→Chinese translation 

tasks. 

Overview of the systems can be described as fol-

lows: we implement a multi-layer attention-based 

encoder-decoder integrated with recent promising 

techniques in NMT, including that we use subword 

units based on byte pair encoding (BPE) rather than 

words as modelling units (Sennrich et al., 2016b) 

and layer normalization (Ba et al., 2016) to isolated 

layers. And we improve the performance using en-

semble based four systems of the same network 

                                                      
1 Automatic rankings are from http://matrix.statmt.org. 

trained with different random seeds of parameter 

initialization.  

In addition, we improve the performance further 

by reranking the n-best translation lists with some 

effective features, including the target-bidirectional 

models, target-to-source models, and n-gram lan-

guage models. And we use another NMT model to 

translate the recognized person names for the Chi-

nese→English task, in order to improve the perfor-

mance of unknown named entity translation. 

Our Chinese→English system achieved the 

highest cased BLEU among all 20 submitted sys-

tems, and our English→Chinese system ranked the 

third out of 16 submitted systems. 

2 Neural Machine Translation  

Our NMT model follows the common attentional 

encoder-decoder networks (Bahdanau et al., 2015). 

We implement a deep multi-layer Long Short Term 

Memory (LSTM) recurrent neural network for both 

the encoder and decoder. In our setup, the encoder 

has one bi-directional LSTM layer followed by two 

uni-directional LSTM layers. The decoder has 

three uni-directional LSTM layers. Similar to the 

conditional GRU used in DL4MT (Firat and Cho, 

2016), we use conditional LSTM (cLSTM) for the 

top layer of decoder instead of standard LSTM. 

The encoder takes the model’s input sequence as 

input and encodes it into a fixed-size context vector. 

We only use the bottom layer output of the decoder 

to obtain attentional context vector, which is used 

to predict next target word at the top layer of the 

decoder combining with the previous hidden state 

and the previously generated words. 

We utilize layer normalization (Ba et al., 2016) 

to isolated LSTM layers, a method that adaptively 

learns to scale and shift the incoming activations of 

a neuron on a layer-by-layer basis at each time step. 

Layer normalization can stabilize the dynamics of   

hidden layers in the network and accelerate the 

convergence speed of deep neural networks.  

410



 
 
 

  2 

 
All the weight parameters are initialized uni-

formly in [-0.02, 0.02], except for the square matrix 

weight parameters are initialized by orthogonal in-

itialization (Henaff et al., 2016). We use dropout for 

the models as suggested by (Zaremba et al., 2015). 

We clip the gradient norm to 1.0 (Pascanu et al., 

2013). Our main NMT decoder with a beam size of 

10 is used in all experiments. We validate the model 

every 10,000 mini-batches via BLEU on the news-

dev2017 data. We use a mini-batch size of 128, a 

hidden layer size 1024, a word embedding layer 

size of 512, filter out sentence pairs whose length 

exceeds 40 words, and reshuffle the training data 

between epochs as we proceed. 

We use Adam (Kingma and Ma, 2014) to train 

the model with a learning rate 0.0001. We use the 

multi-GPUs training framework via asynchronous 

SGD (Dean et al., 2012) and data parallelism (cop-

ies of the full model on each GPU). We train the 

model on a host server with eight NVIDIA Tesla 

M40 GPUs. We train four systems of the same net-

work with different random seeds of parameters in-

itialization, perform early stop for each system, and 

use a widely used, simple ensemble method (pre-

diction averaging) based on the best model of each 

system in order to improve the performance. 

3 Experiment Techniques 

This section describes several techniques inte-

grated in our NMT system.  

3.1 Reranking 

In order to get better translation result, we explore 

different NMT variant models and n-gram lan-

guage models as features in the reranking frame-

work. 

Target right-to-left NMT Model: The quality 

of the prefixes of translation hypotheses is much 

higher than that of the suffixes (Liu et al., 2016). In 

order to alleviate this unbalanced output problem, 

a variant right-to-left (R2L) NMT mode is trained 

on the training data, but the target data is inversed. 

We inverse the n-best lists generated by the main 

NMT model and calculate the likelihood which 

represents the conditional probabilities of reversed 

translations given the source sentences. 

Target-to-source NMT Model: Moreover, the 

translation may be inadequate and repeat or miss 

out some words (Tu et al., 2016). In order to cope 

with the inadequateness, we use the target-to-

source (T2S) reconstruction model trained with the 

swapped source and target training data. Because 

we participated in both the Chinese→English and 

English→Chinese tasks, the T2S model of Chi-

nese→English is just the main NMT model of Eng-

lish→Chinese, and vice-versa. 

N-gram language models: There exists a large 

amount of monolingual data for both Chinese and 

English. We train n-gram language models on each 

corpus and select the top k-best n-gram language 

models as reranking features based on perplexity 

(PPL) calculated on the newsdev2017 data. It is 

noted that we use character-level language models 

for English→Chinese task and word-level lan-

guage models for Chinese→English. For English, 

the language model is trained on the "News Crawl: 

articles from 2016" provided by WMT 2016 has 

the lowest PPL, which is even much lower than the 

language model trained on English side of the 

training data. 

We first generate an n-best lists with an ensem-

ble model for a source sentence. Then we calculate 

the likelihood score with T2S and R2L models. We 

also use n-gram language models to compute PPL 

for the translation candidates. We treat each model 

score as an individual feature. We use k-batched 

MIRA (Cherry et al. 2012) to tune the weights for 

all the features.  In order to get more diverse n-best 

lists, we also try to increase the beam size to further 

improve reranking.  

3.2 NMT with Tagging Model 

Translating rare words is hard for a conventional 

NMT model with a fixed relatively small vocabu-

lary so that a single unk symbol is used to represent 

the large number of out-of-vocabulary (OOV) 

words.  

Our proposed tagging model is similar to the 

placeholder mechanism (Crego et al., 2016), which 

aims at alleviating the rare words problem. When 

using tagging model to translate a sentence, we first 

use the pre-defined tags to replace the OOV words 

in the source sentence, then translate the source 

sentence with tags using the NMT model, and re-

cover the tags in translation based on the attention 

weights and a bilingual translation dictionary fi-

nally. 

The most significant difference between our tag-

ging model and placeholder mechanism (Crego et 

al., 2016) is that we don’t force beam search to gen-

erate tags, but only try to find exactly the same tag 

in the source side (if exists) when a tag is generated 
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in the translation, and choose the one with the high-

est alignment probability based on attention 

weights. Given this information, we can find the 

source side to which a target tag is aligned, and ob-

tain the translation of source tag via a bilingual dic-

tionary. 

Zhang et al., (2016) incorporated bilingual trans-

lation dictionary by using the dictionary to generate 

training data, where the bilingual dictionary is an ex-

ternal resource. While our work is of higher effi-

ciency and the bilingual dictionary is trained from 

our training data alone. 

In this paper, we use our CRF-based named entity 

recognize (NER) tagger to obtain the tags (place-

holders).  We also build the bilingual translation dic-

tionary from scratch based on the training data. 

Bilingual Translation Dictionary: The bilin-

gual dictionary is generated by the following steps: 

 Data preparation. We label both source-side 

and target-side words in the training data 

with our NER tagger and combine multi-

words labelled with named-entities tags to a 

single word with specific marks so that we 

can recover the word to the original form.  

 Word alignment. The word alignment is gen-

erated by using GIZA++ (Och and Ney, 

2003) given the above data. 

 Translation pairs extraction. The translation 

pairs are extracted according to the word align-

ment. We only extract those pairs whose both 

source and target side words are person name 

tags (labeled by our NER tagger), and represent 

the tag as a $TERM symbol in this paper. 

The bilingual translation dictionary can not only 

be used as a lookup dictionary for tagging model, 

but also as the training data for the neural person 

name translation model in Sec. 3.3. 

3.3 Named Entity Translation 

Due to most of rare words in news data are person 

named entities, we propose an approach to translate 

the person named entities with an external charac-

ter-based encoder-decoder model trained on the ex-

tracted parallel person names from the training data 

for the Chinese→English task individually, in or-

der to improve the performance of rare words 

translation. 

 For the person named entity translation model, 

the size of the Chinese vocabulary is 3000 charac-

ters, the size of the English vocabulary is 30 char-

acters, the size of hidden layers is 512, the size of 

embedding is 256, the size of mini-batch is 128, the 

sentence pairs whose length exceeds 30 characters 

are filtered out, and the training data is re-shuffled 

between epochs as we proceed. We validate the 

model every 1000 mini-batches via BLEU on the 

sample validation data (100 Chinese-English per-

son names pairs). We only train the model on a sin-

gle GPU and perform early stop. 

 Because many person names can be translated 

by the model, we only focus on the remaining per-

son names aligned to the unk symbols in the target 

side according to the attention weights. Given an 

input sentence, we first recognize the person named 

entities with our NER tagger, then generate BPE 

segmentation for the plain sentence, and mark each 

subword unit which is part of a person named entity 

with a single name-aware symbol finally. During 

decoding, the text with BPE marker is first trans-

lated by our NMT model. We mark the source to-

kens to which each target unk symbol is most 

aligned with the method of Luong et al. (2015). If 

the marked source token is also a part of person 

named, the original person name is recovered via 

the BPE marker. Then we replace the recovered 

person names with a single $TERM symbol. Finally, 

we translate the text with $TERM symbols and 

BPE marker again, and replace the target $TERM 

symbols with the translation of original person 

names generated by our neural person named entity 

translation model. 

 
Our proposed method is similar to Li et al. 

(2016), but we only use the extracted parallel per-

son names from training data instead of Wikipedia 

data. Although our method brings no significant 

improvement on BLEU, we find that it is useful for 

human evaluation especially when the source data 

contains person names. The translation of person 

names in Table 1 seems like the transliteration of 

Chinese person names. 

In addition, we also replace all the number 

named entities greater than 5000 of source sen-

tences with a single number-aware symbol. Then 

Chinese Person Name Translation 

史婧琳 

(Shǐ jìng lín) 
Shi Jinglin 

安东·瓦伊诺 

(Ān dōng • wǎ yī nuò) 
Anton Vaino 

法土拉·葛兰 

(Fǎ tǔ lā • gě lán) 
Fethullah Gulen 

Table 1: Examples of neural person named en-

tity translation. 
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the number-aware symbols of translation are re-

covered to their original number named entities 

based the attention weights. Finally, the recovered 

number named entities are translated with human 

rules. By this mean, nearly most of number named 

entities can be translated correctly.  

4 Experiments Settings and Results 

4.1 Data Processing 

The training data for the two translation tasks con-

sists of 12 million sentences pairs, including all the 

CWMT 2017 training data and 3 million sentences 

selected from the UN corpus by calculating the 

PPL with an English language model trained on the 

News Crawl: articles from 2016. We used the offi-

cial newsdev2017 as validation set for both Chi-

nese→English and English→Chinese systems. 

We first segmented the Chinese sentences with 

our Chinese word segmentation tool and tokenized 

English sentences with the scripts provided in Mo-

ses2 (Koehn et al., 2007). Then we used BPE seg-

mentation to process both source and target data. 

300K subword symbols are used for the source side 

and 150K subword symbols are used for target side. 

For both Chinese→English and English→Chinese 

systems, the size of the source vocabulary and tar-

get vocabulary is 300K and 150K respectively. We 

created about 250K translation pairs for the bilin-

gual dictionary described in Sec. 3.2. 

4.2 Chinese→English Systems 

Table 2 shows the Chinese→English translation re-

sults on validation set. We reported cased BLEU 

scores calculated with Moses’ multi-bleu.pl3 script. 

The baseline model is a conventional single-layer 

encoder-decoder model where we used a bi-LSTM 

layer for encoder and a cLSTM layer for decoder. 

Other settings are the same as our deep NMT 

model. 

Our deep encoder-decoder model improves the 

baseline by 0.8 BLEU. In order to get more diverse 

models and better ensemble results, we trained four 

deep models independently with different random 

initializations. Then we selected the best model 

based on validation set from four systems for 

                                                      
2 https://github.com/moses-smt/mosesdecoder/blob/mas-

ter/scripts/tokenizer/tokenizer.perl 
3 https://github.com/moses-smt/mosesdecoder/blob/mas-

ter/scripts/generic/multi-bleu.perl 

model ensemble. The ensemble result gives an ad-

ditional improvement of 1.1 BLEU over the best 

single deep NMT system.  

To evaluate the influence of person named entity 

translation on the performance of our NMT sys-

tems, we made an experiment on the newsdev2017 

data. As a result, a little improvement by 0.1 BLEU 

is achieved. One reason for such little improvement 

is that the performance is calculated on word level, 

the translation of person name is regarded wrong 

even when there is only one letter difference. On 

the other hand, the amount of training data with 

$TERM symbols is insufficient, so that the model 

is incapable to learn as good as the plain data. 

Additionally, to recover the case information, a 

SMT-based recaser is trained on the English corpus 

with Moses toolkit4. And we also use a few simple 

uppercase rules, for example capitalizing the word 

at the beginning of a sentence. 

According to the experiments in (Liu et al., 

2016), a left-right/right-left reranking may also 

help increase diversity. Hereafter, we used one T2L 

model and four T2S models for reranking, resulting 

in a 0.3 BLEU improvement. Due to the limitation 

of beam search for NMT, we observed that most of 

n-best lists are very similar. By increasing the beam 

size from 10 to 100, we achieved another 0.7 BLEU 

improvement. We also evaluated the influence of n-

gram language models for reranking. We trained 

several 5-gram language models and selected top 

ten best language models based on their PPL on 

validation set. We achieved another improvement 

by 0.5 BLEU. The last best system is our final sub-

mitted system. 

4 https://github.com/moses-smt/mosesdecoder/blob/mas-

ter/scripts/recaser/train-recaser.perl 

System BLEU 

baseline 19.4 

 +deep model 20.2 

 +ensemble (4 deep models) 21.3 

 +named entity translation 21.4 

 +reranking (1 R2L, 4 T2S) 21.7 

 +reranking (beam size 100) 22.4 

 +reranking (10 language models) 22.9 

Table 2: Chinese→English BLEU results on 

development set. Submitted system is the last 

system. 
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4.3 English→Chinese Systems 

Table 3 shows the English→Chinese translation re-

sults on validation set. All results are evaluated by 

character-level BLEU. Similar to the Chi-

nese→English systems, a shallow model and four 

deep models are trained independently. The deep 

model brings a 0.4 BLEU improvement over the 

shallow model baseline. The ensemble system im-

proves by 1.1 BLEU over single best deep model. 

The NE replacement improves by 0.1 BLEU. We 

also trained one R2L model and four T2S models 

for reranking. These variant models improve the 

system by 0.8 BLEU.  We observed a 0.2 BLEU im-

provement by increasing the beam size from 10 to 

100. Finally, we trained five Chinese language 

models for reranking, including three word-level 5-

gram language models and two character-level 5-

gram language models, for re-scoring the n-best 

lists, resulting in a 0.5 BLEU improvement. The last 

system is our final submitted English→Chinese 

system. 

For English→Chinese translation task, if a target 

unk symbol cannot be recovered by named entity 

tagging and translation model, we directly replace 

the target unk symbol with its aligned English word 

according to the attention weights. 

 

5 Conclusion 

We present the Sogou NMT systems for WMT 

2017 Chinese↔English news translation tasks. For 

both translation directions, our final systems are 

improved by 3.1~3.5 BLEU over baseline systems 

by using the following techniques: 1) a deep NMT 

model; 2) ensemble of diverse deep NMT models; 

3) reranking n-best lists with NMT variant models 

and n-gram language models; 4) named entity tag-

ging and translation model. Our submitted Chi-

nese→English system achieved the highest cased 

BLEU among all 20 submitted systems, and our 

English→Chinese system ranked third out of 16 

submitted system. 
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Abstract 

In this paper, we attempt to improve 

Statistical Machine Translation (SMT) 

systems between Czech, Latvian and English 

in WNT’17 News translation task. We also 

participated in the Biomedical task and 

produces translation engines from English 

into Polish, Czech, German, Spanish, French, 

Hungarian, Romanian and Swedish. To 

accomplish this, we performed translation 

model training, created adaptations of training 

settings for each language pair, and 

implemented BPE (subword units) for our 

SMT systems. Innovative tools and data 

adaptation techniques were employed. Only 

the official parallel text corpora and 

monolingual models for the WMT 2017 

evaluation campaign were used to train 

language models, and to develop, tune, and 

test the system. We explored the use of 

domain adaptation techniques, symmetrized 

word alignment models, the unsupervised 

transliteration models and the KenLM 

language modeling tool. To evaluate the 

effects of different preparations on translation 

results, we conducted experiments and used 

the BLEU, NIST and TER metrics. Our 

results indicate that our approach produced a 

positive impact on SMT quality. 

1 Introduction 

Statistical Machine Translation (SMT) must deal 

with a number of problems to achieve high 

quality. These problems include the need to align 

parallel texts in language pairs and cleaning 

harvested parallel corpora to remove errors. This 

is especially true for real-world corpora developed 

from text harvested from the vast data available 

on the Internet. Out-Of-Vocabulary (OOV) words 

must also be handled, as they are inevitable in 

real-world texts (Wolk and Marasek, 2014a). The 

lack of enough parallel corpora for some less 

popular languages is another significant challenge 

for  SMT. Since the approach is statistical in 

nature, a significant amount of quality language 

pair data is needed to improve translation 

accuracy. In addition, very general translation 

systems that work in a general text domain have 

accuracy problems in specific domains. SMT 

systems are more accurate on corpora from a 

domain that is not too wide. This exacerbates the 

data problem, calling for the enhancement of 

parallel corpora for particular text domains (Wolk 

and Marasek, 2014b). This paper describes SMT 

research that addresses these problems, 

particularly domain adaptation within the limits of 

permissible data for the WMT 2017 campaign. To 

accomplish this, we performed model training, 

created adaptations of training settings and data 

for each language pair. Innovative tools and data 

adaptation techniques were employed. We 

explored the use of domain adaptation techniques, 

symmetrized word alignment models, the 

unsupervised transliteration models, and the 

KenLM language modeling tool (Heafield, 2011). 

To evaluate the effects of different preparations 

on translation results, we conducted experiments 

and evaluated the results using standard SMT 

metrics (Koehn et al., 2007). The languages 

translated during this research were: Czech, 

Latvian and English in WNT’17 News translation 

task. We also participated in the Biomedical task 

and produces translation engines from English 

into Polish, Czech, German, Spanish, French, 

Hungarian, Romanian and Swedish. This paper is 

structured as follows: Section 2 explains the data 

preparation. Section 3 presents experimental 
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setup and the results. Lastly in Section 4 we 

summarize the work. 

2 Data preparation 

This section describes our techniques for data 

preparation for our SMT systems. We give 

particular emphasis to preparation of the language 

data and models and our in-domain data 

adaptation approach. 

2.1 Data pre-processing  

The texts were encoded in UTF-8 format, 

separated into sentences, and provided in pairs of 

languages. Pre-processing, both automatic and 

manual, of this training data was required. There 

were a variety of errors found in this data, 

including spelling errors, unusual nesting of text, 

text duplication, and parallel text issues. For 

example in Polish-English corpora approximately 

3% of the text in the training set contained 

spelling errors, and approximately 2% of the text 

had insertion errors. A tool described in (Wolk 

and Marasek, 2014b) was used to correct these 

errors automatically. Previous studies have found 

that such cleaning increases the BLEU score for 

SMT by a factor of 1.5–2 (Wolk and Marasek, 

2014a). SyMGiza++, a tool that supports the 

creation of symmetric word alignment models, 

was used to extract parallel phrases from the data. 

This tool enables alignment models that support 

many-to-one and one-to-many alignments in both 

directions between two language pairs. 

SyMGiza++ is also designed to leverage the 

power of multiple processors through advanced 

threading management, making it very fast. Its 

alignment process uses four different models 

during training to progressively refine alignment 

results. This approach has yielded impressive 

results in Junczys-Dowmunt and Szał (2012). 

Out-Of-Vocabulary (OOV) words pose another 

significant challenge to SMT systems. If not 

addressed, unknown words appear, untranslated, 

in the output, lowering the translation quality. To 

address OOV words, we used implemented in the 

Moses toolkit Unsupervised Transliteration 

Model (UTM). UTM is an unsupervised, 

language-independent approach for learning 

OOV words (Moses statistical machine 

translation, 2015). We used the post-decoding 

transliteration option with this tool. UTM uses a 

transliteration phrase translation table to evaluate 

and score multiple possible transliterations 

(Durrani et al., 2014). 

The KenLM tool was applied to the language 

model to train and binarize it. This library enables 

highly efficient queries to language models, 

saving both memory and computation time. The 

lexical values of phrases are used to condition the 

reordering probabilities of phrases. We used 

KenLM with lexical reordering set to hier-

msdbidirectional-fe. This setting uses a 

hierarchical model that considers three orientation 

types based on both source and target phrases: 

monotone (M), swap (S), and discontinuous (D). 

Probabilities of possible phrase orders are 

examined by the bidirectional reordering model 

(Costa Jussa and Fonollosa, 2010; Moses 

statistical machine translation, 2013). 

2.2 Domain adaptation  

The news data sets have a rather a wide domain, 

but rather not as wide-ranging in topic as the 

variety of WMT permissible texts. The same goes 

to the biomedical task. Since SMT systems work 

best in a defined domain, this presents another 

considerable challenge. If not addressed, this 

would lead to lower translation accuracy. The 

quality of domain adaptation depends heavily on 

training data used to optimize the language and 

translation models in an SMT system. Selection 

and extraction of domain-specific training data 

from a large, general corpus addresses this issue 

(Axelrod, He and Gao, 2011). This process uses a 

parallel, general domain corpus and a general 

domain monolingual corpus in the target 

language. The result is a pseudo indomain sub-

corpus. As described by Wang et al. in (2014), 

there are generally three processing stages in data 

selection for domain adaptation. First, sentence 

pairs from the parallel, general domain corpus are 

scored for relevance to the target domain. Second, 

resampling is performed to select the best-scoring 

sentence pairs to retain in the pseudo in-domain 

sub-corpus. Those two steps can also be applied 

to the general domain monolingual corpus to 

select sentences for use in a language model. After 

collecting a substantial amount of sentence pairs 

(for the translation model) or sentences (for the 

language model), those models are trained on the 

sub-corpus that represents the target domain 

(Wang et al., 2014). Similarity measurement is 

required to select sentences for the pseudo in-

domain sub-corpus. There are three state-of-the-

art approaches for similarity measurement.  

For Cosine tf-idf every document Di is 

represented as a vector (wi1, wi2,…,win) and n is 
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the size of the vocabulary. So Wij is calculated as 

follows: 

𝑊𝑖𝑗 = 𝑡𝑓𝑖𝑗×𝑙𝑜𝑔 (𝑖𝑑𝑓𝑗) 

In which tfiji is the term frequency (TF) of the j-th 

word in the vocabulary in the document Di and idfj 

is the inverse document frequency (IDF) of the j-

th word calculated. The likeness between the two 

texts is later explained as the cosine of the angle 

between two vectors. This formula is applied in 

accordance to Lü et al. (2007) and Hildebrand et 

al. (2005). This approach supposes that M is the 

size of query set and N is the number of sentences 

put together from general corpus according to 

each and every query. Thus, the size of the cosine 

tf-idf based quasi in-domain sub corpus is defined 

as: 

𝑆𝑖𝑧𝑒𝐶𝑜𝑠−𝐼𝑅 = 𝑀×𝑁 

Perplexity is focused on the cross-entropy (Koehn 

2004) that is the average of the negative logarithm 

of the word probabilities. Consider  

𝐻(𝑝, 𝑞) = −∑𝑝(𝑤𝑖) log 𝑞(𝑤𝑖)

𝑛

𝑖=1

= −
1

𝑁
∑log𝑞(𝑤𝑖)

𝑛

𝑖=1

 

where 𝑝 symbolizes the empirical distribution of 

the sample of the test. If  𝑤𝑖 appeared n times in 

the test sample of N size, then 𝑞(𝑤𝑖)  is the 

probability of the 𝑤𝑖 event approximated from the 

training set.  

For that, perplexity (𝑝𝑝) can be performed simply 

at the base point that is presented in the system, 

and is often applied as a cosmetic alternative of 

perplexity for the data selection as: 

𝑝𝑝 = 𝑏𝐻(𝑝,𝑞) 

where 𝑏 is the based of measured cross-entropy, 

𝐻(𝑝, 𝑞) is the cross-entropy as given in (Koehn 

2004) (often used as substitute of the perplexity in 

data selection Axelrod et al. 2011; Moore and 

Lewis 2010). 

Let 𝐻𝐼(𝑝, 𝑞)  and 𝐻𝑂(𝑝, 𝑞) be the cross-entropy 

of wi   string in accordance with the language 

model, which is subsequently, trained by general-

domain dataset and in-domain dataset. While 

looking at the target (tgt) dimensions and the 

sources (src) of training data, there are three 

perplexity-based variants. The first one is known 

as basic cross-entropy defined as: 

𝐻𝐼−𝑠𝑟𝑐(𝑝, 𝑞) 

The second is Moore-Lewis cross-entropy 

difference (Moore and Lewis 2010):  

𝐻𝐼−𝑠𝑟𝑐(𝑝, 𝑞) − 𝐻𝐺−𝑠𝑟𝑐(𝑝, 𝑞), 

that attempts to choose the sentences that are more 

identical to I one and other but different to others 

in G. Both the standards mentioned above, 

consider only the sentences in the source 

language. Moreover, Axelrod et al. (2011)  

proposed a metric that adds cross-entropy 

differences over both sides:  

[𝐻𝐼−𝑠𝑟𝑐(𝑝, 𝑞) − 𝐻𝐺−𝑠𝑟𝑐(𝑝, 𝑞)]

+ [𝐻𝐼−𝑡𝑔𝑡(𝑝, 𝑞)

− 𝐻𝐺−𝑡𝑔𝑡(𝑝, 𝑞)] 

For instance, candidates with lower scores 

(Daumé III and Jagarlamudi 2011; Papineni et al. 

2002; Mansour and Ney 2012) have higher 

relevancy to target specific domain. The size of 

the perplexity-based quasi in-domain subset must 

be equal to one another. In practice, we work with 

SRILM toolkit to train 5-gram LMs with 

interpolated modified Kneser-Ney discounting 

(Stolcke 2002; Chen and Goodman 1996).  

In the realm of information theory and computer 

science, the Levenshtein distance is regarded as a 

string metric for the measurement of dissimilarity 

between two sequences. In casual terms, the 

Levenshtein distance between points or words is 

the minimum possible number of unique edits like 

the insertions or deletions in the data that is 

required to replace one word with another one. 

Levenshtein distance also refers to the edit 

distance, only wider in its approach as it 

incorporates a wider area of subjects the distance 

metrics. It has a close association with pairwise 

string arrangement as well. 

Mathematically, the Levenshtein distance 

between two strings 𝑎, 𝑏 (of length |𝑎| and 

|𝑏| respectively) is given by 

𝑙𝑒𝑣𝑎,𝑏(|𝑎|, |𝑏|) where 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗)

=

{
 
 

 
 max(𝑖, 𝑗)                         𝑖𝑓 min(𝑖, 𝑗) = 0                               𝑎

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1                           𝑎                                               

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                             𝑎         

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)                                                         
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where 1(𝑎𝑖≠𝑏𝑗) is the indicator function equal to 0 

when 𝑎𝑖 = 𝑏𝑗 and equal to 1 otherwise, and 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is the distance between the first i 

characters of a and the first j characters of b. 

It is to be noted that the first component that is in 

the least correspondence of the deletion (from a to 

b), the second of the insertion and the third to 

match or mismatch, varying on whether the 

respective symbols are the matching. 

In their study (Wang et al., 2014), Wang et al. 

found that a combination of these approaches 

provided the best performance in domain 

adaptation for Chinese-English corpora (Wang et 

al., 2014) In accordance with Wang et al. (2014)’s 

approach, we use a combination of the criteria at 

both the corpora and language models. The three 

similarity metrics are used to select different 

pseudo in-domain sub-corpora. The sub-corpora 

are then joined during resampling based on a 

combination of the three metrics. Similarly, the 

three metrics are combined for domain adaptation 

during translation. We empirically found 

acceptance rates that allowed us only to harvest 

20% of most domain-similar data (Wang et al., 

2014) 

2.2 Sub-word units  

Neural machine translation (NMT) models 

typically operate with a fixed vocabulary, but 

translation is an open-vocabulary problem. In 

SMT vocabularies that are disproportional are 

similar problem. Authors (Sutskever, Vinyals and 

Le, 2014) introduced a simple and effective 

approach, making the MT models capable of 

handling such problems by encoding rare and 

unknown words as sequences of subword units. 

This is based on the intuition that various word 

classes are translatable via smaller units than 

words, for instance names (via character copying 

or transliteration), compounds (via compositional 

translation), and cognates and loanwords (via 

phonological and morphological 

transformations). We applied this technique to our 

SMT engines for Slavic languages and obtained 

improved results of about 1.2 points in BLEU 

score. 

3 Experimental setup 

Various versions of our SMT systems were 

evaluated via experimentation. In preparation for 

experiments, we processed the corpora. This 

involved tokenization, cleaning, factorization, 

conversion to lowercase, splitting, and final 

cleaning after splitting. Language models were 

developed and tuned using only the constrained 

training data. The Experiment Management 

System (Koehn et al., 2007) from the open source 

Moses SMT toolkit was used to conduct the 

experiments. Training of a 6-gram language 

model was accomplished in our resulting systems 

using the KenLM Modeling Toolkit instead of 5-

gram SRILM (Stolcke, 2002) with an interpolated 

version of Kneser-Key discounting (interpolate – 

unk –kndiscount) that was used in our baseline 

systems. Word and phrase alignment was 

performed using SyMGIZA++ (Junczys-

Dowmunt and Szał, 2012) instead of GIZA++. 

KenLM was also used, as described earlier, to 

binarize the language models. The OOV’s were 

handled by using Unsupervised Transliteration 

Model (Durrani, 2014). The results are shown in 

Table 1. “BASE” in the tables represents the 

baseline SMT system. “EXT” indicates results for 

the baseline system, using the baseline settings but 

extended with additional permissible data (limited 

to permissible data) with data adaptation. “BEST” 

indicates the results when the new SMT settings 

were applied and using all permissible data after 

data adaptation. Three well-known metrics were 

used for scoring the results: Bilingual Evaluation 

Understudy (BLEU), the US National Institute of 

Standards and Technology (NIST) metric and 

Translation Error Rate (TER). The results show 

that the systems performed well on all data sets in 

comparison to the baseline SMT systems. 

Application of the new settings and use of all 

permissible data improved performance even 

more. 

Task Language 

and 

Direction 

System BLEU 

News CS->EN BASE 21.18 

News CS->EN EXT 22.67 

News CS->EN BEST 23.9 

News EN->CS BASE 14.04 

News EN->CS EXT 15.44 

News EN->CS BEST 16.6 

News LV->EN BASE 10.09 

News LV->EN EXT 12.17 
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News LV->EN BEST 12.9 

News EN->LV BASE 8.78 

News EN->LV EXT 9.78 

News EN->LV BEST 10.4 

Biomedical EN->PL BASE 12.45 

Biomedical EN->PL EXT 18.62 

Biomedical EN->PL BEST 18.86 

Biomedical EN->PL BEST 

+ BPE 

18.88 

Biomedical EN->CS BASE 14.56 

Biomedical EN->CS EXT 18.12 

Biomedical EN->CS BEST 19.96 

Biomedical EN->DE BASE 21.43 

Biomedical EN->DE EXT 24.64 

Biomedical EN->DE BEST 25.13 

Biomedical EN->RO BASE 19.43 

Biomedical EN->RO EXT 23.18 

Biomedical EN->RO BEST 24.91 

Table 1: News and Biomedical Task Translation 

Results 

 

4 Summary 

We have improved our SMT systems for the 

WMT 2017 evaluation campaign using only 

permissible data. We cleaned, prepared, and 

tokenized the training data. Symmetric word 

alignment models were used to align the corpora. 

UTM was used to handle OOV words. A language 

model was created, binarized, and tuned. We 

performed domain adaptation of language data 

using a combination of similarity metrics. The 

results show a positive impact of our approach on 

SMT quality across the choose language pair. We 

also successfully used BPE inside SMT for 

morphologically rich language (Polish). This 

brings promise of improvement for other slavic 

languages as well. 
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Abstract

This paper documents an undergraduate
course at Hunter College, in which one
instructor, six undergraduates, and one
high school student built 17 machine
translation systems in six months from
scratch. The team successfully partici-
pated in the second Conference on Ma-
chine Translation (WMT17) evaluation
on the news task in Finnish-English and
Latvian-English and on the bio-medical
task in French-English, English-French,
English-German, English-Romanian, and
English-Polish.

1 Introduction

Machine learning has advanced the state-of-the-art
of artificial intelligence at a rapid speed. There
has been an increasing amount of related courses
introduced. However, hands-on experience is of
vital importance to novices (Lopez et al., 2013).

Through conventional education it may take
many years for beginners to find a research direc-
tion in the field of machine translation. Introduc-
tory courses in this field can be either too theoret-
ical or too detailed, leaving students lost in cod-
ing. Therefore, our goals were to make the ma-
terial both detailed and comprehensive and also
bring novelty and excitement into this course. We
propose teaching methods that are centered around
the machine translation competition. With this
idea in mind we were able to achieve our goals be-
cause of three key factors. First, we were able to
focus on the pragmatical aspects of the teaching
material; second, the study was comprehensive,
since we covered all the components of a machine
translation system; and third, student motivation
was enhanced, because the results were directly
available in the MT community through the WMT

evaluation. These key factors helped us to attain
our goals optimally and efficiently.

We will discuss the teaching methods to intro-
duce undergraduates to topics of advanced ma-
chine translation technology. We will describe the
outcome, the machine translation systems in 17
languages, in particular the ones that were suc-
cessfully submitted in the WMT17, as well as the
research revised in this course. In conclusion, we
will evaluate our course with feedback of students.

2 Backgrounds

At Hunter college, we experimentally designed an
applied machine translation course to provide an
opportunity for novice students to learn by com-
peting against the best senior teams around the
world in one of the most significant machine trans-
lation competitions, the WMT17. The students’
levels ranged from high school to college senior,
and none of them had any prior knowledge of ma-
chine learning or machine translation.

Hunter college offered supportive facilities for
the course. Two students took an introductory
C++ programming class (Software Analysis and
Design I) (Hunter, 2016). Some students took
an one-week “Linux introductory class” (Hunter,
2016) at the beginning of the semester. The open
machine translation resources served as the ba-
sis of this course. “statmt.org” (SMT, 2017) pro-
vides excellent readings and software for the be-
ginning student. “SMT Tutorial” (Knight, 1999)
by Kevin Knight et. al. is an essential reading
on machine translation, and the book “Statistical
Machine Translation” (Koehn, 2010) by Philipp
Koehn was recommended because it gives a more
in-depth explanation.

We view machine translation as a high-
dimensional, multiclass classification task. The
reference book used was “Pattern Classification”
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(a) Hunter MT Wiki page (b) Chat room in Slack

Figure 1: Infrastructure for team coordination.

by Duda and Hart (Duda and Hart, 1973). With
the insight in previous competitions, the instruc-
tor introduced basic methods on the blackboard
in an interactive way, covering the following top-
ics: Bayes Decision Rule, Maximum Likelihood,
Word Alignment Models and Training, Search,
Language Modeling, Cross-Validation, Domain
Adaptation, Design Bagging, Neural Network,
and Neural Machine Translation.

Team meetings took place weekly to discuss
problems and solutions. Students set up a Wiki
homepage called “Hunter MT” to share their work
and post questions internally. A Slack Platform
provided a coherent working atmosphere for stu-
dents connecting with each other in real time. In
our Slack board students had posted 13.9K mes-
sages and uploaded 131 files during this six-month
course. Figure 1 contains screenshots of these
homepages of the team.

The software development and machine trans-
lation systems were hosted in the High Perfor-
mance Computing Center (HPCC) at the College
of Staten Island (CSI) CUNY, located in New York
City. Each student had their own account to con-
duct their experiments in their respective language
pairs. Students shared their experiences within the
team to avoid repeating experiments. Jobs were
submitted and scheduled via queuing system. At
HPCC, we used an infiniband cluster named Pen-
zias and fat node server named Arrow. Penzias,
which is a cluster, uses the Sandy Bridge chip and
NVIDIA K20m GPU.

3 Core MT engine

We built phrase-based machine translation
systems using the open software toolkit
Moses (Koehn et al., 2007). We used an
EMS script to run the translation pipeline, which
includes preprocessing, word alignment training,

tuning, testing, and error logs for debugging.

3.1 Pre- and Post-processing

For all language directions, we used the Moses de-
fault tokenization and true-casing tool. The pre-
processing involved tokenization, truecasing, and
cleaning. The experimental results showed that us-
ing truecasing produces a better result than not us-
ing it for most language directions.

3.2 Word alignment

Word alignments were generated based on
GIZA++ (Och and Ney, 2000) and mGIZA (Gao
and Vogel, 2008) for all language directions with
the grow-diag-final option. We ran five iterations
of Model 1 (Brown et al., 1993), five iterations of
HMM (Vogel et al., 1996), and four iterations of
IBM model-4 (Brown et al., 1993). Training sets
included in-domain training data and selected out-
of-domain training data that we will outline in de-
tail for individual language pairs in Section 4 and
Section 5.

We put a limit of 100 words maximum on the
sentence length. For bio-medical tasks, the max-
imum sentence length was set to 80. The main
reason for this was to shorten the time of the
training process. Because there is more training
data to handle in the bio-medical tasks than in the
news tasks, considering both in-domain and out-
of-domain corpora, we decided to place a heuris-
tic threshold to shrink the training time to an ac-
ceptable one (a couple of days, depending on lan-
guages and processors in the HPCC).

3.3 Language model

The language models used were 7-gram
SRILM (Stolcke, 2002) with Kneser-Ney
smoothing (Kneser and Ney, 1991) and linear
interpolation. Having the highest possible n-gram
is generally good pratice, but due to limited time
and the exponential rate of time needed to train
the language model, we decided to use 7-gram to
train the language model.

The English language model is shared among
all foreign-language-to-English translation sys-
tems. It is a mixture language model with
domain adaptation following (Xu et al., 2007).
The language models trained on individual cor-
pora is linearly interpolated on its n-gram prob-
abilities. Their weights are optimized with re-
spect to the perplexity on the development set
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of German-English newstest2016. The individ-
ual training corpora are Europarl v7, a fraction
of common crawl (due to limited computational
resource), news commentary 2007-2016, DCEP,
LETA, FAREWELL, RAPID, and news discus-
sion. In addition to those, we also used NYT and
XIN from GigaWord (WMT, 2017). Other lan-
guage models were trained with all available cor-
pora same as in English.

3.4 Tuning
The tuning set is the development set of WMT16
for most language pairs. We used MIRA (Hasler
et al., 2011) to tune single systems to find out the
optimal feature weights in the log-linear combina-
tion. We used 100-best in the tuning, and we also
heuristically tuned the Moses parameters, such
as maximum phrase length, stack size in search,
nbest size, maximum sentence length, and search
pruning options. The remaining parameters fol-
lowed the default values in the EMS (Koehn et al.,
2007). To rank the system, we used the BLEU (Pa-
pineni et al., 2002) score.

Below we describe our machine translation sys-
tems for language directions we submitted in the
WMT17 evaluation.

4 Data Sets and Settings for News Task

The translation systems for different language
pairs are built with the same methods as in Sec-
tion 3. However, they are trained on different par-
allel training set. Table 1 shows the corpus used in
the GIZA++ (Och and Ney, 2000) training for ma-
chine translation systems for each language direc-
tion. For each WMT17 evaluation task we partic-
ipated in, we computed the number of sentences,
the number of running words for the training set,
the development set and the test set, respectively
as shown in Table 2. We also computed the OOV
rate of the running word and the OOV rate of the
vocabulary (Voc.) for the source and target test set
in each system.

4.1 Finnish-English
The parallel training set included corpora of Eu-
roparl version 7, Rapid 2016, and Titles. The
translation result was evaluated on the WMT17
news test set of 2016.

4.2 Latvian-English
The parallel training set included corpora
of Europarl version 7, Rapid 2016, LETA,

FAREWELL, and DCEP. The translation result
was evaluated on the WMT News Test set 2016.

5 Data Sets and Settings for Bio-medical
Task

Below I will describe our submission systems in
the bio-medical task (Yepes et al., 2017).

5.1 English-German

We used the WMT17 provided corpora for train-
ing and tuning, including Europarl v7, News Com-
mentary v12, Rapid Corpus of EU press releases,
and parts of the Common Crawl corpus. We added
the previous years’ test sets in the training.

Ultimately, we found that for German, increas-
ing the maximum sentence length and phrase
length increased the BLEU score by a few points.
We also found that setting the language model or-
der to 7 helped the BLEU score by one point.
While these optimized parameters slowed down
the training of the system as expected.

5.2 English-Polish

Both in-domain and selected out-of-domain cor-
pora were used. The list of in-domain corpora
used in this experiment came from the follow-
ing sources: CESTA, ECDC, EMEA (open sub-
title and news crawl), Medical Web Crawl, Medi-
cal Web Text from CzEng 1.6, MuchMore, PatTR
Medical, and Subtitles. For out-of-domain cor-
pora, the sources were the following: Cordis, EU-
bookshop, EUROPARL, JRC-Acquis, MultiUN,
News Commentary, OpenSubtitles, PatTR, and
Rapid. The combined corpora totaled 39,442,076
lines, with a total of 302 million words. To prepro-
cess the corpora, we used default Moses tokeniz-
ing tools. The resulting cleaned corpora totaled
39,321,672 lines.

5.3 English-Romanian

Because the Romanian language uses the alpha-
bet system, for the Romanian system, we used
a setting similar to that used for the Polish sys-
tem. The corpora consisted of in-domain sources,
such as ECDC, EMEA, and Subtitles. It also in-
cluded out-of-domain sources, such as: EURO-
BookShop, EUROPARL, JRC-Acquis, and Open
Subtitles. The resulting corpora totaled 62 million
lines and 416 million words. After preprocessing,
to deal with the unique symbols in the language
and to conform to a standard format of the text,
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ID Languages Domain BLEU[%] Corpora Test set
1 English-German News 26.28 Europarl,Global,NC,Rapid News Test 2016
2 German-English News 33.61 News Test 2016
3 English-Czech News 13.59 Europarl,CommonCrawl,News’12 News Test 2016
4 Czech-English News 15.48 News Test 2016
5 English-Russian News 15.88 CommonCrawl,NC,Wiki News Test 2016
6 Russian-English News 26.23 News Test 2016
7 Turkish-English News 12.48 SETIMES2 News Test 2016
8 English-Turkish News 10.93 News Test 2016
9 Finnish-English News 18.53 Europarl,Rapid,Titles News Test 2016
10 English-Finnish News 12.82 News Test 2016
11 Latvian-English News 24.61 Europarl,Rapid,LETA,FAREWELL,DCEP News Dev 2017
12 English-Latvian News 18.43 News Dev 2017
13 English-French Bio 25.16 Europarl,Medline,NC,Scielo Health Test 2016
14 French-English Bio 24.46 Health Test 2016
15 English-German Bio 29.56 Europarl,NC,UFAL,ECDC, Himl Test

Subtitles,EMEA,PatTR,Medical
16 English-Polish Bio 18.70 Europarl,ECDC,EMEA,EUBS Himl Test

Subtitles,Cordis,JRC,Rapid
17 English-Romanian Bio 17.36 Europarl,ECDC,EMEA, Himl Test

Subtitles,EUbookshop,JRC

Table 1: Translation systems in different language pairs in BLEU-c [%].

such as true-casing, the corpora was reduced to 61
million lines, which is a significant reduction com-
pared to English-Polish. Using SRILM, we built a
5-gram language model.

6 System Outputs

Table 1 shows our system outputs for different
language directions in the news and in the bio-
medical domain. All translation systems were
only generated in this course. Each student was
responsible for the translation systems of the lan-
guage direction that interested them. The results
are produced based on the training and test cor-
pora listed in the last two columns, respectively.

Machine translation systems are built by stu-
dents with the guidance and assistance of the
course instructor, Jia Xu. Each student worked
on different language directions: Yi Zong Kuang
(15,16,17), Shondell Baijoo (1,2,11,12), Hyun Lee
(13,14), Uman Shahzad (6,7,9,10), Mir Ahmed
(3,4), Meredith Lancaster (5,6), and Chris Car-
lan (11,12). Yi Zong Kuang and Shondell Baijoo
contributed to the Human evaluation in the News
Track. Yi Zong Kuang, Shondell Baijoo, Hyun
Lee worked on system descriptions together with
the course instructor. Mixture language models
and some translation systems are conducted by the
instructor as example experiments.

7 Research Components

We applied two methods to improve over baseline
systems. These are course exercises without being

included in the final submission.

7.1 Design bagging

We applied the bagging (Breiman, 1996) and its
improved version design bagging (Papakonstanti-
nou et al., 2014) to train the systems. As shown
in Algorithm 1 and Algorithm 2, the parallel train-
ing set is sampled into m = 30 blocks (subsets
or bootstraps), each block contains b parallel sen-
tences which is 50% of the whole parallel training
data. x ∈ R[0, N −1] means to uniform randomly
assign an integer value to x in the range from 0 to
N−1, where N is the size of the training data. Ei-
ther bagging, see Algorithm 1 or design bagging,
see Algorithm 2 is used to construct the blocks.
Then each of the 30 blocks was used to train a ma-
chine translation system, with the same setting as
described in Section 3. We translated the test set
with each of these systems and then combined all
30 translation results with a system combination
tool (Heafield and Lavie, 2010) whose weights
were tuned on the development set.

7.2 Phrase-based language model

We also applied a phrase-based language model.
The likelihood of a sentence is based on decom-
posed phrases instead of single words, given his-
tories. This is achieved by treating phrase segmen-
tation as a hidden variable and developing a com-
plete phrase-based n-gram LM that was tailored
for machine translation use. The details of this al-
gorithm are described in (Xu and Chen, 2015).

425



Algorithm 1 Bagging
1: Input: block size b, number of blocks m, number of ele-

ments N .
2: Initialize m empty blocks.
3: for k = 0 to m− 1 do
4: for i = 0 to N − 1 do
5: a[i] = i
6: end for
7: for i = 0 to 2Nlog2N − 1 do
8: x ∈ R[0, N − 1]
9: y ∈ R[0, N − 1]

10: Swap a[x] and a[y]
11: end for
12: for i = 0 to b− 1 do
13: b[k][i] = a[i]
14: end for
15: end for
16: Output: m blocks each with b distinct elements.

Algorithm 2 Design Bagging
1: Input: block size b, number of blocks m, number of ele-

ments N .
2: Initialize m empty blocks.
3: for i = 1 to b×m do
4: select current smallest block (if not unique, choose ran-

domly)
5: S1 ←− the set of elements not in this block
6: S2 ←− set of elements that among the elements in S1

appears the minimum of times in other blocks
7: Choose randomly an element from S2 and put it into the

current block
8: end for
9: Output: m blocks each with b distinct elements.

Training Set Dev Set Test Set OOV
Languages Sentences Words Sentences Words Sentences Words Words Voc.

Latvian 4507745 56447016 2003 41245 974 21417 12.2% 5.8%
English 4507745 67601629 2003 49206 974 25496 8.0% 2.6%
Finnish 2633183 45235670 4500 72692 3002 46572 19.9 % 8.7 %
English 2633183 62847985 4500 98000 3000 64813 8.9 % 2.3 %
English 2794276 67279904 1000 21932 5023 140505 6.2 % 0.7 %
French 2794276 75320850 1000 27383 5023 192732 6.9 % 0.6 %
English 2061633 55855699 2495 45762 1931 34833 14.0 % 4.9 %
German 2061633 53356277 2495 43150 1931 35283 19.4 % 6.7 %
English 39321672 381409086 3922 69626 1931 34833 3.9 % 0.9%
Polish 39321672 307458011 7844 137396 1931 33527 3.5 % 1.3 %

English 61943814 536905597 3922 69626 1931 34833 4.0 % 0.9 %
Romanian 61943814 508776149 7844 137400 1931 37939 5.1 % 1.4 %

Table 2: Corpus statistics for various language directions

8 Teaching Outcome

As an outcome of the training, we performed an
anonymous questionnaire on SurveyMonkey (sur-
veymonkey, 2017) to evaluate the course and re-
ceive feedback. The overall rating of this course
is satisfactory, with some comments for example:
“The hands-on experience was by far the best.”
and “Being able to see the work was very impor-
tant.” In response to the question: What is the
most valuable thing you learned? Students said
”Understanding how research is done.” At the
same time, we also received such suggestions as
“The tutorials and mini lectures were helpful and
should be more frequent.” and “more on Neural
Network Machine Translation”.

9 Summary

We described the teaching experience of a super-
vised study course of six undergraduates and a
high school student. One course instructor guided

young and fresh machine translation learners.
The teaching feedback is encouraging, and the

products generated during this course were a cool
surprise: 17 machine translation baseline systems
and a successful participation of the WMT17.
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Abstract

We participated in the WMT 2016 shared
news translation task on English ↔ Chi-
nese language pair. Our systems are based
on the encoder-decoder neural machine
translation model with the attention mech-
anism. We employ the Gated Recurrent
Unit (GRU) with the linear associative
connection to build deep encoder and ad-
dress the unknown words with the dic-
tionary replace approach. The dictionar-
ies are extracted from the parallel train-
ing data with unsupervised word align-
ment method. In the decoding procedure,
the translation probabilities of the target
word from different models are averagely
combined as the ensemble strategy. In this
paper, we introduce our systems from data
preprocessing to post-editing in details.

1 Introduction

We build the Neural Machine Translation sys-
tems CASICT-DCU for WMT17 English↔ Chi-
nese news translation task. Our systems are
based on the encoder-decoder model with the at-
tention mechanism, which is also known as the
RNNSearch model (Bahdanau et al., 2015). To
construct the deep RNN network, we employ the
Gated Recurrent Unit (Cho et al., 2014b) with
the linear associative connection (Wang et al.,
2017) to ensure the fluent gradient propagation.
Adadelta (Zeiler, 2012) algorithm is used to op-
timize the parameters and stochastic gradient de-
scent algorithm with small learning rate is used
in the fine-tuning stage. We extract dictionaries
from parallel training data with the unsupervised
method to address the unknown words in target
translation according to the word alignment vec-
tor. During the decoding, the ensemble strategy is

used to combine the translation probabilities of the
target word from different models.

2 System Description

The neural machine translation model (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014b;
Sutskever et al., 2014) aims to capture the transla-
tion knowledge through training a neural network
in the end-to-end style. Our systems are built on
the RNNSearch neural machine translation model.
Formally, given a source sentence x = x1, ..., xm
and a target sentence y = y1, ..., yn, NMT models
the translation probability as

P (y|x) =
n∏

t=1

P (yt|y<t, x), (1)

where y<t = y1, ..., yt−1. The generation proba-
bility of yt is

P (yt|y<t, x) = g(yt−1, ct, st), (2)

where g(·) is a softmax regression function, yt−1

is the newly translated target word and st is the
hidden states of decoder which represents the
translation status. The attention ct denotes the re-
lated source words for generating yt and is com-
puted as the weighted-sum of source represen-
tation h upon an alignment vector αt shown in
Eq.(3) where the align(·) function is a feedfor-
ward network with softmax normalization.

ct =
m∑

j=1

αt,jhj

αt,j = align(st,hj)

(3)

The hidden states st are updated as

st = f(st−1,yt−1, ct), (4)
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Figure 1: The general architecture of our systems.

where f(·) is a recurrent function.
We adopt a varietal attention mechanism1 in our

system which is implemented as

s̃t = f1(st−1,yt−1),

αt,j = align(s̃t,hj),

st = f2(s̃t, ct),

(5)

where f1(·) and f2(·) are recurrent functions.
To construct deep network, we use the linear

associative unit (LAU) to ensure fluent gradient
propagation. The LAU is computed as

rt = σ(Wxrxt +Whrht−1),

zt = σ(Wxzxt +Whzht−1),

gt = σ(Wsgxt +Whght−1),

h̃t = tanh((1− rt)�Wxhxt +Whh(rt � ht−1)),

ht = ((1− zt)� ht−1 + zt � h̃t)� (1− gt) + gt

� (Wxxt)

(6)

where W∗ is the weight matrices, xt is the input at
time t and ht−1 is the hidden states at time t − 1.
The LAU allows the input linearly forward prop-
agates in a certain scale to acquire fluent gradi-
ent back propagation. It works like residual con-
nections (He et al., 2016) and fast-forward con-
nections (Zhou et al., 2016) and makes build deep
network possible. Our encoder is a 4 layers LAU
network where forward LAU and backward LAU
are alternately stacked. The general architecture
of our systems is shown in Figure 1.

3 Pipeline Description

We introduce the pipeline of building the transla-
tion systems from data preprocessing to post edit-

1https://github.com/nyu-dl/dl4mt-
tutorial/tree/master/session2

ing in this section.

3.1 Data Preprocessing

For English ↔ Chinese news translation task,
WMT 2017 provides tree parts of data: News
Commentary v12, UN Parallel Corpus V1.0 and
CWMT Corpus. We used all corpora to train
our translation systems. For English sentences,
the Moses tokenization script2 is employed to ex-
ecute the tokenization processing. For Chinese
sentences, we used our in-house word segmentor
called ”PBCLAS” to do the word segmentation.
The word segmentation criterion follows the Chi-
nese People’s Daily format. We filter the dupli-
cated sentences and the sentences that are too long
(more than 120 words) or too short (less than 5
words). The training corpus is case-sensitive.

3.2 Vocabulary

Our systems are based on the words rather than
sub-words (Sennrich et al., 2016; Wu et al., 2016).
For our system is serially trained on the single
GPU with restricted memory space, the source vo-
cabulary size is set to 100,000 and the target vo-
cabulary size is set to 50,000. The words that out
of the vocabulary are represented by the ”UNK”
symbol.

3.3 Training Details

The sentence length for training systems is up to
120. The word embedding dimension is set to 512
and the hidden layer size is 512. Square matrices
are initialized in a random orthogonal way. Non-
square matrices are initialized by sampling each
element from the Gaussian distribution with mean
0 and variance 0.012. All biases are initialized to
0. Parameters are updated by Mini-batch Gradi-
ent Descent and the learning rate is controlled by
the AdaDelta algorithm with the decay constant
ρ = 0.95 and the denominator constant ε = 1e−6.
The batch size is 80. We use stochastic gradi-
ent descent with small learning rates as 0.0001 to
fine-tune the models. Dropout strategy (Srivastava
et al., 2014) is applied to the output layer with the
dropout rate 0.5 to avoid over-fitting. The gra-
dients of the cost function which have L2 norm
larger than a predefined threshold 1.0 is normal-
ized to the threshold to avoid gradients explosion
(Pascanu et al., 2013). We exploit length normal-

2https://github.com/moses-
smt/mosesdecoder/tree/master/scripts/tokenizer/tokenizer.perl
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ization (Cho et al., 2014a) on candidate transla-
tions and the beam size for decoding is 12.

3.4 UNK Replace

As the vocabulary sizes are restricted, target sen-
tences may contain “UNK” symbols, which leads
to sense ambiguity. We attempt to extract a dictio-
nary to replace the “UNK” symbol in target sen-
tence. We use the “fast align” 3 word alignment
tool to generate the word alignment and extract
the dictionary through keeping the highest trans-
lation probability. We extract English→ Chinese
and Chinese→ English dictionaries in this way.

At the decoding stage of NMT, we regard
the source word that possesses highest alignment
probability as the one that generates the target
word. Once a “UNK” symbol is generated, we lo-
cate the corresponding source word and translate
it with the dictionary. If the source word is not
in the dictionary, it will be presented in the target
sentence.

3.5 Model Ensemble

To add the diversity of systems, we train sev-
eral models and combine them with the ensemble
strategy. These models are initialized with differ-
ent weight parameters. Each model produces the
probability distribution on the target vocabulary at
each step of decoding procedure. These proba-
bility distributions are averagely combined as the
ultimate distribution for beam searching. For our
UNK replace strategy, the word alignment vectors
that produced by models are also averagely com-
bined to determine the corresponding source word.

4 Experimental Results

4.1 English to Chinese

We ensemble 5 models for English to Chinese
translation. The performance of the system on
the validation set is presented in Table 1. We
figure that the ensemble strategy brings +0.86
BLEU points improvement and the UNK replace
approach provide further +1.57 BLEU points.

4.2 Chinese to English

We ensemble 6 models for Chinese to English
translation. Table 2 presents the performance of
system on the validation set. Same as the English

3https://github.com/clab/fast align

Model BLEU
Single Model 25.22
Ensemble 6 26.08+0.86

+UNK Replace 27.65+1.57

Table 1: The model performances on the valida-
tion set in English to Chinese direction.

to Chinese translation, the ensemble and UNK re-
place approaches can enhance the system perfor-
mance over a single model. The ensemble strategy
improves the system by +0.74 BLEU points and
the UNK replace approach achieves further +0.51
BLEU point gain. Table 3 shows the performance
of our systems on the test set.

Model BLEU-cased
Single Model 18.13
Ensemble 5 18.87+0.74

+ UNK Replace 19.38+0.51

Table 2: The model performances on the valida-
tion set in Chinese to English direction.

Direction BLEU BLEU-cased
English→ Chinese 30.5 30.5
Chinese→ English 23.4 22.3

Table 3: The performance of our systems on the
test set.

5 Conclusion

We present CASICT-DCU neural machine transla-
tion systems for the WMT17 shared news transla-
tion task on English↔Chinese language pair. The
Gated Recurrent Unit (GRU) with the linear asso-
ciative connection are employed to build the deep
encoder. We extract dictionaries from the parallel
training data with unsupervised word alignment
approach. We locate the source word that gener-
ates the ”UNK” symbol in target sentence accord-
ing to the word alignment vector and translate it
with the dictionary. In the decoding procedure, the
translation probabilities of the target word from
different models are averagely combined as the
ensemble strategy to further improve the perfor-
mance.
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Abstract

This paper describes the monomodal and
multimodal Neural Machine Translation
systems developed by LIUM and CVC
for WMT17 Shared Task on Multimodal
Translation. We mainly explored two mul-
timodal architectures where either global
visual features or convolutional feature
maps are integrated in order to benefit
from visual context. Our final systems
ranked first for both En→De and En→Fr
language pairs according to the automatic
evaluation metrics METEOR and BLEU.

1 Introduction

With the recent advances in deep learning, purely
neural approaches to machine translation, such as
Neural Machine Translation (NMT), (Sutskever
et al., 2014; Bahdanau et al., 2014) have received
a lot of attention because of their competitive per-
formance (Toral and Sánchez-Cartagena, 2017).
Another reason for the popularity of NMT is its
flexible nature allowing researchers to fuse auxil-
iary information sources in order to design sophis-
ticated networks like multi-task, multi-way and
multi-lingual systems to name a few (Luong et al.,
2015; Johnson et al., 2016; Firat et al., 2017).

Multimodal Machine Translation (MMT) aims
to achieve better translation performance by vi-
sually grounding the textual representations. Re-
cently, a new shared task on Multimodal Machine
Translation and Crosslingual Image Captioning
(CIC) was proposed along with WMT16 (Specia
et al., 2016). In this paper, we present MMT sys-
tems jointly designed by LIUM and CVC for the
second edition of this task within WMT17.

Last year we proposed a multimodal atten-
tion mechanism where two different attention dis-
tributions were estimated over textual and im-
age representations using shared transformations
(Caglayan et al., 2016a). More specifically, convo-
lutional feature maps extracted from a ResNet-50
CNN (He et al., 2016) pre-trained on the ImageNet
classification task (Russakovsky et al., 2015) were
used to represent visual information. Although our
submission ranked first among multimodal sys-
tems for CIC task, it was not able to improve
over purely textual NMT baselines in neither tasks
(Specia et al., 2016). The winning submission for
MMT (Caglayan et al., 2016a) was a phrase-based
MT system rescored using a language model en-
riched with FC7 global visual features extracted
from a pre-trained VGG-19 CNN (Simonyan and
Zisserman, 2014).

State-of-the-art results were obtained after
WMT16 by using a separate attention mecha-
nism for different modalities in the context of CIC
(Caglayan et al., 2016b) and MMT (Calixto et al.,
2017a). Besides experimenting with multimodal
attention, Calixto et al. (2017a) and Libovický and
Helcl (2017) also proposed a gating extension in-
spired from Xu et al. (2015) which is believed to
allow the decoder to learn when to attend to a
particular modality although Libovický and Helcl
(2017) report no improvement over baseline NMT.

There have also been attempts to benefit from
different types of visual information instead of
relying on features extracted from a CNN pre-
trained on ImageNet. One such study from Huang
et al. (2016) extended the sequence of source em-
beddings consumed by the RNN with several re-
gional features extracted from a region-proposal
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network (Ren et al., 2015). The architecture thus
predicts a single attention distribution over a se-
quence of mixed-modality representations leading
to significant improvement over their NMT base-
line.

More recently, a radically different multi-task
architecture called Imagination (Elliott and Kádár,
2017) is proposed to learn visually grounded rep-
resentations by sharing an encoder between two
tasks: a classical encoder-decoder NMT and a
visual feature reconstruction using as input the
source sentence representation.

This year, we experiment1 with both con-
volutional and global visual vectors provided
by the organizers to better exploit multimodal-
ity (Section 3). Data preprocessing for both
English→{German,French} and training hyper-
parameters are detailed respectively in Section 2
and Section 4. The results based on automatic
evaluation metrics are reported in Section 5. The
paper ends with a discussion in Section 6.

2 Data

We use the Multi30k (Elliott et al., 2016) dataset
provided by the organizers which contains 29000,
1014 and 1000 English→{German,French}
image-caption pairs respectively for training,
validation and Test2016 (the official evaluation set
of WMT16 campaign) set. Following task rules
we normalized punctuations, applied tokenization
and lowercasing. A Byte Pair Encoding (BPE)
model (Sennrich et al., 2016) with 10K merge
operations is learned for each language pair result-
ing in 5234→7052 tokens for English→German
and 5945→6547 tokens for English→French
respectively.

We report results on Flickr Test2017 set con-
taining 1000 image-caption pairs and the addi-
tional ambiguous MSCOCO test set (Elliott et al.,
2017) of 461 image-caption pairs.

Image Features We experimented with several
types of visual representation using deep fea-
tures extracted from convolutional neural net-
works (CNN) trained on large visual datasets. Fol-
lowing the current state-of-the-art in visual repre-
sentation, we used a network with the ResNet-50
architecture (He et al., 2016) trained on the Im-
ageNet dataset (Russakovsky et al., 2015) to ex-

1A detailed tutorial for reproducing the results of this pa-
per is provided at https://github.com/lium-lst/
wmt17-mmt.

tract two types of features: the 2048-dimensional
features from the pool5 layer and the 14x14x1024
features from the res4f relu layer. Note that the
former is a global feature while the latter is a fea-
ture map with roughly localized spatial informa-
tion.

3 Architecture

Our baseline NMT is an attentive encoder-decoder
(Bahdanau et al., 2014) variant with a Conditional
GRU (CGRU) (Firat and Cho, 2016) decoder.

Let us denote source and target sequences X
and Y with respective lengthsM andN as follows
where xi and yj are embeddings of dimension E:

X = (x1, . . . , xM )

Y = (y1, . . . , yN )

Encoder Two GRU (Chung et al., 2014) en-
coders with R hidden units each, process the
source sequence X in forward and backward di-
rections. Their hidden states are concatenated to
form a set of source annotations S where each el-
ement si is a vector of dimension C = 2×R:

S =


GRUForw(

#»

X)

GRUBack(
#»

X)


 ∈ RM×C

Both encoders are equipped with layer nor-
malization (Ba et al., 2016) where each hidden
unit adaptively normalizes its incoming activa-
tions with a learnable gain and bias.

Decoder A decoder block namely CGRU (two
stacked GRUs where the hidden state of the first
GRU is used for attention computation) is used to
estimate a probability distribution over target to-
kens at each decoding step t.

The hidden state h0 of the CGRU is initialized
using a non-linear transformation of the average
source annotation:

h0 = tanh

(
Winit ·

1

M

M∑

i

si

)
, si ∈ S (1)

Attention At each decoding timestep t, an un-
normalized attention score gi is computed for each
source annotation si using the first GRU’s hidden
state ht and si itself:
(Wa ∈ RC , Ws ∈ RC×C and Wh ∈ RC×R)

gi = WT
a tanh (Wssi + bs +Whht) + ba (2)
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The context vector ct is a weighted sum of si and
its respective attention probability αi obtained us-
ing a softmax operation over all the unnormalized
scores:

αi = softmax ([g1, g2, . . . , gM ])i

ct =

M∑

i

αisi

The final hidden state h̃t is computed by the sec-
ond GRU using the context vector ct and the hid-
den state of the first GRU ht.

Output The probability distribution over the tar-
get tokens is conditioned on the previous token
embedding yt−1, the hidden state of the decoder
h̃t and the context vector ct, the latter two trans-
formed with Wdec and Wctx respectively:

ot = tanh(yt−1 +Wdech̃t +Wctxct)

P (yt|yt−1, h̃t, ct) = softmax(Woot)

3.1 Multimodal NMT

3.1.1 Convolutional Features

The fusion-conv architecture extends the CGRU
decoder to a multimodal decoder (Caglayan et al.,
2016b) where convolutional feature maps of
14x14x1024 are regarded as 196 spatial annota-
tions s′j of 1024-dimension each. For each spatial
annotation, an unnormalized attention score g′j is
computed (Equation 2) except that the weights and
biases are specific to the visual modality and thus
not shared with the textual attention:

g′j = W′ Ta tanh
(
Ws

′s′j + b′s +Wh
′ht
)
+ b′a

The visual context vector vt is computed as a
weighted sum of the spatial annotations s′j and
their respective attention probabilities βj :

βj = softmax
(
[g′1, g

′
2, . . . , g

′
196]
)
j

vt =

196∑

j

βjs
′
j

The output of the network is now conditioned on a
multimodal context vector which is the concatena-
tion of the original context vector ct and the newly
computed visual context vector vt.

3.1.2 Global pool5 Features
In this section, we present 5 architectures guided
with global 2048-dimensional visual representa-
tion V in different ways. In contrast to the baseline
NMT, the decoder’s hidden state h0 is initialized
with an all-zero vector unless otherwise specified.

dec-init initializes the decoder with V by replac-
ing Equation 1 with the following:

h0 = tanh (Wimg · V )

(Calixto et al., 2017b) previously explored a simi-
lar configuration (IMGD) where the decoder is ini-
tialized with the sum of global visual features ex-
tracted from FC7 layer of a pre-trained VGG-19
CNN and the last source annotation.

encdec-init initializes the bi-directional encoder
and the decoder with V where e0 represents the
initial state of encoder (Note that in the baseline
NMT, e0 is an all-zero vector) :

e0 = h0 = tanh (Wimg · V )

ctx-mul modulates each source annotation si
with V using element-wise multiplication:

si = si � tanh (Wimg · V )

trg-mul modulates each target embedding yj
with V using element-wise multiplication:

yj = yj � tanh (Wimg · V )

dec-init-ctx-trg-mul combines the latter two ar-
chitectures with dec-init and uses separate trans-
formation layers for each of them:

h0 = tanh (Wimg · V )

si = si � tanh
(
W′

img · V
)

yj = yj � tanh
(
W′′

img · V
)

4 Training

We use ADAM (Kingma and Ba, 2014) with a
learning rate of 4e−4 and a batch size of 32. All
weights are initialized using Xavier method (Glo-
rot and Bengio, 2010) and the total gradient norm
is clipped to 5 (Pascanu et al., 2013). Dropout
(Srivastava et al., 2014) is enabled after source
embeddings X , source annotations S and pre-
softmax activations ot with dropout probabilities
of (0.3, 0.5, 0.5) respectively. ((0.2, 0.4, 0.4) for
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En→De Flickr # Params
Test2016 (µ± σ/Ensemble) Test2017 (µ± σ/Ensemble)
BLEU METEOR BLEU METEOR

Caglayan et al. (2016a) 62.0M 29.2 48.5
Huang et al. (2016) - 36.5 54.1
Calixto et al. (2017a) 213M 36.5 55.0
Calixto et al. (2017b) - 37.3 55.1
Elliott and Kádár (2017) - 36.8 55.8

Baseline NMT 4.6M 38.1 ± 0.8 / 40.7 57.3 ± 0.5 / 59.2 30.8 ± 1.0 / 33.2 51.6 ± 0.5 / 53.8
(D1) fusion-conv 6.0M 37.0 ± 0.8 / 39.9 57.0 ± 0.3 / 59.1 29.8 ± 0.9 / 32.7 51.2 ± 0.3 / 53.4
(D2) dec-init-ctx-trg-mul 6.3M 38.0 ± 0.9 / 40.2 57.3 ± 0.3 / 59.3 30.9 ± 1.0 / 33.2 51.4 ± 0.3 / 53.7
(D3) dec-init 5.0M 38.8 ± 0.5 / 41.2 57.5 ± 0.2 / 59.4 31.2 ± 0.7 / 33.4 51.3 ± 0.3 / 53.2
(D4) encdec-init 5.0M 38.2 ± 0.7 / 40.6 57.6 ± 0.3 / 59.5 31.4 ± 0.4 / 33.5 51.9 ± 0.4 / 53.7
(D5) ctx-mul 4.6M 38.4 ± 0.3 / 40.4 57.8 ± 0.5 / 59.6 31.1 ± 0.7 / 33.5 51.9 ± 0.2 / 53.8
(D6) trg-mul 4.7M 37.8 ± 0.9 / 41.0 57.7 ± 0.5 / 60.4 30.7 ± 1.0 / 33.4 52.2 ± 0.4 / 54.0

Table 1: Flickr En→De results: underlined METEOR scores are from systems significantly different
(p-value≤ 0.05) than the baseline using the approximate randomization test of multeval for 5 runs. (D6)
is the official submission of LIUM-CVC.

En→Fr.) An L2 regularization term with a fac-
tor of 1e−5 is also applied to avoid overfitting un-
less otherwise stated. Finally, we set E=128 and
R=256 (Section 3) respectively for embedding and
GRU dimensions.

All models are implemented and trained with
the nmtpy framework2 (Caglayan et al., 2017)
using Theano v0.9 (Theano Development Team,
2016). Each experiment is repeated with 5 dif-
ferent seeds to mitigate the variance of BLEU
(Papineni et al., 2002) and METEOR (Lavie and
Agarwal, 2007) and to benefit from ensembling.
The training is early stopped if validation set ME-
TEOR does not improve for 10 validations per-
formed per 1000 updates. A beam-search with a
beam size of 12 is used for translation decoding.

5 Results

All results are computed using multeval (Clark
et al., 2011) with tokenized sentences.

5.1 En→De
Table 1 summarizes BLEU and METEOR scores
obtained by our systems. It should be noted that
since we trained each system with 5 different
seeds, we report results obtained by ensembling
5 runs as well as the mean/deviation over these 5
runs. The final system to be submitted is selected
based on ensemble Test2016 METEOR.

First of all, multimodal systems which use
global pool5 features generally obtain compara-

2https://github.com/lium-lst/nmtpy

ble scores which are better than the baseline NMT
in contrast to fusion-conv which fails to improve
over it. Our submitted system (D6) achieves an
ensembling score of 60.4 METEOR which is 1.2
better than NMT. Although the improvements are
smaller, (D6) is still the best system on Test2017 in
terms of ensembling/mean METEOR scores. One
interesting point to be stressed at this level is that
in terms of mean BLEU, (D6) performs worse than
baseline on both test sets. Similarly, (D3) which
has the best BLEU on Test2016, is the worst sys-
tem on Test2017 according to METEOR. This is
clearly a discrepancy between these metrics where
an improvement in one does not necessarily yield
an improvement in the other.

En→De
MSCOCO (µ± σ/Ensemble)

BLEU METEOR

Baseline NMT 26.4 ± 0.2 / 28.7 46.8 ± 0.7 / 48.9

(D1) fusion-conv 25.1 ± 0.7 / 28.0 46.0 ± 0.6 / 48.0
(D2) dec-init-ctx-trg-mul 26.3 ± 0.9 / 28.8 46.5 ± 0.4 / 48.5
(D3) dec-init 26.8 ± 0.5 / 28.8 46.5 ± 0.6 / 48.4
(D4) encdec-init 27.1 ± 0.9 / 29.4 47.2 ± 0.6 / 49.2
(D5) ctx-mul 27.0 ± 0.7 / 29.3 47.1 ± 0.7 / 48.7
(D6) trg-mul 26.4 ± 0.9 / 28.5 47.4 ± 0.3 / 48.8

Table 2: MSCOCO En→De results: the best
Flickr system trg-mul (Table 1) has been used for
this submission as well.

For the MSCOCO set no held-out set for model
selection was available. Therefore, we submit-
ted the system (D6) with best METEOR on Flickr
Test2016.
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En→Fr
Test2016 (µ± σ / Ensemble) Test2017 (µ± σ / Ensemble)

BLEU METEOR BLEU METEOR

Baseline NMT 52.5 ± 0.3 / 54.3 69.6 ± 0.1 / 71.3 50.4 ± 0.9 / 53.0 67.5 ± 0.7 / 69.8
(F1) NMT + nol2reg 52.6 ± 0.8 / 55.3 69.6 ± 0.6 / 71.7 50.0 ± 0.9 / 52.5 67.6 ± 0.7 / 70.0

(F2) fusion-conv 53.5 ± 0.8 / 56.5 70.4 ± 0.6 / 72.8 51.6 ± 0.9 / 55.5 68.6 ± 0.7 / 71.7
(F3) dec-init 54.5 ± 0.8 / 56.7 71.2 ± 0.4 / 73.0 52.7 ± 0.9 / 55.5 69.4 ± 0.7 / 71.9
(F4) ctx-mul 54.6 ± 0.8 / 56.7 71.4 ± 0.6 / 73.0 52.6 ± 0.9 / 55.7 69.5 ± 0.7 / 71.9
(F5) trg-mul 54.7 ± 0.8 / 56.7 71.3 ± 0.6 / 73.0 52.7 ± 0.9 / 55.5 69.5 ± 0.7 / 71.7

ens-nmt-7 54.6 71.6 53.3 70.1
ens-mmt-6 57.4 73.6 55.9 72.2

Table 3: Flickr En→Fr results: Scores are averages over 5 runs and given with their standard deviation
(σ) and the score obtained by ensembling the 5 runs. ens-nmt-7 and ens-mmt-6 are the submitted ensem-
bles which correspond to the combination of 7 monomodal and 6 multimodal (global pool5) systems,
respectively.

After scoring all the available systems (Table 2)
we observe that (D4) is the best system accord-
ing to ensemble metrics. This can be explained by
the out-of-domain/ambiguous nature of MSCOCO
where best generalization performance on Flickr is
not necessarily transferred to this set.

Overall, (D4), (D5) and (D6) are the top
systems according to METEOR on Flickr and
MSCOCO test sets.

5.2 En→Fr

Table 5.1 shows the results of our systems on the
official test set of last year (Test2016) and this
year (test2017). F1 is a variant of the baseline
NMT without L2 regularization. F2 is a multi-
modal system using convolutional feature maps as
visual features while F3 to F5 are multimodal sys-
tems using pool5 global visual features. We note
that all multimodal systems perform better than
monomodal ones.

Compared to the MMT 2016 results, we can see
that the fusion-conv (F2) system with separate at-
tention over both modalities achieve better perfor-
mance than monomodal systems. The results are
further improved by systems F3 to F5 which use
pool5 global visual features. We conjecture that
the way of integrating the global visual features
into these systems does not seem to affect the final
results since they all perform equally well on both
test sets.

The submitted systems are presented in the last
two lines of Table 5.1. Since we did not have all
5 runs with different seeds ready by the submis-
sion deadline, heterogeneous ensembles of differ-

ent architectures and different seeds were consid-
ered. ens-nmt-7 (contrastive monomodal submis-
sion) and ens-mmt-6 (primary multimodal submis-
sion) correspond to ensembles of 7 monomodal
and 6 multimodal (pool5) systems respectively.
ens-mmt-6 benefits from the heterogeneity of the
included systems resulting in a slight improvement
of BLEU and METEOR.

En→Fr
MSCOCO (µ± σ / ensemble)

BLEU METEOR

Baseline NMT 41.2 ±1.2 / 43.3 61.3 ±0.9 / 63.3
(F1) NMT + nol2reg 40.6 ±1.2 / 43.5 61.1 ±0.9 / 63.7

(F2) fusion-conv 43.2 ±1.2 / 45.9 63.1 ±0.9 / 65.6
(F3) dec-init 43.3 ±1.2 / 46.2 63.4 ±0.9 / 66.0
(F4) ctx-mul 43.3 ±1.2 / 45.6 63.4 ±0.9 / 65.4
(F5) trg-mul 43.5 ±1.2 / 45.5 63.2 ±0.9 / 65.1

ens-nmt-7 43.6 63.4
ens-mmt-6 45.9 65.9

Table 4: MSCOCO En→Fr results: ens-mmt-6,
the best performing ensemble on Test2016 corpus
(see Table 5.1) has been used for this submission
as well.

Results on the ambiguous dataset extracted
from MSCOCO are presented in Table 4. We can
observe a slightly different behaviour compared
to the results in Table 5.1. The systems using
the convolutional features are performing equally
well compared to those using pool5 features. One
should note that no specific tuning was performed
for this additional task since no specific validation
data was provided.
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6 Conclusion

We have presented the LIUM-CVC systems for
English to German and English to French Multi-
modal Machine Translation evaluation campaign.
Our systems were ranked first for both tasks in
terms of automatic metrics. Using the pool5
global visual features resulted in a better perfor-
mance compared to multimodal attention architec-
ture which makes use of convolutional features.
This might be explained by the fact that the atten-
tion mechanism over spatial feature vectors cannot
capture useful information from the extracted fea-
tures maps. Another explanation for this is that
source sentences contain most necessary informa-
tion to produce the translation and the visual con-
tent is only useful to disambiguate a few specific
cases. We also believe that reducing the number
of parameters aggressively to around 5M allowed
us to avoid overfitting leading to better scores in
overall.
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Abstract

We report experiments with multi-modal
neural machine translation models that in-
corporate global visual features in differ-
ent parts of the encoder and decoder, and
use the VGG19 network to extract fea-
tures for all images. In our experiments,
we explore both different strategies to in-
clude global image features and also how
ensembling different models at inference
time impact translations. Our submissions
ranked 3rd best for translating from En-
glish into French, always improving con-
siderably over an neural machine transla-
tion baseline across all language pair eval-
uated, e.g. an increase of 7.0–9.2 ME-
TEOR points.

1 Introduction

In this paper we report on our application of three
different multi-modal neural machine translation
(NMT) systems to translate image descriptions.
We use encoder–decoder attentive multi-modal
NMT models where each training example con-
sists of one source variable-length sequence, one
image, and one target variable-length sequence,
and a model is trained to translate sequences in
the source language into corresponding sequences
in the target language while taking the image into
consideration. We use the three models introduced
in Calixto et al. (2017b), which integrate global
image features extracted using a pre-trained con-
volutional neural network into NMT (i) as words
in the source sentence, (ii) to initialise the encoder
hidden state, and (iii) as additional data to initialise
the decoder hidden state.

We are inspired by the recent success of multi-
modal NMT models applied to the translation of
image descriptions (Huang et al., 2016; Calixto

et al., 2017a). Huang et al. (2016) incorporate
global visual features into NMT with some suc-
cess, and Calixto et al. (2017a) propose to use lo-
cal visual features instead, achieving better results.
We follow Calixto et al. (2017b) and investigate
whether we can achieve better results while still
using global visual features, which are consider-
ably smaller and simpler to integrate when com-
pared to local features.

We expect that, by integrating visual informa-
tion when translating image descriptions, we are
able to exploit valuable information from both
modalities when generating the target description,
effectively grounding machine translation (Glen-
berg and Robertson, 2000).

2 Model Description

The models used in our experiments can be viewed
as expansions of the attentive NMT framework in-
troduced by Bahdanau et al. (2015) with the addi-
tion of a visual component that incorporates visual
features from images. A bi-directional recurrent
neural network (RNN) with gated recurrent unit
(GRU) (Cho et al., 2014) is used as the encoder.
The final annotation vector for a given source po-
sition i is the concatenation of forward and back-
ward RNN hidden states, hi =

[−→
hi;
←−
hi

]
.

We use the publicly available pre-trained con-
volution neural network VGG191 of Simonyan
and Zisserman (2014) to extract global image fea-
ture vectors for all images. These features are
the 4096D activations of the penultimate fully-
connected layer FC7, henceforth referred to as q.

We now describe the three multi-modal NMT
models used in our experiments. For a detailed
explanation about these models, see Calixto et al.
(2017b).

1http://www.robots.ox.ac.uk/˜vgg/
research/very_deep/
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2.1 IMG2W: Image as source words
In model IMG2W, the image features are used
as the first and last words of the source sen-
tence, and the source-language attention model
learns when to attend to the image representations.
Specifically, given the global image feature vector
q ∈ R4096:

d = W 2
I · (W 1

I · q + b1I) + b2I , (1)

where W 1
I ∈ R4096×4096 and W 2

I ∈ R4096×dx are
image transformation matrices, b1I ∈ R4096 and
b2I ∈ Rdx are bias vectors, and dx is the source
words vector space dimensionality, all trained with
the model.

We directly use d as the first and last
words of the source sentence. In other words,
given the word embeddings for a source sen-
tence X = (x1,x2, · · · ,xN ), we concate-
nate the transformed image vector d to it, i.e.
X = (d,x1,x2, · · · ,xN ,d), and apply the for-
ward and backward encoder RNN. By including
images into the encoder in model IMG2W, our in-
tuition is that (i) by including the image as the first
word, we propagate image features into the source
sentence vector representations when applying the
forward RNN to produce vectors

−→
hi, and (ii) by in-

cluding the image as the last word, we propagate
image features into the source sentence vector rep-
resentations when applying the backward RNN to
produce vectors

←−
hi.

2.2 IMGE: Image for encoder initialisation
In the original attention-based NMT model of
Bahdanau et al. (2015), the hidden state of the en-
coder is initialised with the zero vector

#»
0 . In-

stead, we propose to use two new single-layer
feed-forward neural networks to compute the ini-
tial states of the forward and the backward RNN,
respectively.

Similarly to what we do for model IMG2W de-
scribed in Section 2.1, given a global image fea-
ture vector q ∈ R4096, we compute a vector d
using Equation (1), only this time the parameters
W 2

I and b2I project the image features into the
same dimensionality as the hidden states of the
source language encoder.

The feed-forward networks used to initialise the
encoder hidden state are computed as in (2):

←−
h init = tanh

(
Wfd+ bf

)
,

−→
h init = tanh

(
Wbd+ bb

)
, (2)

where Wf and Wb are multi-modal projection
matrices that project the image features d into the
encoder forward and backward hidden states di-
mensionality, respectively, and bf and bb are bias
vectors.

−→
h init and

←−
h init are directly used as the

forward and backward RNN initial hidden states,
respectively.

2.3 IMGD: Image for decoder initialisation

To incorporate an image into the decoder, we in-
troduce a new single-layer feed-forward neural
network. Originally, the decoder initial hidden
state is computed using a summary of the encoder
hidden states. This is often the concatenation of
the last hidden states of the encoder forward RNN
and backward RNN, respectively

−→
hN and

←−
h 1, or

the mean of the source-language annotation vec-
tors hi.

We propose to include the image features as
additional input to initialise the decoder’s hidden
state, as described in (3):

s0 = tanh
(
Wdi[

←−
h 1;
−→
hN ] +Wmd+ bdi

)
, (3)

where s0 is the decoder initial hidden state, Wm

is a multi-modal projection matrix that projects the
image features d into the decoder hidden state di-
mensionality and Wdi and bdi are learned model
parameters.

Once again we compute d by applying Equation
(1) onto a global image feature vector q ∈ R4096,
only this time the parameters W 2

I and b2I project
the image features into the same dimensionality as
the decoder hidden states.

3 Experiments

We report results for Task 1, specifically when
translating from English into German (en–de) and
French (en–fr). We conducted experiments on
the constrained version of the shared task, which
means that the only training data we used is the
data released by the shared task organisers, i.e.
the translated Multi30k (M30kT) data set (Elliott
et al., 2016) with the additional French image de-
scriptions, included for the 2017 run of the shared
task.

Our encoder is a bi-directional RNN with GRU,
one 1024D single-layer forward RNN and one
1024D single-layer backward RNN. Throughout,
we parameterise our models using 620D source
and target word embeddings, and both are trained
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jointly with our model. All non-recurrent matri-
ces are initialised by sampling from a Gaussian
distribution (µ = 0, σ = 0.01), recurrent matri-
ces are random orthogonal and bias vectors are
all initialised to

#»
0 . We apply dropout (Srivastava

et al., 2014) with a probability of 0.3 in source
and target word embeddings, in the image fea-
tures, in the encoder and decoder RNNs inputs and
recurrent connections, and before the readout op-
eration in the decoder RNN. We follow Gal and
Ghahramani (2016) and apply dropout to the en-
coder bidirectional RNN and decoder RNN using
the same mask in all time steps.

The translated Multi30k training and validation
sets contain 29k and 1014 images respectively,
each accompanied by a sentence triple, the orig-
inal English sentence and its gold-standard trans-
lations into German and into French.

We use the scripts in the Moses SMT Toolkit
(Koehn et al., 2007) to normalise, lowercase and
tokenize English, German and French descriptions
and we also convert space-separated tokens into
subwords (Sennrich et al., 2016). The subword
models are trained jointly for English–German de-
scriptions and separately for English–French de-
scriptions using the English-German and English-
French WMT 2015 data (Bojar et al., 2015).
English–German models have a final vocabulary
of 74K English and 81K German subword tokens,
and English–French models 82K English and 82K
French subword tokens. If sentences in English,
German or French are longer than 80 tokens, they
are discarded.

Finally, we use the 29K entries in the M30kT
training set for training our models, and the
1, 014 entries in the M30kT development set for
model selection, early stopping the training pro-
cedure in case the model stops improving BLEU
scores on this development set. We evaluate our
English–German models on three held-out test
sets, the Multi30k 2016/2017 and the MSCOCO
2017 test sets, and our English–French models on
the Multi30k 2017 and the MSCOCO 2017 test
sets.

We evaluate translation quality quantitatively in
terms of BLEU4 (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), and TER (Snover
et al., 2006).

Multi30k 2017
Lang. Model BLEU4 ↑ METEOR↑ TER↓
en–de NMT baseline 19.3 41.9 72.2
en–de Ensemble 29.8 (↑ 10.3) 50.5 (↑ 8.6) 52.3 (↓ 19.9)

en–fr NMT baseline 44.3 63.1 39.6
en–fr Ensemble 54.1 (↑ 9.8) 70.1 (↑ 7.0) 30.0 (↓ 9.6)

Table 1: Results for the M30kT 2017 English–
German and English–French test sets. All models
are trained on the original M30kT training data.
Our ensemble uses four multi-modal models, all
independently trained: two models IMGD, one
model IMGE, and one model IMG2W.

MSCOCO 2017
Lang. Model BLEU4 ↑ METEOR↑ TER↓
en–de NMT baseline 18.7 37.6 66.1
en–de Ensemble 26.4 (↑ 7.7) 46.8 (↑ 9.2) 54.5 (↓ 11.6)

en–fr NMT baseline 35.1 55.8 45.8
en–fr Ensemble 44.5 (↑ 9.4) 64.1 (↑ 8.3) 35.2 (↓ 10.6)

Table 2: Results for the MSCOCO 2017 English–
German and English–French test sets. All mod-
els are trained on the original M30kT training
data. Ensemble uses four multi-modal models,
all trained independently: two models IMGD, one
model IMGE, and one model IMG2W.

3.1 Results

In Table 1, we show results when translating the
Multi30k 2017 test sets. Models are trained on
the original M30kT training data only. The NMT
baseline is the attention-based NMT model of
Bahdanau et al. (2015) and its results are the ones
reported by the shared task organisers. When com-
pared to other submissions of the multi-modal MT
task under the constrained data regime, our mod-
els ranked sixth best when translating the English–
German Multi30k 2017, and fourth best when
translating the English–German MSCOCO 2017
test sets. When translating both the Multi30k 2017
and the MSCOCO 2017 English–French test sets,
our models are ranked third best, scoring only 1–2
points (BLEU, METEOR) less than the best sys-
tem.

In Table 2, we show results when translating the
MSCOCO 2017 English–German and English–
French test sets. Again, all models are trained
on the original M30kT training data only. When
compared to other submissions of the multi-modal
MT task under the constrained data regime, our
submission ranked fourth best for the English–
German and third best for the English–French lan-
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Multi30k 2016 (English→German)
Ensemble? BLEU4 ↑ METEOR↑ TER↓

NMTSRC+IMG
1 × 39.0 56.8 40.6

IMGD × 37.3 55.1 42.8

IMGD + IMGE 40.1 (↑ 1.1) 58.5 (↑ 1.7) 40.7 (↑ 0.1)

IMGD + IMGE + IMG2W 41.0 (↑ 2.0) 58.9 (↑ 2.1) 39.7 (↓ 0.9)

IMGD + IMGE + IMG2W + IMGD 41.3 (↑ 2.3) 59.2 (↑ 2.4) 39.5 (↓ 1.1)

1 This model is pre-trained on the English–German WMT 2015 (Bojar et al., 2015), consisting of ∼4.3M

sentence pairs.

Table 3: Results for the best model of Calixto et al. (2017a), which is pre-trained on the English–German
WMT 2015 (Bojar et al., 2015), and different combinations of multi-modal models, all trained on the
original M30kT training data only, evaluated on the M30kT 2016 test set.

guage pair, scoring only 1 to 1.5 points less than
the best system. These are promising results, spe-
cially taking into consideration that we are us-
ing global image features, which are smaller and
simpler than local features (used in Calixto et al.
(2017a)).

Ensemble decoding We now report on how can
ensemble decoding be used to improve multi-
modal MT. In Table 3, we show results when trans-
lating the Multi30k 2016’s test set. We ensem-
bled different models by starting with one of Cal-
ixto et al. (2017b)’s best performing multi-modal
models on this data set, IMGD, and by adding new
models to the ensemble one by one, until we reach
a maximum of four independent models, all of
which are trained separately and on the original
M30kT training data only. We also report results
for the best model of Calixto et al. (2017a), which
is pre-trained on the English–German WMT 2015
(Bojar et al., 2015) and uses local visual features
extracted with the ResNet-50 network (He et al.,
2015).

We first note that adding more models to the
ensemble seems to always improve translations
by a large margin (∼ 3 BLEU/METEOR points).
Adding model IMG2W to the ensemble already
consisting of models IMGE and IMGD still im-
proves translations, according to all metrics evalu-
ated. This is an interesting result, since compared
to these other two multi-modal models, model
IMG2W performs the worst according to BLEU,
METEOR and chrF3 (see Calixto et al. (2017b)).
Our best results are obtained with an ensemble of
four different multi-modal models.

By using an ensemble of four different multi-
modal NMT models trained on the translated

Multi30k training data, we were able to obtain
translations comparable to or even better than
those obtained with the strong multi-modal NMT
model of Calixto et al. (2017a), which is pre-
trained on large amounts of WMT data and uses
local image features.

4 Conclusions and Future work

In this work, we evaluated multi-modal NMT
models which integrate global image features into
both the encoder and the decoder. We exper-
imented with ensembling different multi-modal
NMT models introduced in Calixto et al. (2017b),
and results show that these models can gener-
ate translations that compare favourably to multi-
modal models that use local image features. We
observe consistent improvements over a text-only
NMT baseline trained on the same data, and these
are typically very large (e.g., 7.0–9.2 METEOR
points across language pairs and test sets). In fu-
ture work we plan to study how to generalise these
models to other multi-modal natural language pro-
cessing tasks, e.g. visual question answering.
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Abstract

This paper introduces the AFRL-OSU
Multimodal Machine Translation Task 1
system for submission to the Conference
on Machine Translation 2017 (WMT17).
This is an atypical MT system in that the
image is the catalyst for the MT results,
and not the textual content.

1 Introduction

Contemporary scientific meetings have examined
the potential benefits of fusing image information
with machine translation. For instance, the leading
international conference in this area, the Confer-
ence onMachine Translation (WMT), is approach-
ing its second year of competition on Multimodal
Machine Translation (MMT). First year results in
WMT16’s Multimodal Task 1 were varied in ap-
proaches, informative in their findings, and indi-
cated potential opprtunities for multimodal system
improvement. (Specia et al., 2016).
In the WMT16 submissions, the seemingly pre-

dominant focal point across the systems was the
fact that textual information was the driver for the
translation. The image features tended towards be-
ing ancilliary inputs or outputs (Libovický et al.,
2016; Guasch and Costa-Jussà, 2016; Caglayan
et al., 2016) or decision-type functions (Shah et al.,
2016) and not the main antagonist for translation
(Specia et al., 2016; Elliott et al., 2015). This is
sensible as it is an MT competition. However, ap-
proaching it from another direction, namely, hav-
ing the image as the driver for the translation
presents a different point of view worth investigat-
ing.

This work is sponsored by the Air Force Research Labo-
ratory under AFRL/711 Human PerformanceWing Chief Sci-
entist Funding.

The following sections will outline the seem-
ingly novel approach to MMT and give particulars
of this unconstrained system.

2 AFRL-OSU System

This section will outline the architecture of the sys-
tem. This is a first approximation into the pro-
cess but is expected to undergo further develop-
ment based on insights from this competition.

2.1 General Overview

Referencing Fig. 1, a generic example taken from
(Specia et al., 2016) shows a method where the
source caption and image are the drivers for the
multimodal translation. In some ofWMT16’s sub-
missions, the decomposition of the image is incor-
porated as an additional feature into the MMT sys-
tem, while others used the features as a function to
help pick the best translation.
AFRL-OSU’s system is pictorially represented

in Figure 2. Currently, there is much work in
image captioning systems (Socher et al., 2014;
Ghahramani et al., 2014; Mao et al., 2014; Kiros
et al., 2014; Vinyals et al., 2015), and WMT17 has
even set out a task in its competition for it. Our em-
phasis is not to try to produce a multilingual image
captioning system, rather to use one to accomplish
MT as the maturity of the caption engine research
progresses.
This system architecture assumes an image cap-

tion engine can be trained in a target language to
give meaningful output in the form of a set of the
most probable n target language candidate cap-
tions. A learned mapping function of the encoded
source language caption to the corresponding en-
coded target language candidate captions is thusly
employed. Finally, a distance function is applied
to retrieve the “nearest” candidate caption to be the
translation of the source caption.
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Source	Caption:
A	brown	dog	is	running	
after	the	black	dog.

Translate Ein brauner Hund	läuft nach
dem schwarzen Hund.

Evaluate

Reference:
Ein brauner Hund	rennt
dem schwarzen Hund	

hinterher.

Figure 1: A Text-based Model for Multimodal Machine Translation adapted from (Specia et al., 2016)

Image	generated	German	
candidate	captions:

Ein schwarzer und	ein …
Zwei hunde rennen …

…
Zwei Hunde tollen in…

Source	English	Caption:
A	brown	dog	is	running	after	

the	black	dog.

Source	to	Target	Transfer	Mapping

Functional
retrieval	of
appropriate
candidate
caption

Encode Encode

Ein brauner Hund	rennt dem schwarzen
Hund	hinterher.

Non-traditional	MT	determined	output

Figure 2: An Image-based Model for Multimodal Machine Translation.

2.2 Theoretical Overview
Details of the system architecture are illustrated in
Figure 3. Given an image i (top left), using an
image captioning engine trained in the target lan-
guage t, we produce n candidate captions: Ct

ij
for

j = 1, ..., n.
After obtaining the candidate sentences, we

transform them into a fixed vector length encod-
ing with

vt
ij = Gt(Ct

ij ) (1)

where Gt(·) is the target encoder.
Similarly (from the top right of Figure 3), the

source language caption Cs
i is encoded using

vs
i = Gs(Cs

i ) (2)

where Gs(·) is the source encoder.

At this point, both the target captions and the
source caption are encoded in separate monolin-
gual, monomodal subspaces. In order to exe-
cute the retrieval process, we develop a transfer
mapping of the source language encodings to the
space of target language encodings. We learn this
source-to-target mapping using training pairs of
source language encodings and target language en-
codings provided by traditional MT of the source
language examples (Sennrich et al., 2016). Hence
the mapping attempts to learn MT translation from
the encoding representations themselves. The ar-
chitecture employed is a multi-layer neural net-
work.
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Figure 3: Architectural Diagram of the Processing Chain

2.3 Implementation

The actual AFRL-OSU unconstrained implemen-
tation went through many iterations of tool sets
before settling. The captioning engine selected
for this competition was Google’s Show and Tell
system (Vinyals et al., 2015). It was trained on
the WMT16 training and validation splits using
the MultiFlickr30K images and German (Elliott
et al., 2016) and ImageClef 2006-2008 multilin-
gual datasets (Rorissa et al., 2006). For testing,
1000 captions (Ct

ij
for j = 1, ..., 1000) per image

were produced. Any caption with sentence length
less than five words was not considered, but was
not replaced. Captions were put into all lowercase
without punctuation.
The monolingual word encodings, Gt and Gs,

used to vector encode the source language caption
and target language captions employed the word
encodings compiled and published by Facebook
(Bojanowski et al., 2016). Because Facebook’s
data was chosen over any word encodings pro-
duced internally, vector length was fixed at 300.
This dataset was produced by Facebook by crawl-
ing and cleaning up data fromWikipedia pages us-
ing their fastText software and encoding algorithm

outlined in (Bojanowski et al., 2016). Sentence en-
codings used in the AFRL-OSU system were de-
rived from averaging of in-vocabulary constituent
word encodings.
To transform source encoded data into the tar-

get language encoded subspace, a multi-layer neu-
ral network was constructed. The WMT16 train-
ing/validation splits were used for the training En-
glish source captions (5 captions per image with
a total of 29000 images). These English cap-
tions were encoded into 300x1 vectors, each L2-
normalized. The training target outputs were gen-
erated using Edinburgh’sWMT16NeuralMT Sys-
tem (Sennrich et al., 2016) to translate captions
from English to German in the same 300x1 vec-
tor format, and again L2-normalized. The neural
network was configured with 1 hidden layer (500
nodes) and a mean squared error loss-function. To
test the approach 10% of the training data was kept
for evaluation. During training, 25% of the re-
maining training data was withheld for validation
with a maximum of 10000 epochs. The result-
ing network provides a source-to-target mapping
of the source caption encoding

v̂t
i = Net(vs

i ) (3)
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Figure 4: Histogram analysis. Top: Histogram of
indices for the best match in the candidates. Bot-
tom: Histogram of indices for candidate sentences
with invalid (<5) length.

We lastly used the squared Euclidean Distance
between the source transformed English caption
encoding v̂t

i to the collection of candidate target
caption encodings to select the best candidate sen-
tence index j∗

j∗ = argmin
j

||v̂t
i − vt

ij ||22 (4)

The “best” match (to the source language cap-
tion) produced from the captioning engine is the
sentence Ct

ij∗ . From the test data (with ground
truth source-to-target labels), we received a top-1
of 77% and top-5 of 87%.

3 Results

The final submission consisted of generating 1000
captions per image with the top score being se-
lected. The minimum of 5 words per sentence dis-
counted 150963 candidate captions.
The top caption satisfying Eq.4 as the minimal

value was scored against the output from the Edin-
burgh WMT16 Neural MT system and had a ME-
TEOR (Denkowski and Lavie, 2014) score of 19.8
(Sennrich et al., 2016). Figure 4 provides some
trends for locations of zero vectors and top scoring
vectors.

4 Conclusion

Assuming sufficient baseline results from an
image-centric MMT system evaluated in this com-
petition, there exist several opportunities for un-

derstanding the implications of such a system and
also to improve its capabilities.
The captioning engine used is employed as a

black box and assumed meaningful output for pro-
cessing. Knowing the inner workings of the cap-
tion engine should allow tuning to produce more
meaningful results. The authors also look for-
ward to the results of this Multimodal Competi-
tion’s Task 2 to obtain a better captioning engine
(either improvements on the current system, or a
different method altogether).
The monolingual word encodings attained from

the Facebook models were constrained to 300 ele-
mental vector length. Exploration into not only the
size, but also construction of the data is warranted.
The cost function used, squared Euclidean Dis-

tance, is a first attempt. Looking at a variety of
functions may harvest better results.
The authors only submitted the top ranked cap-

tion for scoring in this competition. However,
33 candidate submissions received a 0.0 sentence
level METEOR score. Therefore, approaching a
selection from the Topm captions that would max-
imize the METEOR is worth investigating.
This paper outlined the AFRL-OSU WMT17

Multimodal Translation system where the image
is the focal point for MT. The authors hope that
it spurs some alternative thinking and research in
the area of multimodal MT.
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Abstract

In this paper, we describe our submissions
to the WMT17 Multimodal Translation
Task. For Task 1 (multimodal translation),
our best scoring system is a purely textual
neural translation of the source image cap-
tion to the target language. The main fea-
ture of the system is the use of additional
data that was acquired by selecting simi-
lar sentences from parallel corpora and by
data synthesis with back-translation. For
Task 2 (cross-lingual image captioning),
our best submitted system generates an
English caption which is then translated by
the best system used in Task 1. We also
present negative results, which are based
on ideas that we believe have potential of
making improvements, but did not prove
to be useful in our particular setup.

1 Introduction

Recent advances in deep learning allowed infer-
ring distributed vector representations of both tex-
tual and visual data. In models combining text and
vision modalities, this representation can be used
as a shared data type. Unlike the classical nat-
ural language processing tasks where everything
happens within one language or across languages,
multimodality tackles how the language entities
relate to the extra-lingual reality. One of these
tasks is multimodal translation whose goal is us-
ing cross-lingual information in automatic image
captioning.

In this system-description paper, we describe
our submission to the WMT17 Multimodal Trans-
lation Task. In particular, we discuss the effect of
mining additional training data and usability of ad-
vanced attention strategies. We report our results

on both the 2016 and 2017 test sets and discuss
efficiency of tested approaches.

The rest of the paper is organized as follows.
Section 2 introduces the tasks we handle in this pa-
per and the datasets that were provided to the task.
Section 3 summarizes the state-of-the-art methods
applied to the task. In Section 4, we describe our
models and the results we have achieved. Sec-
tion 5 presents the negative results and Section 6
concludes the paper.

2 Task and Dataset Description

The challenge of the WMT Multimodal Transla-
tion Task is to exploit cross-lingual information
in automatic image caption generation. The state-
of-the-art models in both machine translation and
automatic image caption generation use similar
architectures for generating the target sentence.
The simplicity with which we can combine the
learned representations of various inputs in a sin-
gle deep learning model inevitably leads to a ques-
tion whether combining the modalities can lead to
some interesting results. In the shared task, this
is explored in two subtasks with different roles of
visual and textual modalities.

In the multimodal translation task (Task 1),
the input of the model is an image and its cap-
tion in English. The system then should out-
put a German or French translation of the cap-
tion. The system output is evaluated using
the METEOR (Denkowski and Lavie, 2011) and
BLEU (Papineni et al., 2002) scores computed
against a single reference sentence. The question
this task tries to answer is whether and how is it
possible to use visual information to disambiguate
the translation.

In the cross-lingual captioning task (Task 2), the
input to the model at test-time is the image alone.
However, additionally to the image, the model is
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en de fr
Train. sentences 29,000
Train. tokens 378k 361k 410k
Avg. # tokens 13.0 12.4 14.1
# tokens range 4–40 2–44 4–55
Val. sentences 1,014
Val. tokens 13k 13k 14k
Avg. # tokens 13.1 12.7 14.2
# tokens range 4–30 3–33 5–36
OOV rate 1.28% 3.09% 1.20%

Table 1: Multi30k statistics on training and valida-
tion data – total number of tokens, average number
of tokens per sentence, and the sizes of the shortest
and the longest sentence.

supplied with the English (source) caption dur-
ing training. The evaluation method differs from
Task 1 in using five reference captions instead of
a single one. In Task 2, German is the only tar-
get language. The motivation of Task 2 is to ex-
plore ways of easily creating an image captioning
system in a new language once we have an ex-
isting system for another language, assuming that
the information transfer is less complex across lan-
guages than between visual and textual modalities.

2.1 Data

The participants were provided with the Multi30k
dataset (Elliott et al., 2016) – a multilingual exten-
sion of Flickr30k dataset (Plummer et al., 2017) –
for both training and evaluation of their models.

The data consists of 31,014 images. In
Flickr30k, each image is described with five inde-
pendently acquired captions in English. Images in
the Multi30k dataset are enriched with five crowd-
sourced German captions. Additionally, a single
German translation of one of the English captions
was added for each image.

The dataset is split into training, validation, and
test sets of 29,000, 1,014, and 1,000 instances re-
spectively. The statistics on the training and vali-
dation part are tabulated in Table 1.

For the 2017 round of the competition (Elliott
et al., 2017), an additional French translation was
included for Task 1 and new test sets have been de-
veloped. Two test sets were provided for Task 1:
The first one consists of 1,000 instances and is
similar to the test set used in the previous round
of the competition (and to the training and val-
idation data). The second one consists of im-

ages, captions, and their translations taken from
the MSCOCO image captioning dataset (Lin et al.,
2014). A new single test set containing 1,071 im-
ages with five reference captions was added for
Task 2.

The style and structure of the reference sen-
tences in the Flickr- and MSCOCO-based test sets
differs. Most of the sentences in the Multi30k
dataset have a similar structure with a relatively
simple subject, an active verb in present tense,
simple object, and location information (e.g.,
“Two dogs are running on a beach.”). Contrast-
ingly, the captions in the MSCOCO dataset are
less formal and capture the annotator’s uncertainty
about the image content (e.g., “I don’t know, it
looks like a lemon.”).

3 Related Work

Several promising neural architectures for multi-
modal translation task have been introduced since
the first competition in 2016.

In our last year’s submission (Libovický et al.,
2016), we employed a neural system that com-
bined multiple inputs – the image, the source cap-
tion and an SMT-generated caption. We used the
attention mechanism over the textual sequences
and concatenated the context vectors in each de-
coder step.

The overall results of the WMT16 multimodal
translation task did not prove the visual features
to be particularly useful (Specia et al., 2016;
Caglayan et al., 2016).

To our knowledge, Huang et al. (2016) were
the first who showed an improvement over a
textual-only neural system with model utilizing
distributed features explicit object recognition.
Calixto et al. (2017) improved state of the art using
a model initializing the decoder state with the im-
age vector, while maintaining the rest of the neural
architecture unchanged. Promising results were
also shown by Delbrouck and Dupont (2017) who
made a small improvement using bilinear pooling.

Elliott and Kádár (2017) brought further im-
provements by introducing the “imagination”
component to the neural network architecture.
Given the source sentence, the network is trained
to output the target sentence jointly with predict-
ing the image vector. The model uses the visual in-
formation only as a regularization and thus is able
to use additional parallel data without accompany-
ing images.
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Figure 1: An overall picture of the multimodal model using hierarchical attention combination on the
input. Here, α and β are normalized coefficients computed by the attention models, wi is the i-th input
to the decoder.

4 Experiments

All models are based on the encoder-decoder ar-
chitecture with attention mechanism (Bahdanau
et al., 2014) as implemented in Neural Mon-
key (Helcl and Libovický, 2017).1 The decoder
uses conditional GRUs (Firat and Cho, 2016) with
500 hidden units and word embeddings with di-
mension of 300. The target sentences are decoded
using beam search with beam size 10, and with
exponentially weighted length penalty (Wu et al.,
2016) with α parameter empirically estimated as
1.5 for German and 1.0 for French. Because of
the low OOV rate (see Table 1), we used vocabu-
laries of maximum 30,000 tokens and we did not
use sub-word units. The textual encoder is a bidi-
rectional GRU network with 500 units in each di-
rection and word embeddings with dimension of
300. We use the last convolutional layer VGG-16
network (Simonyan and Zisserman, 2014) of di-
mensionality 14× 14× 512 for image processing.
The model is optimized using the Adam optimizer
(Kingma and Ba, 2014) with learning rate 10−4

with early stopping based on validation BLEU
score.

4.1 Task 1: Multimodal Translation
We tested the following architectures with differ-
ent datasets (see Section 4.3 for details):

• purely textual (disregarding the visual modal-
ity);

1https://github.com/ufal/neuralmonkey

• multimodal with context vector concatena-
tion in the decoder (Libovický et al., 2016);

• multimodal with hierarchical attention com-
bination (Libovický and Helcl, 2017) – con-
text vectors are computed independently for
each modality and then they are combined to-
gether using another attention mechanism as
depicted in Figure 1.

4.2 Task 2: Cross-lingual Captioning
We conducted two sets of experiments for this sub-
task. In both of them, we used an attentive image
captioning model (Xu et al., 2015) for the cross-
lingual captioning with the same decoder as for
the first subtask.

The first idea we experimented with was using a
multilingual decoder provided with the image and
a language identifier. Based on the identifier, the
decoder generates the caption either in English or
in German. We speculated that the information
transfer from the visual to the language modality
is the most difficult part of the task and might be
similar for both English and German.

The second approach we tried has two steps.
First, we trained an English image captioning sys-
tem, for which we can use larger datasets. Second,
we translated the generated captions with the mul-
timodal translation system from the first subtask.

4.3 Acquiring Additional Data
In order to improve the textual translation, we ac-
quired additional data. We used the following
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technique to select in-domain sentences from both
parallel and monolingual data.

We trained a neural character-level language
model on the German sentences available in the
training part of the Multi30k dataset. We used a
GRU network with 512 hidden units and character
embedding size of 128.

Using the language model, we selected
30,000 best-scoring German sentences from the
SDEWAC corpus (Faaß and Eckart, 2013) which
were both semantically and structurally similar to
the sentences in the Multi30k dataset.

We tried to use the language model to se-
lect sentence pairs also from parallel data. By
scoring the German part of several parallel cor-
pora (EU Bookshop (Skadiņš et al., 2014), News
Commentary (Tiedemann, 2012) and Common-
Crawl (Smith et al., 2013)), we were only able to
retrieve a few hundreds of in-domain sentences.
For that reason we also included sentences with
lower scores which we filtered using the follow-
ing rules: sentences must have between 2 and 30
tokens, must be in the present tense, must not con-
tain non-standard punctuation, numbers of multi-
ple digits, acronyms, or named entities, and must
have at most 15 % OOV rate w.r.t. Multi30k train-
ing vocabulary. We extracted additional 3,000 in-
domain parallel sentences using these rules. Ex-
amples of the additional data are given in Table 2.

By applying the same approach on the French
versions of the corpora, we were pable to extract
only few additional in-domain sentences. We thus
trained the English-to-French models in the con-
strained setup only.

Following Calixto et al. (2017), we back-
translated (Sennrich et al., 2016) the German
captions from the German side of the Multi30k
dataset (i.e. 5+1 captions for each image), and sen-
tences retrieved from the SDEWAC corpus. We
included these back-translated sentence pairs as
additional training data for the textual and multi-
modal systems for Task 1. The back-translation
system used the same architecture as the textual
systems and was trained on the Multi30k dataset
only. The additional parallel data and data from
the SDEWAC corpus (denoted as additional in Ta-
ble 3) were used only for the text-only systems be-
cause they were not accompanied by images.

For Task 2, we also used the MSCOCO (Lin
et al., 2014) dataset which consists of 300,000 im-
ages with 5 English captions for each of them.

SDEWAC Corpus (with back-translation)

zwei Männer unterhalten sich · · · · · · · · · ·
· · · · · · · two men are talking to each other .

ein kleines Mädchen sitzt auf einer Schaukel . · ·
· · · · · · · · a little girl is sitting on a swing .

eine Katze braucht Unterhaltung . · · · · · · · ·
· · · · · · · · · · a cat is having a discussion .

dieser Knabe streichelt das Schlagzeug . · · · ·
· · · · · this professional is petting the drums .

Parallel Corpora
Menschen bei der Arbeit · · · · · People at work
Männer und Frauen · · · · · · Men and women
Sicherheit bei der Arbeit · · · · · Safety at work
Personen in der Öffentlichkeit · · · · · · · · ·
· · · · · · · · · · · · · Members of the public

Table 2: Examples of the collected additional
training data.

4.4 Results

In Task 1, our best performing system was the text-
only system trained with additional data. These
were acquired both by the data selection method
described above and by back-translation. Results
of all setups for Task 1 are given in Table 3.

Surprisingly, including the data for Task 2 to the
training set decreased the METEOR score on both
of the 2017 test sets. This might have been caused
by domain mismatch. However, in case of the ad-
ditional parallel and SDEWAC data, this problem
was likely outweighed by the advantage of having
more training data.

In case of multimodal systems, adding approxi-
mately the same amount of data increased the per-
formance more than in case of the text-only sys-
tem. This suggests, that with sufficient amount of
data (which is a rather unrealistic assumption), the
multimodal system would eventually outperform
the textual one.

The hierarchical attention combination brought
major improvements over the concatenation ap-
proach on the 2017 test sets. On the 2016 test set,
the concatenation approach yielded better results,
which can be considered a somewhat strange re-
sult, given the similarity of the Flickr test sets.

The baseline system was Nematus (Sennrich
et al., 2017) trained on the textual part of Multi30k
only. However, due to its low score, we suspect
the model was trained with suboptimal parameters
because it is in principle a model identical to our
constrained textual submission.
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Task 1: en→ de Task 1: en→ fr
2016 Flickr MSCOCO Flickr MSCOCO

Baseline C — 19.3 / 41.9 18.7 / 37.6 44.3 / 63.1 35.1 / 55.8
Textual C 34.6 / 51.7 28.5 / 49.2 23.2 / 43.8 50.3 / 67.0 43.0 / 62.5
Textual (+ Task2) U 36.6 / 53.0 28.5 / 45.7 24.1 / 40.7 — —
Textual (+ additional) U 36.8 / 53.1 31.1 / 51.0 26.6 / 46.0 — —
Multimodal (concat. attn) C 32.3 / 50.0 23.6 / 41.8 20.0 / 37.1 40.3 / 56.3 32.8 / 52.1
Multimodal (hier. attn.) C 31.9 / 49.4 25.8 / 47.1 22.4 / 42.7 49.9 / 67.2 42.9 / 62.5
Multimodal (concat. attn.) U 36.0 / 52.1 26.3 / 43.9 23.3 / 39.8 — —
Multimodal (hier. attn.) U 34.4 / 51.7 29.5 / 50.2 25.7 / 45.6 — —
Task 1 winner (LIUM-CVC) C — 33.4 / 54.0 28.7 / 48.9 55.9 / 72.1 45.9 / 65.9

Table 3: Results of Task 1 in BLEU / METEOR points. ‘C’ denotes constrained configuration, ‘U’
unconstrained, ‘2016’ is the 2016 test set, ‘Flickr’ and ‘MSCOCO’ denote the 2017 test sets. The two
unconstrained textual models differ in using the additional textual data, which was not used for the
training of the multimodal systems.

Task 2
Baseline C 9.1 / 23.4
Bilingual captioning C 2.3 / 17.6
en captioning + translation C 4.2 / 22.1
en captioning + translation U 6.5 / 20.6
other participant C 9.1 / 19.8

Table 4: Results of Task 2 in BLEU / METEOR
points.

Flickr30k
Xu et al. (2015) 19.1 / 18.5
ours: Flickr30k 15.3 / 18.7
ours: Flickr30k + MSCOCO 17.9 / 16.6

Table 5: Results of the English image captioning
systems on Flickr30k test set in BLEU / METEOR
points

In Task 2, none of the submitted systems outper-
formed the baseline which was a captioning sys-
tem (Xu et al., 2015) trained directly on the Ger-
man captions in the Multi30k dataset. The results
of our systems on Task 2 are shown in Table 4.

For the English captioning, we trained two
models. First one was trained on the Flickr30k
data only. In the second one, we included also the
MSCOCO dataset. Although the captioning sys-
tem trained on more data achieved better perfor-
mance on the English side (Table 5), it led to ex-
tremely low performance while plugged into our
multimodal translation systems (Table 4, rows la-
beled “en captioning + translation”). We hypothe-

size this is caused by the different styles of the sen-
tences in the training datasets.

Our hypothesis about sharing information be-
tween the languages in a single decoder was not
confirmed in this setup and the experiments led to
relatively poor results.

Interestingly, our systems for Task 2 scored
poorly in the BLEU score and relatively well in
the METEOR score. We can attribute this to the
fact that unlike BLEU which puts more emphasis
on precision, METEOR considers strongly also re-
call.

5 Negative Results

In addition to our submitted systems, we tried a
number of techniques without success. We de-
scribe these techniques since we believe it might
be relevant for future developments in the field,
despite the current negative result.

5.1 Beam Rescoring
Similarly to Lala et al. (2017), our oracle experi-
ments on the validation data showed that rescoring
of the decoded beam of width 100 has the poten-
tial of improvement of up to 3 METEOR points.
In the oracle experiment, we always chose a sen-
tence with the highest sentence-level BLEU score.
Motivated by this observation, we conducted sev-
eral experiments with beam rescoring.

We trained a classifier predicting whether a
given sentence is a suitable caption for a given
image. The classifier had one hidden layer with
300 units and had two inputs: the last layer of
the VGG-16 network processing the image, and
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the last state of a bidirectional GRU network
processing the text. We used the same hyper-
parameters for the bidirectional GRU network as
we did for the textual encoders in other experi-
ments. Training data were taken from both parts
of the Multi30k dataset with negative examples
randomly sampled from the dataset, so the classes
were represented equally. The classifier achieved
validation accuracy of 87% for German and 74%
for French. During the rescoring of the 100 hy-
potheses in the beam, we selected the one which
had the highest predicted probability of being the
image’s caption.

In other experiments, we tried to train a regres-
sion predicting the score of a given output sen-
tence. Unlike the previous experiment, we built
the training data from scored hypotheses from
output beams obtained by translating the training
part of the Multi30k dataset. We tested two ar-
chitectures: the first one concatenates the termi-
nal states of bidirectional GRU networks encod-
ing the source and hypothesis sentences and an
image vector; the second performs an attentive
average pooling over hidden states of the RNNs
and the image CNN using the other encoders ter-
minal states as queries and concatenates the con-
text vectors. The regression was estimating either
the sentence-level BLEU score (Chen and Cherry,
2014) or the chrF3 score (Popović, 2015).

Contrary to our expectations, all the rescoring
techniques decreased the performance by 2 ME-
TEOR points.

5.2 Reinforcement Learning

Another technique we tried without any suc-
cess was self-critical sequence training (Rennie
et al., 2016). This modification of the REIN-
FORCE algorithm (Williams, 1992) for sequence-
to-sequence learning uses the reward of the
training-time decoded sentence as the baseline.
The systems were pre-trained with the word-level
cross-entropy objective and we hoped to fine-
tune the systems using the REINFORCE towards
sentence-level BLEU score and GLEU score (Wu
et al., 2016).

It appeared to be difficult to find the right mo-
ment when the optimization criterion should be
switched and to find an optimal mixing factor of
the cross-entropy loss and REINFORCE loss. We
hypothesize that a more complex objective mix-
ing strategy (like MIXER (Ranzato et al., 2015))

could lead to better results than simple objective
weighting.

6 Conclusions

In our submission to the 2017 Multimodal Task,
we tested the advanced attention combination
strategies (Libovický and Helcl, 2017) in a more
challenging context and achieved competitive re-
sults compared to other submissions. We explored
ways of acquiring additional data for the task and
tested two promising techniques that did not bring
any improvement to the system performance.
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Abstract

In this paper we explore several neural
network architectures for the WMT 2017
multimodal translation sub-task on mul-
tilingual image caption generation. The
goal of the task is to generate image cap-
tions in German, using a training corpus
of images with captions in both English
and German. We explore several mod-
els which attempt to generate captions for
both languages, ignoring the English out-
put during evaluation. We compare the re-
sults to a baseline implementation which
uses only the German captions for training
and show significant improvement.

1 Introduction

Neural models have shown great success on
a variety of tasks, including machine transla-
tion (Sutskever et al., 2014), image caption gen-
eration (Xu et al., 2015), and language modeling
(Bengio et al., 2003). Recently, huge datasets nec-
essary for training these models have become
more widely available, but there are still many lim-
itations. In some cases, the dataset which is avail-
able may not match the domain of the task.

In this paper, we attempt to generate image cap-
tions in German, using a training corpus of images
with captions in both English and German. For
each image, we have 5 independently generated
captions in each language. Since the training cor-
pus is relatively small (less than 30,000 images),
we want to make use of the English language data
to improve the German captions. (See figure 1).

It is important to note that since these captions
were generated independently in each language
rather than translated, they often differ from each
other quite a bit. Not only do they often choose
to describe different features of an image, but also

they sometimes describe contradictory features of
the image (one caption describing a man sleeping
on a couch while a different caption describes a
woman sleeping on a couch). This inconsistency
and the relatively small amount of training data
makes it very difficult to train a reliable transla-
tion system between the languages based on this
corpus.

In this paper, we will start by discussing related
work in image caption generation. Then we will
explain the baseline German image caption gen-
eration model, the soft attention model from Xu
et al. (2015). Several methods of incorporating the
English data to improve the performance will be
described. Finally, the experimental setup will be
specified and the results will be evaluated.

2 Related Work

The task of multilingual image caption genera-
tion has been previously explored by Elliott et al.
(2015). Elliott et al. (2015) used an LSTM to gen-
erate captions, using features from both a source-
language multimodal model and a target-language
multimodal model. Other previous work on mul-
tilingual images such as Hitschler and Riezler
(2016) has focused on image caption translation,
where captions are available at test time in a single
language, and we wish to use the image as a guide
while translating into a different language. The
WMT 2016 multimodal machine translation task
(Specia et al., 2016) explored precisely this task.
Using existing machine translation techniques to
translate the given caption provided a very strong
baseline. Supplementing these translation with in-
formation from the image provided only marginal
improvements. For instance Huang et al. (2016)
re-ranked the translation output using image fea-
tures and failed to achieve a higher METEOR
score than the baseline.
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Figure 1: Training data and test data

Similarly, systems developed for the WMT
2016 crosslingual image description multimodal
task had access to one or more reference English
descriptions of the image (in addition to the image
itself) when attempting to generate a German cap-
tion, allowing them to use attention-based models
that took advantage of both pieces of information.
Again though, the image seemed to provide little
benefit, and in fact the highest scoring system ig-
nored it altogether.

Generally, the long short-term memory (LSTM)
model (Hochreiter and Schmidhuber, 1997)
seems to be quite effective for caption generation
and other natural language processing tasks.
Dropout has also been shown to reduce overfitting
(Srivastava et al., 2014).

Supplementing the basic LSTM model with at-
tention model has been shown to be effective for
related tasks as well, such as machine transla-
tion (Bahdanau et al., 2014). Multiple methods
are possible for determining how the attention
is allocated at each step, such as a simple dot-
product, linear transformation, or multilayer per-
ceptron. Several of these alternatives were ex-
plored by Luong et al. (2015).

Beyond multilingual caption generation, the
over-arching task of image caption generation has
also been considered before. Vinyals et al. (2015)
used a convolutional neural network to encode an
image, followed by an LSTM decoder to produce
an output sequence. Xu et al. (2015) extended that
model by adding an attentional component, using
a multilayer perceptron to determine the weight of
each part of the image given to the LSTM at each
step.

With less than 30,000 images, it is difficult
to train a convolutional neural network to iden-
tify image features. Caglayan et al. (2016)
found that the ResNet (He et al., 2015) trained
on ImageNet classification task was quite effec-
tive (specifically using layer ’res4fx’ which is
found at the end of Block-4, after ReLU). Note
that this differs from Xu et al. (2015), which
used pre-trained features from the Oxford VGGnet
(Simonyan and Zisserman, 2014).

3 Image Caption Generation Models

3.1 Baseline

We developed several models, each of which gen-
erate both English and German captions. The
models were trained on both the English and the
German data, but at test time we evaluate the per-
formance only for generating German captions.

Our baseline is implemented as an attentional
neural network following the model of Xu et al.
(2015). Each image is encoded as 196 vectors,
each of which corresponds to a particular section
of the image. Each of these vectors consists of
1024 real numbers, derived from layer ’res4fx’ of
ResNet. (Note that this modifies the original work
by Xu et al. (2015), which used Oxford VGGnet
with only 512 real numbers for each location in the
image.) Xu et al. (2015) considered both a hard
and a soft attentional model, but since these per-
formed comparably, we have only re-implemented
their soft attentional model.

We generate a caption as a series of words (en-
coded as 1-hot vectors), terminated by the end of
sentence symbol </s>. At each timestep, an at-
tention mechanism implemented as a multilayer
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perceptron (MLP) predicts how important each
part of the image is, based on the previous hidden
state ht−1. Softmax is applied over the attention
outputs to compute a weighted average of the im-
age vectors. The result is a 1024-dimensional con-
text vector zt that represents the important parts of
the entire image at timestep t.

We use an LSTM as the decoder, which has de-
coupled input and forget gates and does not use
peephole connections. We initialize the LSTM
to 0, unlike Xu et al. (2015) which initializes the
LSTM using two additional MLP’s. Given some
previous state (ht−1, ct−1) and input xt, we com-
pute (ht, ct) = f(ht−1, ct−1, xt) where xt =
concat(embedt−1, zt). embedt−1 is the word em-
bedding of the previous word outputted (or the
special token < s > at the start of the sentence),
and zt is the context vector derived from atten-
tion over the image. The resulting output ht is
then transformed to softmax(Wyhht + by) to com-
pute the probability of each word in the vocabu-
lary. Each timestep (ht, ct) = f(ht−1, ct−1, xt) is
computed as follows (Neubig et al., 2017):

it = σ(Wixxt +Wihht−1 + bi) (1)

ft = σ(Wfxxt +Wfhht−1 + bf + 1) (2)

ot = σ(Woxxt +Wohht−1 + bo) (3)

ut = tanh(Wuxxt +Wuhht−1 + bu) (4)

ct = ct−1 ◦ ft + ut ◦ it (5)

ht = tanh(ct) ◦ ot (6)

Equation 1 is the input gate, equation 2 is the
forget gate, equation 3 is the output gate, and equa-
tion 4 computes the update.

Since we re-implemented this baseline and
made some changes in the process as detailed
above (most notably by omitting the hard atten-
tional model), we wanted to verify that this did
not affect performance. The original paper gener-
ated English captions only, so we trained a version
of our baseline model to generate English cap-
tions. Using dropout of 0.02, an English vocab-
ulary size of 12138, and a minibatch size of 32,
this achieved a BLEU score of 21.48 (lowercased,
ignoring punctation).1 That result lines up well
with the BLEU score of 19.1 reported by Xu et al.
(2015) on the Flickr30k dataset, so we are confi-
dent that our reimplementation has not weakened

1Dropout of 0.2 was also tested, with slightly worse re-
sults (BLEU = 20.66).

the baseline.

3.2 Shared Decoder
The first model tested was the shared decoder
model. This is a multitask architecture, with one
loss for each language. The idea of this model was
to consider English and German as two separate
vocabularies, thus each with their own set of word
embeddings and word output weights Wyh, by.
Other than that, the remaining parameters were
shared, including the LSTM decoder and the at-
tentional MLP. The hope was that by simply using
the same parameters for a related task, we would
allow data to be shared between the two languages
and reduce overfitting.

3.3 Encoder-decoder Pipeline (ENCDEC)
The next model tested was the encoder-decoder
pipeline (figure 2). Again, this was a relatively
straightforward extension to the baseline. Af-
ter the baseline model finished producing a Ger-
man caption, it had some final state (ht, ct). We
simply resumed decoding to produce an English
caption starting from that final state with an in-
dependent decoder f1, separate vocabulary, and
this time without any direct access to the im-
age. Each timestep is computed as (ht, ct) =
f1(ht−1, ct−1, embedt−1). This should force the
model to keep information about the image in
the hidden state throughout the decoding process,
hopefully improving the model output.

This is the model that was used as the submis-
sion to the WMT multimodal task.

3.4 Attentional Pipeline with Averaged
Embeddings (ATTAVG)

Attention has been shown to improve upon sim-
ple encoder-decoder models, so we wanted to test
adding an additional attentional component. Both
the baseline and the previous models mentioned
already include attention over the image, but here
we add attention over the German caption output
as well. Once again, the German part of this model
is just the baseline. Additionally, for each German
word that was actually produced, we want to con-
sider all of the alternatives. Thus at each timestep,
we average together the embeddings of every word
in the German vocabulary, weighted by the prob-
ability of producing each word. The result is one
vector sw (with the same dimension as the word
embedding size) for each word w in the German
caption.
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Figure 2: Encoder-decoder Pipeline. The LSTM state after producing the German caption (with attention
to the image) is passed along to a new decoder. The new decoder produces an English caption using only
the final hidden LSTM state, without referencing the image directly.

Then, we generate the English caption using a
separate LSTM with attention over the averaged
German word embeddings (and without any ac-
cess to the underlying image). That is, at each
timestep, an attention model fatt implemented as a
multilayer perceptron (MLP) predicts how impor-
tant each averaged word embedding sw is, based
on the previous hidden state ht−1. We compute
the softmax of these attention outputs and use this
to compute a weighted average of the sw embed-
dings. The result is a 256-dimensional context
vector zt that represents the important parts of the
German sentence at timestep t. The next timestep
is computed as (ht, ct) = f2(ht−1, ct−1, xt) where
xt = concat(embedt−1, zt). The process is shown
in figure 3.

Unfortunately, the implementation of averaged
embeddings requires more memory than the other
implementations, forcing us to use a smaller word
embedding size, smaller hidden layer, and smaller
vocabulary. To address this issue, we consider a
variant using random embeddings.

3.5 Attentional Pipeline with Random
Embeddings (ATTRND)

This model is a slight variant on the attentional
pipeline with averaged embeddings. At each
timestep, instead of averaging together the em-
beddings of every word, we sample one random
word from the distribution of predicted probabili-
ties. The embedding of that word is multiplied by
its probability, giving us a value that represents the
contribution of that word to the weighted average.

This again yields one vector for each word in the
German caption. And again we generate the En-
glish caption using an LSTM with attention over
the sampled German word embeddings (and with-
out any access to the underlying image), as shown
in figure 3.

3.6 Dual Attention (DUALATT)

Finally, we tried one model with the opposite
structure from the rest (figure 4). We first gener-
ate the English caption using the baseline method,
and then train an LSTM with attention over both
the English caption and the image (using two sep-
arate MLPs).

That is, after we’ve generated an English cap-
tion using the baseline model, we consider it as a
pseudo-reference. When generating the German
sentence, we take attention over the image vectors
as usual to get zt, and we take attention over the
word embeddings for the actual English caption
generated to get z̃t, both conditioned on the hid-
den state ht−1. That allows us to compute the next
timestep as (ht, ct) = f2(ht−1, ct−1, xt) where
xt = concat(embedt−1, zt, z̃t).

4 Experimental Setup

All models were implemented using DyNet
(Neubig et al., 2017), specifically using the
VanillaLSTM class. Models were trained using
the Adam optimizer (Kingma and Ba, 2014).
Multi30k, an expanded of the Flickr 30k training
data, was provided for the WMT multimodal
task 2 constrained setting (Elliott et al., 2016) and
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Figure 3: Attention Pipeline. At each timestep as the German caption is being generated, we produce
an embedding (box with dashed outline). Depending on whether we are using averaged embeddings or
random embeddings, this is either (1) the weighted average of all words in the vocabulary, or (2) the
contribution of one randomly selected word to that weighted average. An LSTM with attention produces
an English caption using these embeddings.

Figure 4: Dual Attention. After generating an English caption, we retrieve the embeddings for the words
generated (white box with solid outline). An LSTM with attention over both the English embeddings
and the image produces a German caption.
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Dropout Vocabulary size
(German/English) Minibatch BLEU-4 METEOR

Baseline 1 0.02 17855/12138 32 10.35 20.73
Baseline 2 0.2 9996/8368 8 10.20 18.97
Shared decoder* 0.2 17855/12138 24 11.51 20.87
ENCDEC* 0.2 9996/8368 32 11.53 21.90
ATTRND* 0.2 9996/8368 32 11.84 20.53
ATTAVG 0.2 6729/6310 8 9.18 19.67
DUALATT 0.2 17855/12138 24 10.51 19.68

Table 1: Model evaluation results. * indicates statistically significant improvement relative to baseline
1 (p < 0.05) with paired bootstrap resampling, based on BLEU-4 score on the 2016 test set. Multiple
combinations of vocabulary size, minibatch size, and dropout were tested for each model, but only the
best combination (by BLEU score on the validation set) is reported here.

used as the dataset. This dataset consists of 29000
images for training, 1014 images for validation,
1000 images for test 2016, and 1000 images
for test 2017. Each image had 5 independently
generated English and German captions. Since
the English and German captions were generated
independently, the pairing between English and
German captions within each set of 5 was ran-
domized on each epoch, for a total of 25 pairs per
image. No external data was used, making this a
constrained submission.

Each of the models used LSTM hidden size 512,
embedding size 512, and hidden dimension 256
for the Attention MLP. The one exception was AT-
TAVG which due to memory limits used LSTM
hidden size 256, embedding size 256, and hidden
dimension 256 for the attention MLP. Minibatch-
ing was used, with each batch formed by group-
ing together similar length captions to improve ef-
ficiency. Minibatch sizes, vocabulary sizes, and
dropout settings are noted in table 1. The order of
the batches was randomized on each epoch. Mod-
els were trained until the perplexity on the valida-
tion set no longer improved.

5 Results

The WMT 2016 multimodal task test set was
used for evaluation. Results were scored us-
ing BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2014), with all sentences
lower-cased and punctuation removed. Scores on
the 2016 test set are shown in table 1.

The system submitted to the WMT multimodal
task was ENCDEC. On the 2017 test set, it
achieved a BLEU score of 9.1 (matching the offi-
cial baseline and exceeding all other systems sub-
mitted). It also achieved a Meteor score of 19.8
(worse than the official baseline of 23.4) and a

TER score of 63.3 (better than the official baseline
of 91.4 and all other systems submitted). The fact
that each of these three scoring methods shows a
different result relative to the baseline is somewhat
concerning.

In general, the evaluation results did not show
very good correlation between BLEU and ME-
TEOR. We tested output samples derived from
52 experiments conducted with varying configura-
tions during the course of the study. We found that
the correlation between BLEU and METEOR was
approximately 0.18. Strikingly, the top-ranked
output according to METEOR scored more than
3 BLEU points lower than the baseline. Our in-
formal human evaluation of the outputs tended to
agree more with the BLEU evaluations than the
METEOR evaluations.

6 Conclusion

We tested five alternative methods for supple-
menting a German caption dataset with English
captions to improve performance, and in three
cases achieved statistically significant improve-
ments. This indicates that multilingual image cap-
tioning data is a valuable resource, even when
learning only a single language. The best per-
forming model measured by BLEU was the atten-
tional pipeline with random embeddings, which
improved on the baseline by 1.5 BLEU points.
The best performing model measured by ME-
TEOR was the encoder-decoder pipeline, which
improved on the baseline by 1.2 METEOR points.

463



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.
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Abstract
This paper describes Oregon State Uni-
versity’s submissions to the shared
WMT’17 task “multimodal translation
task I”. In this task, all the sentence
pairs are image captions in different
languages. The key difference be-
tween this task and conventional ma-
chine translation is that we have cor-
responding images as additional infor-
mation for each sentence pair. In
this paper, we introduce a simple but
effective system which takes an im-
age shared between different languages,
feeding it into the both encoding and
decoding side. We report our sys-
tem’s performance for English-French
and English-German with Flickr30K
(in-domain) and MSCOCO (out-of-
domain) datasets. Our system achieves
the best performance in TER for
English-German for MSCOCO dataset.

1 Introduction
Natural language generation (NLG) is one
of the most important tasks in natural lan-
guage processing (NLP). It can be applied to
a lot of interesting applications such like ma-
chine translation, image captioning, question
answering. In recent years, Recurrent Neu-
ral Networks (RNNs) based approaches have
shown promising performance in generating
more fluent and meaningful sentences com-
pared with conventional models such as rule-
based model (Mirkovic et al., 2011), corpus-
based n-gram models (Wen et al., 2015) and
trainable generators (Stent et al., 2004).

† Current address: Google Inc., 111 8th Avenue,
New York, New York, USA.

More recently, attention-based encoder-
decoder models (Bahdanau et al., 2014) have
been proposed to provide the decoder more ac-
curate alignments to generate more relevant
words. The remarkable ability of attention
mechanisms quickly update the state-of-the-
art performance on variety of NLG tasks, such
as machine translation (Luong et al., 2015),
image captioning (Xu et al., 2015; Yang et al.,
2016), and text summarization (Rush et al.,
2015; Nallapati et al., 2016).
However, for multimodal translation (Elliott

et al., 2015), where we translate a caption from
one language into another given a correspond-
ing image, we need to design a new model since
the decoder needs to consider both language
and images at the same time.
This paper describes our participation in the

WMT 2017 multimodal task 1. Our model
feeds the image information to both the en-
coder and decoder, to ground their hidden rep-
resentation within the same context of image
during training. In this way, during testing
time, the decoder would generate more rele-
vant words given the context of both source
sentence and image.

2 Model Description

For the neural-based machine translation
model, the encoder needs to map sequence of
word embeddings from the source side into an-
other representation of the entire sequence us-
ing recurrent networks. Then, in the second
stage, decoder generates one word at a time
with considering global (sentence representa-
tion) and local information (weighted context)
from source side. For simplicity, our proposed
model is based on the attention-based encoder-
decoder framework in (Luong et al., 2015), ref-
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ereed as “Global attention”.
On the other hand, for the early work

of neural-basic caption generation mod-
els (Vinyals et al., 2015), the convolutional
neural networks (CNN) generate the image
features which feed into the decoder directly
for generating the description.
The first stage of the above two tasks both

map the temporal and spatial information into
a fixed dimensional vector which makes it fea-
sible to utilize both information at the same
time.
Fig. 1 shows the basic idea of our proposed

model (OSU1). The red character I represents
the image feature that is generated from CNN.
In our case, we directly use the image features
that are provided by WMT, and these features
are generated by residual networks (He et al.,
2016).
The encoder (blue boxes) in Fig. 1 takes

the image feature as initialization for generat-
ing each hidden representation. This process
is very similar to neural-basic caption genera-
tion (Vinyals et al., 2015) which grounds each
word’s hidden representation to the context
given by the image. On the decoder side (green
boxes in Fig. 1), we not only let each decoded
word align to source words by global attention
but also feed the image feature as initialization
to the decoder.

x0 x1 x2 x3 x4

I
s0 s1h0 h1 h2 h3 h4

[y0;  ] [y1;s0]

…

I
Figure 1: The image information is feed to both en-
coder and decoder for initialization. I (in red) repre-
sents the image feature that are generated by CNN.

3 Experiments
3.1 Datasets
In our experiments, we use two datasets
Flickr30K (Elliott et al., 2016) and
MSCOCO (Lin et al., 2014) which are
provided by the WMT organization. For
both datasets, there are triples that contains
English as source sentence, its German and
French human translations and correspond-
ing image. The system is only trained on

Flickr30K datasets but are also tested on
MSCOCO besides Flickr30K. MSCOCO
datasets are considered out-of-domain (OOD)
testing while Flickr30K dataset are considered
in-domain testing. The datasets’ statics is
shown in Table 1

Datasets Train Dev Test OOD ?
Flickr30K 29, 000 1, 014 1, 000 No
MSCOCO - - 461 Yes

Table 1: Summary of datasets statistics.

3.2 Training details
For preprocessing, we convert all of the sen-
tences to lower case, normalize the punctua-
tion, and do the tokenization. For simplicity,
our vocabulary keeps all the words that show
in training set. For image representation, we
use ResNet (He et al., 2016) generated image
features which are provided by the WMT or-
ganization. In our experiments, we only use
average pooled features.
Our implementation is adapted from on

Pytorch-based OpenNMT (Klein et al., 2017).
We use two layered bi-LSTM (Sutskever et al.,
2014) on the source side as encoder. Our batch
size is 64, with SGD optimization and a learn-
ing rate at 1. For English to German, the
dropout rate is 0.6, and for English to French,
the dropout rate is 0.4. These two parame-
ters are selected by observing the performance
on development set. Our word embeddings are
randomly initialized with 500 dimensions. The
source side vocabulary is 10,214 and the tar-
get side vocabulary is 18,726 for German and
11,222 for French.

3.3 Beam search with length reward
During test time, beam search is widely used
to improve the output text quality by giving
the decoder more options to generate the next
possible word. However, different from tradi-
tional beam search in phrase-based MT where
all hypotheses know the number of steps to fin-
ish the generation, while in neural-based gen-
eration, there is no information about what is
the most ideal number of steps to finish the
decoding. The above issue also leads to an-
other problem that the beam search in neural-
based MT prefers shorter sequences due to
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probability-based scores for evaluating differ-
ent candidates. In this paper, we use Optimal
Beam Search (Huang et al., 2017) (OBS) dur-
ing decoding time. OBS uses bounded length
reward mechanism which allows a modified
version of our beam search algorithm to re-
main optimal.
Figure 2 and Figure 3 show the BLEU score

and length ratio with different rewards for dif-
ferent beam size. We choose beam size equals
to 5 and reward equals to 0.1 during decoding.

3.4 Results
WMT organization provides three different
evaluating metrics: BLEU (Papineni et al.,
2002), METEOR (Lavie and Denkowski, 2009)
and TER (Snover et al., 2006).
Table 2 to Table 5 summarize the perfor-

mance with their corresponding rank among
all other systems. We only show a few top
performing systems in the tables to make a
comparison. OSU1 is our proposed model and
OSU2 is our baseline system without any im-
age information. For MSCOCO dataset, the
translation from English to German (Table 3),
which is the hardest tasks compared with oth-
ers since it is from English to German on OOD
dataset, we achieve best TER score across all
other systems.

System Rank TER METEOR BLEU
UvA-TiCC 1 47.5 53.5 33.3

NICT 2 48.1 53.9 31.9
LIUMCVC 3 & 4 48.2 53.8 33.2

CUNI 5 50.7 51 31.1
OSU2† 6 50.7 50.6 31
OSU1† 8 51.6 48.9 29.7

Table 2: Experiments on Flickr30K dataset for trans-
lation from English to German. 16 systems in total. †
represents our system.

System Rank TER METEOR BLEU
OSU1† 1 52.3 46.5 27.4

UvA-TiCC 2 52.4 48.1 28
LIUMCVC 3 52.5 48.9 28.7
OSU2† 8 55.9 45.7 26.1

Table 3: Experiments on MSCOCO dataset for trans-
lation from English to German. 15 systems in total. †
represents our system.

As describe in section 2, OSU1 is the model
with image information for both encoder and

System Rank TER METEOR BLEU
LIUMCVC 1 28.4 72.1 55.9

NICT 2 28.4 72 55.3
DCU 3 30 70.1 54.1
OSU2† 5 32.7 68.3 51.9
OSU1† 6 33.6 67.2 51

Table 4: Experiments on Flickr30K dataset for trans-
lation from English to French. 11 systems in total. †
represents our system.

System Rank TER METEOR BLEU
LIUMCVC 1 34.2 65.9 45.9

NICT 2 34.7 65.6 45.1
DCU 3 35.2 64.1 44.5
OSU2† 4 36.7 63.8 44.1
OSU1† 6 37.8 61.6 41.2

Table 5: Experiments on MSCOCO dataset for trans-
lation from English to French. 11 systems in total.

decoder, and OSU2 is only the neural machine
translation baseline without any image infor-
mation. From the above results table we found
that image information would hurt the perfor-
mance in some cases. In order to have more
detailed analysis, we show some test examples
for the translation from English to German on
MSCOCO dataset.
Fig 4 shows two examples that NMT base-

line model performances better than OSU1
model. In the first example, OSU1 generates
several unseen objects from given image, such
like knife. The image feature might not repre-
sent the image accurately. For the second ex-
ample, OSU1 model ignores the object “box”
in the image.
Fig 5 shows two examples that image feature

helps the OSU1 to generate better results. In
the first example, image feature successfully
detects the object “drink” while the baseline
completely neglects this. In the second exam-
ple, the image feature even help the model fig-
ure out the action of the cat is “sleeping”.

4 Conclusion

We describe our system submission to the
shared WMT’17 task “multimodal translation
task I”. The results for English-German and
English-French on Flickr30K and MSCOCO
datasets are reported in this paper. Our
proposed model is simple but effective and
we achieve the best performance in TER for
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Figure 3: length ratio vs. beam size

input a finger pointing at a hotdog with cheese , sauerkraut and ketchup .
OSU1 ein finger zeigt auf einen hot dog mit einem messer , wischmobs und napa .
OSU2 ein finger zeigt auf einen hotdog mit hammer und italien .

Reference ein finger zeigt auf einen hotdog mit käse , sauerkraut und ketchup .

input a man reaching down for something in a box
OSU1 ein mann greift nach unten , um etwas zu irgendeinem .
OSU2 ein mann greift nach etwas in einer kiste .

Reference ein mann bückt sich nach etwas in einer schachtel .

Figure 4: Two testing examples that image information confuses the NMT model.

input there are two foods and one drink set on the clear table .
OSU1 da sind zwei speisen und ein getränk am klaren tisch .
OSU2 zwei erwachsene und ein erwachsener befinden sich auf dem rechteckigen tisch .

Reference auf dem transparenten tisch stehen zwei speisen und ein getränk .

input a camera set up in front of a sleeping cat .
OSU1 eine kameracrew vor einer schlafenden katze .
OSU2 eine kamera vor einer blonden katze .

Reference eine kamera , die vor einer schlafenden katze aufgebaut ist

Figure 5: Two testing examples that image information helps the NMT model.
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English-German for MSCOCO dataset.
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Abstract

This paper describes the University of
Sheffield’s submission to the WMT17
Multimodal Machine Translation shared
task. We participated in Task 1 to de-
velop an MT system to translate an im-
age description from English to German
and French, given its corresponding im-
age. Our proposed systems are based on
the state-of-the-art Neural Machine Trans-
lation approach. We investigate the ef-
fect of replacing the commonly-used im-
age embeddings with an estimated poste-
rior probability prediction for 1,000 object
categories in the images.

1 Introduction

This paper describes the University of Sheffield’s
submission to the second edition of the WMT17
Multimodal Machine Translation shared task. We
participate in Task 1, where the challenge is to de-
velop a Machine Translation (MT) system to au-
tomatically translate image descriptions to a target
language, given an image description in a source
language and its corresponding image. We sub-
mitted systems for translating from English to both
German and French.

Our submission is based on the state-of-the-
art attention-based Neural Machine Translation
(NMT) system, which has shown better perfor-
mance than conventional phrase-based statistical
MT (SMT) systems in the past years. Multimodal
NMT systems have been introduced (Elliott et al.,
2015; Caglayan et al., 2016; Calixto et al., 2016;
Huang et al., 2016) to incorporate visual informa-
tion into NMT approaches, most of which condi-
tion the NMT on an image representation (typi-

*P. Madhyastha and J. Wang contributed equally to this
work.

cally a vector extracted from a Convolutional Neu-
ral Network (CNN) layer). However, it has not
been clear thus far whether such image features
actually help in the translation task and more im-
portant, if so it is not clear which aspects of the
image can play a role and how.

Recent approaches to Multimodal NMT have
used low level image features, including dense
fully connected vectors and spatial convolutional
representations from an image classification net-
work (Elliott et al., 2015; Huang et al., 2016).
They also incorporate attention mechanisms (Cal-
ixto et al., 2016). However, the effect of image
features or the efficacy of the representational con-
tribution is still an open research question.

For our submission, we propose replacing im-
age representations used in current Multimodal
NMT systems with a class-based probabilistic dis-
tribution that is estimated directly using a state-
of-the-art image classification network. The core
hypothesis is that such representations offer higher
level semantic information and could be more ben-
eficial to Multimodal NMT systems.

In Section 2 we discuss the motivations be-
hind our proposed system. In Section 3 we de-
scribe our approach, which uses CNN-based im-
age features as input (Section 3.1) to an atten-
tion based neural machine translation system (Sec-
tion 3.2), resulting in a Multimodal NMT system
(Section 3.3). Experimental settings are reported
in Section 4, and results discussed in Section 5.
A brief overview of related work are provided in
Section 6.

2 Motivation

Recent work (Wu et al., 2016; You et al., 2016)
exploits explicit, higher-level semantic represen-
tation of images for the tasks of image captioning
and visual question answering. Instead of feeding
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a lower-level image representation directly to the
model, such work explicitly explores predicting
the occurrence of various concepts (objects, also
referred to as attributes) in the image, and feeding
such predictions to the language generation com-
ponent. Our hypothesis is that such an approach,
when applied to Multimodal NMT, should provide
comparable, if not better results compared to sys-
tems that use image representations directly. This
approach also offers the advantage of being more
interpretable compared to end-to-end systems that
use image representations directly. Finally, since
the image classification network is trained directly
to produce probabilistic class distributions, the
predictions are more stable and encoded in sim-
pler representations when compared with the fully
connected, lower-level representations. This also
presents an opportunity to fine tune the class dis-
tributions for the task using domain-specific data.
In other words, we can tune the image network to
produce better predictions on the classes that ap-
pear in the dataset of interest.

Motivated by these insights, we empirically
evaluate the performance of a Multimodal NMT
system with image features based on predicted
class distributions. In most cases we are able to
outperform the baseline system under similar set-
tings. In the following section we describe our
system in detail.

3 System description

We first describe the image features used in our
system, more specifically, the probability predic-
tion of an object category occurring in the image
(Section 3.1). We then present the NMT system
used (Section 3.2), and how the image features are
combined to produce a Multimodal NMT system
(Section 3.3) for the shared task. Figure 1 illus-
trates the proposed system.

3.1 Visual features

Visual features were extracted from the 152-layer
version of ResNet (He et al., 2015), a Deep Con-
volutional Neural Network (CNN) pre-trained on
1,000 object categories (synsets) of the classifi-
cation task of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky
et al., 2015). We extracted the final layer after ap-
plying the softmax function. This layer is a 1,000-
dimensional vector providing class posterior prob-
ability estimates at image level for the 1,000 object

Figure 1: An illustration of our Multimodal NMT
system. Departing from usual methods, we re-
place the lower-level image CNN representation
with a vector representing the output of a 1,000-
way visual classifier, where each element in the
vector represents the estimated posterior probabil-
ity of an object category occurring in the image.
We experiment with conditioning the image rep-
resentation on either the encoder or the decoder
(dashed lines), and also at each source word (not
shown in the Figure).

categories, each corresponding to a distinct Word-
Net synset.

While ResNet has been reported to perform ex-
tremely well in classification tasks (3.57% top-5
error rate in the ILSVRC2015 challenge1, where
a prediction is considered correct if the gold stan-
dard category is within a system’s top 5 guesses),
it is worth noting that the model is built for and
tuned to the 1,000 categories of ILSVRC, some
of which include very fine-grained classifications
like various dog species. Thus, many of these cat-
egories may not be relevant to the shared task data
which is based on the Flickr30K dataset (Young
et al., 2014). Conversely, many objects depicted in
Flickr30K may also not be covered in the ILSVRC
dataset.

3.2 Neural Machine Translation

We use a standard LSTM-based bidirectional
encoder-decoder architecture with global atten-
tion (Luong et al., 2015). All our NMT models
have the following architecture: the input and out-
put vocabulary are limited to words that appear at
least twice in the training data and the remaining
words are replaced by the < UNK > token. The
hidden layer dimensionality is set to 256 and the

1http://image-net.org/challenges/LSVRC/2015/results
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word dimensionality is set to 128, for both the en-
coder and decoder, as this configuration was found
to lead to faster training times without sacrificing
translation performance. At decoding time, we
perform greedy decoding by outputing the most
probable word at each time step.

3.3 Multimodal Neural Machine Translation
To add visual features, we extend the above men-
tioned architecture in the following ways:

1. Image features initialising the En-
coder (InitEnc): As shown in Figure 1,
we use the predicted class distribution to
initialise only the encoder (i.e. images as
the first token). This can be seen as condi-
tioning the encoder on the predicted class
distribution.

2. Image features initialising the De-
coder (InitDec): As we see in Figure 1,
here we initialize the decoder’s first hidden
state with the predicted class distribution.

3. Image features conditioning each input to-
ken (Proj): In this projected representation
approach, we first perform an affine trans-
formation with a weight matrix W , where
W ∈ Rc×d (c and d are dimensionality of
the class distribution and dimensionality of
the word vectors, respectively). This is fol-
lowed by a non-linearity function to squash
the resulting output. We add this representa-
tion to each source word representation. The
weight matrix W is learned. This can be seen
as composing each source token with the vi-
sual feature at each time step.

4 Experimental settings

We use our own implementation of a multimodal
NMT approach and explore a number of variants
of this model in order to understand the effects
of using the classification layer instead of a lower
level CNN layer as input to the NMT system.

4.1 Data
The shared task is based on the Multi30K (Elliott
et al., 2016) dataset. Each image contains one En-
glish description taken from Flickr30K and pro-
fessional translations into German and French. In
this year’s edition of the shared task, the source
language is English (EN) and the target languages
are German (DE) and French (FR). The dataset

contains 29,000 training and 1,014 development
instances: an image, a description in source lan-
guage, and a description for each target language.
There are two test sets:

1. An in-domain test set (Flickr) with 1,000 im-
ages.

2. An out-of-domain test set (MSCOCO) with
461 images whose captions were selected to
contain ambiguous verbs.

4.2 Visual features
The primary visual feature explored in this
paper is the class posterior probability esti-
mates of ResNet-152 for 1,000 object categories
(Softmax). As a comparison, we also extract the
penultimate layer of ResNet-152 (Pool5).

The visual features are combined with the NMT
model using the three configurations described in
Section 3.3 (InitEnc, InitDec, Proj). We also
compare our systems to a text-only baseline (Sec-
tion 3.2).

4.3 NMT model
We implemented our NMT system (Section 3.2)
in PyTorch. We use a single layer bidirectional
LSTM based encoder-decoder model. We used
ReLU as the projection non-linearity and used
dropout with probability of 0.2. We used the
Adadelta optimizer (Zeiler, 2012) with the default
learning rate (0.01). The batch size was set to
20. We trained it for 50 epochs and selected the
model that performs best on the validation set us-
ing BLEU as the metric.

We normalised punctuations, lowercased and
tokenised the input text using the script provided
in Moses (Koehn et al., 2007). Our experiments
were performed with the vocabulary size of 6,000
English words, 6,500 French words and 8,000
German words after removing words that appeared
only once in the training set (these words were
replaced with < UNK >, as described in Sec-
tion 3.2). At decoding time, we post-processed the
output translations by replacing < UNK > with
an empty string.

5 Results and discussion

We present our results on the Flickr test dataset
in Table 1, for both EN–DE and EN–FR. We ob-
serve that for the Softmax feature, InitDec consis-
tently outperformed InitEnc and Proj. It also per-
formed better than the text-only baseline for both
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Flickr Feature Model Meteor BLEU

E
N

–D
E

- Baseline 43.7 24.4

Pool5
Proj – –
InitEnc 43.0 23.5
InitDec 44.3 24.6

Softmax
Proj 43.4 24.2
InitEnc 42.4 23.3
InitDec 44.5 25.0

E
N

–F
R

- Baseline 62.2 44.2

Pool5
Proj – –
InitEnc 61.1 43.5
InitDec 61.0 43.4

Softmax
Proj 61.5 43.6
InitEnc 61.0 43.3
InitDec 62.8 45.0

Table 1: Results on the Flickr test data, for both
English–German (EN–DE) and English–French
(EN–FR). Proj was not evaluated for Pool5 as its
performance is very poor on the development set.

languages. In the case of Pool5, InitDec seemed
to perform slightly better than InitEnc for Ger-
man, but both yielded similar scores for French.
We also observed that by using the Pool5 feature
in the Proj configuration, the NMT system failed
to learn any useful information with extremely low
BLEU scores on the development set, even with an
increased number of epochs. Thus we do not eval-
uate these on the test sets.

Table 2 displays the empirical results on the
MSCOCO test dataset. Similar trends are ob-
served here for Softmax: InitDec outperformed
Proj and InitEnc. For this test set, InitDec out-
performed the baseline for EN–DE and performed
comparably to the baseline for EN–FR. Interest-
ingly, the variant with Pool5 as a feature did not
seem to perform as well, producing slightly lower
scores than the baseline on this test set. Further
investigation is needed to determine the reason for
this phenomenon.

Overall, we observed better results for Softmax
compared to Pool5 with the settings used in our
submission. However, more experiments need to
be performed to confirm the usefulness of the pos-
terior probabilities for the task.

Figure 2 shows example output translations
from English to German and French for the test
sets, for our best performing variant InitDec con-
ditioned on Softmax class posterior predictions.
We compare the output against a text-only base-
line. In the first example from the Flickr test set,

MSCOCO Feature Model Meteor BLEU

E
N

–D
E

– Baseline 39.6 20.7

Pool5
Proj – –
InitEnc 39.1 20.4
InitDec 39.5 20.4

Softmax
Proj 40.0 21.0
InitEnc 37.5 18.8
InitDec 40.7 21.4

E
N

–F
R

- Baseline 57.4 37.2

Pool5
Proj – –
InitEnc 56.7 36.5
InitDec 56.7 36.9

Softmax
Proj 57.0 36.8
InitEnc 55.5 35.5
InitDec 57.3 37.2

Table 2: Results on the MSCOCO test data,
for both English–German (EN–DE) and English–
French (EN–FR). Again, Proj was not evaluated
for Pool5 as its performance was very poor on the
development set.

InitDec produced an exact match against the ref-
erence for German, and an equally correct transla-
tion for French (differing only in the translation for
‘bank’). In the second image from the MSCOCO
test set, the German translation is much closer to
the reference than the baseline. In the case of
the French translation, the difference between the
baseline and InitDec is much smaller, reflecting
the quantitative results.

We conjecture that further hyperparameter
search (increasing LSTM layers, dimensionality
of the embeddings and hidden layers, etc.) and
increasing the vocabulary size or using BPE could
potentially improve the performance of our system
on the task.

6 Related work

There has been interest in recent years in the task
of generating image descriptions (also known as
image captioning). Bernardi et al. (2016) provide
a detailed discussion on various image description
generation approaches that have been developed.

Currently, the two largest image description
datasets are Flickr30K (Young et al., 2014) and
MS COCO (Lin et al., 2014). These datasets are
constructed in English and are aimed at advancing
research on the generation of image descriptions
in English. Recent attempts have been made to
incorporate multilinguality into both these large-
scale datasets, with the datasets being extended to
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EN A duck on the bank of a river

DE (Baseline) eine ente an der kste eines flusses .
DE (InitDec) eine ente am ufer eines flusses
DE (Reference) eine ente am ufer eines flusses

FR (Baseline) un canard sur l’ eau , dans une rivière
FR (InitDec) un canard sur la rive d’ une rivière
FR (Reference) un canard sur la berge d’ une rivière

EN A tennis player is moving to the side
and is gripping his racquet with both hands.

DE (Baseline) ein tennisspieler fhrt zur seite und greift nach
seinem schlger .

DE (InitDec) ein tennisspieler bewegt sich zur seite , whrend
sein schlger mit beiden hnden .

DE (Reference) ein tennisspieler bewegt sich zur seite und hlt
den schlger mit beiden hnden .

FR (Baseline) un joueur de tennis se déplaçant de côte et sa
raquette avec les deux mains .

FR (InitDec) un joueur de tennis se déplaçant côté et se met
sa raquette avec les deux mains .

FR (Reference) un joueur de tennis se déplace sur le cté et tient
sa raquette avec ses deux mains .

Figure 2: Example output translations from English to German (DE) and French (FR), for the Flickr test
set (top) and the MSCOCO test set (bottom). We show the results of InitDec using Softmax as the visual
feature.

other languages such as German and Japanese (El-
liott et al., 2016; Hitschler et al., 2016; Miyazaki
and Shimizu, 2016; Yoshikawa et al., 2017).

The first known attempt at using NMT for ma-
chine translation of image descriptions is by El-
liott et al. (2015), who conditioned an NMT sys-
tem with a CNN image embedding (the penulti-
mate layer of VGG-16 (Simonyan and Zisserman,
2014)) at the beginning of either the encoder or the
decoder. The WMT16 shared task on Multimodal
Machine Translation (Specia et al., 2016) has fur-
ther encouraged research in this area. At the time,
phrase-based SMT systems (Shah et al., 2016; Li-
bovický et al., 2016; Hitschler et al., 2016) per-
formed better than NMT systems (Calixto et al.,
2016; Huang et al., 2016; Caglayan et al., 2016).
Participants used either the penultimate fully con-

nected layer or a convolutional layer of a CNN as
image representation, with the exception of Shah
et al. (2016) who used the classification output of
VGG-16 as features to a phrase-based SMT sys-
tem. In all cases, image information were found
to provide only marginal improvements.

7 Conclusions and future work

We presented our approach that uses predicted
class distribution as image features for the task
of multimodal machine translation. We described
three configurations for incorporating the visual
representation and observed that the three meth-
ods perform differently. For our submission
with the settings described in the paper, using
ResNet-152’s class posterior probability distribu-
tion seems to result in better scores than using
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the same network’s pool5 features. Future exper-
iments will aim at dissecting the type of informa-
tion the image features are adding to the NMT and
understand deeply the contribution of predicted
class based representations.
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Abstract

This paper describes the NICT-NAIST
system for the WMT 2017 shared multi-
modal machine translation task for both
language pairs, English-to-German and
English-to-French. We built a hierarchical
phrase-based (Hiero) translation system
and trained an attentional encoder-decoder
neural machine translation (NMT) model
to rerank the n-best output of the Hiero
system, which obtained significant gains
over both the Hiero system and NMT de-
coding alone. We also present a multi-
modal NMT model that integrates the tar-
get language descriptions of images that
are similar to the image described by the
source sentence as additional inputs of the
neural networks to help the translation of
the source sentence. We give detailed
analysis for the results of the multimodal
NMT model. Our system obtained the first
place for the English-to-French task ac-
cording to human evaluation.

1 Introduction

We participated in the WMT 2017 shared mul-
timodal machine translation task 1, which trans-
lates a source language description of an image
into a target language description. We built sys-
tems for both English-to-German and English-to-
French language pairs.

Our baseline systems only use text information.
We compared three text-only approaches: a hier-
archical phrase-based (Hiero) translation system
(Chiang, 2005), an attentional encoder-decoder
neural machine translation (NMT) system (Bah-
danau et al., 2015), and a system using the NMT
model to rerank the n-best output of the Hiero sys-
tem.

We also explored ways to improve the NMT
model with image information. Compared to pre-
vious multimodal NMT (MNMT) models that in-
tegrate visual features directly (Caglayan et al.,
2016; Calixto et al., 2016; Huang et al., 2016; Cal-
ixto et al., 2017), we first exploit image retrieval
methods to obtain images that are similar to the
image described by the source sentence, and then
integrate the target language descriptions of these
similar images into the NMT model to help the
translation of the source sentence. This makes it
possible to exploit a large corpus with only images
and target language descriptions through an image
retrieval step. This is similar to Hitschler et al.
(2016)’s multimodal pivots method, which uses
target descriptions of similar images for reranking
MT outputs, while we use these target descriptions
as additional inputs for the NMT model.

2 Text-only MT

We compared three text-only approaches for this
translation task.

2.1 Hierarchical Phrase-based SMT

The hierarchical phrase-based model (Chiang,
2005) extracts hierarchical phrase-based transla-
tion rules from parallel sentence pairs with word
alignments. The word alignments can be learned
by IBM models. Each translation rule contains
several feature scores. The decoder of hierarchi-
cal phrase-based model implements a bottom-up
CKY+ algorithm. The weights for different fea-
tures can be tuned on the development set.

2.2 Attentional NMT

The attentional encoder-decoder networks (Bah-
danau et al., 2015) include three parts: an encoder
that uses a bi-directional recurrent neural network
to learn representations for words in the source
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source sentence F

image Ia corpus of images with target language descriptions

target language descriptions of similar images

possible translation of F

final translation of F

1. Image retrieval

2. Translation selection

3. Multimodal NMT

Figure 1: A overview of our multimodal method.

sentence, a decoder that generates the target sen-
tence from left to right and an alignment model
that learns which parts of the source sentence to
focus on when the decoder generates each target
word.

2.3 SMT reranked by NMT

The hierarchical phrase-based SMT model gener-
ates a n-best list for each source sentence. We
use the attentional NMT model to assign a score
to each output in the n-best list. This new NMT
score together with the original SMT features is
used to rerank the n-best list. The weight of the
new NMT score is tuned together with other fea-
ture weights on the n-best lists of the development
set.

3 Our Multimodal Approach

We propose a method to integrate the visual infor-
mation into the NMT model.

Originally, the encoder of the NMT model only
encodes the information of source sentence F .
Our method integrates the visual information of
image I into the encoder. Figure 1 is a overview
of our multimodal method, which contains three
steps.

Image retrieval Given image I , we search the
100 most similar images I from the training set
and get the target language descriptions of these
similar images as possible descriptions of I . When
calculating image similarity, we used the Eu-
clidean distance between averaged pooled feature
vectors provided by the organizers.

Translation selection We select the most prob-
able target word e for each source word f in sen-

tence F as follows:

score (e, f, I) = score (e, f) + λ · score (e, I) .
(1)

Here score (e, f) measures the probability of f
being translated into e as follows:

score (e, f) =
align (e, f)∑

e′∈V align (e′, f)
, (2)

where align (e, f) is how many times f and
e are aligned in the word-aligned training set.1

score (e, I) measures how related e and I are as
follows:2

score (e, I) = idf (e) ·
∑

I′∈I
is in (e, I ′)
dis (I, I ′)

, (3)

where idf (e) is the inverse document frequency of
e to punish high-frequency words, dis (I, I ′) is the
Euclidean distance between I and I ′, is in (e, I ′)
is 1/0 when e is/isn’t contained in the description
of I ′. λ is the weight that can be tuned on the
development set.

Multimodal NMT The original NMT model
projects each source word f into a vector. We add
an additional embedding matrix to project the se-
lected target word e for f into a new vector. Then
we concatenate both vectors and use them as the
input for the bi-directional recurrent neural net-
work of the NMT encoder.

4 Experiments

4.1 Text-only systems
We use training, development and test sets pro-
vided by the organizers (Elliott et al., 2016; Elliott

1When counting the alignment align (e, f), we only use
the intersection of the bi-directional GIZA++ alignments, so
the alignments are more reliable.

2For e that does not occur in I, score (e, I) is 0.
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Description Distance
Query 1 a group of men are loading cotton onto a truck
Results a baby camel going towards a woman , while a man takes a picture . 35.43

person sitting in a chair selling goods outside of a building . 36.04
Query 2 a man sleeping in a green room on a couch .
Results a baby and three cats are resting on a bed . 29.85

a man in a white t-shirt and beige shorts lies asleep on a black sofa . 29.86
Query 3 a boy wearing headphones sits on a woman &apos;s shoulders .
Results a young blond girl in pink shirt and pigtails is sitting atop a man &apos;s shoulders in a crowd . 28.88

a man dressed in blue is juggling in front of an audience . 29.10
Query 4 two men setting up a blue ice fishing hut on an iced over lake
Results a man is drilling through the frozen ice of a pond . 23.49

an inline skater in red pants and blue shirt skates between green cones . 30.05
Query 5 a balding man wearing a red life jacket is sitting in a small boat .
Results man with shawl praying by a large lake and small boat . 31.53

four people standing on a raft sailing away on the water . 31.54

Table 1: Image retrieval examples (two most similar images for each query image). Description is
the English descriptions for query and result images. Distance is the Euclidean distance between image
vectors.

Flickr COCO
Method en-de en-fr en-de en-fr
Hiero 27.86 50.38 24.57 41.88
NMT 30.52 50.46 24.27 41.26
Reranking 31.98 55.25 28.05 45.17

Table 2: Results of text-only approaches (BLEU).

et al., 2017). We lowercase, normalise punctuation
and tokenise all sentences. The Hiero translation
system was based on Moses (Koehn et al., 2007).
We used GIZA++ (Och and Ney, 2003) and grow-
diag-final-and heuristic (Koehn et al., 2003) to ob-
tain symmetric word alignments. For decoding,
we used standard features: direct/inverse phrase
translation probability, direct/inverse lexical trans-
lation probability and a 5-gram language model,
which was trained on the target side of the train-
ing corpus by IRSTLM Toolkit3 with improved
Kneser-Ney smoothing.

Attentional encoder-decoder networks were
trained with Lamtram4. Word embedding size and
hidden layer size are both 512. Training data was
reshuffled between epochs. Validation was done
after each epoch. We used the Adam optimization
algorithm (Kingma and Ba, 2014). Because the
training set is only 29K sentence pairs, we used
dropout (0.5) and a small learning rate (0.0001) to
reduce overfitting, which yielded improvements of
3 − 4 BLEU on the development set. For training
the NMT model, we replace words that occur less
than twice in the training set as UNK. When de-

3http://hlt.fbk.eu/en/irstlm
4https://github.com/neubig/lamtram

en-de en-fr
λ = 0 52.17 65.60
λ = 0.2 52.93 66.31

Table 3: 1-gram BLEU score of selected target
words on the development set.

coding, we find the most probable source word for
each UNK and replace the UNK using a lexicon
extracted from the word-aligned training set.

We used the NMT model to rerank the unique
10, 000-best output of the Hiero system. The
NMT score was used as an additional feature for
the Hiero system. Feature weights were tuned by
MERT (Och, 2003).

Table 2 shows results of the Hiero system, the
NMT system and using the NMT model to rerank
the Hiero outputs. The reranking system had
the best performance on both language pairs. It
is straightforward that using the NMT feature to
rerank the Hiero outputs can achieve improve-
ments over the pure Hiero system. The reason why
the reranking method outperformed the NMT sys-
tem should be that the training corpus is relatively
small and the NMT system did not outperform
the Hiero system largely. Therefore, the rerank-
ing method that takes advantages of both the Hiero
and NMT systems worked the best on this task.

4.2 Multimodal systems

For the multimodal method, we found when λ =
0.2, the selected target words for the development
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Flickr COCO
Method en-de en-fr en-de en-fr
NMT 30.52 50.46 24.27 41.26
MNMT 29.56 49.83 23.60 40.77

Table 4: Comparison of the NMT model and the
MNMT model (BLEU).

BLEU Meteor TER
en-de Our system 31.9 53.9 48.1

Best system 33.4 54.0 48.5
en-fr Our system 55.3 72.0 28.4

Best system 55.9 72.1 28.4

Table 5: Official evaluation results on the 2017
Flickr test sets.

set had the highest 1-gram BLEU score5 for both
language pairs as shown in Table 3, which shows
that visual features did help to select more accu-
rate translations than using only translation proba-
bilities in the translation selection step.

However, on both language pairs, our multi-
modal NMT model did not improve, but decreased
the test set BLEU score compared to the base-
line NMT model as shown in Table 4. And us-
ing the multimodal NMT as an additional feature
for reranking the Hiero system did not further im-
prove the Hiero system that had integrated the
text-only NMT model. Table 5 and 6 show the of-
ficial evaluation results of our system and the best
system for the multimodal task (with METEOR
as the primary metric). Our system is very com-
petitive, especially with METEOR, even though
only text features helped in our system, which
shows with finely tuned parameters, the text-only
approach that uses the NMT model to rerank the
output of the Hiero system can give a strong result
for this task. In addition, our system obtained the
first place for the English-to-French task accord-
ing to human evaluation (Elliott et al., 2017).

To further analyze the results of our multimodal
method, we give some output examples for each
step in Figure 1.

Table 1 gives some image retrieval results. As
we can see, in the descriptions of the retrieved
images, there is a lot of noise that is not useful
for helping the translation of the source sentence,
which is why we used 100 images with the high-

5Because the selected target words are not reordered, so
we only calculate 1-gram BLEU score.

BLEU Meteor TER
en-de Our system 28.1 48.5 52.9

Best system 28.7 48.9 52.5
en-fr Our system 45.1 65.6 34.7

Best system 45.9 65.9 34.2

Table 6: Official evaluation results on the 2017
COCO test sets.

est similarities and the translation selection step
to select useful information for our multimodal
NMT model. Note that we used the target lan-
guage (German or French) descriptions of simi-
lar images in our method, but Table 1 shows the
source language (English) descriptions for easy
understanding. In addition, for this image retrieval
step, a large image corpus can be helpful to find
more similar images and only target descriptions
are needed for this image corpus.

Table 7 shows some examples for our multi-
modal method. For the first two examples, the
visual information helped to improve the transla-
tions. In Example 1, “running” is translated into
“rennt” by the NMT model incorrectly. The trans-
lation selection step selected the correct transla-
tion “läuft” for “running” and helped the MNMT
model translate it correctly. In Example 2, “home”
should be translated into “hauses”, but it is miss-
ing in the NMT translation. The translation se-
lection step selected “haus” as the translation for
“home”, which then appeared in the translation of
the MNMT model.

However, for the last two examples in Ta-
ble 7, the additional target descriptions decreased
the translation quality. In Example 3, “looking”
was correctly translated into “blickt” by the NMT
model. But “schaut” was selected as the transla-
tion of “looking” at the translation selection step,
which led the MNMT model translated it incor-
rectly. In Example 4, “flying” was correctly trans-
lated into “fliegenden” by the NMT model. But
“fliegt” was selected as the translation of “fly-
ing” by the translation selection step, which led to
“flying” being missing in the MNMT translation.
Here, “fliegenden” and “fliegt” are different forms
of the German word “fliegen”, which are very dif-
ficult to distinguish using visual information. Us-
ing only the original form for these selected target
words can be helpful to solve this problem.

As shown in Table 7, the target descriptions
used as additional inputs for the multimodal NMT
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Example 1
Src an adult australian shepherd follows behind a running australian shepherd puppy .
Ref ein ausgewachsener australian shepherd folgt einem welpen , der vor ihm läuft .
NMT ein erwachsener australischer fängt hinter einem rennt australischer .
TS ein erwachsener australischer schäferhund folgt hinter ein läuft australischer schferhund welpe .
MNMT ein erwachsener australischer schäferhund folgt einem läuft australischer hund .
Example 2
Src woman and child outside the front door of their scenic home .
Ref eine frau und ein kind vor der tür ihres idyllischen hauses .
NMT eine frau und ein kind vor der tür des malerische .
TS frau und kind freien der vor tür von ihren malerische haus .
MNMT eine frau und ein kind vor der tür eines malerische haus .
Example 3
Src a little girl is looking through a telescope at the beach .
Ref ein kleines mädchen blickt durch ein teleskop auf den strand .
NMT ein kleines mädchen blickt durch ein teleskop am strand .
TS einem kleines mädchen ist schaut durch einem teleskop auf der strand .
MNMT ein kleines mädchen schaut durch ein teleskop am strand .
Example 4
Src a dog turns on the grass to persue a flying ball .
Ref ein hund dreht sich auf dem gras um einem fliegenden ball nachzulaufen .
NMT ein hund dreht sich auf dem gras , um einen fliegenden ball zu persue .
TS ein hund dreht auf der gras zu persue ein fliegt ball .
MNMT ein hund dreht sich auf dem gras , um den ball zu persue .

Table 7: Translation examples. NMT: the translation by the NMT model; TS: the selected words for
each source word in the translation selection step; MNMT: the translation by the MNMT model.

model helped the translation for some cases, but
also introduced new noise, which hurt the trans-
lation performance in some other cases. In future
work, we will work on how to use these target de-
scription information more effectively.

5 Conclusion

We described our system for the WMT17 mul-
timodal translation task, including text-only ap-
proaches and a multimodal method that first
searches for some possible target language de-
scriptions of the image and then integrates these
target descriptions into the NMT model to help the
translation of the source sentence. Results show
the text-only approach that uses a NMT model to
rerank the output of a Hiero system gave a strong
result for this task and the MNMT model did not
further improve the text-only system, but the tar-
get descriptions did contain some useful informa-
tion that can help the translations. In future work,
we will work on how to make use of these related
target descriptions more effectively. In addition, a
larger corpus of images with only target language
descriptions can be useful for our method to obtain
more accurate target descriptions.
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Abstract

We present in this paper the participation
of the University of Hamburg in the
Biomedical Translation Task of the Sec-
ond Conference on Machine Translation
(WMT 2017). Our contribution lies in
adopting a new direction for perform-
ing data selection for Machine Transla-
tion via Paragraph Vector and a Feed For-
ward Neural Network Classifier. Contin-
uous distributed vector representations of
the sentences are used as features for the
binary classifier. Most approaches in data
selection rely on scoring and ranking gen-
eral domain sentences with respect to their
similarity to the in-domain and setting a
range of thresholds for selecting a percent-
age of them for training various MT sys-
tems. The novelty of our method consists
in developing an automatic threshold de-
tection paradigm for data selection which
provides an efficient and simple way for
selecting the most similar sentences to the
in-domain. Encouraging results are ob-
tained using this approach for seven lan-
guage pairs and four data sets.

1 Introduction

Data selection for Machine Translation (MT) rep-
resents a standard domain adaptation technique
with the aim of tackling the problem of select-
ing from various general domain data the sen-
tences that are most similar to sentences from the
in-domain. Irrespective of having available vast
amounts or small amounts of in-domain data, one
of the advantages of data selection consists in pro-
viding more in-domain data selected from large
amounts of general domain data. Two difficult
tasks arise when performing data selection: what

method to use for scoring the sentences from the
general domain according to their similarity to the
in-domain and how many of the scored sentences
to keep for later use in training MT systems.

Standard state-of-the-art methods resolve the
first difficulty by means of information retrieval,
perplexity or edit distance methods. However,
the second difficulty remains a challenge. There
are no standard start-threshold and increment-
threshold defined in the community. Axelrod et al.
(2011), for example, uses the top N = {35k, 70k,
150k} sentence pairs from the scored general do-
main data, while Biçici and Yuret (2011) increas-
ingly select N∈ {100, 200, 500, 1000, 2000, 3000,
5000, 10000} instances for each test sentence for
training and Kirchhoff and Bilmes (2014) select
subsets of 10%, 20%, 30% and 40% of the data.

We present a time and resource efficient method
of performing data selection using Paragraph Vec-
tor (Le and Mikolov, 2014) for representing the
sentences and a Feed Forward Neural Network
Classifier for determining which general domain
sentences should be considered similar to the in-
domain. The paragraph vectors and the binary
classifiers are trained using standard parame-
ters and have a great advantage of dropping the
need to experiment with different sentence selec-
tion thresholds. Therefore, we call our method
automatic threshold detection for data selection
(ATD).

The method has been applied in the Biomedical
translation task of the Second Conference on Ma-
chine Translation (WMT) 2017 (Yepes et al.,
2017). The in-domain corpora were made avail-
able by the competition and the general domain
corpora we have chosen to select data from are
the Wikipedia corpora (Wolk and Marasek, 2014)
and the Commoncrawl corpora1. Experiments

1http://commoncrawl.org/
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were performed on the language pairs English-
French, English-Spanish, English-Portuguese and
English-German (both directions for all language
pairs except for English-German as the competi-
tion did not require German-English translations).
Good results have been obtained for all language
pairs.

The paper is structured as follows: related work
is presented in Section 2, then the data, tools and
data selection method are described in Section 3.
Section 4 contains the experimental results and the
last section presents conclusions and suggestions
for future work.

2 Related work

Given a large pool of general domain data and a
small amount of in-domain data, selecting the sen-
tences from the general domain that are most simi-
lar to the in-domain is referred in literature as data
selection. The work-flow of performing data se-
lection includes developing a metric or function
that scores general domain sentences according to
their relevance to the in-domain and experiment-
ing with various ratios of top ranked sentences in
order to obtain the best result in terms of one or
more MT evaluation metrics.

The approaches most commonly adopted in
the literature are based on information retrieval
(Hildebrand et al. (2005); Tamchyna et al. (2012)),
on perplexity (Moore and Lewis (2010); Axelrod
et al. (2011)), or on edit distance similarity (Wang
et al., 2013).

Recently, a new direction has gained interest by
making use of Word or Paragraph Vectors (embed-
dings). Chen and Huang (2016) use word embed-
dings along with in-domain selected sentences as
positive samples and randomly selected sentences
from the general domain as negative samples in
training convolutional networks that yield good re-
sults. Also, Duma and Menzel (2016) developed a
new scoring method using Paragraph Vectors with
positive results.

In this paper, we apply Paragraph Vectors for
training FFNN classifiers that categorize the gen-
eral domain sentences as being in-domain or out-
of-domain. One of the most challenging tasks
in data selection consists in finding the optimal
threshold (how many of the scored sentences to
select). It is a time-consuming process in which
several experiments need to be performed, usually
aiming to obtain the best BLEU score. Moreover,

there is no general consensus in the community
regarding the increment ratio. We contribute to
the state-of-the-art with a method that overcomes
this challenge by means of a binary classifier: the
problem of data selection is simplified by reducing
the task of scoring and experimenting with differ-
ent thresholds to a binary decision (keep/ discard
a general domain sentence).

3 Experiments

This section describes the corpora and tools
used, as well as the automatic threshold detection
method we propose.

3.1 Data and tools

All SMT models were developed using the Moses
phrase-based MT toolkit (Koehn et al., 2007)
and the Experiment Management System (Koehn,
2010). The preprocessing of the data consisted
in tokenization, cleaning (6-80), lowercasing and
normalizing punctuation. The tuning and the test
sets were provided by WMT 2016 (Bojar et al.,
2016) and WMT 2017.

The SRILM toolkit (Stolcke, 2002) and Kneser-
Ney discounting (Kneser and Ney, 1995) were
used to estimate 5-gram language models (LM).
All the trained SMT systems use a strong LM built
by interpolating a LM for the in-domain and a
LM for the general domain with weights that are
tuned to minimize the perplexity on the tuning set
(Schwenk and Koehn, 2008).

For word alignment we used GIZA++ (Och and
Ney, 2003) with the default grow-diag-final-and
alignment symmetrization method. Tuning of the
SMT systems was performed with MERT (Och,
2003).

Commoncrawl and Wikipedia were used as
general domains for all language pairs except for
EN↔PT where no Commoncrawl data was pro-
vided by WMT. As for the in-domain corpora,
EMEA (Tiedemann, 2012) was used for all lan-
guage pairs and Muchmore, ECDC, Pattr and
Pubmed (all from UFAL Medical Corpus2) for
those language pairs where data was available. We
also made use of the training data provided by the
previous Biomedical task from 2016. The corpora
corresponding to the general domain was concate-
nated into a single data source and the same proce-
dure was applied for the in-domain corpora. The

2http://ufal.mff.cuni.cz/ufal medical corpus
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size of the corpora is presented in the follow-
ing table (since the bilingual corpora remain the
same for both cases of translating Language1 to
Language2 and vice-versa, we mention only one
direction in the table):

Track / Corpora EN-DE EN-FR EN-ES EN-PT
Commoncrawl 2.4M 3.2M 1.8M -
Wikipedia 2.4M 818K 1.8M 1.6M
EMEA 1.1M 1.09M 1.09M 1.08M
Muchmore 29K - - -
ECDC 2547 2665 2357 -
Pattr 1.8M - - -
Scielo-gma 2016 - 18K 175K 613K
Pubmed - - 285K 74K

Table 1: Corpora used for ATD

3.2 Automatic Threshold Detection for Data
Selection

The data selection method we used for the WMT
Biomedical task is described in this section with a
special focus on Paragraph Vector and the FFNN
classifier employed in developing the automatic
threshold detection.

Paragraph Vector

Sentences were represented using Paragraph Vec-
tors (Le and Mikolov, 2014) which give a contin-
uous distributed vector representation of the in-
put. Paragraph Vector is an extension of word
embeddings (Mikolov et al., 2013) to phrases or
sentences. Given a sentence, Paragraph Vector
learns its representation by mapping context words
and a paragraph identifier to the word to be pre-
dicted. The paragraph token acts like a memory of
the topic of the sentence (Le and Mikolov, 2014).
While the word vectors are shared between all
paragraphs, the paragraph vector is shared among
all the contexts generated from the same sentence.

We used the gensim toolkit3 (Řehůřek and So-
jka, 2010) that implements Doc2Vec (Paragraph
Vectors). We present results using a Doc2Vec
model trained with PV-DBOW4 applying the de-
fault parameters of size 200 for the vectors and
window of 10 (the maximum distance between the
predicted word and context words used for predic-
tion within a document).

3https://radimrehurek.com/gensim/models/doc2vec.html
4Distributed Bag of Words

Feed-forward Neural Network Classifier

The Feed-Forward Neural Network uses a super-
vised learning algorithm that receives as input
the Paragraph Vectors for the labeled sentences.
The feed-forward neural network classifier was
trained using the python library sknn5. We re-
port here results obtained using a fully connected
Tanh layer of 200 units with dropout p=0.5 and a
Softmax output layer. The optimal dropout value
was selected in accordance with the findings from
Srivastava et al. (2014).

We experimented with both the source and the
target language, in order to determine the best use
of classified data given our settings.

For each of the language pairs we trained classi-
fiers on≈200K sentences with an equal number of
positive and negative samples. The positive sam-
ples were randomly selected from the in-domain
data and the negative samples were randomly se-
lected from the general domain data.

4 Experimental results

We report in this section the BLEU (Papineni
et al., 2002) scores obtained by our submissions,
as well as the classifiers accuracy. For each lan-
guage pair and for each test set provided by the
Biomedical task, we submitted three runs as fol-
lows:

• the selected sentences with the classifier
trained on the source language data (run 1)

• the selected sentences with the classifier
trained on the target language data (run 2)

• the union (without duplicates) of the selected
sentences proposed by the two classifiers
(run 3)

Intrinsic evaluation of the proposed data selec-
tion technique was performed by computing the
classifier accuracy. Following the recommenda-
tions from (Kohavi, 1995), we employ the strati-
fied cross-validation method with ten folds. The
accuracy values were computed using scikit-learn
(Pedregosa et al., 2011). The following table
presents the FFNN classifier mean accuracy and
standard deviation for each of the language pairs.
The low values of standard deviation for all clas-
sifiers indicate the consistency of our proposed
method.

5http://scikit-neuralnetwork.readthedocs.io/en/latest/
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Language pair FFNNsource FFNNtarget
EN-DE 0.9715 ± 0.00085 0.9716 ± 0.00082
EN-ES 0.9403 ± 0.00221 0.9408 ± 0.00315
EN-FR 0.9585 ± 0.00364 0.9626 ± 0.00245
EN-PT 0.9596 ± 0.00197 0.9644 ± 0.00213

Table 2: Classifier accuracy (%): mean and stan-
dard deviation

This year four datasets were used in the eval-
uation: Scielo, EDP, Cochrane and NHS belong-
ing to scientific publications or health information
texts. The format of the datasets differed as Sci-
elo and the EDP datasets follow the BioC format
and Cochrane and NHS follow the format of the
UFAL Corpus (sgm). Table 3 depicts the size of
the datasets.

Language pair Scielo EDP Cochrane NHS
EN-DE - - 467 1044
EN-ES 1120 - 467 1044
ES-EN 1135 - - -
EN-FR - 784 467 1044
FR-EN - 662 - -
EN-PT 1897 - - -
PT-EN 1825 - - -

Table 3: Size of the test sets

The results of our submissions are presented
with respect to different datasets. Table 5 depicts
all the BLEU scores of our submissions. For the
Scielo dataset, our team was the only one that sub-
mitted runs. The organisers provided baselines for
all language pairs and our best run improves with
almost 9 BLEU points over the baseline for EN-
PT and EN-ES, and almost 7 BLEU point over the
baseline for PT-EN and ES-EN. There were small
differences between the results of the three runs
which suggests that either method could be used
for gaining positive results.

For the EDP dataset (FR-EN and EN-FR) there
were eight submissions and our best run for EN-
FR had a gain of around 10 BLEU points over the
baseline, as for FR-EN a gain of around 6 BLEU
points. Considering our runs, there is 1 BLEU
point difference between run 2 and run 3 for FR-
EN and 0.5 difference between run 3 and run 2 for
EN-FR. This indicates that the union method pro-
vides the best results.

On the Cochrane and NHS datasets our team
was the only one that submitted for EN-ES obtain-
ing high BLEU scores (48.99, 48.45 and 48.70 for
Cochrane and 40.97, 41.20 and 41.22 for NHS).
The differences between the runs are again very

small. For EN-FR there were two teams participat-
ing. In our runs the union method gave better re-
sults for both datasets. For EN-DE there were six
teams participating and the differences between
our runs are again small.

In the general ranking among all participat-
ing teams, our team ranked first for EN-FR for
the Cochrane and NHS datasets, second on FR-
EN and third on EN-FR for the EDP datasets,
last place on EN-DE for the Cochrane and NHS
datasets, and was the only team submitting for Sci-
elo (PT-EN, EN-PT, ES-EN, EN-ES) as well as for
Cochrane and NHS (EN-ES).

Lavie (2010) points out that BLEU scores
above 30 reflect understandable translations, while
scores over 50 are considered good and fluent
translations. Within 36 submitted runs by our
team, 24 runs have BLEU scores between≈32 and
≈49 (for six language pairs). Therefore, we con-
clude that the method presented obtains generally
good translation results on a variety of language
pairs.

Another important result consists in the fact that
small amounts of general domain data were se-
lected using ATD ranging from 3.1% up to 9.35%.
This represents a promising direction for applying
this method on much larger general domain cor-
pora where selecting small amounts of data mat-
ters even more. The union of the selected sen-
tences with the classifiers trained on the source
and target languages ranges from 5.6% up to
12.1%.

The following table presents the amount of gen-
eral data selected using ATD for the three runs
along with the percentage of general domain data
that it represents:

Language pair # selected src. sent. # selected trg. sent. Union
EN-DE 148K (3.1%) 188K (4.0%) 263K (5.6%)
EN-ES 327K (9.35%) 257K (7.36%) 425K (12.1%)
EN-FR 223K (5.6%) 225K (5.7%) 345K (8.7%)
EN-PT 78K (4.7%) 89K (5.3%) 123K (7.4%)

Table 4: Number of selected sentences and per-
centage of General domain

The average duration for training the Doc2Vec
models was ≈ 2.5 hours and the average duration
for ten fold cross-validation was ≈ 12 minutes6,
which represents an advantage in terms of time
consumption since afterwards only one MT sys-
tem needs to be trained.

6on a 2 Ten Core Intel Xeon processor/ 128 GB of RAM
machine
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Language pair EN-DE EN-ES ES-EN EN-FR FR-EN EN-PT PT-EN
Test set Cochrane NHS Scielo Cochrane NHS Scielo EDP Cochrane NHS EDP Scielo Scielo
run 1 22.03 18.71 36.08 48.99 40.97 37.14 22.43 32.46 31.79 22.64 39.14 43.84
run 2 22.37 19.80 35.93 48.45 41.20 37.47 22.25 32.59 31.89 22.37 39.38 43.93
run 3 22.63 19.66 36.23 48.70 41.22 37.49 22.79 33.16 33.36 23.41 39.21 43.88

Table 5: WMT results in terms of BLEU

5 Conclusions and Future Work

We presented the University of Hamburg
participation to the WMT Biomedical task.
The main contribution of our work consists in
developing an automatic threshold detection
method for data selection which yields good
results for seven language pairs and four data sets.
It requires little time for obtaining the general
domain sentences that are considered most similar
to the in-domain.

For six of the seven language pairs, the BLEU
scores that our method obtained are in the range
between 32 and 49. Generally, the best results
among our three runs is obtained using the union
approach, but with small differences among the
other runs suggesting that there is no clear pref-
erence for one of the approaches.

Since we evaluated our approach only with
respect to the WMT task, we intend to further
apply it to other in-domains and language pairs,
as well as, to compare it directly with standard
state-of-the-art methods.
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Abstract

This paper presents the results of the
WMT17 Metrics Shared Task. We asked
participants of this task to score the out-
puts of the MT systems involved in the
WMT17 news translation task and Neu-
ral MT training task. We collected scores
of 14 metrics from 8 research groups. In
addition to that, we computed scores of
7 standard metrics (BLEU, SentBLEU,
NIST, WER, PER, TER and CDER) as
baselines. The collected scores were eval-
uated in terms of system-level correlation
(how well each metric’s scores correlate
with WMT17 official manual ranking of
systems) and in terms of segment level
correlation (how often a metric agrees with
humans in judging the quality of a partic-
ular sentence).

This year, we build upon two types of
manual judgements: direct assessment
(DA) and HUME manual semantic judge-
ments.

1 Introduction

Evaluating the quality of machine translation
(MT) is critical for developers of MT systems to
monitor progress as well as for MT users to select
among available MT engines for their language
pair of interest. Manual evaluation is however
costly and difficult to reproduce. Automatic MT
evaluation can resolve these issues, if it matches
manual evaluation. The Metrics Shared Task1 of
WMT annually evaluates the performance of au-
tomatic machine translation metrics in their abil-
ity to provide a substitute for human assessment
of translation quality.

1http://www.statmt.org/wmt17/
metrics-task.html, starting with Koehn and Monz
(2006) up to Bojar et al. (2016b)

In contrast to MT quality estimation, the metrics
task provides participating metrics with reference
translations with which MT outputs are compared.
The metrics task itself then needs manual judge-
ments of translation quality in order to check the
extent to which the automatic metrics can approx-
imate the judgement. For situations where the ref-
erence translation is not available, please consult
the results of Quality Estimation Task (Bojar et al.,
2017a).

We keep the two main types of metric eval-
uation unchanged from the previous years. In
system-level evaluation, each metric provides a
quality score for the whole translated test set (usu-
ally a set of documents, in fact). In segment-level
evaluation, a score has to be assigned to every in-
dividual sentence.

The underlying texts and MT systems come
from two other WMT tasks, namely News Trans-
lation Task (Bojar et al., 2017a, denoted as Find-
ings 2017 in the following) and Neural MT train-
ing task (Bojar et al., 2017b), and from the EU
project HimL, aiming at translation of health-
related documents. The texts were drawn mainly
from the news domain and, to a limited extent,
from the medical domain and involve translations
to/from Chinese (zh), Czech (cs), Finnish (fi), Ger-
man (de), Latvian (lv), Russian (ru), and Turkish
(tr), each paired with English, and additionally En-
glish into Romanian and Polish, making a total of
16 language pairs.

Two sources of golden truth of translation qual-
ity judgement are used this year:

• In Direct Assessment (DA) (Graham et al.,
2015), humans assess the quality of a given
MT output translation by comparison with a
reference translation (but not the source). DA
is the new standard used in WMT news trans-
lation task evaluation, requiring only mono-
lingual evaluators. The added benefit for the
metrics task is that the manual and automatic
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evaluations are now a little closer: both hu-
mans and metrics compare the MT output
with the reference.

• The HUME score (Birch et al., 2016) is a
segment-level score aggregated over manual
judgements of translation quality of semantic
units of the source sentence.

In contrast to previous years, the official method
of evaluation changes, moving from “relative
ranking” (RR, evaluating up to five system out-
puts on an annotation screen relative to each other)
to DA and employing the Pearson correlation r in
most cases. Due to difficulties in obtaining suf-
ficient number of judgements for segment-level
evaluation of some language pairs, we re-interpret
DA judgements for these language pairs as relative
comparisons and use Kendall’s τ as a substitute,
see below for details and references.

Section 2 describes our datasets, i.e. the sets
of underlying sentences, system outputs, human
judgements of translation quality and also partic-
ipating metrics. Sections 3.1 and 3.2 then pro-
vide the results of system and segment-level met-
ric evaluation, respectively. We discuss the results
in Section 4.

2 Data

This year, we provided the task participants with
two types of test sets along with reference trans-
lations and outputs of MT systems. Participants
were free to choose which language pairs they
wanted to participate and whether they reported
system-level, segment-level scores or both.

2.1 Test Sets
We use the following test sets, i.e. sets of source
sentences and reference translations:

newstest2017 is the main test set. It is the test set
used in WMT17 News translation task (see
Findings 2017), with approximately 3,000
sentences for each translation direction (ex-
cept Chinese and Latvian which only have
2,001 sentences). The set includes a sin-
gle reference translation for each direction,
except English→Finnish with two reference
translations.

himltest2017 is a subset of HUME Test Set
Round 2 as released by the EU project HimL.
More details about the original dataset are

available in Deliverable D5.4 of the project.2

Out selection contains approximately 300
sentences for each of the four language pairs
(from English into Czech, German, Polish
and Romanian) coming from both WMT16
news translation task as well as from HimL
test sets 2015,3 which are sentences from
health-related texts by Cochrane and NHS
24. The reference translations are the stan-
dard WMT16 references for the news domain
and post-edits of phrase-based MT for the
Cochrane and NHS 24 sentences. No doc-
ument structure has been preserved in this
dataset.

2.2 Translation Systems

The results of the metrics task are likely affected
by the actual set of MT systems participating in a
given translation direction. For instance, if all of
the systems perform similarly, it will be more dif-
ficult, even for the humans, to distinguish between
the quality of translations. If the task includes a
wide range of systems of varying quality, however,
or systems quite different in nature, this could in
some way make the task easier for metrics, with
metrics that are more sensitive to certain aspects
of MT output performing better.

This year, we relied on the following underlying
MT systems:

News Task Systems are all machine translation
systems participating in the WMT17 News
translation task (see Findings 2017). The best
among these systems were neural MT sys-
tems (both token- and character-based) but a
good number of standard phrase-based sys-
tems and also some transfer-based and rule-
based systems participated. The exact set of
systems and system types depends on the lan-
guage pair.

NMT Training Task systems are all instances of
Neural Monkey (Helcl and Libovický, 2017)
implementing the Bahdanau et al. (2014)
sequence-to-sequence model with attention.
Participants of the NMT training task trained
a fixed NMT model using fixed training data
(a subset of the news translation task train-
ing data) and these submitted models were

2http://www.himl.eu/files/D5.4_Second_
Evaluation_Report.pdf

3http://www.himl.eu/test-sets
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then run by training task organizers on new-
stest2017, see Bojar et al. (2017b) for more
details. All training task systems can be
thus seen as regular submissions to the news
translation task, with additional constraints in
place. While one would expect these systems
to produce outputs more similar to each other
than the remaining news task systems, this is
not the case, see Table 3 in Findings 2017.
Based on the manual evaluation, training task
systems however perform similarly, occupy-
ing the lower half of the ranking.

HUME Test Set Round 2 Systems are the MT
systems translating himltest2017. For each
language pair, three different MT systems are
provided. The translations were run by the
EU project HimL and the systems cover ma-
jor MT system types for each language pair
(phrase-based, neural and also syntax-based
or combined systems). More details are pro-
vided in Table 3 of Deliverable 5.4 of the
HimL project.4

To match the format of the newstest where
all MT systems translate all sentences, we se-
lected such subsets of sentences from HUME
Test Set Round 2. The availability of MT
systems for Romanian sentences was more
varied than for other languages and we thus
decided to split Romanian into two test sets,
himltest2017a and himltest2017b, the first
fully translated by three systems and the sec-
ond fully translated only by two systems.

Important note: Due to the construction
of himltest2017 for Polish, the outputs
of one of the MT system were to a
large part included in the HUME track
last year and thus leaked to the training
data we provided to metrics task partici-
pants this year. The affected test set file
is himltest2017a.Year1.en-pl
with 324 sentences out of 340 in-
cluded in the training data. The file
himltest2017a.PBMT.en-pl also
contains 16 known sentences, probably due
to identical translation. The performance of
trained metrics for en-pl evaluation have the
potential to be inflated therefore.

Hybrid Systems are created automatically with
4http://www.himl.eu/files/D5.4_Second_

Evaluation_Report.pdf

the aim of providing a larger set of sys-
tems against which to evaluate metrics, as
in Graham and Liu (2016). Hybrid systems
were created separately for newstest2017 and
himltest2017 by randomly alternating sen-
tences from the outputs of pairs of systems
of the given dataset. In short, we create 10K
hybrid MT systems for each language pair.

Excluding the hybrid systems, we ended up
with 166 system outputs across 16 language pairs
and 3 test sets.

2.3 Manual MT Quality Judgments

There are two distinct “golden truths” employed
to evaluate metrics this year: Direct Assessment
(DA) and HUME, a semantic-based manual met-
ric.

The details of both of the methods are provided
in this section, separately for system-level evalu-
ation (Section 2.3.1) and segment-level evaluation
(Section 2.3.2).

The DA manual judgements were provided by
MT researchers taking part in WMT tasks and
crowd-sourced workers on Amazon’s Mechanical
Turk.5 Only judgements from workers who passed
DA’s quality control mechanism were included
in the final datasets used to compute system and
segment-level scores employed as a gold standard
in the metrics task.

2.3.1 System-level Manual Quality
Judgments

In system-level evaluation, the goal is to assess
the quality of translation of an MT system for the
whole test set. Our manual scoring methods DA
and HUME nevertheless proceed sentence by sen-
tence, aggregating the final score in some way.

Direct Assessment (DA) This year the transla-
tion task employed monolingual direct assessment
(DA) of translation adequacy (Graham et al., 2013;
Graham et al., 2014; Graham et al., 2016). Since
sufficient levels of agreement in human assess-
ment of translation quality are difficult to achieve,
the DA setup simplifies the task of translation as-
sessment (conventionally a bilingual task) into a
simpler monolingual assessment. Furthermore,
DA avoids bias that has been problematic in previ-
ous evaluations introduced by assessment of sev-
eral alternate translations on one screen, where

5https://www.mturk.com
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scores for translations were unfairly penalized if
often compared to high quality translations (Bojar
et al., 2011). DA therefore employs assessment of
individual translations in isolation from other out-
puts.

Translation adequacy is structured as a mono-
lingual assessment of similarity of meaning where
the target language reference translation and the
MT output are displayed to the human assessor.
Assessors rate a given translation by how ade-
quately it expresses the meaning of the reference
translation on an analogue scale corresponding to
an underlying 0-100 rating scale.6

Large numbers of DA human assessments of
translations for all 14 language pairs included in
the news translation task were collected from re-
searchers and on Amazon’s Mechanical Turk, via
sets of 100-translation hits to ensure sufficient re-
peat items per worker, before application of strict
quality control measures to filter out assessments
from poorly performing crowd-sourced workers.

In order to iron out differences in scoring strate-
gies attributed to distinct workers, human assess-
ment scores for translations were standardized ac-
cording to an individual worker’s overall mean
and standard deviation score. Mean standardized
scores for translation task participating systems
were computed by firstly taking the average of
scores for individual translations in the test set
(since some were assessed more than once), before
combining all scores for translations attributed to
a given MT system into its overall adequacy score.
The gold standard for system-level DA evaluation
is thus what is denoted “Ave z” in Findings 2017
(Bojar et al., 2017a).

Finally, although it is common to apply a sen-
tence length restriction in WMT human evalu-
ation, the simplified DA setup does not require
restriction of the evaluation in this respect and
no sentence length restriction was applied in DA
WMT17.

HUME is a human evaluation measure that de-
composes over the UCCA semantic units (Birch et
al., 2016). UCCA (Abend and Rappoport, 2013)
is an appealing candidate for semantic analysis,
due to its cross-linguistic applicability, support for
rapid annotation, and coverage of many funda-
mental semantic phenomena, such as verbal, nom-

6The only numbering displayed on the rating scale are ex-
treme points 0 and 100%, and three ticks indicate the levels
of 25, 50 and 75 %.

inal and adjectival argument structures and their
inter-relations. HUME operates by aggregating
human assessments of the translation quality of
individual semantic units in the source sentence.
HUME thus avoids the semantic annotation of
machine-generated text, which can often be gar-
bled or semantically unclear. This also allows the
re-use of the source semantic annotation for mea-
suring the quality of different translations of the
same source sentence, and avoids reliance on pos-
sibly suboptimal reference translations. HUME
shows good inter-annotator agreement, and rea-
sonable correlation with Direct Assessment (Birch
et al., 2016).

Since some translations in the HUME Test Set
round 2 were annotated with HUME by more
than one annotator, individual HUME scores for
the same translation were combined into a single
score for evaluation of metrics by taking the av-
erage of all HUME scores attributed to that trans-
lation. These segment-level HUME scores were
then combined into an average score for each sys-
tem.

2.3.2 Segment-level Manual Quality
Judgments

Segment-level metrics have been evaluated against
DA and HUME annotations for the newstest2017
and himl test sets, respectively. This year, since
insufficient repeat judgements were collected for
most of out-of-English language pairs to run a
standard segment-level DA evaluation of metrics
for the news task data, DA judgements for those
language pairs were converted to relative ranking
judgements to produce results similar to previous
WMT metrics tasks.

Segment-level DA Adequacy assessments were
collected for translations sampled from the out-
put of systems participating in WMT17 transla-
tion task for 14 language pairs of the news transla-
tion task and 4 language pairs of the himl test set.
Since the actual MT system is not important for
segment-level assessment, we sampled 560 trans-
lations per language pair at random avoiding se-
lection of identical ones.

Segment-level DA adequacy scores were col-
lected as in system-level DA, described in Sec-
tion 2.3.1, again with strict quality control and
score standardization applied. To achieve accu-
rate segment-level scores for translations, 15 dis-
tinct DA assessments were collected and com-
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DA>1 Ave DA pairs DARR

en-cs 2,960 6.9 67,404 32,810
en-de 2,053 3.1 8,140 3,227
en-fi 2,071 2.9 6,952 3,270
en-lv 1,616 3.4 8,047 3,456
en-tr 460 2.1 597 247

Table 1: Number of judgements for the five out-of-
English language pairs employing DA converted
to DARR data (DA produced by volunteer re-
searchers in the news task manual evaluation);
“DA>1” is the number of source input sentences
in the manual evaluation where at least two trans-
lations of that same input sentence both received
at least one DA judgement; “Ave” is the aver-
age number of translations with at least one DA
judgement available for the same source input sen-
tence; “DA pairs” is the number of all possible
pairs of translations of the same source input re-
sulting from “DA>1”; and “DARR” if the num-
ber of DA pairs with an absolute difference in DA
scores greater than the 25 percentage point mar-
gin.

bined into a single mean adequacy score for each
individual translation. Although in general agree-
ment in human assessment of MT has been diffi-
cult to achieve, segment-level DA scores employ-
ing a minimum of 15 repeat assessments have been
shown to be almost completely repeatable (Gra-
ham et al., 2015) and therefore provide a reliable
gold standard for evaluating segment-level met-
rics.

HUME HUME annotations were taken from
the HUME Test Set round 2 as described already
in Section 2.3.1. Again, where an individual trans-
lation received more than one annotation its final
segment-level score was arrived at by taking the
average of all scores attributed to it.

DARR For five out-of-English language pairs
(en-cs, en-de, en-fi, en-lv and en-tr) belonging to
the news task, insufficient DA judgements were
collected to provide reliable segment-level DA
scores. When we have at least two DA scores for
translations of the same source input, it is possible
to convert those DA scores into a relative ranking
judgement, if the difference in DA scores allows
us to conclude that one translation is better than
the other. In the following, we will denote these
re-interpreted DA judgements as “DARR”, to dis-

tinguish it clearly from the “RR” golden truth used
in the past years.

Since the analogue rating scale employed by
DA is marked at the 0-25-50-75-100 points, the
difference in DA scores we employ to distinguish
translations that are better/worse than one another
is 25 points. In addition, DA judgements for these
language pairs were only collected from known-
reliable volunteers, and therefore avoid any incon-
sistency that could arise from reliance on individ-
ual DA judgements collected via crowd-sourcing,
for example.

From the complete set of human assessments
collected from researchers for the News task for
these five language pairs, all possible pairs of DA
judgements attributed to distinct translations of
the same source were converted into DARR bet-
ter/worse judgements. Distinct translations of the
same source input whose DA scores fell within 25
percentage points (which could have been deemed
equal quality) were omitted from the evaluation
of segment-level metrics. Conversion of scores
in this way produced a large set of DARR judge-
ments for four of the five language pairs, shown in
Table 1 due to combinatorial advantage of extract-
ing DARR judgements from all possible pairs of
translations of the same source input. Only Turk-
ish thus remains poorly covered.

Kendall’s Tau-like Formulation for DARR
We measure the quality of metrics’ segment-level
scores against the DARR golden truth using a
Kendall’s Tau-like formulation, which is an adap-
tation of the conventional Kendall’s Tau coeffi-
cient. Since we do not have a total order ranking of
all translations we use to evaluate metrics, it is not
possible to apply conventional Kendall’s Tau given
the current DARR human evaluation setup (Gra-
ham et al., 2015). Vazquez-Alvarez and Huck-
vale (2002) also note that a genuine pairwise com-
parison is likely to lead to more stable results for
segment-level metric evaluation.

Our Kendall’s Tau-like formulation, τ , is as fol-
lows:

τ =
|Concordant| − |Discordant|
|Concordant| + |Discordant| (1)

where Concordant is the set of all human com-
parisons for which a given metric suggests the
same order and Discordant is the set of all human
comparisons for which a given metric disagrees.
The formula is not specific with respect to ties, i.e.
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cases where the annotation says that the two out-
puts are equally good.

The way in which ties (both in human and met-
ric judgement) were incorporated in computing
Kendall τ has changed across the years of WMT
metrics tasks. Here we adopt the version from
WMT14 and WMT15. For a detailed discussion
on other options, see Macháček and Bojar (2014).

The method is formally described using the fol-
lowing matrix:

Metric
< = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

Given such a matrix Ch,m where h, m ∈ {<,=
, >}7 and a metric, we compute the Kendall’s τ for
the metric the following way:

τ =

∑
h,m∈{<,=,>}

Ch,m ̸=X

Ch,m|Sh,m|

∑
h,m∈{<,=,>}

Ch,m ̸=X

|Sh,m| (2)

We insert each extracted human pairwise com-
parison into exactly one of the nine sets Sh,m ac-
cording to human and metric ranks. For example
the set S<,> contains all comparisons where the
left-hand system was ranked better than right-hand
system by humans and it was ranked the other way
round by the metric in question.

To compute the numerator of our Kendall’s τ
formulation, we take the coefficients from the ma-
trix Ch,m, use them to multiply the sizes of the cor-
responding sets Sh,m and then sum them up. We
do not include sets for which the value of Ch,m is
X. To compute the denominator, we simply sum
the sizes of all the sets Sh,m except those where
Ch,m = X.

To summarize, the WMT17 matrix specifies to:

• exclude all human ties (this is already implied
by the construction of DARR from DA judge-
ments),

• count metric’s ties only for the denominator
(thus giving no credit for giving a tie),

7Here the relation < always means ”is better than“ even
for metrics where the better system receives a higher score.

• all cases of disagreement between hu-
man and metric judgements are counted as
Discordant,

• all cases of agreement between human
and metric judgements are counted as
Concordant.

We employ bootstrap resampling to estimate
confidence intervals for our Kendall’s Tau for-
mulation, and metrics with non-overlapping 95%
confidence intervals are identified as having statis-
tically significant difference in performance.

2.4 Participants of the Metrics Shared Task

Table 2 lists the participants of the WMT17
Shared Metrics Task, along with their metrics. We
have collected 14 metrics from a total of 8 research
groups.

The following subsections provide a brief sum-
mary of all the metrics that participated. The
list is concluded by our baseline metrics in Sec-
tion 2.4.10.

In this year’s task, we asked participants whose
metrics are publicly available to provide links to
where the code can be accessed. Table 3 provides
links for metrics that participated in WMT17 that
are publicly available for download.

2.4.1 AUTODA, AUTODA.TECTO

AUTODA (Mareček et al., 2017) is a sentence-
level metric trainable on any direct assessment
scores. The metric is based on a simple linear re-
gressor combining several features extracted from
the automatically aligned an parsed translation-
reference pair. The language-universal AUTODA
uses seven features based on word-aligned parse
trees in Universal Dependencies style (Nivre et al.,
2016). All the features are some kind of simi-
larity measures between two aligned nodes, e.g.
lemma similarity, tag similarity, or morphosyntac-
tic features similarity. The eighth feature used
is the CHRF3 score (Popović, 2015). For the
newstest2017 data, AUTODA was trained on Di-
rect Assessment scores from newstest2015, which
were available only for English. Nevertheless the
same model was used for all the language pairs.
For himltest2017, the metrics were trained on the
provided HUMEseg2016.

The AUTODA.TECTO metric is similar to AU-
TODA but uses tectogrammatical trees (Hajič,
2004) instead of the Universal Dependencies. This
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Metric Seg-level Sys-level Hybrids Participant

AUTODA • ⊘ ⊘ Charles University (Mareček et al., 2017)
AUTODA.TECTO • ⊘ ⊘ Charles University (Mareček et al., 2017)

BEER • ⊘ ⊘ ILLC – University of Amsterdam (Stanojević and Sima’an, 2015)
BLEND • ⊘ ⊘ ICTCAS-DCU (Ma et al., 2017)

BLEU2VEC SEP • • − University of Tartu (Tättar and Fishel, 2017)
CHARACTER − • • RWTH Aachen University (Wang et al., 2016)

CHRF • ⊘ ⊘ (Popović, 2015)
CHRF+ • ⊘ ⊘ (Popović, 2017)

CHRF++ • ⊘ ⊘ (Popović, 2017)
MEANT 2.0 • ⊘ ⊘ NRC (Lo, 2017)

MEANT 2.0-NOSRL • ⊘ ⊘ NRC (Lo, 2017)
NGRAM2VEC • • − University of Tartu (Tättar and Fishel, 2017)

TREEAGGREG • ⊘ ⊘ Charles University (Mareček et al., 2017)
UHH TSKM • ⊘ ⊘ (Duma and Menzel, 2017)

Table 2: Participants of WMT17 Metrics Shared Task. “•” denotes that the metric took part in (some of
the language pairs) of the segment- and/or system-level evaluation and whether hybrid systems were also
scored. “⊘” indicates that the system-level and hybrids are implied, simply taking arithmetic average of
segment-level scores.

AUTODA incl. TECTO http://github.com/ufal/auto-hume

BEER http://github.com/stanojevic/beer

BLEND http://github.com/qingsongma/blend

BLEU2VEC SEP http://github.com/TartuNLP/bleu2vec

CHARACTER http://github.com/rwth-i6/CharacTER

CHRF, incl. + and ++ http://github.com/m-popovic/chrF

MEANT 2.0 incl. NOSRL http://chikiu-jackie-lo.org/home/index.php/meant

NGRAM2VEC http://github.com/TartuNLP/bleu2vec

TREEAGGREG http://github.com/ufal/auto-hume/tree/rudolf

Baselines: http://github.com/moses-smt/mosesdecoder

BLEU, NIST scripts/generic/mteval-v13a.pl

CDER, PER, TER, WER mert/evaluator

SENTBLEU mert/sentence-bleu

Table 3: Metrics available for public download that participated in WMT17. The baseline metrics scripts
are all available with Moses, relative paths are listed.

very rich annotation allowed to use also the deep-
syntactic features. It uses 18 features based on
aligned tectogrammatical nodes similarity and two
additional measures: CHRF3 and BLEU. The
AUTODA.TECTO metric was applied only to the
Czech outputs and it was trained on HUME-
seg2016 en-cs data.

The AUTODA metrics are labelled as ensemble
metrics because they include the scores of CHRF3
and BLEU.

2.4.2 BEER
BEER (Stanojević and Sima’an, 2015) is a trained
evaluation metric with a linear model that com-
bines features sub-word feature indicators (charac-
ter n-grams) and global word order features (skip

bigrams) to get language agnostic and fast to com-
pute evaluation metric. BEER has participated in
previous years of the evaluation task. The metric
is identical to the 2016 run, including the training,
so no 2016 data were used to train BEER in 2017.

2.4.3 BLEND

BLEND (Ma et al., 2017) is a novel combined met-
ric that takes good advantage of merits of exist-
ing metrics. Contrary to another combined met-
ric DPMFcomb (Yu et al., 2015), BLEND employs
SVM regression for training, with DA scores as
the gold standard in order to adapt to the new
development of human evaluation. Experiments
on WMT16 to-English language pairs show that,
with a vast reduction in required training data,
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BLEND still achieves improved performance over
DPMFcomb when incorporated the same metrics.
BLEND also finds a trade-off between its perfor-
mance and efficiency by exploring the contribu-
tion of incorporated metrics. Besides, BLEND is
flexible to be applied to any language pairs if in-
corporated metrics support the specific language
pair.

BLEND is an ensemble metric, building upon
scores provided by 25 lexical based metrics and 4
other metrics for to-English language pairs. Since
some lexical based metrics are simply different
variants of the same metric, there are only 9 kinds
of lexical based metrics, namely BLEU, NIST,
GTM, METEOR, ROUGE, Ol, WER, TER and
PER. 4 other metrics include CharacTer, BEER,
DPMF and ENTF.

BLEND for en-ru incorporates 20 lexical based
metrics (the same 9 kinds of metrics mentioned
above), and 2 other metrics, namely CharacTer
and BEER.

2.4.4 BLEU2VEC SEP, NGRAM2VEC

The metrics BLEU2VEC SEP and NGRAM2VEC

(Tättar and Fishel, 2017) are token-level met-
rics, which are trained on raw monolingual cor-
pora. They are a direct modification of the original
BLEU metric (Papineni et al., 2002) with fuzzy
matches added to strict matches. The fuzzy match
score is implemented via token and n-gram em-
bedding similarities and applied to same-length n-
grams in the hypothesis and reference(s).

2.4.5 CHARACTER

CHARACTER (Wang et al., 2016), identical to the
2016 setup, is a character-level metric inspired by
the commonly applied translation edit rate (TER).
It is defined as the minimum number of character
edits required to adjust a hypothesis, until it com-
pletely matches the reference, normalized by the
length of the hypothesis sentence. CHARACTER

calculates the character-level edit distance while
performing the shift edit on word level. Unlike
the strict matching criterion in TER, a hypothe-
sis word is considered to match a reference word
and could be shifted, if the edit distance between
them is below a threshold value. The Levenshtein
distance between the reference and the shifted hy-
pothesis sequence is computed on the character
level. In addition, the lengths of hypothesis se-
quences instead of reference sequences are used
for normalizing the edit distance, which effec-

tively counters the issue that shorter translations
normally achieve lower TER.

Similarly to other character-level metrics,
CHARACTER is applied to non-tokenized outputs
and references, which also holds for this year’s
submission.

2.4.6 CHRF, CHRF+, and CHRF++

CHRF (Popović, 2015) is an evaluation metric
which compares character n-grams in the hypoth-
esis with those in the reference. Previous experi-
ments have shown that the optimal set-up is to use
maximal character n-gram length of 6 with uni-
form n-gram weights, arithmetic n-gram averag-
ing and beta parameter set to 2. It has participated
in previous two years of the evaluation task. This
year’s CHRF is identical to the CHRF2 from the
2016 metric task.

CHRF+ and CHRF++ (Popović, 2017) are
extended CHRF metrics which, in addition to
character n-grams, also compare word unigrams
(CHRF+) and bigrams (CHRF++).

2.4.7 MEANT 2.0, MEANT 2.0-NOSRL

MEANT 2.0 is a non-trained evaluation metric
that uses distributional word vector model to eval-
uate lexical semantic similarity and shallow se-
mantic parses to evaluate structural semantic sim-
ilarity between the reference and the MT output.
It is a new version of MEANT (Lo et al., 2015)
with improved evaluation of semantic role fillers
phrasal similarity using idf-weighted n-gram sim-
ilarity. Another improvement in MEANT 2.0 is
its no-srl variant, MEANT 2.0-NOSRL. It pro-
vides accurate semantic evaluation of machine
translation in any output language, even if no
shallow semantic parser is available in that lan-
guage. It considers the whole sentences as one
long phrase for computing the phrasal similarity
and the evaluation score.

2.4.8 TREEAGGREG

TREEAGGREG (Mareček et al., 2017) is an n-
gram based metric computed over aligned syntac-
tic structures instead of the linear representation of
the translated sentences. Sentences are segmented
into phrases based on their dependency parse trees,
evaluating each of these phrases independently us-
ing CHRF3 metric (Popović, 2015). The resulting
scores are then aggregated into a final sentence-
level score using a simple weighted average.
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TREEAGGREG is labelled as an ensemble met-
ric, because it builds upon CHRF. It is however not
trained at all, it only follows the dependency struc-
ture of the reference and candidate translation.

2.4.9 UHH TSKM
UHH TSKM (Duma and Menzel, 2017) is a non-
trained metric utilizing kernel functions, i.e. meth-
ods for efficient calculation of overlap of sub-
structures between the candidate and the reference
translations. The metric uses both sequence ker-
nels, applied on the tokenized input data, together
with tree kernels, that exploit the syntactic struc-
ture of the sentences. Optionally, the match can
also be performed for the candidate and a pseudo-
reference (i.e. a translation by another MT system)
or for the source sentence and the candidate back-
translated into the source language.

2.4.10 Baseline Metrics
As mentioned by Bojar et al. (2016a), metrics
task occasionally suffers from “loss of knowl-
edge” when successful metrics participate only in
one year.

We attempt to avoid this by regularly evaluating
also a range of “baseline metrics”:

• Mteval. The metrics BLEU (Pap-
ineni et al., 2002) and NIST (Dod-
dington, 2002) were computed using
the script mteval-v13a.pl8 that is
used in the OpenMT Evaluation Cam-
paign and includes its own tokeniza-
tion. We run mteval with the flag
--international-tokenization
since it performs slightly better (Macháček
and Bojar, 2013).

• Moses Scorer. The metrics TER (Snover et
al., 2006), WER, PER and CDER (Leusch
et al., 2006) were produced by the Moses
scorer, which is used in Moses model opti-
mization. To tokenize the sentences, we used
the standard tokenizer script as available in
Moses toolkit. Since Moses scorer is ver-
sioned on Github, we strongly encourage au-
thors of high-performing metrics to add them
to Moses scorer, as this will ensure that their
metric can be included in future tasks.

As for segment-level baselines, we employ the
following modified version of BLEU:

8http://www.itl.nist.gov/iad/mig/
tools/

• SentBLEU. The metric SENTBLEU is com-
puted using the script sentence-bleu, a part
of the Moses toolkit. It is a smoothed ver-
sion of BLEU that correlates better with hu-
man judgements for segment-level. Standard
Moses tokenizer is used for tokenization.

Chinese word segmentation is unfortunately
not supported by the tokenization scripts men-
tioned above. For scoring Chinese with baseline
metrics, we thus pre-processed MT outputs and
reference translations with the script tokenizeChi-
nese.py9 by Shujian Huang, which separates Chi-
nese characters from each other and also from
non-Chinese parts.

For computing system-level and segment-level
scores, the same scripts were employed as in last
year’s metrics task. New scripts have been added
for generation of hybrid systems from the given
hybrid descriptions.

3 Results

We discuss system-level results for news task sys-
tems (including NMT training task systems) in
Section 3.1. The segment-level results are in Sec-
tion 3.2.

3.1 System-Level Results

As in previous years, we employ the absolute
value of Pearson correlation (r) as the main evalu-
ation measure for system-level metrics. The Pear-
son correlation is as follows:

r =

∑n
i=1(Hi − H)(Mi − M)√∑n

i=1(Hi − H)2
√∑n

i=1(Mi − M)2
(3)

where Hi are human assessment scores of all sys-
tems in a given translation direction, Mi are corre-
sponding scores as predicted by a given metric. H
and M are their means respectively.

Since some metrics, such as BLEU, for exam-
ple, aim to achieve a strong positive correlation
with human assessment, while error metrics, such
as TER aim for a strong negative correlation, after
computation of r for metrics, we compare metrics
via the absolute value of a given metric’s correla-
tion with human assessment.

9http://hdl.handle.net/11346/
WMT17-TVXH
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cs-en de-en fi-en lv-en ru-en tr-en zh-en
n 4 11 6 9 9 10 16

Correlation |r| |r| |r| |r| |r| |r| |r|

AUTODA 0.438 0.959 0.925 0.973 0.907 0.916 0.734
BEER 0.972 0.960 0.955 0.978 0.936 0.972 0.902
BLEND 0.968 0.976 0.958 0.979 0.964 0.984 0.894
BLEU 0.971 0.923 0.903 0.979 0.912 0.976 0.864
BLEU2VEC SEP 0.989 0.936 0.888 0.966 0.907 0.961 0.886
CDER 0.989 0.930 0.927 0.985 0.922 0.973 0.904
CHARACTER 0.972 0.974 0.946 0.932 0.958 0.949 0.799
CHRF 0.939 0.968 0.938 0.968 0.952 0.944 0.859
CHRF++ 0.940 0.965 0.927 0.973 0.945 0.960 0.880
MEANT 2.0 0.926 0.950 0.941 0.970 0.962 0.932 0.838
MEANT 2.0-NOSRL 0.902 0.936 0.933 0.963 0.960 0.896 0.800
NGRAM2VEC 0.984 0.935 0.890 0.963 0.907 0.955 0.880
NIST 1.000 0.931 0.931 0.960 0.912 0.971 0.849
PER 0.968 0.951 0.896 0.962 0.911 0.932 0.877
TER 0.989 0.906 0.952 0.971 0.912 0.954 0.847
TREEAGGREG 0.983 0.920 0.977 0.986 0.918 0.987 0.861
UHH TSKM 0.996 0.937 0.921 0.990 0.914 0.987 0.902
WER 0.987 0.896 0.948 0.969 0.907 0.925 0.839

newstest2017

Table 4: Absolute Pearson correlation of to-English system-level metrics with DA human assessment;
correlations of metrics not significantly outperformed by any other for that language pair are highlighted
in bold; ensemble metrics are highlighted in gray.

en-cs en-de en-fi en-lv en-ru en-tr en-zh
n 14 16 12 17 9 8 11

Correlation |r| |r| |r| |r| |r| |r| |r|

AUTODA 0.975 0.603 0.879 0.729 0.850 0.601 0.976
AUTODA-TECTO 0.969 − − − − − −
BEER 0.970 0.842 0.976 0.930 0.944 0.980 0.914
BLEND − − − − 0.953 − −
BLEU 0.956 0.804 0.920 0.866 0.898 0.924 0.981
BLEU2VEC SEP 0.963 0.810 0.942 0.859 0.903 0.911 −
CDER 0.968 0.813 0.965 0.930 0.924 0.957 0.983
CHARACTER 0.981 0.938 0.972 0.897 0.939 0.975 0.933
CHRF 0.976 0.863 0.981 0.955 0.950 0.991 0.976
CHRF+ 0.976 0.855 0.980 0.956 0.948 0.988 −
CHRF++ 0.974 0.852 0.979 0.956 0.945 0.986 0.976
MEANT 2.0 − 0.858 − − − − 0.956
MEANT 2.0-NOSRL 0.976 0.770 0.972 0.959 0.957 0.991 0.943
NGRAM2VEC − − 0.940 0.862 − − −
NIST 0.962 0.769 0.957 0.935 0.920 0.986 0.976
PER 0.954 0.687 0.949 0.851 0.887 0.963 0.934
TER 0.955 0.796 0.961 0.909 0.933 0.967 0.970
TREEAGGREG 0.947 0.773 0.965 0.927 0.921 0.983 0.938
WER 0.954 0.802 0.960 0.906 0.934 0.956 0.954

newstest2017

Table 5: Absolute Pearson correlation of out-of-English system-level metrics with DA human assess-
ment; correlations of metrics not significantly outperformed by any other for that language pair are
highlighted in bold; ensemble metrics are highlighted in gray.
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Figure 1: System-level metric significance test results for DA human assessment in newstest2017; green
cells denote a statistically significant increase in correlation with human assessment for the metric in a
given row over the metric in a given column according to Williams test.
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cs-en de-en fi-en lv-en ru-en tr-en zh-en
n 10K 10K 10K 10K 10K 10K 10K

Correlation |r| |r| |r| |r| |r| |r| |r|

AUTODA 0.4395 0.9505 0.9220 0.9698 0.9015 0.9138 0.7341
BEER 0.9662 0.9524 0.9532 0.9740 0.9299 0.9692 0.8970
BLEND 0.9633 0.9685 0.9562 0.9761 0.9569 0.9809 0.8897
BLEU 0.9644 0.9136 0.9061 0.9741 0.9070 0.9688 0.8523
CDER 0.9833 0.9219 0.9247 0.9814 0.9160 0.9702 0.8975
CHARACTER 0.9628 0.9648 0.9438 0.9271 0.9484 0.9459 0.7398
CHRF 0.9330 0.9602 0.9352 0.9647 0.9456 0.9408 0.8551
CHRF++ 0.9348 0.9572 0.9242 0.9696 0.9381 0.9568 0.8756
MEANT 2.0 0.9209 0.9418 0.9390 0.9668 0.9546 0.9307 0.8357
MEANT 2.0-NOSRL 0.8962 0.9275 0.9305 0.9599 0.9523 0.8951 0.7992
NIST 0.9937 0.9173 0.9284 0.9566 0.9035 0.9693 0.8309
PER 0.9673 0.9198 0.8917 0.9578 0.9040 0.8982 0.8659
TER 0.9830 0.8991 0.9503 0.9672 0.9051 0.9510 0.8366
TREEAGGREG 0.9769 0.9133 0.9752 0.9828 0.9115 0.9834 0.8535
UHH TSKM 0.9896 0.9294 0.9183 0.9857 0.9077 0.9821 0.8955
WER 0.9814 0.8894 0.9458 0.9649 0.9004 0.9222 0.8281

newstest2017 Hybrids

Table 6: Absolute Pearson correlation of to-English system-level metrics with DA human assessment for
10K hybrid super-sampled systems; ensemble metrics are highlighted in gray.

en-cs en-de en-fi en-lv en-ru en-tr en-zh
n 10K 10K 10K 10K 10K 10K 10K

Correlation |r| |r| |r| |r| |r| |r| |r|

AUTODA 0.9670 0.6021 0.8789 0.7307 0.8501 0.5857 0.9676
AUTODA-TECTO 0.8572 − − − − − −
BEER 0.9634 0.8285 0.9748 0.9233 0.9417 0.9684 0.9062
BLEND − − − − 0.9499 − −
BLEU 0.9447 0.7925 0.9190 0.8385 0.8929 0.9157 0.9686
CDER 0.9582 0.8030 0.9620 0.9111 0.9215 0.9484 0.9748
CHARACTER 0.9725 0.8931 0.9698 0.8921 0.9292 0.9609 0.9140
CHRF 0.9683 0.8446 0.9788 0.9445 0.9474 0.9801 0.9686
CHRF+ 0.9679 0.8375 0.9779 0.9455 0.9453 0.9779 −
CHRF++ 0.9658 0.8354 0.9774 0.9441 0.9423 0.9752 0.9683
MEANT 2.0 − 0.8437 − − − − 0.9444
MEANT 2.0-NOSRL 0.9682 0.7530 0.9704 0.9470 0.9550 0.9796 0.9310
NIST 0.9544 0.7607 0.9567 0.9140 0.9167 0.9760 0.9681
PER 0.9599 0.6803 0.9388 0.8169 0.8758 0.9546 0.8928
TER 0.9507 0.7899 0.9593 0.8881 0.9299 0.9582 0.9646
TREEAGGREG 0.9419 0.7648 0.9630 0.9149 0.9188 0.9712 0.9331
WER 0.9489 0.7967 0.9589 0.8841 0.9310 0.9466 0.9507

newstest2017 Hybrids

Table 7: Absolute Pearson correlation of out-of-English system-level metrics with DA human assessment
for 10K hybrid super-sampled systems; ensemble metrics are highlighted in gray.
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Figure 2: System-level metric significance test results for 10K hybrid systems (DA human evaluation)
from newstest2017; green cells denote a statistically significant increase in correlation with human as-
sessment for the metric in a given row over the metric in a given column according to Williams test.
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3.1.1 System-Level Results for News Task

Table 4 provides the system-level correlations
of metrics evaluating translation of newstest2017
into English while Table 5 provides the same for
out-of-English language pairs. DA is the golden
truth. The underlying texts are part of the WMT17
News Translation test set (newstest2017) and the
underlying MT systems are all MT systems partic-
ipating in the WMT17 news translation task. The
en-cs translation direction also includes the trans-
lation systems participating in the NMT training
task.

As recommended by Graham and Baldwin
(2014), we employ Williams significance test
(Williams, 1959) to identify differences in correla-
tion that are statistically significant. Williams test
is a test of significance of a difference in depen-
dent correlations and therefore suitable for evalua-
tion of metrics. Correlations not significantly out-
performed by any other metric for the given lan-
guage pair are highlighted in bold in Tables 4 and
5.

Since pairwise comparisons of metrics may be
also of interest, e.g. to learn which metrics sig-
nificantly outperform the most widely employed
metric BLEU, we include significance test results
for every competing pair of metrics including our
baseline metrics in Figure 1.

For instance, we see that for en-cs (outputs of
14 MT systems), even the best-performing metric
CHARACTER was not significantly better than any
other metric except TREEAGGREG. CHRF+ and
CHRF++ were significantly better than BLEU and
TREEAGGREG, as were several other metrics.

The sample of systems we employ to evaluate
metrics is often small, as few as four MT systems
for cs-en, for example. This can lead to inconclu-
sive results, as identification of significant differ-
ences in correlations of metrics is unlikely at such
a small sample size. In addition, the Williams test
takes into account the correlation between each
pair of metrics and the correlation between the
metric scores themselves increases the likelihood
of a significant difference being identified. For cs-
en, this led to one counter-intuitive result: AU-
TODA achieved a substantially lower correlation
with human assessment compared to other met-
rics (0.438 compared to ∼0.9 in Table 4) and yet
it was not significantly outperformed by any other
metric. The lack of significance here is due to the
small sample size and lack of correlation of met-

ric AUTODA metric scores with the scores of the
other competing metrics, reducing the likelihood
of identifying a significant difference. In short,
AUTODA differed too much from others, under-
performing, but the four underlying MT systems
are too few for the statistical significance. Other
metrics are more similar to each other and the dif-
ferences are sufficient for confidence as to which
metric performs better. The small sample size also
explains the cs-en NIST correlation of 1.0.

The situation is also interesting for de-en,
with BLEND significantly outperforming numer-
ous metrics but the second CHARACTER not be-
ing better than any other metric, and this is in part
again due to the varying correlations between the
metric scores themselves, as the statistical power
of Williams test increases with stronger metric
scores correlations between each other.

We also include significance test results for
large hybrid-super-samples of systems (Graham
and Liu, 2016). 10K hybrid systems were created
per language pair, with corresponding DA human
assessment scores by sampling pairs of systems
from WMT17 translation task and NMT train-
ing task, creating hybrid systems by randomly se-
lecting each candidate translation from one of the
two selected systems. Similar to last year, not all
metrics participating in the system-level evalua-
tion submitted metric scores for the large set of
hybrid systems. Fortunately, taking a simple aver-
age of segment-level scores is the proper aggrega-
tion method for most metrics this year, so where
ever possible, we provided scores for hybrids our-
selves.

Correlations of metric scores with human as-
sessment of the large set of hybrid systems are
shown in Tables 6 and 7, where again metrics not
significantly outperformed by any other are high-
lighted in bold. Figure 2 also includes significance
test results for hybrid super-sampled correlations
for all pairs of competing metrics for a given lan-
guage pair.

3.1.2 System-Level Results for HUME
In addition to the WMT17 news task, we also as-
sess the performance of metrics on the system-
level for himltest datasets. Tables 8 and 9 show
correlation with human assessment of system-
level metrics with HUME scores on himltest2017
“a” and “b”, respectively. Since there are only two
or three systems in each dataset, the sample size is
too small to test for statistical significance. In fact,
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en-cs en-de en-pl en-ro
n 3 3 3 3

Correlation |r| |r| |r| |r|

AUTODA 0.932 0.593 0.161 0.594
AUTODA-TECTO 0.917 − − −
BEER 0.833 0.460 0.342 0.188
BLEU 0.815 0.537 0.675 0.064
CDER 0.751 0.461 0.211 0.285
CHARACTER 0.958 0.735 0.241 0.961
CHRF 0.855 0.631 0.131 0.119
CHRF+ 0.840 0.616 0.006 0.168
CHRF++ 0.836 0.573 0.119 0.172
MEANT 2.0 − 0.851 − −
MEANT 2.0-NOSRL 0.812 0.805 0.555 0.331
NIST 0.730 0.484 0.427 0.283
PER 0.704 0.738 0.853 0.239
TER 0.778 0.127 0.838 0.253
TREEAGGREG 0.753 0.799 0.670 0.018
WER 0.784 0.011 0.839 0.151

himltest2017a

Table 8: Absolute Pearson correlation of system-
level metrics with HUME human assessment; en-
semble metrics are highlighted in gray.

results in Table 9 are not very informative because
two systems will always lie on a line, producing
perfect absolute Pearson correlations. We include
results nonetheless for demonstration purposes.

To obtain more meaningful results, we com-
pute correlations for 10K hybrid systems for himl-
test2017a. Table 10 shows metric correlation with
human assessment for the large set of 10K hybrid
systems for himltest2017a and Figure 3 shows sig-
nificance test results. Since a minimum of three
systems is required for hybrid super-sampling and
only two systems were included in himltest2017b,
no hybrid results are reported for that test set.

3.2 Segment-Level Results

3.2.1 Segment-Level Results for News Task

In WMT17, since manual evaluation in the news
task now takes the form of Direct Assessment of
translations, this forms the basis of our segment-
level metrics task results for the newstest2017 data
set. Note however, that the sampling of the sen-
tences is different, as described in Section 2.3.2.
We follow the methodology outlined in Graham
et al. (2015) and combine a minimum of 15 indi-
vidual DA scores for a given translation by taking
its average score. We then compute the absolute
Pearson correlation between segment-level met-
ric scores and segment-level DA scores where a

en-ro
n 2

Correlation |r|

BEER 1.000
BLEU 1.000
CDER 1.000
CHARACTER 1.000
CHRF 1.000
CHRF+ 1.000
CHRF++ 1.000
MEANT 2.0-NOSRL 1.000
NIST 1.000
PER 1.000
TER 1.000
TREEAGGREG 1.000
WER 1.000

himltest2017b

Table 9: Absolute Pearson correlation of system-
level metrics with HUME human assessment; en-
semble metrics are highlighted in gray.

en-cs en-de en-pl en-ro
n 10K 10K 10K 10K

Correlation |r| |r| |r| |r|

AUTODA 0.8700 0.2266 0.1781 0.3494
AUTODA-TECTO 0.8451 − − −
BEER 0.7803 0.0976 0.1859 0.0808
BLEU 0.7732 0.1546 0.4385 0.0020
CDER 0.7124 0.0911 0.2383 0.2025
CHARACTER 0.8683 0.3900 0.0527 0.5881
CHRF 0.8006 0.2712 0.0043 0.0405
CHRF+ 0.7887 0.2564 0.0960 0.0763
CHRF++ 0.7869 0.2131 0.1912 0.0794
MEANT2.0 − 0.5484 − −
MEANT2.0-NOSRL 0.7697 0.4630 0.4447 0.1831
NIST 0.6987 0.0559 0.3276 0.1989
PER 0.6672 0.3897 0.2342 0.0366
TER 0.7252 0.2197 0.5812 0.1686
TREEAGGREG 0.7044 0.7337 0.4915 0.0524
WER 0.7287 0.3268 0.5896 0.0971

himltest2017a Hybrids

Table 10: Absolute Pearson correlation of system-
level metrics with HUME human assessment
for 10K hybrid super-sampled systems; ensemble
metrics are highlighted in gray.
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Figure 3: System-level metric significance test results for 10K hybrid systems (HUME human evalua-
tion) from himltest2017a; green cells denote a statistically significant increase in correlation with human
assessment for the metric in a given row over the metric in a given column according to Williams test.

stronger correlation indicates higher performance.
As described in Section 2.3.2, for some lan-

guage pairs, insufficient human assessments were
completed to provide accurate segment-level DA
scores for segment-level evaluation. For those five
language pairs, en-cs, en-de, en-fi, en-lv and en-tr,
we therefore convert pairs of DA to DARR bet-
ter/worse preferences and employ a Kendall’s Tau
formulation as in previous WMT metric evalua-
tions.

Results of the segment-level human evaluation
for translations sampled from the news task are
shown in Tables 11 and 12, where metric correla-
tions not significantly outperformed by any other
metric are highlighted in bold. Head-to-head sig-
nificance test results for differences in metric per-
formance are included in Figure 4.

3.2.2 Segment-Level Results for HUME
For the himltest2017 datasets, we employ
segment-level HUME scores also using absolute
Pearson correlation.

Results of segment-level metrics task evaluated
with HUME on the himltest datasets are shown in
Tables 13 and 14 where metrics not significantly
outperformed by any other in a given language
pair are again highlighted in bold. Head-to-head
significance test results for all metrics are shown
in Figures 5 and 6.

4 Discussion

The major switch from RR to DA that happened
this year in the main news task evaluation did not
affect metrics task in any negative way, also be-
cause we trialed DA in metrics evaluation already
last year.

We discuss various particular observations in
the rest of this section.

4.1 Obtaining Human Judgements
The sentence sampling for segment-level evalua-
tion is different from the sampling used to obtain
system-level scores. We were aware of the dif-
ficulties in finding assessors for some language
pairs on the crowdsourcing platforms, as men-
tioned e.g. by Birch et al. (2016), and we relied on
researchers. We were indeed able to cover all the
required target languages but for many of them, in-
sufficient numbers of assessments were collected.
Fortunately, DA allows to resort to a relative-
ranking re-interpretation, DARR, and use a vari-
ation of Kendall’s τ as in the previous years. This
method proved effective and only English-Turkish
segment-level evaluation suffers from having all
metrics indistinguishable.

4.2 Hybrid Super-sampling vs.
Document-level Evaluation

As in the previous year, hybrid super-sampling
proved very effective and allowed to obtain con-
clusive results of system-level evaluation even for
language pairs where as few as 4 MT systems par-
ticipated.

We should however note that this style of ag-
gregated evaluation may not be a substitute for
truly document-level evaluation. Hybrid systems
are constructed by randomly mixing sentence and
they therefore may possibly break cross-sentence
links in MT outputs (if such links are at all pre-
served by current MT systems). There is a good
chance that document-level links are well repre-
sented in individual sentences of the reference, as
these were created taking the whole document into
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cs-en de-en fi-en lv-en ru-en tr-en zh-en

Human Evaluation DA DA DA DA DA DA DA
n 560 560 560 560 560 560 560
Correlation |r| |r| |r| |r| |r| |r| |r|

AUTODA 0.499 0.543 0.673 0.533 0.584 0.625 0.583
BEER 0.511 0.530 0.681 0.515 0.577 0.600 0.582
BLEND 0.594 0.571 0.733 0.577 0.622 0.671 0.661
BLEU2VEC SEP 0.439 0.429 0.590 0.386 0.489 0.529 0.526
CHRF 0.514 0.531 0.671 0.525 0.599 0.607 0.591
CHRF++ 0.523 0.534 0.678 0.520 0.588 0.614 0.593
MEANT 2.0 0.578 0.565 0.687 0.586 0.607 0.596 0.639
MEANT 2.0-NOSRL 0.566 0.564 0.682 0.573 0.591 0.582 0.630
NGRAM2VEC 0.436 0.435 0.582 0.383 0.490 0.538 0.520
SENTBLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512
TREEAGGREG 0.486 0.526 0.638 0.446 0.555 0.571 0.535
UHH TSKM 0.507 0.479 0.600 0.394 0.465 0.478 0.477

newstest2017

Table 11: Segment-level metric results for to-English language pairs: absolute correlation of segment-
level metric scores with DA scores; correlations of metrics not significantly outperformed by any other
for that language pair are highlighted in bold; ensemble metrics are highlighted in gray.

en-cs en-de en-fi en-lv en-ru en-tr en-zh

Human Evaluation DARR DARR DARR DARR DA DARR DA
n 32,810 3,227 3,270 3,456 560 247 560
Correlation τ τ τ τ |r| τ |r|

AUTODA 0.041 0.099 0.204 0.130 0.511 0.409 0.609
AUTODA-TECTO 0.336 − − − − − −
BEER 0.398 0.336 0.557 0.420 0.569 0.490 0.622
BLEND − − − − 0.578 − −
BLEU2VEC SEP 0.305 0.313 0.503 0.315 0.472 0.425 −
CHRF 0.376 0.336 0.503 0.420 0.605 0.466 0.608
CHRF+ 0.377 0.325 0.514 0.421 0.609 0.474 −
CHRF++ 0.368 0.328 0.484 0.417 0.604 0.466 0.602
MEANT 2.0 − 0.350 − − − − 0.727
MEANT 2.0-NOSRL 0.395 0.324 0.565 0.425 0.636 0.482 0.705
NGRAM2VEC − − 0.486 0.317 − − −
SENTBLEU 0.274 0.269 0.446 0.259 0.468 0.377 0.642
TREEAGGREG 0.361 0.305 0.509 0.383 0.535 0.441 0.566

newstest2017

Table 12: Segment-level metric results for out-of-English language pairs: absolute correlation of
segment-level metric scores with human assessment variants, where τ are computed similar to Kendall’s
τ and over relative ranking (RR) human assessments (converted from DA scores); |r| are absolute Pear-
son correlation coefficients of metric scores with DA scores; correlations of metrics not significantly
outperformed by any other are highlighted in bold; ensemble metrics are highlighted in gray.
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Figure 4: Direct Assessment (DA) and DARR segment-level metric significance test results for all lan-
guage pairs (newstest2017): Green cells denote a significant win for the metric in a given row over the
metric in a given column according to Williams test for DA (all to-English language pairs; en-ru; en-zh)
and bootstrap resampling for DARR (en-cs; en-de; en-fi; en-ro; en-tr).
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Figure 5: HUME segment-level metric significance test results (himltest2017a): Green cells denote a
significant win for the metric in a given row over the metric in a given column according to Williams test
for difference in dependent correlation.

en-cs en-de en-pl en-ro
n 879 891 1,020 354

Correlation |r| |r| |r| |r|

AUTODA 0.391 0.445 0.442 0.127
AUTODA-TECTO 0.400 − − −
BEER 0.400 0.428 0.442 0.508
CHRF 0.383 0.454 0.445 0.477
CHRF+ 0.395 0.451 0.445 0.474
CHRF++ 0.400 0.445 0.444 0.477
MEANT 2.0 − 0.479 − −
MEANT 2.0-NOSRL 0.473 0.463 0.489 0.479
SENTBLEU 0.347 0.338 0.329 0.261
TREEAGGREG 0.323 0.374 0.450 0.481

himltest2017a

Table 13: Absolute Pearson correlation of
segment-level metric scores with HUME scores
for himltest2017a; ensemble metrics are high-
lighted in gray.

en-ro
n 350

Correlation |r|

BEER 0.293
CHRF 0.305
CHRF+ 0.314
CHRF++ 0.310
MEANT 2.0-NOSRL 0.370
SENTBLEU 0.254
TREEAGGREG 0.244

himltest2017b

Table 14: Absolute Pearson correlation of
segment-level metric scores with HUME scores
for himltest2017b; ensemble metrics are high-
lighted in gray.
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Figure 6: HUME segment-level metric signifi-
cance test results (himltest2017b): Green cells de-
note a significant win for the metric in a given
row over the metric in a given column according
to Williams test for difference in dependent corre-
lation.

account, but this would have to be empirically val-
idated.

4.3 Overall Metric Performance

As mentioned above, the observed performance
of metrics very much depends on the underly-
ing texts and participating MT systems. We can
nevertheless confirm the trend since 2014, with
character-level metrics performing on average bet-
ter: BEER, CHRF (and its variants) and CHARAC-
TER.

In order to get an idea of the stability of metrics
at achieving a high correlation with human assess-
ment across all language pairs, Figure 7 shows box
plots of correlations achieved by metrics.10

10We only include metrics that participated in all language
pairs in each box plot, to provide a fair indication of metric
performance, otherwise metrics not participating in difficult
language pairs could (unfairly) appear to perform better when
they did not participate in that language.
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(a) System-level (news+himl) (b) System-level (news)
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(c) Segment-level (news+himl) (d) Segment-level (news)
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Figure 7: Plots of correlations achieved by metrics in (a) all language pairs and test sets on the system
level; (b) all language pairs for newstest2017 on the system level; (c) all language pairs and test sets on
the segment level; (d) all language pairs for newstest2017 on the segment-level; all correlations are for
non-hybrid correlations only.
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The figures confirm the observation from the
past years that system-level metrics can achieve
correlations above 0.9 while segment-level eval-
uation is only around 0.5 or slightly above. The
variance in the achieved correlations across lan-
guage pairs and test sets is generally acceptable,
with only AUTODA getting very varied results.
Comparing the plots (a) and (b) in Figure 7, we see
that himl datasets allowed only for less stable re-
sults, possibly due to the smaller number of trans-
lations comprising test sets for himl. For system-
level newstest, plot Figure 7(b), the variance of
the majority of metrics is very low, indicating that
their scores are reliable across language pairs.

The generally well-performing and stable met-
rics are CHRF or CHRF++, CHARACTER and
BEER. MEANT 2.0-NOSRL is new this year and
also performed very well, esp. in segment-level
evaluation, although it is currently not yet quite as
stable as others on the system-level. Traditional
metrics like NIST or TER also reach relatively
good results, clearly surpassing BLEU when ap-
plied in the common way with only 1 reference
and not 4 as recommended by the original authors.

All of the “winners” in this years campaign are
publicly available, which is very good for a wider
adoption. If participants could put the additional
effort of adding their code to Moses scorer, this
would guarantee their long-term inclusion in the
metrics task.

4.4 Data Overlap for Polish HUME
As mentioned in Section 2.2, HUME evaluation
of translation into Polish suffered from a large
overlap of training and evaluation data. Fortu-
nately, only AUTODA was actually affected by
this, other trained metrics such as BEER, BLEND

or NGRAM2VEC either did not evaluate himl-
test2017 or were not retrained this year.

4.5 HUME Results
The dataset used to evaluate metrics against
HUME, himltest2017, is rather small. It contains
only ∼300 sentences (and actually only 118 sen-
tences for Romanian, himltest2017a) with three
MT system outputs per sentence. The discrimi-
native power of the experiment is correspondingly
low.

The segment-level scores in Figures 5 and 6
however still indicate that MEANT 2.0 (in SRL
and noSRL variant) performed well, significantly
outperforming all others except for Romanian on

himltest2017a but still outperforming it on himl-
test2017b. This result nicely corresponds with the
design of the manual scores of HUME, aggregated
over key semantic elements of the sentence.

4.6 Metric Efficiency

This year we asked participants to submit infor-
mation about the speed of their metrics in order
to analyze a possible relationship between metric
efficiency and performance in terms of correlation
with human assessment. Many participants sub-
mitted time durations for metrics to process sys-
tem outputs for the system-level news task test set.
Figures 8(a) and 8(b) show scatter-plots of average
correlation coefficient achieved by a given met-
ric versus self-reported times to process a single
translation (on average).11

Based on these plots, we can conclude that the
generally good metrics are not prohibitively slow,
only MEANT 2.0 being more expensive, needing
up to a second per sentence. The plots show all
metrics for which times were submitted, regard-
less the number of language pairs they took part
in.

5 Conclusion

This paper summarizes the results of WMT17
shared task in machine translation evaluation, the
Metrics Shared Task. Participating metrics were
evaluated in terms of their correlation with hu-
man judgements at the level of the whole test set
(system-level evaluation), as well as at the level of
individual sentences (segment-level evaluation).
For the former, best metrics reach over 0.95 Pear-
son correlation on average across several language
pairs. For the latter, correlations between 0.4 and
0.6 Pearson’s ρ or Kendall’s τ are to be expected.

We confirm the main results from the previous
year that character-level metrics, or metrics incor-
porating such a feature, generally perform better.
Last year’s conclusion that trained metrics gener-
ally perform better than non-trained ones is not
that clear this year, good performance is observed
for both trained metrics like BLEND, BEER (not
retrained for this year) as well as non-trained met-
rics like CHRF, CHARACTER and also a new ad-
dition this year, MEANT 2.0.

11Some metric participants only submitted times for a sub-
set of language pairs. In such cases, average correlations in-
cluded in plots are only based on the correlations for which
times were submitted.
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(a) System-level
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Figure 8: Scatter-plots of self-reported metric speed per translation (computed on the system-level news
task datasets) versus average correlation with human assessment for (a) system-level performance and
(b) segment-level performance.
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Barry Haddow. 2016. HUME: Human UCCA-
Based Evaluation of Machine Translation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1264–
1274, Austin, Texas, November. Association for
Computational Linguistics.
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Abstract

We introduce and describe the results of
a novel shared task on bandit learning for
machine translation. The task was orga-
nized jointly by Amazon and Heidelberg
University for the first time at the Sec-
ond Conference on Machine Translation
(WMT 2017). The goal of the task is to
encourage research on learning machine
translation from weak user feedback in-
stead of human references or post-edits.
On each of a sequence of rounds, a ma-
chine translation system is required to pro-
pose a translation for an input, and re-
ceives a real-valued estimate of the qual-
ity of the proposed translation for learn-
ing. This paper describes the shared task’s
learning and evaluation setup, using ser-
vices hosted on Amazon Web Services
(AWS), the data and evaluation metrics,
and the results of various machine transla-
tion architectures and learning protocols.

1 Introduction

Bandit Learning for machine translation (MT) is
a framework to train and improve MT systems
by learning from weak or partial feedback: In-
stead of a gold-standard human-generated trans-
lation, the learner only receives feedback to a sin-
gle proposed translation (hence the term ‘partial’),
in form of a translation quality judgement (a real
number which can be as weak as a binary accep-
tance/rejection decision).

In the shared task, user feedback was simu-
lated by a service hosted on Amazon Web Ser-
vices (AWS). Participants can submit translations
and receive feedback on translation quality. This
is used to adapt an out-of-domain MT model,
pre-trained on mostly news texts, to a new do-

main (e-commerce), for the translation direction
of German (DE) to English (EN). While in our
setup feedback was simulated by evaluating a re-
ward function on the predicted translation against
a gold standard reference, the reference translation
itself was never revealed to the learner, neither at
training nor at test time. This learning scenario
has been investigated under the names of learning
from bandit feedback1 or reinforcement learning
(RL)2, and has important real world applications
such as online advertising (Chapelle et al., 2014).
In the advertising application, the problem is to
select the best advertisement for a user visiting a
publisher page. A key element is to estimate the
click-through rate (CTR), i.e., the probability that
an ad will be clicked by a user so that the adver-
tiser has to pay. This probability is modeled by
features representing user, page, and ad, and is es-
timated by trading off exploration (a new ad needs
to be displayed in order to learn its click-through
rate) and exploitation (displaying the ad with the
current best estimate is better in the short term) in
displaying ads to users.

In analogy to the online advertising scenario,
one could imagine a scenario of personalization
in machine translation where translations have to
be adapted to the user’s specific purpose and do-
main. Similar to online advertising, where it is un-
realistic to expect more detailed feedback than a
user click on a displayed ad, the feedback in adap-
tive machine translation should be weaker than
a reference translation or a post-edit created by

1The name is inherited from a model where in each round
a gambler pulls an arm of a different slot machine (‘one-
armed bandit’), with the goal of maximizing his reward rel-
ative to the maximal possible reward, without apriori knowl-
edge of the optimal slot machine. See Bubeck and Cesa-
Bianchi (2012) for an overview.

2See Sutton and Barto (1998) and Szepesvári (2009) for
an overview of algorithms for reinforcement learning and
their relation to bandit learning.
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a professional translator. Instead, the goal is to
elicit binary or real-valued judgments of transla-
tion quality from laymen users (for example, Gra-
ham et al. (2016) show that consistent assessments
of real-valued translation quality can be provided
by crowdsourcing), or to infer feedback signals
from user interactions with the translated content
on a web page (for example, by interpreting a
copy-paste action of the MT output as positive
quality signal, and a correction as a negative qual-
ity signal). The goal of this shared task is to eval-
uate existing algorithms for learning MT systems
from weak feedback (Sokolov et al., 2015, 2016a;
Kreutzer et al., 2017) on real-world data and com-
pare them to new algorithms, with a focus on per-
forming online learning efficiently and effectively
from bandit feedback, i.e. the best algorithms are
those that perform fast online learning and, simul-
taneously, achieve high translation quality.

In the following, we present a description of
the protocol and infrastructure of our online learn-
ing task, and of the data for pretraining, online
training, and evaluation (Section 2). We intro-
duce the online and batch evaluation metrics used
in the shared task (Section 3), and describe static
baseline systems (Section 4) and submitted online
learning systems (Section 5). We present and dis-
cuss the results of the task (Section 6-7), show-
ing that NMT systems with batch domain adapta-
tion provide very good baselines, however, online
learning based on SMT or NMT can catch up over
time by adapting to the provided feedback.

2 Task Description

Our shared task setup follows an online learning
protocol, where on each iteration, the learner re-
ceives a source sentence, proposes a translation,
and is rewarded in form of a task sentence-level
metric evaluation of the proposed translation with
respect to a hidden reference. The learner does
not know what the correct translation (reference)
looks like, nor what would have happened if it had
proposed a different translation. Thus, we imple-
mented two constraints to guarantee this scenario
of online learning from weak feedback. First, sen-
tences had to be translated one by one, i.e. the
next source sentence could only be received after
the translation to the previous sentence was sent
off. Second, feedback could be obtained only for
a single translation of any given source sentence.

In our shared task, the participant systems inter-

Algorithm 1 WMT Online Bandit Learning
1: Input: MT model
2: for k = 0, . . . ,K do
3: Request source sentence sk from service
4: Propose a translation tk
5: Obtain feedback ∆(tk) from service
6: Improve MT model with 〈sk, tk,∆(tk)〉

act online with an AWS-hosted service as shown
in Algorithm 1. The service provides a source sen-
tence to the learner (line 3), and provides feedback
(line 5) to the translation predicted by the learner
(line 4). The learner updates its parameters using
the feedback (line 6) and continues to the next ex-
ample. We did not impose any restriction on how
the learner could use the feedback to improve fu-
ture translations.

Infrastructure. We provided three AWS-hosted
environments, that correspond to the three phases
of the shared task:

1. Mock service, to test the client API (op-
tional): hosted a tiny in-domain dataset (48
sentences).

2. Development service to tune algorithms and
hyperparameters (optional): ran on a larger
in-domain dataset (40,000 sentences). Sev-
eral passes were allowed and two evaluation
metrics were communicated to the partici-
pants via the leaderboard.

3. Training service (mandatory): served sources
from a large in-domain dataset (1,297,974
sentences). Participants had to consume a
fixed number of samples during the allocated
online learning period to be eligible for final
evaluation.

We built the shared task around the following
AWS services:

• API Gateway (authentication, rate limiting,
client API SDK);

• Lambda (computation);
• DynamoDB (data storage);
• CloudWatch (logging and monitoring).

In more detail, service endpoints were imple-
mented using API Gateway, that gave us access,
on a participant level, to throttle requests rates,
manage accounts, etc. API Gateway enabled easy
management of our public-facing endpoints and
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source reference (PE) PE direction PE modification

schwarz gr.xxl / xxxl black , size xxl / xxxl DE-EN fixed errors in source, expanded abbreviation
, 147 cm 147 cm DE-EN fixed errors in source
für starke , glänzende nägel great for strengthen your nails and enhance shine EN-DE poor quality source (EN) used as reference
seemless verarbeitung seamless processing DE-EN source typo corrected in reference
brenndauer : mindestens 40 stunden 40 hour minimum burn time DE-EN translation rewritten for readability
maschinenwaschbar bei 30 ° c machine washable at 30 degrees . DE-EN literal expansion of the degree symbol
32 unzen volumen 32-ounce capacity DE-EN language-specific typography
material : 1050 denier nylon . material : 1050d nylon . EN-DE expanded source (EN) abbreviation used as reference
für e-gitarre entworfen designed for electric guitar DE-EN abbreviation expanded

Table 1: Examples for non-literal PEs in the e-commerce data: The first two columns show examples3 of
source sentences and PEs used as reference translations in the shared task. The last two columns show
the direction of translation post-editing, and a description of the modifications applied by the editors.

environments, and provided integrated metrics and
notifications, which we monitored closely during
the shared task. Data storage was implemented
using DynamoDB – a NoSQL storage database
which allows dynamic scaling of our back-end
to match the varied requirements of the differ-
ent shared task phases. The state management
(e.g., forbidding multiple requests), source sen-
tence serving, feedback calculation, keeping track
of participant’s progress and result processing was
implemented using Lambda – a serverless com-
pute architecture that dispenses with setting up
and monitoring a dedicated server infrastructure.
CloudWatch service was used to analyze logs in
order to trace down errors, general monitoring and
sending alarms to the shared task API maintainers.
In addition to the service development, we also de-
veloped a small SDK consisting of code samples
and helper libraries in Python and Java to help par-
ticipants in developing their clients, as well as a
leaderboard that showed the results during the de-
velopment phase.

Data. For training initial or seed MT systems
(the input to Algorithm 1), out-of-domain parallel
data was restricted to DE-EN parts of Europarl v7,
NewsCommentary v12, CommonCrawl and Rapid
data from the WMT 2017 News Translation (con-
strained) task4. Furthermore, monolingual EN
data from the constrained task was allowed. Tun-
ing of the out-of-domain systems had to be done
on the newstest2016-deen set.

The in-domain parallel data for online learning
was taken from the e-commerce domain: The cor-
pus was provided by Amazon and had been sam-
pled from a large real-world collection of post-
edited (PE’ed) translations of actual product de-
scriptions. Since post-editors were following cer-

3Examples selected by Khanh Ngyuen.
4statmt.org/wmt17/translation-task.html

tain rules aimed at improving customer experience
on the Amazon retail website (improving read-
ability, correction of typos, rewriting of uncom-
mon abbreviations, removing irrelevant informa-
tion, etc.), naturally the resulting PEs were not al-
ways literal, sometimes adding or deleting a con-
siderable number of tokens and resulting in low
feedback BLEU scores for submitted literal trans-
lations (see Table 1 for examples). Consequently,
the participants had to solve two difficult prob-
lems – domain adaptation and learning from ban-
dit feedback. In addition, to simulate the level of
noise normally encountered in real-world MT ap-
plications, and to test noise-robustness of the ban-
dit learning algorithms, approximately half of the
parallel in-domain data was sourced from the EN-
DE post-editing direction and reversed.

All data was preprocessed with Moses scripts
(removing non-printing characters, replacing and
normalizing unicode punctuation, lowercasing,
pretokenizing and tokenizing). No DE-side com-
pound splitting was used, permitting custom par-
ticipant decisions. Since the learning data came
from a substantially different domain than the out-
of-domain parallel texts, it had a large number
of out-of-vocabulary (OOV) terms, aggravated by
the high frequency of long product numbers and
unique vendor names. To reduce the OOV rate
we additionally filtered out all parallel sentences
where the source contained more than one numeral
(with a whitespace in between) and normalized
floating point delimiters in both languages to a pe-
riod. The resulting average OOV token rate with
respect to the out-of-domain parallel training data
(assuming the above preprocessing) is ' 2% for
EN and ' 6% for DE data side. Statistics on
the length distribution of in-domain and out-of-
domain data is given in Table 2.

For all services, the sequence of provided
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# tokens out-of-domain in-domain

mean 23.0±14.1 6.6±4.8
median 25 8
max 150 25

# lines 5.5M 1.3M

Table 2: Data statistics for source side of in-
domain and out-of-domain parallel data.

source sentences was the same for all participants,
with no data intersection between the services be-
yond natural duplicates: About 11% of data were
duplicates on both (DE and EN) sides, where
about 4% of DE sentences had more than one dif-
ferent EN side.

Feedback. Simulation of real-valued user feed-
back was done by calculating the smoothed
sentence-level BLEU-score (Lin and Och, 2004)
(with additive n-gram count smoothing with offset
0.01, applied only if the n-gram count was zero)
with respect to one human reference (preprocessed
as described above).

3 Evaluation Metrics

In our shared task, participants were allowed to
use their favorite MT systems as starting points
to integrate online bandit learning methods. This
leads to the difficulty of separating the contribu-
tions of the underlying MT architecture and the
online bandit learning method. We attempted to
tackle this problem by using different evaluation
metrics that focus on these respective aspects:

1. Online cumulative reward: This met-
ric measures the cumulative sum C =∑K

k=1 ∆(tk) of the per-sentence BLEU score
∆ against the number of iterations. This met-
ric has been used in reinforcement learning
competitions (Dimitrakakis et al., 2014). For
systems with the same design, this metric fa-
vors those that do a good job at balancing
exploration and exploitation to achieve high
scores over the full data sequence. Unlike
in these competitions, where environments
(i.e., action spaces and context features) were
fixed, in our task the environment is hetero-
geneous due to the use of different under-
lying MT architectures. Thus, systems that
start out with a well-performing pretrained

out-of-domain model have an advantage over
systems that might improve more over worse
starting points. Furthermore, even systems
that do not perform online learning at all can
achieve high cumulative rewards.

2. Online regret: In order to overcome the
problems of the cumulative reward metric,
we can use a metric from bandit learning that
measures the regret R = 1

K

∑K
k=1

(
∆(t∗k) −

∆(tk)
)

that is suffered by the system when
predicting translation tk instead of the opti-
mal translation t∗k produced by an oracle sys-
tem. Plotting a running average of regret
against the number of iterations allows sep-
arating the gains due to the MT architecture
from the gains due to the learning algorithm:
Systems that do learn will decrease regret,
systems that do not learn will not. In our
task, we use as oracle system a model that
is trained on in-domain data.

3. Relative reward: A further way to separate
out the learning ability of systems from the
contribution of the underlying MT architec-
ture is to apply the standard corpus-BLEU
score and/or an average of the per-sentence
BLEU score ∆ on a held-out set at regu-
lar intervals during training. Plotting these
scores against the number of iterations, or
alternatively, subtracting the performance of
the starting point at each evaluation, allows
to discern systems that adapt to a new do-
main from systems that are good from the be-
ginning and can achieve high cumulative re-
wards without learning. We performed this
evaluation by embedding a small (relative to
the whole sequence) fixed held-out set in the
beginning (showing the performance of the
initial out-of-domain model), and again at
regular intervals including the very end of the
learning sequence. In total, there were 4 in-
sertions of 700 sentences in the development
data and 12 insertions of 4,000 sentences in
the final training phase, which constitutes
'2% and '0.3% of the respective learning
sequence lengths. Note that this metric mea-
sures the systems’ performance while they
were still exploring and learning, but the rela-
tive size of the embedded held-out set is small
enough to consider the models static during
such periodic evaluations.
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4 Baselines

As baseline systems, we used SMT and NMT
models that were trained on out-of-domain data,
but did not perform online learning on in-domain
data. We further present oracle systems that were
trained in batch on in-domain data.

4.1 Static SMT baselines.

SMT-static. We based our SMT submissions
on the SCFG decoder cdec (Dyer et al., 2010)
with on-the-fly grammar extraction with suffix ar-
rays (Lopez, 2007). Training was done in batch on
the parallel out-of-domain data; tuning was done
on newstest2016-deen. During the devel-
opment phase we evaluated MERT (on 14 default
dense features) and MIRA (on additional lexical-
ized sparse features: rule-id features, rule source
and target bigram features, and rule shape fea-
tures), and found no significant difference in re-
sults. We chose MERT with dense features as the
seed system for the training phase for its speed and
smaller memory footprint.

4.2 Static NMT baselines.

WMT16-static. First of all, we are interested in
how well the currently best (third-party) model
on the news domain would perform on the e-
commerce domain. Therefore, the Nematus (Sen-
nrich et al., 2017) model that won the News
Translation Shared Task at WMT 2016 (Bojar
et al., 2016b)5 was used to translate the data
from this shared task. It is an attentional, bi-
directional, singe-layered encoder-decoder model
on sub-word units (BPE with 89,500 merge oper-
ations) with word embeddings of dimensionality
500, GRUs of size 1024, pervasive dropout and r2l
reranking (details in (Sennrich et al., 2016a)). Fi-
nal predictions are made with an ensemble formed
of the four last training checkpoints and beam
search with width 12. It was trained on a dif-
ferent corpus than allowed for this shared task –
the WMT 2016 news training data (Europarl v7,
News Commentary v11, CommonCrawl) and ad-
ditional synthetic parallel data generated by trans-
lating the monolingual news crawl corpus with a
EN-DE NMT model.

BNMT-static. The UNK replacement strategy
of Jean et al. (2015) and Luong et al. (2015) is

5From data.statmt.org/rsennrich/wmt16_
systems/de-en/

expected to work reasonable well for tokens that
occur in the training data and those that are copied
from source to target. However, the NMT model
does not learn anything about these words as such
in contrast to BPE models (Sennrich et al., 2016b)
where the decomposition by byte pair encoding
(BPE) allows for a representation within the vo-
cabulary. We generate a BNMT system using a
BPE vocabulary from 30k merge operations on
all tokens and all single characters of the training
data, including the UNK token. If unknown char-
acters occur, they are copied from source to target.

4.3 Oracle SMT and NMT systems

To simulate full-information systems (oracles) for
regret calculation, we trained an SMT and an
NMT system with the same architectures, on the
in-domain data that other learning systems ac-
cessed only through the numerical feedback. The
SMT oracle system was trained on combined in-
domain and out-of-domain data, while the NMT
oracle system continued training from the con-
verged out-of-domain system on the in-domain
data with the same BPE vocabulary.

5 Submitted Systems

5.1 Online bandit learners based on SMT.

Online bandit learners based on SMT were fol-
lowing the existing approaches to adapting an
SMT model from weak user feedback (Sokolov
et al., 2016b,a) by stochastically optimizing ex-
pected loss (EL) for a log-linear model. Fur-
thermore, we present a model that implements
stochastic zeroth-order (SZO) optimization for on-
line bandit learning. Cube pruning limit (up to
600), learning rate adaptation schedules (constant
vs. Adadelta (Zeiler, 2012) or Adam (Kingma and
Ba, 2014)), as well as the initial learning rates (for
Adam), were tuned during the development phase.
The best configurations were selected for the train-
ing phase. The running average of rewards as an
additive control variate (CV)6 was found helpful
for stochastic policy gradient updates (Williams,
1992) for all online learning systems.

SMT-EL-CV-ADADELTA. We used the EL
minimization approach of Sokolov et al. (2016a),
adding Adadelta’s learning rate scheduling, and a
control variate (effectively, replacing the received

6Called a baseline in RL literature; here we use a term
from statistics not to confuse it with baseline MT models.
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feedback ∆(tk) with ∆(tk) − 1
k

∑k
k′=1 ∆(tk′)).

Sampling and computation of expectations on the
hypergraph used the Inside-Outside algorithm (Li
and Eisner, 2009).

SMT-EL-CV-ADAM. This system uses the
same approach as above except for using Adam to
adapt the learning rates, with tuning of the initial
learning rate on the development service.

SMT-SZO-CV-ADAM. As a novel contribu-
tion, we adapted the two-point stochastic zeroth-
order approach by (Sokolov et al., 2015) that re-
quired two quality evaluation per iteration to a
one-point feedback scenario. In a nutshell, on
each step of the SZO algorithm, the model pa-
rameters w are perturbed with an additive stan-
dard Gaussian noise ε, and the Viterbi transla-
tion is sent to the service. Such algorithm can be
shown to maximize the smoothed version of the
task reward: Eε∼N(0,1)[∆(ŷ(w + ε))] (Flaxman
et al., 2005). The advantages of such a black-box
optimization method over model-based (e.g. EL)
optimization, that requires sampling of complete
structures from the model distribution, are sim-
pler sampling of standard Gaussians, and match-
ing of the inference criterion to the learning ob-
jective (MAP inference for both), unlike the EL
optimization of expected reward that is still eval-
uated at test time using MAP inference. For SZO
models we found that the Adam scheduling con-
sistently outperforms Adadelta.

5.2 Online bandit learners based on NMT.

Kreutzer et al. (2017) recently presented an al-
gorithm for online expected loss minimization to
adapt NMT models to unknown domains with
bandit feedback. Exploration (i.e. sampling from
the model) and exploitation (i.e. presenting the
highest scored translation) are controlled by the
softmax distribution in the last layer of the net-
work. Ideally, the model would converge towards
a peaked distribution. In our online learning sce-
nario this is not guaranteed, but we would like the
model to gradually stop exploring, in order to still
achieve high cumulative per-sentence reward. To
achieve such a behavior, the temperature of the
softmax over the outputs of the last layer of the
network is annealed (Rose, 1998). More specifi-
cally, let o be the scores of the output projection
layer of the decoder, then pθ(ỹt = wi|x, ŷ<t) =

exp(owi/T )∑V
v=1 exp(owv/T )

is the distribution that defines the

probability of each word wi of the target vocabu-
lary V to be sampled in timestep t. The anneal-
ing schedule for this temperature T is defined as
Tk = 0.99max(k−kSTART,0), i.e. decreases from iter-
ation kSTART on. The same decay is applied to the
learning rate, such that γk = γk−1 ·Tk. This sched-
ule was proven successful during tuning with the
leaderboard.

WNMT-EL. Using the implementation of
Kreutzer et al. (2017), we built a word-based
NMT system with NeuralMonkey (Libovickỳ
et al., 2016; Bojar et al., 2016a) and trained
it with the EL algorithm. The vocabulary is
limited to the 30k most frequent words in the
out-of-domain training corpus. The architecture
is similar to WMT16-static with GRU size 1024,
embedding size 500. It was pretrained on the
out-of-domain data with the standard maximum
likelihood objective, Adam (α = 1× 10−4,
β1 = 0.9, β2 = 0.999) and dropout (Srivas-
tava et al., 2014) with probability 0.2. Bandit
learning starts from this pretrained model and
continues with stochastic gradient descent (initial
learning rate γ0 = 1× 10−5, annealing starts at
kSTART = 700, 000, dropout with probability 0.5,
gradient norm clipping when the norm exceeds
1.0 (Pascanu et al., 2013)), where the model was
updated as soon as a feedback is received. As
described above, UNK replacement was applied
to the output on the basis of an IBM2 lexical
translation model built with fast align (Dyer
et al., 2013) on out-of-domain training data. If the
aligned source word for a generated UNK token
is not in the dictionary of the lexical translation
model, the UNK token was simply replaced by
the source word.

BNMT-EL. The pretrained BPE model is fur-
ther trained on the bandit task data with the EL
algorithm, as described for BL1, with the only dif-
ference of using Adam (α = 1× 10−5, β1 = 0.9,
β2 = 0.999) instead of SGD. Again, annealing
started at kSTART = 700, 000.

BNMT-EL-CV. BNMT-EL-CV is trained in the
same manner as BNMT-EL with the addition of
the same control variate technique (running av-
erage of rewards) that has been previously found
to improve both variance and generalization for
NMT bandit training (Kreutzer et al., 2017).
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5.3 Domain adaptation and reinforcement
learning based on NMT (University of
Maryland).

UMD-domain-adaptation. The UMD team’s
systems were based on an attention-based
encoder-decoder translation model. The models
use the BPE technique for subword encoding,
which helps addressing the rare word problem
and enlarges vocabulary. A further addition is
the domain adaptation approach of Axelrod et al.
(2011) to select training data after receiving
in-domain source-side data and selecting the most
similar out-of-domain data from the WMT 2016
training set for re-training.

UMD-reinforce. Another type of models sub-
mitted by UMD uses reinforcement learning tech-
niques to learn from feedback and improve the up-
date of the translation model to optimize the re-
ward, based on Bahdanau et al. (2016) and Ran-
zato et al. (2016).

5.4 Domain adaptation and bandit learning
based on SMT (LIMSI).

LIMSI. The team from LIMSI tried to adapt a
seed Moses system trained on out-domain data
to a new, unknown domain relying on two com-
ponents, each of which addresses one of the chal-
lenges raised by the shared task: i) estimate the
parameters of a MT system without knowing the
reference translation and in a ‘one-shot’ way (each
source sentence can only be translated once); ii)
discover the specificities of the target domain ‘on-
the-fly’ as no information about it is available.
First, a linear regression model was used to exploit
weak and partial feedback the system received by
learning to predict the reward a translation hy-
pothesis will get. This model can then be used
to score hypotheses of the search space and trans-
late source sentences while taking into account the
specificities of the in-domain data. Second, three
variants of the UCB1 (Auer et al., 2002) algorithm
(vanilla UCB1, a UCB1-sampling variant encour-
aging more exploration, and a UCB1 with select-
ing only the examples not used to train the regres-
sion model) chose which of the ‘adapted’ or ‘seed’
systems should be used to translate a given source
sentence in order to maximize the cumulative re-
ward (Wisniewski, 2017).

model cumulative
reward

‘translate’ by copying source 64,481.8

SM
T

SMT-oracle 499,578.0
SMT-static 229,621.7

SMT-EL-CV-ADADELTA 214,398.8
SMT-EL-CV-ADAM 225,535.3
SMT-SZO-CV-ADAM 208,464.7

N
M

T

BNMT-oracle 780,580.4
BNMT-static 222,066.0
WMT16-static 139,668.1

BNMT-EL-CV 212,703.2
BNMT-EL 237,663.0
WNMT-EL 115,098.0

UMD-domain-adaptation 248,333.2

Table 3: Cumulative rewards over the full train-
ing sequence. Only completely finished submis-
sion are shown.

6 Results

Table 3 shows the evaluation results under the cu-
mulative rewards metric. Of the non-oracle sys-
tems, good results are obtained by static SMT
and BNMT system, while the best performance is
obtained by the UMD-domain adaptation system
which is also basically a static system. This re-
sult is followed closely by the online bandit learner
BNMT-EL which is based on an NMT baseline
and optimizes the EL objective. It outperforms the
BNMT-static baseline. Cumulative rewards could
not be computed for all submitted systems since
some training runs could not be fully finished.

The evolution of the online regret plotted
against the log-scaled number of iterations during
training is shown in Figure 1. Most of the learn-
ing happens in the first 100,000 iterations, how-
ever, online learning systems optimizing struc-
tured EL objectives or based on reinforcement
learning eventually converge to the same result:
BNMT-EL or UMD-reinforce2 get close to the re-
gret of the static UMD-domain adaptation. Sys-
tems that optimize the EL objective do not start
from strong out-of-domain systems with domain-
adaptation, however, due to a steeper learning
curve they arrive at similar results.

Figures 2, 3a and 3b show the evolution of
corpus- and sentence-BLEU on the heldout set that
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Figure 1: Evolution of regret plotted against log-scaled number of iterations during training. The steeper
is the decrease of a curve, the better learning capability has the corresponding algorithm.
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Figure 2: Evolution of corpus BLEU scores during development for configuration selected for the train-
ing phase of the competition. Each check point is comprised of the same 700 sentences spaced at a
regular intervals of 12,400 sentences starting from the beginning of the development sequence.
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Figure 3: The evolution of corpus- and sentence-BLEU scores during training for all participant and
baselines. Each check point is comprised of the same 4,000 sentences spaced at a regular intervals of
113,634 sentences starting from the beginning of the training sequence.
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has been embedded in the development and the
training sequences. While under corpus-BLEU,
static systems always outperform online learners
on the held-out embedded set, online learning
systems such as BNMT-EL can catch up under
corpus-BLEU during development, and under a
sentence-BLEU evaluation during training. The
curves for corpus- and average sentence-BLEU
(Figures 3a and 3b) show a different dynam-
ics, with the corpus-BLEU sometimes decreasing
whereas the sentence-BLEU curve continues to in-
crease. However, if the focus is online learning,
the online task loss is per-sentence BLEU and so
should be the evaluation metric.

7 Conclusion

We presented the learning setup and infrastruc-
ture, data and evaluation metrics, and descrip-
tions of baselines and submitted systems for a
novel shared task on bandit learning for machine
translation. The task implicitly involved domain
adaptation from the news domain to e-commerce
data (with the additional difficulty of non-literal
post-editions as references), and online learning
from simulated per-sentence feedback on transla-
tion quality (creating a mismatch between the per-
sentence task loss and the corpus-based evaluation
metric standardly used in evaluating batch-trained
machine translation systems). Despite these chal-
lenges, we found promising results for both linear
and non-linear online learners that could outper-
form their static SMT and NMT baselines, respec-
tively. A desideratum for a future installment of
this shared task is the option to perform offline
learning from bandit feedback (Lawrence et al.,
2017), thus allowing a more lightweight infras-
tructure, and opening the task to (mini)batch learn-
ing techniques that are more standard in the field
of machine translation.
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Abstract

This paper presents the results of the
WMT17 Neural MT Training Task. The
objective of this task is to explore the
methods of training a fixed neural ar-
chitecture, aiming primarily at the best
translation quality and, as a secondary
goal, shorter training time. Task par-
ticipants were provided with a complete
neural machine translation system, fixed
training data and the configuration of the
network. The translation was performed
in the English-to-Czech direction and the
task was divided into two subtasks of dif-
ferent configurations—one scaled to fit on
a 4GB and another on an 8GB GPU card.
We received 3 submissions for the 4GB
variant and 1 submission for the 8GB vari-
ant; we provided also our run for each of
the sizes and two baselines. We translated
the test set with the trained models and
evaluated the outputs using several auto-
matic metrics. We also report results of
the human evaluation of the submitted sys-
tems.

1 Introduction

Neural machine translation (NMT) has recently
replaced the “classical statistical machine transla-
tion” and became the dominant research paradigm.
A large part of research on NMT is focused on ar-
chitectural improvements of the neural networks
or data preprocessing. However, in practice, the
results of an NMT system depends not only on the
architecture of the network, but also on the train-
ing techniques used to obtain the parameters.

The goal of NMT Training Task1 is to compare
1http://www.statmt.org/wmt17/

nmt-training-task/

the results of various training techniques applied
to a fixed network architecture. We provided task
participants with the model specification, training
and validation data with a fixed way of data pre-
processing. We also listed a few methods as an
inspiration for the participants. These methods in-
cluded (but were not limited to) the following:

Curricula. The basic idea behind this technique
(Bengio et al., 2009) is inspired by the fact that
humans learn more easily when examples are pre-
sented in an ordering from trivial to complex ones.
Neural networks could potentially also benefit
from such a strategy of increasing task difficulty.
This technique includes modifications of the train-
ing data in order to converge faster, or more ro-
bustly, towards possibly better local optima. Data
shuffling, reordering, or back-translation (Sen-
nrich, Haddow, and Birch, 2016a), are all tech-
niques that can have a positive impact on the train-
ing.

Optimization algorithms. There are many opti-
mization algorithms that can be employed to train-
ing an NMT model, such as Adadelta (Zeiler,
2012) or Adam (Kingma and Ba, 2014). Each
method differs in the number of inner trainable
parameters and the approach it uses them to per-
form gradient descent optimization. Better opti-
mization algorithms can improve both the conver-
gence speed and model performance.

Reinforcement learning. A significant im-
provement in model performance can also be
achieved by using variants of the REINFORCE
algorithm (Williams, 1992). MIXER (Ranzato
et al., 2015), self-critical training (Rennie et al.,
2016), or minimum risk training (Shen et al.,
2016) all optimize the model directly to maximize
the sentence-level BLEU score (Chen and Cherry,
2014) or another sequence-based metric. These
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methods deal with the exposure bias problem the
traditional cross-entropy approach suffers from.

Multi-task training methods improve the
model by training it to perform many tasks at
once. Eriguchi, Tsuruoka, and Cho (2017) show
that teaching the model how to parse helps the
translation. A similar result was achieved by
Elliott and Kádár (2017) who teach the network
to predict the visual features of an image when
translating its caption.

Knowledge distillation. The goal of knowledge
distillation is to reduce the size of large trained
models to smaller models while maintaining the
good performance. There are two ways for em-
ploying this technique. First, train a large model
and then reduce its size by removing unimportant
units (Cun, Denker, and Solla, 1990; He et al.,
2014; Han, Mao, and Dally, 2015). Second, train
a large “teacher” model (or ensemble of mod-
els) and train a smaller “student” network on its
outputs (Buciluă, Caruana, and Niculescu-Mizil,
2006; Hinton, Vinyals, and Dean, 2015; Kim and
Rush, 2016). Both of these methods showed
promising results, not only in NMT but in the deep
learning field in general.

The rest of the paper is organized as follows.
Section 2 describes the software and the model ar-
chitectures. Details on the used dataset are given
in Section 3. We summarize the submitted sys-
tems in Section 4. Section 5 presents the results of
the submissions and Section 6 discusses them. We
conclude in Section 7.

2 The NMT System

We used Neural Monkey (Helcl and Libovický,
2017) as the NMT system for the task. Since the
software is still in development, the participants
were instructed to use version 0.1.0.2

Neural Monkey is an open-source sequence-
to-sequence learning toolkit implemented in Ten-
sorFlow3 with simple configuration and great ex-
tensibility. Besides the basic attentive NMT
pipeline (Bahdanau, Cho, and Bengio, 2014), the
toolkit implements a growing collection of tech-
niques related to sequence-to-sequence learning in
general.

2https://github.com/ufal/neuralmonkey/
releases/tag/0.1.0

3https://www.tensorflow.org/

GPU Memory 4 GB 8 GB

embedding size 350 600
encoder state size (2x) 350 (2x) 600
decoder state size 350 600
max sentence length 50 50
BPE merges 30,000 30,000

Table 1: Configuration for 4 and 8 GB models.

Neural Monkey conceptualizes problems of
sequence-to-sequence learning as a generic
encoder-decoder pipeline, with many types of
individual encoders and decoders. In our task, we
used the so-called sentence encoder, which maps
the input sequence of tokens to a sequence of
distributed representations of the tokens, and runs
a bidirectional GRU (Cho et al., 2014) network
over these vectors. We used the basic recurrent
decoder with conditional GRU (Firat and Cho,
2016) units and attention over the encoder.

The used toolkit implements the whole train-
ing functionality, including converting token types
to indices to the vocabulary, batching, and auto-
matic validation after a specified number of train-
ing steps. It also comes with a simple configu-
ration interface which allows the users to design
their models without the requirement of writing
any code.

We prepared two configurations of the models,
one that fits to a GPU with 8GB of memory and a
smaller one that fits into 4GB of memory. For spe-
cific details about the configuration, refer to Ta-
ble 1.

3 Data

The dataset used for the NMT Training Task was a
subset of the CzEng 1.6 corpus (Bojar et al., 2016).
The experiments were to be executed in a con-
strained fashion, i.e. the participants were not al-
lowed to augment the training corpus by additional
data. However, filtering or automatically modify-
ing the provided corpus as well as adding synthetic
data (obtained using only this corpus) was permit-
ted.

Prior to the distribution of the corpus, we re-
moved the parts of CzEng 1.6 containing the
largest amounts of noise. Specifically we re-
moved the sections named eu, navajo, pdfs, tech-
docs, and tweets. We also removed all sentence
pairs where one of the sentences contained more

526



than 40 tokens. The final training dataset contains
48.6 millions sentence pairs. We provided it pre-
processed: tokenized and truecased by applying
the casing of the lemma identified by Morphodita
(Straková, Straka, and Hajič, 2014)4 to the word
form; we did not provide the lemmas to the par-
ticipants. The corpus was shuffled at the level of
sentences, i.e. directly suitable for training with
Neural Monkey (that itself does not perform any
shuffling unless the whole training data would be
loaded to memory). A label file was included with
the corpus indicating the original source of each
sentence pair, allowing to distinguish e.g. news
from subtitles.

For validation, we used the data from the WMT
2016 news test (newstest2016). As the test set,
this year’s WMT news test (newstest2017) was an-
nounced and used.

We provided the devset pre-processed in the
same way as the training data, i.e. tokenized and
truecased by applying the casing of the lemma to
the word form.

The test set was not disclosed at all prior to the
submission deadline.

The training corpus was analyzed to obtain the
byte-pair encoding (BPE; Sennrich, Haddow, and
Birch, 2016b) merge file, jointly for English and
Czech. The participants were expected to use this
BPE merge file in their training. (Neural Monkey,
unlike other toolkits, applies BPE splitting inter-
nally, to be able to report various scores based on
original tokenization and not only based on BPE
tokens.) The merge file consisted of 30,000 BPE
merges.

4 Training Task Participants

Including secondary and revised versions, we col-
lected six submissions from three external par-
ticipants: the Air Force Research Laboratory
(AFRL), Pavel Denisov, and our students Mostafa
Abdou and Vladan Glončák. Additionally, we
submitted two of our systems and two baseline
runs.

The following paragraphs describe the baseline
systems and summarize the techniques used in the
submissions for the task.

4.1 Baseline Systems

The baseline systems used the default configu-
rations and datasets as provided to training task

4http://ufal.mff.cuni.cz/morphodita

participants. The 4GB and 8GB baselines were
trained for 60 days, each on a single Nvidia
GeForce 1080 GPU.

Among other things, the baseline configuration
specifies that tokens appearing only once in the
training data are replaced with a special OOV to-
ken with probability 0.5.

The Adam optimizer (Kingma and Ba, 2014)
with the learning rate of 10−4 and mini-batch size
of 60 sentences are used. We used L2 regular-
ization with weight of 10−8 and gradient clipping
with the threshold gradient norm of 1.

The baseline model for 4 GB GPUs achieved
the highest validation score after 7.5 epochs of
training (47 days). The 8 GB baseline model ob-
tained the highest score after 6.6 epochs (53 days).

4.2 AFRL
The AFRL system is described in another WMT
paper by Erdmann, Young, and Gwinnup (2017).
They participated in both 4GB and 8GB setups.
They used knowledge distillation from an ensem-
ble of models.

The teacher systems were enriched with factors
(domain, casing, and subword position informa-
tion) and trained on a cleaned dataset.

The final (student) system was trained on
the news-domain data from the teacher systems
dataset, output of ten teacher systems on the same
dataset and data from the task training set selected
to be most suitable for training a news-domain sys-
tem.

The original submitted systems trained for
about 5 days. We asked the participants to also
submit systems trained longer that were not ready
in time for the manual evaluation. The AFRL-
4GB-REVISED system trained for about 11 days,
and the AFRL-8GB-REVISED system trained for
about 6 days.

4.3 Pavel Denisov
The system submitted by Pavel Denisov was the
default 4GB system trained on 10 million longest
sentences in the training dataset. The idea was
to make training dataset closer to the validation
dataset in the sense of sentence length. The batch
size was increased from the default 60 to 90 which
is possible when the 4GB model is trained on
a larger GPU card. It gave promising valida-
tion BLEU score for shorter training duration (ap-
proximately 12 hours). The submitted model was
trained for 4 days.
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4.4 CUNI-4GB-BATCH-DECR

Our students submitted two systems, as described
in the paper by Abdou, Glončák, and Bojar (2017).
One of the submissions was however using a dif-
ferent BPE file and could not be evaluated among
other systems and the other submission (CUNI-
4GB-BATCH-DECR) was unfortunately left out
from the manual evaluation. We therefore provide
at least its automatic scores.

The submission CUNI-4GB-BATCH-DECR uses
essentially the baseline configuration but it de-
creases the batch size from their initial value of
100 by 20 every 48 hours down to the batch size of
20. The motivation is that smaller batch sizes have
been shown to converge to flatter optima, i.e. less
prone to overfitting, while larger batches make a
better use of the GPU. The gradual reduction could
theoretically benefit from both: fast training and
avoidance of local optima.

4.5 CUNI-4GB-CURRIC

The 4GB submission we provided (CUNI-4GB-
CURRIC) is one instance of curriculum learning,
namely learning first on short target (Czech) sen-
tences only and gradually adding also longer sen-
tences to the batches as the training progresses.
Importantly, the batches in later stages of the train-
ing also have to include the short sentences. As a
contrastive experiment, we have only sorted sen-
tence pairs by the length and the training spectac-
ularly failed.

After one epoch of curriculum learning, we con-
tinued the training on the official corpus, keeping
its shuffling fixed, for 7M sentence pairs with a
relatively small batch size of 20.

More details and further experiments on cur-
riculum learning within one epoch are available in
Kocmi and Bojar (2017), who document that cur-
riculum learning can be somewhat helpful accord-
ing to automatic scoring.

4.6 CUNI-8GB-DOMAIN

The CUNI-8GB-DOMAIN submission is a run
forked from the BASELINE-8GB after 3.38 epochs
(30.8 days) of training and trained further for 1.5
epochs (9.1 days) on a domain-adapted corpus.

The domain-adapted corpus contains 32.8M
parallel lines in total and it was created by con-
catenating and repeating different types of extracts
from the provided training corpus as listed in Ta-
ble 2.

# Sents Copies Corpus

0.25M 4× News section of training data
2.43M 1× Top 5% selected by 2-grams
2.43M 1× Top 5% selected by 4-grams
0.25M 1× News section again
4.86M 1× Top 10% selected by 2-grams
2.43M 1× Top 5% selected by 4-grams
9.72M 1× Top 20% selected by 2-grams
9.73M 1× Top 20% selected by 4-grams

Table 2: Composition of the domain-adaptation
corpus used in CUNI-8GB-DOMAIN.

Specifically, we used the annotation of the
originating domain to extract all news-like sen-
tences. This subset was rather small, only 250k
sentence pairs. We therefore used the bilingual
cross-entropy difference selection (Axelrod, He,
and Gao, 2011) implemented in XenC (Rousseau,
2013) to select 5, 10 and 20% of the original cor-
pus similar in terms of 2-grams and 4-grams to
the news section. Presumably, the small news sec-
tion made it also to these extracts and smaller ex-
tracts were probably included in larger extracts, so
considering our corpus composition, the same sen-
tences could be reused in the training corpus up to
11 times.

5 Results

The configuration file for translation was provided
with the NMT system, to evaluate the model on
the devset. The same configuration was used to
translate the test set, with the model variables pro-
vided by the participants. Except for the chrF3 and
METEOR metrics, we detokenized the output of
the NMT system using the standard Moses deto-
kenizer5 and capitalized the first character of the
sentence.

5.1 Automatic Scoring of Training Task
Systems

For the results of the automatic evaluation, see Ta-
ble 3.

Since the training time is an important factor in
NMT, we suggested that task participants further
train their systems and submit new models for au-
tomatic scoring. Two more submissions are thus

5http://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl
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System BLEU-dev BLEU-test chrF3 METEOR BEER 2.0 CharacTER
8G

B
CUNI-8GB-DOMAIN 19.18 15.2 42.59 21.60 0.487 0.683
AFRL-8GB-REVISED 18.30 14.8 41.54 20.71 0.478 0.701
AFRL-8GB 18.15 14.7 41.53 20.95 0.477 0.698
BASELINE-8GB 17.47 13.8 40.75 20.44 0.472 0.704

4G
B

AFRL-4GB-REVISED 18.37 15.2 41.90 20.92 0.480 0.693
AFRL-4GB 17.58 14.2 40.97 20.64 0.474 0.702
BASELINE-4GB 16.74 13.7 40.61 20.23 0.472 0.704
CUNI-4GB-CURRIC 16.24 13.1 39.54 19.93 0.464 0.716
DENISOV-4GB 15.98 12.6 40.22 20.06 0.452 0.713
CUNI-4GB-BATCH-DECR 12.98 10.5 36.29 17.85 0.441 0.751

Table 3: Automatic scores for submissions to the WMT17 NMT Training Task.

included in the table, AFRL-4GB-REVISED and
AFRL-8GB-REVISED.

BLEU scores for the development set are com-
puted internally by Neural Monkey. For the
test set, BLEU was measured on the EuroMa-
trix evaluation server6 (we use the BLEU-cased
variant of BLEU) as well as BEER 2.0 (Stano-
jević and Sima’an, 2014) and CharacTER (Wang
et al., 2016) scores. We also measured chrF3
(Popović, 2015) and METEOR (Denkowski and
Lavie, 2014) scores, both with the same tokeniza-
tion as in the training data and our NMT system
output.

5.2 Learning Curves

We asked participants to provide us with the de-
tailed “events” file as collected by TensorFlow
which logs the performance on the common val-
idation set at a fine resolution.

For some techniques, the learning curves cannot
be provided, but Figure 1 is a valuable comple-
ment to the automatic scoring above. The scores
were measured internally by Neural Monkey on
the devset after every 2000 batches.

Specifically, we see that the 4GB and 8GB base-
lines are clearly separated by about the same mar-
gin throughout the training and that CUNI-4GB-
BATCH-DECR loses a little from the performance
later in the training.

Interestingly, DENISOV-4GB seems to very
closely follow the performance of BASELINE-
8GB, i.e. a much larger setup, but it was unfor-
tunately stopped too early so the obtained score
is ultimately worse than both of the baselines. It
should be however noted that the learning curves

6http://matrix.statmt.org

are based on the number of training sentences pro-
cessed, not the number of words. The longer sen-
tences used by DENISOV-4GB have provided the
model with more material to learn from, so the
score could be artificially inflated.

5.3 Manual Evaluation of Training Task
Systems

As announced, the official evaluation of the NMT
training task is the manual scoring of the systems
submitted at the deadline according to the submis-
sion instructions.

We designed training task so that it was in fact
subsumed by the WMT17 News Translation Task
(Bojar et al., 2017): the training data was a subset
of the training data provided for English-to-Czech
news task participants and the testset we used the
official newstest2017 of WMT. All training task
submissions can be therefore seen as regular news
task submissions, with the additional constraint of
a fixed MT system and further constrained training
data.

With the help of WMT17 news task organizers,
we included the outputs of training task submis-
sions among the MT outputs of other MT systems
for the common manual scoring.7 Please see Bojar
et al. (2017) for details on the judgment technique
(direct assessment, DA) and its interpretation.

Table 4 is an extract of the official WMT17
news task results, i.e. Table 7 in Bojar et al.
(2017), renaming the systems to match the nam-
ing in this paper. The horizontal lines between the
systems indicate clusters according to Wilcoxon

7Unfortunately, the submission CUNI-4GB-BATCH-
DECR, despite being submitted in time, slipped through and
was not included in time in the manual evaluation.
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Figure 1: Learning curves for training task submissions (where available). The 8GB and 4GB baseline
runs actually ran much longer, to 300M and 380M training steps, resp. CUNI-4GB-CURRIC and CUNI-
8GB-DOMAIN curves are only continuations and therefore start higher.

# Ave % Ave z System

1 42.2 -0.141 BASELINE-4GB
2 44.9 -0.236 CUNI-8GB-DOMAIN

3 42.2 -0.315 AFRL-4GB
40.7 -0.373 BASELINE-8GB
40.5 -0.376 AFRL-8GB

4 36.5 -0.486 CUNI-4GB-CURRIC

36.6 -0.493 DENISOV-4GB

Table 4: Manual evaluation of the training task
submissions. For the crossed-out BASELINE-4GB
see the text.

rank-sum test at p-level p ≤ 0.05, the column “#”
is the rank of the cluster. The “Ave %” is the av-
erage DA score over all evaluated translations by
the given system and it reflects the average qual-
ity as assessed by human judges against the ref-
erence translation on an absolute scale between 0
and 100. The “Ave z” first standardizes each anno-
tator’s scores and then averages them. Please see
the original paper for a detailed discussion.

The manual evaluation was affected by an un-
fortunate omission: namely, the baseline-4GB
outputs were not included in the standard batches,
among other outputs, but they were scored only
later, in annotation batches of their own. While the
direct assessment annotation technique in theory
evaluates translation quality on an absolute scale
and such evaluations could be in principle com-
parable among different annotation runs, we see
that this does not really work in practice. It is
rather unlikely that the 4GB baseline would be sig-
nificantly better than the 8GB baseline, also tak-
ing into account the big difference in BLEU. We

thus asked WMT17 news task organizers to re-
move baseline-4GB from their paper and we do
not consider this result in our discussion below.

6 Discussion

Despite the fact that baseline-4GB was not cor-
rectly manually evaluated, the manual evaluation
allows us to draw some reliable conclusions.

CUNI-8GB-DOMAIN significantly surpassed
BASELINE-8GB, confirming that domain adapta-
tion can be very helpful for NMT even with rela-
tively simple adaptation techniques.

AFRL-8GB performed comparably to
BASELINE-8GB, and based on the descrip-
tion of the submission, AFRL-8GB was trained
for 5 days as 10 models in parallel, which could
roughly correspond to the training time of the
baseline. While we cannot compare AFRL-4GB
and BASELINE-4GB, which would be a very
interesting contrastive pair, we know that AFRL-
4GB performed equally well (better, but not
significantly) as AFRL-8GB. That alone is a good
achievement, in line with automatic scoring.

We already knew from automatic scores that
the curriculum technique tested by CUNI-4GB-
CURRIC is not very effective. We cannot really
compare it to BASELINE-4GB but we are not sur-
prised by the relatively low score.

The submission DENISOV-4GB was very inter-
esting, since it achieved the score of the 8GB base-
line with just a 4GB model throughout its train-
ing, see Figure 1. We hypothesize the reason for
the seemingly faster training was that while being
presented longer sentences, the system is actually
presented more words during training. Neverthe-
less, the experiment shows that the system is able
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to generalize to short sentences from long sen-
tences which does not hold vice versa. Concern-
ing the manual evaluation of DENISOV-4GB, we
know that it was trained only for 4 days, so the fi-
nal quality it reached was not good according to
automatic scores. Manual scores in Table 4 con-
firm this result but it would be very interesting to
see what quality would be reached if the training
ran much longer.

The point of NMT training task was not to find
a single winner but rather to see which techniques
are more promising and important for the final
performance as well as throughout the training.
The short answer is domain adaptation because
both CUNI-8GB-DOMAIN and AFRL used it and
scored high. Further conclusions are hard to draw
because the underlying data and training times dif-
fered too much.

For future similar tasks, we recommend to pro-
vide already domain-adapted training data and to
attempt to keep track of further details about the
training, e.g. the number of tokens processed and
floating point operations needed.

7 Conclusion

We presented the results of WMT17 Neural MT
Training Task, a shared task in optimizing parame-
ters of a given NMT system when translating from
English to Czech.

The best results were obtained by a standard
domain adaptation technique applied before the
training. Ensembling and knowledge distillation is
also valuable but current results are not sufficient
to assess whether the effort put into the develop-
ment pays off.
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Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

531



Cun, Yann Le, John S. Denker, and Sara A. Solla. 1990.
Optimal brain damage. In Advances in Neural Infor-
mation Processing Systems, pages 598–605. Morgan
Kaufmann.

Denkowski, Michael and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.
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Abstract

This submission investigates alternative
machine learning models for predicting
the HTER score on the sentence level.
Instead of directly predicting the HTER
score, we suggest a model that jointly pre-
dicts the amount of the 4 distinct post-
editing operations, which are then used to
calculate the HTER score. This also gives
the possibility to correct invalid (e.g. neg-
ative) predicted values prior to the calcula-
tion of the HTER score. Without any fea-
ture exploration, a multi-layer perceptron
with 4 outputs yields small but significant
improvements over the baseline.

1 Introduction

Quality Estimation (QE) is the evaluation method
that aims at employing machine learning in order
to predict some measure of quality given a Ma-
chine Translation (MT) output (Blatz et al., 2004).
A commonly-used subtask of QE refers to the
learning of automatic metrics. These metrics pro-
duce a continuous score based on the comparison
between the MT output and a reference transla-
tion. When the reference is a minimal post-edition
of the MT output, the quality score produced is in-
tuitively more objective and robust as compared to
other QE subtasks, where the quality score is as-
signed directly by the annotators. In that case, the
score is a direct reflection of the changes that need
to take place in order to fix the translation. HTER
(Snover et al., 2009) is the most commonly used
metric as it directly represents the least required
post-editing effort.

In order to predict the results of an automatic
metric, QE approaches use machine learning to
predict a model that associates a feature vector
with the single quality score. In this case the statis-

tical model treats the automatic metric as a black
box, in the sense that no particular knowledge
about the exact calculation of the quality score is
explicitly included in the model.

In this submission we aim to partially break
this black-box. We explore the idea of creating a
QE model that does not directly predict the single
HTER score, but it jointly predicts the 4 compo-
nents of the metric, which are later used for com-
puting the single score. This way, the structure of
the model can be aware of the distinct factors that
comprise the final quality score and also poten-
tially learn the interactions between them. Hence,
the focus of this submission will remain on ma-
chine learning and there will not be exploration
in terms of features. In Section 2 we briefly in-
troduce previous work, in Section 3 we provide
details about the method, whereas the experiment
results are given in Section 4. In Section 5 we de-
scribe the models submitted at the shared-task and
we explain why they differ from our best models.
Finally, in Section 6 we present the conclusions
and some ideas for future work.

2 Previous work

The prediction of HTER first appeared as a means
to estimate post-editing effort (Specia and Farzin-
dar, 2010). Bypassing the direct calculation of
HTER was shown by Kozlova et al. (2016), who
had positive results by predicting BLEU instead
of HTER. Predicting the HTER score with regards
to post-editing operations, such as re-ordering and
lexical choices, has been done by adding the rel-
evant features in the input (Sagemo and Stymne,
2016), whereas Tezcan et al. (2016) use the word-
level quality estimation labels as a feature for pre-
dicting the sentence-level score. To the best of
our knowledge, all previous work used a model
to directly predict a single HTER score, in con-
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trast to Avramidis (2014), which trained one sep-
arate model for every HTER component and used
the 4 individual predictions to calculate the final
score, albeit with no positive results. In our work
we extend that, by employing a more elegant ma-
chine learning approach that predicts four separate
labels for the HTER components but through a sin-
gle model.

3 Methods

3.1 Machine Learning

The calculation of HTER is based on the count of
4 components, namely the number of insertions,
deletions, substitutions and shifts (e.g. reordering)
that are required for minimally post-editing a MT
output towards the correct translation. The final
HTER score is the total number of editing opera-
tions divided by the number of reference words.

HTER =
#insertions + #dels + #subs + #shifts

#reference words
(1)

We are here testing 4 different approaches to the
prediction of HTER:

1. Baseline with single score: the baseline sys-
tem of the WMT17 shared task using SVM
regression (Basak et al., 2007) to directly pre-
dict the HTER score.

2. Combination of 4 SVM models (4×SVM):
this is following Avramidis (2014) so that it
produces 4 separate SVM regression models
that predict the amount of post-editing opera-
tions (insertions, deletions, substitutions and
shifts respectively). Then, HTER is com-
puted based on the 4 separate outputs (Equa-
tion 1).

3. Single-output perceptron (MLP): a multi-
layer perceptron is trained to predict the
HTER score

4. Multi-output perceptron (MLP4): a multi-
layer perceptron is trained given the feature
set in the input and the counts of the 4 post-
editing operations as the output labels. Sim-
ilar to 4×SVM, the separate predictions are
used to compute the HTER score (Equa-
tion 1). The perceptron is depicted in Fig-
ure 1.
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x2

...

xD

h1

h2

...

hm

y1

y2

y3
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features
hidden layer labels

Figure 1: Network graph for the multi-layer per-
ceptron which given the features x1...D can jointly
predict the amount of the post-editing operations
y1...4

In the fist two models, SVM follows the base-
line set-up of the WMT17 shared task, using SVM
regression with an RBF kernel. The hyperparam-
eters of all three models, including the number of
the hidden units of the perceptron, are tuned via
grid search on cross-validation with 5 folds over
the training data.

3.2 Normalization of predictions
Additionally to the separate models, we are test-
ing here some additional normalization on the pre-
dicted number of post-editing operations, before it
is used to calculate HTER:

i. Integer rounding: although the model was
trained using only integers as labels, the re-
gression model resulted into predictions in-
cluding decimals. By assuming that only
an integer amount of post-editing operations
should be valid, we round up the post-editing
operations to the closest integer.

ii. Trim negative and big numbers: MLP4
may also predict numbers outside the valid
integer range, e.g. providing negative num-
bers or numbers higher than the amount of
actual words in the sentence, particularly
when features have not been normalized.
Here, we trim the invalid values to the nearest
integer within the valid range.

3.3 Optimization measure
Preliminary experiments indicated that the perfor-
mance of the MLP4 may vary depending on the
optimization metric used for tuning the hyperpa-
rameters in a grid search with cross-validation. We
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tested the optimization scoring the folds with R2

and Pearson’s rho (which is the official metric of
the shared task) in three variations:

a) the R2 of the predicted amount of post-
editing operations against the golden amount
of the post-editing operations

b) the product of 4 rhos (rho edits); each rho
evaluating the predictions for one type of
post-editing operation (no normalization of
predictions) against the golden amount of ed-
its for the same post-editing operation

c) the rho over the final computed HTER
(rho HTER) against the golden HTER with-
out any prior normalization of predictions

4 Experiments

Here we present the experiments of testing the var-
ious machine learning approaches on the develop-
ment set. After the decisions were taken based on
the development set, the models were also applied
on the test-sets and the respective results are also
given. The performance of the models is measured
with Pearson’s rho, as this is the basic metric of
the WMT17 Shared Task. A test on statistical sig-
nificance for comparisons is performed with boot-
strap re-sampling over 1000 samples. The 4 types
of post-editing operations were re-computed with
TERCOM on the exact way that the workshop or-
ganizers computed the HTER scores.1

Similar to the baseline, features values are stan-
dardized by removing the mean and scaled to unit
variance. Since the experiment is focusing on ma-
chine learning, for German-English only the base-
line features are used. For English-German, we
additionally performed preliminary experiments
with the feature-set from Avramidis (2017) includ-
ing 94 features that improved QE performance for
translating into German, generated with the soft-
ware Qualitative (Avramidis, 2016). The addition
of these features did not result into any improve-
ments, so we are not reporting their results dur-
ing the development phase (see Section 5 for more
details). The code for training quality estimation
models was based on the software Quest++ (Spe-
cia et al., 2015) and Scikit-learn (Pedregosa et al.,
2011) ver. 1.18.

1TERCOM ver. 0.7.25 was downloaded from http:
//www.cs.umd.edu/˜snover/tercom. The scripts
used for running the experiments can be found at https:
//github.com/lefterav/MLP4.

The development results concerning the pre-
sented methods are given below in this section.
The model approaches are tested for both language
directions, whereas the experiments on the nor-
malization of the predictions and ML optimiza-
tion are run only for German-English and these
observations are applied to the models for English-
German.

4.1 Best ML method
The results concerning the choice of the ML
method applied on German-English are shown in
Table 1.

method dev test

SVM 0.400 0.441
4×SVM 0.392 0.409
MLP 0.447* 0.447
MLP4 0.476* 0.475**

Table 1: Pearson rho correlation against golden
labels concerning the 4 different approaches for
predicting HTER for German-English. (*) indi-
cates significant improvement (α = 0.05) over the
SVM baseline (**) significant improvement over
all models

The approach of MLP4 achieves a small but
significant improvement over the baseline and the
4×SVM on the development set. On the develop-
ment set both MLP and MLP4 beat significantly
the baseline, but MLP4 is not significantly better
than MLP. Nevertheless, when applied to the test-
set, the improvement achieved with MLP4 is sig-
nificant as compared to all other ML methods.

method dev test2017 test2016

SVM 0.414 0.402 0.407
4×SVM 0.049 -0.071 0.044
MLP 0.343 0.335 0.327
MLP4 0.429* 0.412 0.412

Table 2: Performance of the 4 different approaches
for predicting HTER for English-German (*) indi-
cates a significant improvement (α = 0.1) over the
baseline

The same approaches show moderate improve-
ments when applied to English-German with the
baseline feature set (Table 2). MLP4 achieves
higher correlation score than the baseline, but the
difference is small and it is significant only for the
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development set. When compared to the other two
methods, though, MLP4 achieves a significant im-
provement. In contrast to the direction German-
English, in English-German the MLP with one
output performs worse than the baseline. 4×SVM
fails to predict HTER as its predictions achieve
zero correlation. Since the individual models
failed to predict the post-editing operations sep-
arately, this may be an indication that among the
4 post-editing operations in English-German there
are dependencies which are stronger than the ones
in German-English.

4.2 Normalization of predicted post-editing
operations

The effect of the normalization of the predicted
post-editing operations of MLP4, prior to the cal-
culation of the final HTER score, is shown in Ta-
ble 3.

dev test

original labels 0.473 0.471
trim 0.476 0.475
round 0.456 0.469
round & trim 0.456 0.467

Table 3: Performance improvements by introduc-
ing rounding and cut-off for the predicted post-
editing operations (German-English)

The experiment indicates some small improve-
ment when we trim the invalid predicted values,
so we use this for all other calculations. Prelim-
inary experiments indicated more significant im-
provements when the feature values have not been
standardized and re-scaled prior to the training.

4.3 ML optimization
The effect of using different methods for hyperpa-
rameter optimization is show in Table 4.

dev test

R2 0.440 0.454
rho HTER 0.431 0.457
rho edits 0.476 0.475

Table 4: Experimentation with different optimiza-
tion measures for defining the perceptron hyperpa-
rameters (German-English model)

The product of the 4 rhos, calculated over the
4 types of post-editing operations (rho edits) has

slightly better performance than the other scoring
methods, nevertheless the difference is not statisti-
cally significant. Using these findings just as an in-
dication, we perform all experiments by optimiz-
ing the hyperparameters with rho edits.

The optimized hyperparameters for the SVM
models are shown in Table 5, whereas the ones for
the MLP models are shown in Table 6. All SVMs
have an RBF kernel and all MLPs are optimized
with adam as a solver. It is noteworthy that for
German-English a network topology with multiple
hidden layers performed better, which is an indica-
tion that the mapping between features and labels
in this language pair is much more complex than
the one for German-English.

langpair model ε C γ

de-en SVM 0.1 10 0.001
4×SVM (ins) 0.2 10 0.01
4×SVM (del) 0.2 10 0.01
4×SVM (shifts) 0.2 10 0.01
4×SVM (subst) 0.1 10 0.01

en-de SVM 0.1 1 0.01
4×SVM (ins) 0.2 1 0.001
4×SVM (del) 0.1 1 0.001
4×SVM (shifts) 0.1 1 0.001
4×SVM (subst) 0.2 1 0.001

Table 5: Hyperparameters used after the optimiza-
tion of the SVM models

langp. model act. α tol. hidden units

de-en MLP relu 0.10 10−9 1: 100
MLP4 relu 0.10 10−3 1: 300

en-de MLP tanh 0.01 10−3 3: 150, 75, 6
MLP4 tanh 0.10 10−3 2: 300, 150

Table 6: Hyperparameters and network topology
after the optimization of the MLP models

5 Submission and post-mortem analysis

Whereas previous sections described a full devel-
opment phase in order to support the idea of the
multi-output MLP, this section is focusing on our
exact submission for the Quality Estimation Task
of WMT17. Unfortunately, a development issue
prior to the submission prevented our experiments
from standardizing the feature values and scaling
them to unit variance. Since the performance of
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SVM suffers from non-scaled feature values, this
led our development phase to proceed by contrast-
ing with a much lower baseline than the one finally
provided by the workshop organizers. Non-scaled
features and other settings affected also the perfor-
mance of MLP models, and therefore the scores on
our final submissions are significantly lower than
the official baseline. The issue became apparent
only after the submission, so we then re-computed
the all models with standardized and scaled fea-
ture values. The results presented in Section 4 are
based on these corrected models.

The submitted models used both rounding and
trimming of predicted integers (Section 3.2). The
MLPs were optimized with an α = 0.01, tanh as
an activation function, and adam as a solver. The
German-English model got optimal with 300 hid-
den units. The English-German was trained using
the additional 52 features from Avramidis (2017)
which gave good development results only with
3,000 hidden units, which is an indication of over-
fitting.

method dev test

baseline (ours) 0.32 0.34
MLP4 (submitted) 0.40 0.40

baseline (official) 0.40 0.44
MLP4 (corrected) 0.48 0.48

Table 7: Scores for the submitted models and
for their corrected versions after the submission
(German-English)

method dev test2017 test2016

baseline (ours) 0.19 0.20 0.12
MLP4 (submitted) 0.40 0.11 0.13

baseline (official) 0.41 0.40 0.40
MLP4 (corrected) 0.43 0.41 0.41

Table 8: Scores for the submitted models and
for their corrected versions after the submission
English-German

A comparison of the models developed be-
fore the submission and the corrected ones are
shown in Tables 7 and 8. The submitted model
for German-English was expected to be signifi-
cantly better than the baseline, whereas the one for
English-German with the additional features had

strong indications of overfitting and performed in-
deed poorly at the final test-sets.

The corrected models perform better after scal-
ing is added and the rounding of integers is dis-
abled. The corrected model for English-German
converges without overfitting after removing the
additional features and adding one more hidden
layer. These models, if submitted to the shared
task, despite comparing with the baseline, they
would still score lower than almost all the others
submitted methods. Though, we need to note that
this should still be satisfactory, as we did not per-
form any feature engineering, aiming at confirm-
ing our hypothesis for using multi-output models.

6 Conclusion and further work

In this submission we investigated the idea of us-
ing a multi-layer perceptron in order to jointly pre-
dict the 4 distinct post-editing operations, which
are then used for calculating the HTER score.
The experiments show some small but significant
improvements on both the development set and
the test-set for German-English, but the same ap-
proach showed improvement only on the develop-
ment set when applied English-German.

Despite not having conclusive results yet, we
think that the idea is promising and that further
experiments could have positive impact. Concern-
ing the current development, several issues need
to be further investigated, such as possible ways
to avoid the lack of robustness of the perceptron.
Since this work did not focus at feature engineer-
ing, further work could profit from introducing
features highly relevant to the specific types of
post-editing operations, or even upscaling obser-
vations from word-level and phrase-level QE. On
the machine-learning level, additional hidden lay-
ers and more work on the number of hidden units
might be of benefit. Finally, evaluation specific to
the types of the predicted post-editing operations
could provide hints for further improvement.
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Abstract

Referential translation machines achieve
top performance in both bilingual and
monolingual settings without accessing
any task or domain specific information or
resource. RTMs achieve the 3rd system re-
sults for German to English sentence-level
prediction of translation quality and the
2nd system results according to root mean
squared error. In addition to the new fea-
tures about substring distances, punctua-
tion tokens, character n-grams, and align-
ment crossings, and additional learning
models, we average prediction scores from
different models using weights based on
their training performance for improved
results.

1 Introduction

Quality estimation task (QET) in WMT17 (Bo-
jar et al., 2017) (QET17) is about prediction of
the quality of machine translation output at the
sentence- (Task 1), word- (Task 2), and phrase-
level (Task 3) in IT and pharmaceutical domains
without using reference translations. Prediction of
translation performance can help in estimating the
effort required for correcting the translations dur-
ing post-editing by human translators if needed.
RTMs are capable to model different domains and
tasks while achieving top performance in both
monolingual (Biçici and Way, 2015) and bilingual
settings (Biçici, 2016b). We develop RTM mod-
els for all of the three subtasks of QET17, which
include English to German (en-de), and German
to English (de-en) translation directions. Task 1
is about predicting HTER (human-targeted trans-
lation edit rate) scores (Snover et al., 2006), Task 2
is about binary classification of word-level quality,

Figure 1: RTM depiction: ParFDA selects inter-
pretants close to the training and test data using
parallel corpus in bilingual settings and mono-
lingual corpus in the target language or just the
monolingual target corpus in monolingual set-
tings; an MTPPS use interpretants and training
data to generate training features and another use
interpretants and test data to generate test features
in the same feature space; learning and prediction
takes place taking these features as input.

and Task 3 is about binary classification of phrase-
level quality.

2 Referential Translation Machines

Referential translation machine (RTM) models are
predict data translation between the instances in
the training set and the test set. RTMs use inter-
pretants, data close to the task instances, to de-
rive features measuring the closeness of the test
sentences to the training data, the difficulty of
translating them, and to identify translation acts
between any two data sets for building predic-
tion models. RTMs are applicable in different
domains and tasks and in both monolingual and
bilingual settings. Figure 1 depicts RTMs and
explains the model building process. RTMs use
ParFDA (Biçici, 2016a) for instance selection and
machine translation performance prediction sys-
tem (MTPPS) (Biçici and Way, 2015) for generat-
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Task Model DeltaAvg rP rS RMSE MAE RAE MAER MRAER Rank

Task 1
en-de

MIX 4 8.64 0.4544 0.4768 0.1707 0.1296 0.8483 0.7594 0.7962 9
PLS GBR 8.22 0.4302 0.4518 0.1727 0.1311 0.8586 0.7769 0.8099 10

de-en
MIX 4 8.94 0.6004 0.5704 0.1566 0.1085 0.7034 0.7201 0.6921 4
TREE 9.18 0.5845 0.5729 0.158 0.1186 0.7685 0.9013 0.7627 5

Table 1: Task 1 test results of the top 2 individual RTM models. RTM becomes the 2nd system accord-
ing to RMSE and 3rd system in de-en and 6th system in en-de. rP is Pearson’s correlation and rS is
Spearman’s correlation.

RTM Interpretants
Task Train Test Training LM
Task 1, 2, 3 (en-de) 24000 2000 1.1M 17.6M
Task 1, 2, 3 (de-en) 26000 2000 1.1M 17.6M

Table 2: Number of instances used as interpretants
by the RTM models.

ing features where the total number of features be-
comes 514, increasing depending on the order of
n-grams used and we used up to 5-grams for trans-
lation features and 7-grams for language model
(LM) at QET17.

We use ridge regression (RR), k-nearest
neighors (KNN), support vector regression (SVR),
AdaBoost (Freund and Schapire, 1997), and ex-
tremely randomized trees (TREE) (Geurts et al.,
2006) as learning models in combination with fea-
ture selection (FS) (Guyon et al., 2002) and partial
least squares (PLS) (Wold et al., 1984). We use
scikit-learn 1 for most of these models. The
following parameters are optimized: λ for RR, k
for KNN, γ, C, and ε for SVR, minimum number
of samples for leaf nodes and for splitting an in-
ternal node for TREE, the number of features for
FS, and the number of dimensions for PLS. For
AdaBoost, we do not optimize but use exponential
loss and 500 estimators like we use also with the
TREE model. We use grid search for SVR. Evalu-
ation metrics we use are Pearson’s correlation (r),
mean absolute error (MAE), relative absolute er-
ror (RAE), MAER (mean absolute error relative),
and MRAER (mean relative absolute error rela-
tive) (Biçici and Way, 2015). DeltaAvg (Callison-
Burch et al., 2012) calculates the average quality
difference between the top n− 1 quartiles and the
overall quality for the test set. Official evaluation
metrics include r, MAE, and DeltaAvg.

We improved RTM models (Biçici, 2016b) with
additional features:

• normalized Levenshtein distance between the
1http://scikit-learn.org/

source sentence and its translation and their
longest common prefix, suffix, and sub-
string (Tian et al., 2017) normalized by the
minimum length of the compared sentences.

• number of tokens about punctuation in the
source sentence and the translation (Kozlova
et al., 2016) and the cosine between them.

• modified CHRF3 (Popović, 2015) to com-
pute character n-grams split by word bound-
ary space with n ∈ [3, 7] whereas the
F1 (Biçici, 2011) we already use compute
with word n-grams up to n = 5.

• proportion of alignments that cross (

≮

) the
link (Sagemo and Stymne, 2016) of any other
alignments:

√
0.5× |a ≮

A|
|A| (1)

• word alignment correspondence fea-
tures (Sagemo and Stymne, 2016).

• additional learning models including KNN,
AdaBoost, and gradient boosting regressor
(GBR) (Tian et al., 2017; Hastie et al., 2009).

We also use prediction averaging (Biçici, 2017),
where the performance on the training set is used
to obtain weighted average of the top k predic-
tions, ŷ with evaluation metrics indexed by j ∈ J :

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1
1

wj,i

∑k
i=1

1
wj,i

ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |
∑

j∈J ŷ̂ŷyj,wj
k

MIX
(2)

MAER is used to select the predictions and
weights are inverted to decrease error.

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Biçici,
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Model splits % error weights

2017

word
en-de

GLMd 4 0.0773

[0.5, 2]

GLMd 5 0.0668

de-en
GLMd 4 0.0468
GLMd 5 0.0469

phrase
en-de

GLMd 4 0.0068
GLMd 5 0.0059

de-en
GLMd 4 0.0129
GLMd 5 0.0125

2016
word en-de

GLMd 4 0.0688
GLMd 5 0.0757

phrase en-de
GLMd 4 0.0051
GLMd 5 0.0051

Table 3: RTM Task 2 training results where GLMd
parallelized over 4 splits is referred as GLMd s4
and GLMd with 5 splits as GLMd s5.

Model F1 BAD F1 OK wF1

Word
en-de

GLMd s4 0.318 0.8844 0.2813
GLMd s5 0.36 0.8778 0.3158

de-en
GLMd s4 0.3363 0.9386 0.3157
GLMd s5 0.3381 0.9395 0.3176

Phrase en-de
GLMd s4 0.4043 0.8079 0.3283
GLMd s5 0.4114 0.8079 0.3323

de-en
GLMd s4 0.2472 0.9073 0.2242
GLMd s5 0.3598 0.8884 0.3197

Table 4: RTM Task 2 results on the test set after
the challenge. wF1 is average weighted F1 score.

2016b) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a, b] to update the learning rate dynamically
according to the error rate.

3 Results

Table 2 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the RTM mod-
els (M for million). We tokenize and truecase
all of the corpora using Moses’s (Koehn et al.,
2007) processing tools. 2 LMs are built using
KENLM (Heafield et al., 2013).

3.1 QET 2017 Results

The results on the Task 1 test set are listed in Ta-
ble 1. 3 For Task 2 and Task 3, we list the results

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

3We calculate rS using scipy.stats.

we obtain after the challenge for coherent presen-
tation on the training sets in Table 3 and on the test
set in Table 4. The results we obtained in the chal-
lenge are similar. Ranks for Task 1 are out of 14
submissions and 9 systems. Top RTM models that
competed in Task 1 were MIX 4, which combines
top 4 predictions, PLS GBR, and TREE. RTM be-
comes the 2nd system according to RMSE and 3rd
system in de-en and 6th system in en-de.

3.2 Recomputing QET 2016 Results

QET17 also compares results on QET16 test sets.
QET16 test set domain was different than the do-
main of QET17, overlapping on the IT domain.
We use the RTM models built for QET17 to obtain
results on the QET16 test sets, which is catego-
rized as transductive transfer learning. 4 Transfer
learning attempt to re-use and transfer knowledge
from models developed in different domains or
for different tasks such as using models developed
for handwritten digit recognition for handwritten
character recognition (Guyon et al., 2012). The
results are in Table 5 for Task 1, which does not
show improvement, and in Table 7, which show
improvements with RTM models built for QET17.

3.3 Comparison with Previous Results

We compare the difficulty of tasks according to
MRAER levels achieved. In Table 6, we list the
RTM test results when predicting sentence-level
HTER in 2013–2017. Compared with QET16, we
observe improvements in MRAER and both MAE
and RAE are improved when QET17 is compared
with others.

4 Conclusion

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of translation performance
and achieve to become the 2nd system according
to RMSE when predicting the translation perfor-
mance from German to English. RTMs pioneer
a language independent approach for predicting
translation performance and remove the need to
access any task or domain specific information or
resource.

4www.youtube.com/watch?v=9ChVn3xVNDI;
we use the RTM models for the same task in different
domains.
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Model DeltaAvg r MAE RMSE RAE MAER MRAER

2017
ST TREE 5.14 0.2052 0.1456 0.1875 0.9634 0.8844 0.8666
PLS GBR 3.71 0.1875 0.1474 0.1914 0.9755 0.8706 0.8966

2016
SVR 6.38 0.3581 0.1359 0.1806 0.8992 0.7509 0.8567
FS SVR 6.66 0.3764 0.1346 0.1781 0.8905 0.7537 0.8388

Table 5: QET16 Task 1 results are not improved with QET17 Task 1 RTM models.

Task Translation Model r MAE RAE MAER MRAER

QET17 Task 1 HTER
en-de MIX 4 0.4544 0.1296 0.8483 0.7594 0.7962
de-en MIX 4 0.6004 0.1085 0.7034 0.7201 0.6921

QET16 Task 1 HTER en-de FS SVR 0.3764 0.1346 0.8905 0.7537 0.8388
QET15 Task 1 HTER en-es FS+PLS SVR 0.349 0.1335 0.903 0.8284 0.8353
QET14 Task 1.2 HTER en-es SVR 0.5499 0.134 0.8532 0.7727 0.8758
QET13 Task 1.1 HTER en-es PLS-SVR 0.5596 0.1326 0.8849 2.3738 1.6428

Table 6: Test performance of the top RTM results when predicting sentence-level HTER in 2013–2017.

Model wF1 F1 OK F1 BAD

20
17

Word
GLMd s4 0.2857 0.8775 0.3256
GLMd s5 0.3053 0.8653 0.3528

Phrase
GLMd s4 0.3421 0.8192 0.4176
GLMd s5 0.3504 0.817 0.4289

20
16

Word
GLMd s4 0.2725 0.8884 0.3068
GLMd s5 0.3081 0.8820 0.3494

Phrase
GLMd s4 0.3070 0.8145 0.3770
GLMd s5 0.3274 0.8016 0.4084

Table 7: QET16 Task 2 and Task 2p results show
improvement.
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Abstract

This paper describes the SHEF submis-
sions for the three sub-tasks of the Qual-
ity Estimation shared task of WMT17,
namely: (i) a word-level prediction sys-
tem using bilexical embeddings, (ii) a
phrase-level labelling approach based on
the word-level predictions, (iii) a sentence-
level prediction system using word em-
beddings and handcrafted baseline fea-
tures. Results are promising for the
sentence-level approach, but still very pre-
liminary for the other two levels.

1 Introduction

Quality Estimation (QE) allows the evaluation of
Machine Translation (MT) when reference trans-
lations are not available. It can be used in vari-
ous ways such as in post-editing (PE) to predict
whether or not an automatically generated sen-
tence is worth publishing, editing or it should be
retranslated manually. Word-level predictions can
be helpful by highlighting words that cannot be
relied upon or should be fixed by post-editors.
More recently, QE at phrase-level has emerged
as a way of using quality predictions at decoding
time in phrase-based Statistical MT (SMT) sys-
tems to guide the decoder such as to keep phrases
which are predicted as good, and conversely to dis-
card those which are predicted as bad (Logacheva,
2017).

QE models are built based on a list of features
along with a Machine Learning algorithm for ei-
ther regression or classification. These features are
usually extracted from the source and target texts
or from the MT system that generated the transla-
tions. Shah et al. (2015) introduced a new set of
features extracted using an unsupervised approach
with the use of neural network: continuous-space

language model features and word embeddings
features.

In our contribution this year we investigate
whether we can go beyond engineered features
by learning bilexical operators over distributional
representations of words in source-target text
pairs. Considering the MT pipeline as a noisy
black-box, our motivation is to be able to build
QE models to predict if information encoded in the
source sentence is preserved in the target sentence
after translation.

2 Bilinear Model

Madhyastha et al. (2014) propose to use word-
level embeddings to predict the strength of differ-
ent types of lexical relationships between a pair
of words, such as head-modifier relations between
noun-adjective pairs. They designed a supervised
framework for learning bilexical operators over
distributional representations, based on learning
bilinear forms W . We adapted their method to
predict the strength of relationship between source
and target words. This problem is formulated as a
log-bilinear model, parametrized with W as fol-
lows:

Pr(t|s;W ) =
exp

{
φ(t)>Wφ(s)

}

∑

t′∈T
exp

{
φ(t′)>Wφ(s)

} (1)

where φ denotes the word embeddings of any
given word in a vocabulary V. The source words
s and target words t are respectively taken from
subspaces S ⊆ V and T ⊆ V .

In essence, the problem can be reduced to first
obtaining the corresponding word embeddings of
the vocabularies of both source and target sen-
tences using a substantially large monolingual cor-
pus for each of the two languages, followed by us-
ing the bilinear model to estimateW . W is learned
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IT PHARMA
#sent #word #sent #word

English 3.4M 58.3M 1.8M 78.5M
German 3.4M 57.5M 1.8M 83.6M

Table 1: Statistics of the in-domain data used to
train our embeddings.

using the source-target word alignment by mini-
mizing the negative log-likelihood using a `2 reg-
ularized objective as:

L(W ) = −
∑

s,t

log(Pr(t|s;W )) + λ‖W‖2 (2)

where λ is the constant that controls the capacity
of W with gradient descent-based optimization.

We explore this approach for both word and
phrase-level QE. For training, we rely on both the
word-alignments and the gold QE labels (i.e. the
OK/BAD labels). The former gives us the source-
target pairs, and the latter whether this pair is
valid or not. Our assumption is that this approach
should be able to predict whether or not a word in
the target language (MT output) is correct by ex-
ploring the strength of the linguistic relation with
the source word it is generated from.

3 Experimental Settings

3.1 Data and Gold labels

Each QE shared task has two datasets:
English→German segments on the IT do-
main (with 23,000 sentences for training,
1,000 for development and 2,000 for test), and
German→English segments on the Pharmaceuti-
cal domain (with 25,000 sentences for training,
1,000 for development and 2,000 for test). The
same data is used for all three tasks: word, phrase
and sentence-level prediction.

For the word-level task, each token of the MT
is annotated with OK or BAD labels. For the
phrase-level task, phrases are segmented as given
by an SMT decoder and also annotated with OK
or BAD labels. Finally, for the sentence-level task,
the quality label is a Human-Targeted Error Rate
(HTER) score (Snover et al., 2009).

3.2 Word Embeddings

Word embeddings were used in our submissions
for the three tasks. We trained in-domain skip-
gram embeddings on the in-domain data shown in

Table 1 using FastText1 (Bojanowski et al., 2016)
with 300 dimensions and learning rate set to 0.025.
The default training settings are otherwise used.
The in-domain data is the same as that used to train
the SMT system that produced the translations in
the QE datasets, as made available by the task or-
ganizers.

For the word and phrase-level tasks, we used
our word embeddings to obtain a word vector rep-
resentation of 300 dimensions for each word of
both the training and development sets. For the
sentence-level task, the word embeddings are av-
eraged for each sentence, as previously applied
in (Scarton et al., 2016).

3.3 Tool
To learn to predict the labels for the word-level
task, we used BMAPS2, the toolkit implementing
the method in (Madhyastha et al., 2014) along
with the word alignments provided by the organiz-
ers (as produced by the SMT system). BMAPS is
used to learn the bilexical operators between both
source and target embeddings. The tool relies on
three matrices corresponding to the source and tar-
get vocabularies of the training data, and a third
matrix representing the word-level lexical relation
between them. This matrix is built from the word-
level alignments and the gold labels to indicate
which lexical items form a pair, and whether their
lexical relation is OK or BAD (i.e. if two lexical
items are aligned and labelled as OK, their inter-
section in the third matrix is set to 1, 0 otherwise).

By default, the model is trained over 100 it-
erations with the l2 norm as regularizer, and us-
ing the forward-backward splitting algorithm (FO-
BOS) (Duchi and Singer, 2009) as optimization
scheme (lc = 0.1, tau = 0.1).

3.4 Evaluation
We used the official task metrics to evaluate our re-
sults. For the word and phrase-level tasks, the met-
rics are F1-BAD and F1-OK which correspond to
the F1 scores on both BAD and OK labels, and F1-
multi which is the product of the two formers. For
the sentence-level task, the metrics for scoring are
Pearson’s correlation (primary metric), Mean Av-
erage Error (MAE) and Root Mean Squared Error
(RMSE), and for ranking, Spearman’s rank corre-
lation (primary metric) and DeltaAvg.

1https://github.com/facebookresearch/
fastText

2https://github.com/f00barin/bmaps
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4 Results

4.1 Word-level QE prediction (Task 2)
We investigate different context windows to build
our lexical representations, ranging from a wide
window considering all sentence-level context, to
a much narrower approach representing each word
individually:

• Full context: each word is associated with
its left and right context to capture the
exact distributional features of the specific
context in which this lexical item occurs.
A lexical item is thus a 900-dimensional
word vector represented by the tuple <
embleft, embcur, embright >, where embleft
and embright are the averaged embeddings of
the left/right contexts and embcur the word
representation of the current word. Here our
assumption is that a lexical item would repre-
sent a word within its context and at its posi-
tion in the sentence, therefore if the word ap-
pears twice in the sentence, it would be rep-
resented by two different lexical items.

• Surrounding context: instead of consider-
ing all the left and right context of the cur-
rent word, we limit ourselves to the two sur-
rounding words. This allows for a model that
is as generic as possible while still consider-
ing two distributional features corresponding
to two different lexical items. Here the as-
sumption is the same as before, the lexical
item which represents a word is the same but
only considering a window of one word on
the left/right to compute embleft/embright.

• Unigram: we use only the embeddings of
the current word without considering any sur-
rounding context. By doing so, we fully
rely on the embeddings and the way they are
trained (skipgram). In this case, the lexical
item is a single word representation of 300
dimensions.

For each context we investigate two variants:
with and without the use of the gold labels in or-
der to demonstrate the capacity of our approach
to learn how to discriminate the valid lexical pairs
from the others.

Discussion The results of our approach for the
word-level task are given in Table 2. We report the
results of our official submissions to the task (†)

along with additional experiments we conducted
after the task deadline. They are both compared
with the official baseline of Task 2.

Our first observation is the overall low perfor-
mance of our approach compared to the official
baseline. However, we found very encouraging
the results of our additional experiments compared
to those of the systems submitted. The revised
training procedure significantly improved the per-
formance in terms of F1-OK for all three contexts
types, resulting in a boost in the F1-multi scores.

To better understand the gap between our offi-
cial and additional results, it is important to men-
tion the technical constraints we faced perform-
ing the task with BMAPS for the official submis-
sion. In its current implementation, BMAPS relies
on non-sparse matrices which in our case lead to
a heavy memory print, since the source and the
target matrices contain vector representations for
each word in the corpus. Therefore, to be able to
run BMAPS on our servers we were limited to use
up to 2,000 sentences (about 9% of the training
corpus) as training instances. This certainly had a
significant impact on the performance of the mod-
els.

To tackle this constraint we later opted for
a mini-batch training approach: we divided the
training corpus into batches of 500 sentences, the
training for each batch starting from the results
from the training with the previous one. By doing
so we are able to use all the training data. How-
ever, in BMAPS the size of the dev set (in terms
of words from which the matrices are built) has
to be smaller than that of the training set. There-
fore, by using mini-batches we had to reduce our
dev set. We selected for the dev set 250 sentences
with the highest number of OK labels in order to
boost performance for this class. We also refined
our training parameters by switching to the nuclear
norm (which is expected to converge faster when
restricting the training size (Madhyastha et al.,
2014)). Finally, we empirically identified the best
values for the two main parameters (namely lc and
tau) for different context types: for both the full
and surrounding context, we used lc = 0.1 and
tau = 0.001, while for the unigram approach we
used lc = 0.1 and tau = 0.01.

As a second finding, one can notice the impact
of considering the surrounding context when pre-
dicting each word’s label. In both official and ad-
ditional results, there is a substantial difference be-
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norm training size F1-BAD F1-OK F1-multi
English→German (2016)
BMAPS-full l2 2k 0.326 0.103 0.034
BMAPS-nolabel-full l2 2k 0.311 0.222 0.069
BMAPS-full nuclear 23k 0.321 0.817 0.262
BMAPS-window l2 2k 0.328 0.207 0.068
BMAPS-nolabel-window l2 2k 0.315 0.170 0.053
BMAPS-window nuclear 23k 0.325 0.819 0.266
BMAPS-unigram † l2 2k 0.316 0.501 0.158
BMAPS-nolabel-unigram † l2 2k 0.296 0.330 0.098
BMAPS-unigram nuclear 23k 0.251 0.845 0.212
BASELINE – – 0.404 0.892 0.360
English→German (2017)
BMAPS-full nuclear 23k 0.336 0.812 0.273
BMAPS-window nuclear 23k 0.343 0.812 0.279
BMAPS-unigram † l2 2k 0.325 0.484 0.157
BMAPS-nolabel-unigram † l2 2k 0.302 0.322 0.097
BMAPS-unigram nuclear 23k 0.270 0.848 0.229
BASELINE – – 0.407 0.886 0.361
German→English (2017)
BMAPS-full nuclear 25k 0.231 0.447 0.103
BMAPS-window nuclear 25k 0.235 0.506 0.119
BMAPS-unigram † l2 2k 0.210 0.419 0.088
BMAPS-nolabel-unigram † l2 2k 0.209 0.391 0.082
BMAPS-unigram nuclear 25k 0.234 0.527 0.123
BASELINE – – 0.365 0.939 0.342

Table 2: Results of our word-level predictions. † denotes our official submissions to the task using the
l2 norm and single training set of 2k sentences. The other figures are obtained with mini-batch training
using 500 sentences at the time. In grey are the results of the official baseline of the task.

tween the three types of context: while unigram
was the best performing when limited to 2k train-
ing instances only, the exact opposite was found
when using the full training set with better F1-*
scores when the context in which the word occurs
is employed. Furthermore, we note a small advan-
tage for the window context over the full context
in both language pairs. We believe this means that
considering the surrounding context could better
help in a situation where a word would appear
twice in the same sentence but should be labelled
differently.

Overall, these results are encouraging and we
aim to pursue further investigations towards im-
proving this approach for the task of word-level
QE.

4.2 Phrase-level QE labelling (Task 3)

While we could have chosen to predict phrase-
level QE labels similarly to our word-level predic-
tions, we opted for generating phrase-level labels
from word-level labels following the labelling ap-
proaches described in Blain et al. (2016):

• Optimistic: if half or more of words have a
label OK, the phrase has the label OK (major-
ity labelling).

• Pessimistic: if 30% words or more have a
label BAD, the phrase has the label BAD.

• Super-pessimistic: if any word in the phrase
has a label BAD, the whole phrase has the la-
bel BAD.

Discussion The results of these three phrase-
level labelling strategies based upon our word-
level predictions are given in Table 3. We re-
port the results of our official submissions to the
task (†) along with additional experiments we con-
ducted after the task deadline. These are compared
with the official baseline for Task 3.

First, similarly to the word-level task, the per-
formance at phrase-level improved with the addi-
tional experiments, which was expected since the
labelling directly follows from the word-level pre-
dictions. Second, while we originally observed
better labelling performance using the optimistic
approach on test.2016 (see underlined numbers),
we now observe better F1-* scores with both pes-
simistic approaches for en→de. One can also ob-
serve comparable performance for en→de when
the surrounding context is used: the difference in
terms of F1-* scores between the full and window
context is marginal. For de→en this is different:
the phrase labelling based on word predictions us-
ing the window context outperforms the phrase la-
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F1-BAD F1-OK F1-multi
English→German (2016)
BMAPS-full-opti 0.292 0.799 0.233
BMAPS-window-opti 0.284 0.798 0.227
BMAPS-unigram-opti † 0.415 0.562 0.233
BMAPS-unigram-nolabel-opti † 0.398 0.373 0.149
BMAPS-unigram-opti 0.166 0.816 0.135
BMAPS-full-pess 0.425 0.743 0.316
BMAPS-window-pess 0.426 0.742 0.316
BMAPS-unigram-pess • 0.452 0.264 0.120
BMAPS-unigram-nolabel-pess • 0.442 0.140 0.062
BMAPS-unigram-pess 0.341 0.780 0.266
BMAPS-full-superpess 0.441 0.723 0.318
BMAPS-window-superpess 0.437 0.719 0.314
BMAPS-unigram-super-pess • 0.455 0.250 0.114
BMAPS-unigram-nolabel-suppess • 0.442 0.136 0.060
BMAPS-unigram-super-pess 0.366 0.763 0.279
BASELINE 0.403 0.812 0.328
English→German (2017)
BMAPS-full-opti 0.309 0.804 0.248
BMAPS-window-opti 0.312 0.800 0.250
BMAPS-unigram-opti † 0.409 0.553 0.226
BMAPS-unigram-nolabel-opti † 0.388 0.380 0.148
BMAPS-unigram-opti 0.184 0.823 0.152
BMAPS-full-pess 0.431 0.750 0.323
BMAPS-window-pess 0.428 0.743 0.318
BMAPS-unigram-pess 0.350 0.794 0.278
BMAPS-full-super-pess 0.438 0.733 0.321
BMAPS-window-super-pess 0.437 0.724 0.316
BMAPS-unigram-super-pess 0.368 0.781 0.287
BASELINE 0.402 0.814 0.327
German→English (2017)
BMAPS-full-opti 0.326 0.478 0.156
BMAPS-window-opti 0.334 0.565 0.189
BMAPS-unigram-opti † 0.299 0.473 0.141
BMAPS-unigram-nolabel-opti † 0.300 0.440 0.132
BMAPS-unigram-opti 0.336 0.593 0.199
BMAPS-full-pess 0.313 0.281 0.088
BMAPS-window-pess 0.320 0.357 0.114
BMAPS-unigram-pess 0.322 0.378 0.122
BMAPS-full-super-pess 0.311 0.256 0.079
BMAPS-window-super-pess 0.317 0.332 0.106
BMAPS-unigram-super-pess 0.320 0.358 0.115
BASELINE 0.397 0.907 0.360

Table 3: Results of the phrase-level labelling
strategies based upon our word-level QE predic-
tions. † denotes our official submissions to the task
and • the results of the other two labelling strate-
gies, both using our official submissions to Task
2. The other figures are obtained with the updated
word predictions from Task 2 resulting of the full
batch training. In grey are the results of the official
baseline of the task.

belling based on word prediction using the entire
sentence as context.

4.3 Sentence-level QE prediction (Task 1)
For the sentence-level task we followed a sim-
ple approach, which had been previously applied
by Scarton et al. (2016) for document-level QE.
The idea was to combine word embeddings with
handcrafted features.

However, whilst Scarton et al. (2016) have used

Scoring Ranking
Pearson’s r MAE Spearman’s ρ DeltaAvg

English→German (2016)
QUEST-EMB 0.50 0.12 0.53 9.02

BASELINE 0.40 0.13 0.44 7.42
English→German (2017)
QUEST-EMB 0.50 0.13 0.51 8.96

BASELINE 0.40 0.14 0.43 7.45
German→English (2017)
QUEST-EMB 0.56 0.12 0.56 8.79

BASELINE 0.44 0.13 0.45 6.81

Table 4: Results of QUEST-EMB in the sentence-
level QE task. In grey are the results of the official
baseline of the task.

word embeddings trained on general purpose data,
our embeddings are trained over in-domain data,
as previously described. Word embeddings were
averaged at sentence level in order to have a single
vector representing each sentence. We then con-
catenated source and target in-domain embeddings
with the 17 sentence-level baseline features pro-
vided by the organisers. An SVM regressor was
used to train our QE model with hyper-parameters
optimized via grid-search. For that we used the
learning module available at QuEst++ toolkit
(Specia et al., 2015).

Although the sentence-level experiment is dif-
ferent from the approach applied for word and
phrase-level tasks, our aim was to test the usabil-
ity of the in-domain word embeddings. Our results
are compared with the official baseline.

Discussion The results of our sentence-level
predictions are given in Table 4. Although the
approach is rather simplistic, it achieves consid-
erably good results by outperforming the baseline
system and several other systems that participated
in the shared task. For German→English, our sys-
tem performed seventh out of 13 in the scoring
task. For English→German, it performed eighth
out of 13. Table 4 shows the results of our systems
(called QUEST-EMB) for the different language
pairs and for both scoring and ranking tasks. We
also show the results of the baseline systems for
comparison.

5 Conclusions

In this paper we report our submissions to the three
sub-tasks of the QE campaign of WMT17. We
obtained reasonably good results for the sentence-
level task despite the use of a very simplistic ap-
proach. On the other hand, we significantly un-
derperform in the two other tasks, which exploit
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a bilinear model. Due to limitations regarding the
experimental settings of the tool used for the offi-
cial submissions, it is difficult to conclude whether
or not our approach is suitable for the task of QE.
In follow up experiments with different training
strategies, the results proved substantially better
and much more promising, albeit still behind the
official baseline. This is particularly encouraging
considering that the approach only relies on word
embeddings and word alignment information. We
plan to further experiment with it and identify pos-
sible improvements in BMAPS that could lead to
better performance.

It is also worth emphasizing that the approach
employed for the sentence-level task is not directly
comparable to the approach used for the other
tasks; they only share the embeddings trained us-
ing in-domain data. However, we can conclude
that the in-domain embeddings encode useful in-
formation for all tasks.
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Abstract 

Machine translation quality estimation 

is a challenging task in the WMT 

evaluation campaign. Feature extrac-

tion plays an important role in auto-

matic quality estimation, and in this 

paper, we propose neural network fea-

tures, including embedding features 

and cross-entropy features of source 

sentences and machine translations, to 

improve machine translation quality 

estimation. The sentence embedding 

features are extracted through global 

average pooling from word embedding 

and are trained by the word2vec 

toolkits, while the sentence cross-

entropy features are calculated by the 

recurrent neural network language 

model. The experimental results on the 

development set of WMT17 machine 

translation quality estimation tasks 

show that the neural network features 

gain significant improvements over the 

baseline. Furthermore, when combin-

ing the neural network features and the 

baseline features, the system perfor-

mance obtains further improvement. 

1 Introduction 

Quality estimation (QE) of machine translation 

estimates the quality of machine translation sys-

tem outputs without human references using ma-

chine learning methods. It is often divided into 

two steps: first, it extracts various features from 

source sentences, translation outputs, and external 

language resources to describe the translation 

complexity, fluency and adequacy; and second, it 

predicts the quality of the translation outputs with 

the pre-trained machine learning model. Feature 

extraction is crucial to the performance of QE, 

and traditional methods, such as QuEst (Specia et 

al., 2013), extract linguistically motivated fea-

tures to improve the correlation between the au-

tomatic QE and human assessment. However, ex-

tracting linguistically motivated features requires 

part-of-speech analysis, syntactic analysis, or se-

mantic analysis, and these linguistic analyses re-

late to the target language types; this considera-

tion limits their application in other languages. To 

address this problem, Shah et al. (2015a, 2016) 

investigated continuous space language models 

for sentence-level QE, and Scarton et al. (2016) 

proposed word embedding features for document-

level QE. 

Inspired by their work, we propose sentence 

embedding features and cross-entropy features to  

improve the correlation between automatic QE 

and human assessment and to investigate how dif-

ferent sentence embedding dimensions of source 

sentences and translation outputs, as well as the 

size of the training corpus, affect the system per-

formance of QE. 

2 Related work 

With the great success of deep learning that has 

been achieved in digital image processing and au-

tomatic speech recognition, deep learning has also 

made tremendous breakthroughs in natural lan-

guage processing, e.g., the proposition of neural 

network language models (Bengio et al. 2003) and 

neural machine translation encoder-decoder 

frameworks (Bahdanau et al. 2014). Therefore, 

many researchers have proposed deep learning 

approaches for the QE task. In the word-level QE 

task, Kreutzer et al. (2015) presented deep feed-

forward neural networks to estimate the word con-

fidence. Shah et al. (2015b) exploited word em-

bedding as a feature to estimate whether the trans-

lation of the word is "good" or "bad" in machine 

translation outputs. Patel et al. (2016) applied a 
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recurrent neural network language model to the 

word-level QE task. 

In the sentence-level QE task，Shah et al. 

(2015a) extracted continuous space language 

model (Schwenk et al. 2007) probabilities of 

source sentences and machine translation outputs 

as features, and combined them with baseline fea-

tures to improve the system performance of QE. 

In the WMT16 QE Task，Shah et al. (2016) fur-

ther proposed forward sentence cross-entropy, 

sentence embedding features, and neural machine 

translation log-likelihood features based on their 

previous work. They extracted word embedding 

features and cross-entropy features by the contin-

uous space language model.  

In contrast to the work of Shah et al., we utilize 

a continuous bag-of-words model to extract the 

word embeddings, construct sentence embedding 

through global average pooling from word em-

beddings, and utilize a recurrent neural network 

language model to extract sentence cross-entropy 

features.  

3 Neural Network Features  

To overcome the problem that the traditional fea-

ture extraction method relies heavily on sentence 

linguistic analysis, in this paper, we exploit the 

latest deep learning method to extract the features 

of translation quality from source language sen-

tences and its machine translations. The extracted 

features include sentence embedding features and 

sentence cross-entropy features. 

3.1 The Embedding Features 

Word representation learning has attracted the at-

tention of many researchers in recent years. Espe-

cially after 2013, Mikolov et al. (2013a) released 

the open source word embedding learning tool: 

word2vec 1 . Word2vec, as a word embedding 

learning tool, has implemented two models: 

CBOW (Continuous Bag-of-words) and Skip-

Gram model, inspired by the neural network lan-

guage model proposed by Bengio (Bengio et al. 

2003). The CBOW and Skip-Gram model remove 

the hidden layer processing of the neural network 

language model, which is time consuming, and 

add the optimization methods of Negative Sam-

pling and Hierarchical Softmax (Mikolov et al. 

2013b). This approach improves the accuracy of 

the model and accelerates the training of the mod-
                                                      
1 https://code.google.com/p/word2vec/ 

el. The CBOW and Skip-Gram models are very 

similar. Their difference lies in that the CBOW 

model predicts the conditional probability of the 

current word by the context words, while the 

Skip-Gram model predicts the conditional proba-

bility of the context words by the current word. 

Because the training speed of the CBOW model is 

faster than that of the Skip-Gram model, we use 

the CBOW model to train the word embeddings of 

the source language and the target language.  

The window size is set to 10, using the negative 

sampling optimization method. Additionally, the 

number of negative samples is set to 10. To accel-

erate the training, the sampling threshold of a high 

frequency word is set to 1e-5, and the iteration 

time is set to 15. We attempt various dimension of 

the word embedding, varied from 256 to 4096, to 

achieve best performance.  

After obtaining the word embeddings of each 

word in the source sentence and the machine 

translation output, the sentence embeddings are 

computed by averaging them. This approach is 

applied to both the source sentences and the ma-

chine translation outputs. When the source sen-

tence embedding (Vs) and the machine translation 

output embedding (Vt) are both obtained, two sen-

tence embeddings are concatenated (V = [Vs; Vt]) 

as features for the QE task.  

3.2 The Cross-Entropy Features  

A language model, which occupies a significant 

position in natural language processing, is used 

for the modeling of the probability distributions of 

the word sequences. In section 3.1, the bag-of-

words model is used to obtain the word embed-

ding features. However, the disadvantage of the 

bag-of-words model is that it ignores the contex-

tual relationships between the words.  

The recurrent neural network possesses sequen-

tiality and memorability, and it performs well in 

sequential data modeling. Therefore, the Recur-

rent Neural Network Language Model (RNNLM) 

(Mikolov et al. 2010) was proposed and first used 

in automatic speech recognition and reordering of 

machine translations. The experimental results in-

dicate that the RNNLM is superior to the back-off 

language model. Since RNNLM accounts for the 

word order, we extract the source language sen-

tences and their machine translation cross-

entropies as features for the QE task. 

552



 

 

 

 

 

The RNNLM is trained by the RNNLM toolkit2. 

The number of hidden layers is set to 100, param-

eter “bptt” is set to 4, and the output layer class 

number is set to 200. The WMT17 QE develop-

ment set is used to optimize the parameters of the 

RNNLM. The training data is shown in section 

4.1. The entropy of the WMT17 QE development 

set that we finally trained by the RNNLM is 

shown in Table 1. 

 

WMT17 QE language iter entropy 

en-de 
en 5 7.7549 

de 3 6.5885 

de-en 
en 7 5.1287 

de 12 5.8929 

 

Table 1: The entropy of each language in the 

WMT17 QE development set trained by the 

RNNLM toolkit. 

4 Experimental Results 

To test the performance of the neural network fea-

tures for the QE task, we conduct experiments on 

the development set of the WMT17 sentence-level 

QE task. 

4.1 Experiment Set 

The WMT17 sentence-level QE task contains two 

translation directions: English to German (en-de) 

and German to English (de-en). Among them, the 

en-de corpus concerns the IT domain, while de-en 

concerns the pharmaceutical domain. The training 

set of the en-de direction consists of 23,000 sen-

tences; the development set consists of 1,000 sen-

tences. The training set of the de-en direction con-

sists of 25,000 sentences; the development set 

consists of 1,000 sentences. A test set of 2,000 

sentences is provided for each direction. HTER 

(Snover et al. 2006) is provided as an estimation 

index for the translation quality of each training 

set and development set. The task of the partici-

pants is to establish a QE model to predict the 

HTER, with the source language sentences and 

their machine translations. 

To train the word embedding and the RNNLM, 

the source side and the target side of the bilingual 

parallel corpus for the translation task, publicly re-

leased by the WMT evaluation campaign, are used; 

they include Europarl v7, Common Crawl corpus, 

News Commentary v8 and v11; Batch1 and 

                                                      
2 http://www.fit.vutbr.cz/~imikolov/rnnlm/ 

Batch2, localization PO files, IT-related terms 

from Wikipedia3; WMT16 and WMT17 QE task1 

corpus. The statistics of the bilingual parallel cor-

pus are shown in Table 2, the corpus are shared 

for the two translation directions. 

The Support Vector Regression (SVR) model is 

utilized for the QE. To implement the model, we 

use the Python machine learning toolkit: scikit-

learn4, and the radial basis function is chosen for 

the SVR kernel function, the grid search algorithm 

for parameter optimization. The metrics included 

Pearson’s correlation coefficient (Pearson r), 

Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Spearman’s correlation coefficient 

(Spearman ρ) and Delta Average (DeltaAvg), 

which were used to evaluate the performance of 

the QE model. Pearson r and Spearman ρ are set 

as primary metrics for scoring and ranking the 

evaluation respectively, and higher scores mean 

better correlations between QE and HTER. 

 

 English German 

Number of sentences 4.8 M 

Vocabulary size 936.0 K 1796.9 K 

Number of tokens 120.8 M 115.4 M 

 

Table 2: The statistics of the corpus size for the 

word embedding training and RNNLM training. 

4.2 Results 

We exploit SVR with different features to build 

the QE model. Experiments are performed on the 

development set of the WMT17 QE, task1. The 

experimental results of en-de and de-en are shown 

in Tables 3 and 4, respectively. The rows "Base-

line" and "Word2vec" represent only used the 17 

baseline features that were officially released by 

the evaluation campaign and only used the sen-

tence embedding features extraction by the 

word2vec toolkits, while the row "Word2vec+ 

Baseline" represents the combination of used 

baseline features and sentence embedding features, 

and so on. The system that we finally submitted 

uses a combination of all of the features. 

Mikolov et al. (2013c) attempt different dimen-

sions of word embedding for the source language 

and the target language to achieve the best transla-

tion quality. Motivated by their work, we test the 

diverse dimensions of the word embedding for the   

source language and target language on the
                                                      
3 http://www.statmt.org/wmt16/it-translation-task.html 
4 http://scikit-learn.org/stable/ 
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Features set Pearson r MAE RMSE Spearman ρ DeltaAvg 

Baseline 0.414 13.564 18.660 0.466 8.622 

Word2vec 0.502 13.104 17.734 0.520 9.455 

Word2vec+Baseline 0.520 12.918 17.509 0.537 9.628 

Word2vec+RNNLM 0.539 12.658 17.383 0.559 9.972 

Word2vec+RNNLM+Baseline 0.544 12.632 17.285 0.563 9.998 

 

Table 3：Results of the en-de direction on the development set of the WMT17 QE, task1. 

 

Features set Pearson r MAE RMSE Spearman ρ DeltaAvg 

Baseline 0.401 13.702 18.163 0.404 6.845 

Word2vec 0.504 13.290 17.171 0.456 7.984 

Word2vec+RNNLM 0.554 12.382 16.492 0.496 8.732 

Word2vec+Baseline 0.555 12.664 16.563 0.504 8.700 

Word2vec+RNNLM+Baseline 0.580 12.116 16.162 0.521 9.024 

 

Table 4: Results of the de-en direction on the development set of the WMT17 QE, task1. 

 

 Features set Pearson r MAE RMSE Spearman ρ DeltaAvg 

WMT16 
Baseline 0.399 0.132 0.175 0.438 7.42 

Our system    0.5273rd 0.122 0.163    0.5523rd 9.37 

en-de 
Baseline 0.397 0.136 0.175 0.425 7.45 

Our system    0.5225th 0.126 0.163    0.5455th 9.54 

de-en 
Baseline 0.441 0.128 0.175 0.45 6.81 

Our system    0.5318th 0.130 0.167  0.528th 8.62 

 

Table 5: The system performance on the test set of the WMT16 QE and WMT17 QE 

 

training set. For the en-de direction, the best per-

formance is obtained when the dimensions of the 

source word embedding and target word embed-

ding are 1024 and 2048, respectively. While for 

de-en direction, the best performance is obtained 

when the dimensions of the source word embed-

ding and target word embedding are both 2048.  

Then, based on the sentence embedding fea-

tures, we add the cross-entropy features extracted 

by the RNNLM toolkit or the baseline features. 

When we added the cross-entropy features, the 

maximum value of Pearson r increased by 9.9% 

on the scoring evaluation, and the maximum value 

of Spearman ρ increased by 7.5% on the ranking 

evaluation. It can be found that in the en-de direc-

tion, the result obtained by adding cross-entropy 

features is superior to that from adding baseline 

features. Finally, when we combine all of the fea-

tures, the maximum value of Pearson r increases 

by 44.6% on the scoring task, and the maximum 

value of Spearman ρ increased by 29.0% on the 

ranking evaluation compared with the baseline. 

Because the training word embedding and 

RNNLM require a certain size of monolingual 

corpus, we also investigated the effects of differ-

ent corpus scales on the quality of the extracted 

neural network features. It was found that when 

the training corpus contained more than 1M sen-

tences, the QE system performance is not reduced, 

and when the corpus contained less than 1M sen-

tences, the system performance will decrease 

gradually as the corpus size decreases. This find-

ing demonstrates that the training word embed-

ding and the RNNLM are not dependent heavily 

on the scale of the training corpus. 

Finally, Table 5 provides the results of our sys-

tem and the baseline system on the test set. We 

take the system “Word2vec+RNNLM+Baseline” 

as our primary system. In WMT16 QE, the per-

formance of our system achieves the third place. 

In WMT17 QE, the best result of our system 

achieves the fifth place. Compared with the meth-

od proposed by Shah et al (2016), we use fewer 

features, but achieve better result on the test set.  

5 Conclusions 

In this paper, we train the embedding features us-

ing the word2vec toolkit and we enrich the fea-

tures with cross-entropy features extracted by 

RNNLM to improve the correlation between the 
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QE and human judgment. The experimental re-

sults show that the neural network features can 

significantly improve the system performance. 

Compared with the traditional linguistically moti-

vated features, the extracted features of the neural 

network are independent of the specific language. 

In the future, we will train an end-to-end pure 

neural network model for QE, instead of using 

traditional SVR methods. 
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Abstract

The field of Quality Estimation (QE) has
the goal to provide automatic methods
for the evaluation of Machine Translation
(MT), that do not require reference transla-
tions in their computation. We present our
submission to the sentence level WMT17
Quality Estimation Shared Task. It com-
bines tree and sequence kernels for pre-
dicting the post-editing effort of the tar-
get sentence. The kernels exploit both
the source and target sentences, but also
a back-translation of the candidate transla-
tion. The evaluation results show that the
kernel approach combined with the base-
line features brings substantial improve-
ment over the baseline system.

1 Introduction

The evaluation of Machine Translation (MT) out-
put is a sub-field of MT research that has experi-
enced a great amount of interest in the past years.
The process of MT evaluation involves three fac-
tors: an input segment in a source language, the
candidate translation (also known as target sen-
tence) which represents the output of a MT sys-
tem when translating from the source language to
the target language and a reference translation in
the target language. The assessment of MT qual-
ity can be divided into two categories depending
on whether it requires the presence of a reference
translation or not. The reference-based evaluation
scores the candidate translation by comparing it to
the reference translation.

On the other hand, the reference-free evalua-
tion, also known as quality estimation (QE), pre-
dicts the quality of a candidate translation based
solely on the information contained in the source
and target sentences. QE can be performed at

different levels of granularity: word, sentence or
phrase and it involves classifying, ranking or pre-
dicting scores for the candidate translations. A
sentence-level QE system is conventionally con-
structed based on a set of features encoding the in-
formation contained in the source and target sen-
tences, which are used for learning a prediction
model. The features employed for this task can be
of different types, like surface features, language
model features or linguistic features. The positive
influence of syntactic features on the performance
of QE systems has been extensively studied, in-
cluding in Rubino et al. (2012), Avramidis (2012)
or more recently in Kozlova et al. (2016). How-
ever, the process of identifying the best perform-
ing set of features, is a task that is both expensive
and requires a considerable amount of engineering
effort (Hardmeier, 2011). On the other hand, ker-
nel methods do not require the explicit definition
of the features, and rely on the scalar product be-
tween vectors for capturing the similarity shared
by the sentence pairs.

In this paper we present our submission to the
WMT17 Shared Task on sentence level Quality
Estimation, that makes use of sequence and tree
kernels in predicting a continuous score represent-
ing the post-editing effort for the target sentence.
The novel contribution of our system is the combi-
nation of different types of kernels. Moreover, we
use a back-translation of the target sentence into
the source language as an additional data repre-
sentation to be exploited by the kernels, together
with the usual source and target sentences repre-
sentations. Furthermore, we construct additional
explicit features by applying the kernel functions
directly on the pair of source and back-translation
sentences, a method that to our knowledge has
not been used before. The evaluation performed
demonstrates that the combination of the kernel
approach and the baseline together with the newly
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introduced feature vectors brings consistent im-
provement over the baseline system.

This paper is organized as follows. The related
work is presented in Section 2, while the methods
employed and the implementation are described in
Section 3. The experimental setup and the evalua-
tion results are introduced in Section 4, while the
last section summarizes our findings and presents
future work ideas.

2 Related work

Kernel functions have been used in a variety
of NLP tasks, including Textual Similarity (e.g.
(Severyn et al., 2013)), Information Extraction
(e.g. (Culotta and Sorensen, 2004)), Semantic
Role Labeling (e.g. (Moschitti et al., 2008)) or
Textual Entailment (e.g. (Wang and Neumann,
2007)).

An approach for QE based on syntactic tree ker-
nels is introduced in (Hardmeier, 2011), where
a binary SVM classifier is trained to make pre-
dictions about the quality of the MT output.
The datasets are syntactically analyzed using con-
stituency and dependency parsers. The Subset
Tree Kernel (Collins and Duffy, 2001) is used
for the constituency trees, while the Partial Tree
Kernel (Moschitti, 2006a) (Moschitti, 2006b) was
judged as being more appropriate for the depen-
dency trees. The evaluation shows that the combi-
nation between baseline features and the tree ker-
nels achieves the best performance. These findings
are further validated in Hardmeier et al. (2012)
where a QE system is proposed based on a set of
82 explicit features combined with syntactic tree
kernels.

Syntactic tree kernels for QE are also explored
in Kaljahi et al. (2014), where a set of hand crafted
constituency and dependency based features to-
gether with subset tree kernels applied on the con-
stituency and dependency tree representations are
used. The evaluation results demonstrate that the
source constituency trees perform better than the
target sentence constituency trees. This work is
further extended in Kaljahi (2015), where multi-
ple QE systems based on syntactic and semantic
features are introduced.

The work presented in this paper differs from
previous kernel approaches for QE by the inno-
vative use of sequence kernels in addition to the
previously utilized tree kernels. We extend on
the previous kernel QE research by also making

use of a back-translation of the target sentence
in the computation of the kernels. While back-
translations features have been previously utilized
for QE (e.g.(Bechara et al., 2016)), their potential
as an additional structural input representation for
kernels has never been studied before. Further-
more, we exploit the potential of the scores of the
kernel functions applied on the source and back-
translation sentences as additional hard-coded fea-
tures.

3 Methods and implementation

In this section details about the methodology and
the implementation will be presented. First, tree
and sequence kernels will be introduced, followed
by the description of the implementation of these
kernels in the context of QE. Finally, the machine
learning platform used for implementing the QE
systems will be presented.

3.1 Kernels for Quality Estimation

A kernel function computes the similarity between
two structural representations without requiring
the identification of the entire feature space (Mos-
chitti, 2006a). To achieve this, the scalar prod-
uct between vectors of substructure counts is com-
puted in a vector space with a possibly infinite
number of dimensions (Nguyen et al., 2009). Dif-
ferent kernel functions, depending on the type of
structural input data they require, have been pro-
posed including sequence, tree or graphs kernels.
Tree kernels make use of tree representations for
their computation, while sequence kernels calcu-
late the similarity between the input sequence rep-
resentations based on the number of common sub-
sequences they share.

In the case of tree kernels, a series of algo-
rithms have been proposed, e.g. in Collins and
Duffy (2001) or Moschitti (2006a), based on the
type of tree fragments (e.g. subsets, subtrees or
partial trees) they take into consideration in their
computation. On the other hand, sequence kernels
have also been extensively studied in Bunescu and
Mooney (2005) or Nguyen et al. (2009).

In this paper, we focus on the Partial Tree Ker-
nel (Moschitti, 2006a) and the Subsequence Ker-
nel (Bunescu and Mooney, 2005). The Partial Tree
Kernel (PTK) was chosen because it is more flex-
ible than the subtree or subset kernels in its calcu-
lation by taking partial subtrees into account. The
Subsequence Kernel (SK) uses a dynamic pro-
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.408 0.145 0.416 0.143 0.413 0.144 0.422 0.143
SK src+mt 0.481 0.139 0.477 0.138 0.484 0.139 0.480 0.136
SK src+mt+mtbk 0.491 0.138 0.496 0.137 0.493 0.138 0.497 0.137
PTK src 0.449 0.137 0.452 0.138 0.459 0.137 0.463 0.137
PTK src+mt 0.495 0.133 0.499 0.133 0.50 0.133 0.505 0.132
PTK src+mt+mtbk 0.503 0.133 0.505 0.133 0.506 0.133 0.509 0.133
(PTK src+mt) + (SK src+mt) 0.488 0.137 0.487 0.136 0.490 0.137 0.488 0.136
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.499 0.136 0.503 0.135 0.50 0.136 0.504 0.135
Baseline WMT 0.169 0.146

Table 1: Evaluation results for the DE-EN dev set.

baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.433 0.141 0.440 0.139 0.437 0.141 0.443 0.139
SK src+mt 0.478 0.138 0.483 0.137 0.480 0.138 0.484 0.139
SK src+mt+mtbk 0.466 0.142 0.478 0.140 0.467 0.142 0.479 0.140
PTK src 0.450 0.136 0.456 0.135 0.458 0.136 0.465 0.135
PTK src+mt 0.506 0.132 0.523 0.130 0.510 0.132 0.537 0.130
PTK src+mt+mtbk 0.491 0.137 0.501 0.137 0.493 0.137 0.503 0.137
(PTK src+mt) + (SK src+mt) 0.493 0.136 0.502 0.135 0.494 0.136 0.503 0.135
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.478 0.141 0.488 0.140 0.479 0.141 0.489 0.140
Baseline WMT 0.260 0.140

Table 2: Evaluation results for the DE-EN test set.

gramming approach to determine the number of
common patterns between the two input sentences.
In our experiments, the patterns taken into account
were composed of the lexical items.

In order to use the tree kernel functions, the
source and the target sentences were parsed us-
ing the Bohnet graph-based dependency parser
(Bohnet, 2010), which was chosen because of its
high accuracy. The data was first preprocessed by
performing lemmatization and pos-tagging. Pub-
licly available 1 pre-trained models were used for
analyzing the source, target and back-translation
sentences.

For learning using the Partial Tree Kernel, a
transformation of the dependency parse tree is
required, as introduced in Croce et al. (2011).
We followed the lexical-centered-tree approach,
where the grammatical relation and the pos-tag are
encoded as the rightmost children of a dependency
tree node. In the case of sequence kernels, the
only preprocessing step applied was the tokeniza-
tion of the input sentences. In order to investigate
if prior lemmatization of the input sentences influ-
ences the results, we created two variants for each
structural representation: an exact one containing
the actual lexical items and a simplified non-exact

1https://code.google.com/archive/p/mate-
tools/downloads

one consisting of their corresponding lemmas.
Furthermore, we incorporated a back-

translation of the target sentence as an additional
structural input representation for both the tree
kernels and the sequence kernels. The back-
translation was obtained using the free online
Google Machine Translation system 2. We also
exploited the full capability of the kernel functions
by utilizing their explicit scores when applied
on the source and back-translation sentences.
We computed the scores for both the non-exact
representations, and the exact ones. The scores
were normalized using the formula from Croce
et al. (2011)

score =
K(T1, T2)√

K(T1, T1) ? K(T2, T2)

with T1 and T2 denoting the structural represen-
tations and K the type of kernel function applied.

3.2 KeLP (Kernel-based Learning Platform)
In our implementation, we applied the Partial
Tree Kernel3 and the Sequence Kernel 4 together
with the epsilon-regression SVM implementations
made available in the KeLP package (Filice et al.,
2015b) (Filice et al., 2015a). KeLP (Kernel-based

2https://translate.google.com
3based on (Moschitti, 2006a)
4based on (Bunescu and Mooney, 2005)
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.446 0.137 0.434 0.140 0.450 0.137 0.436 0.140
SK src+mt 0.496 0.133 0.491 0.134 0.499 0.133 0.493 0.134
SK src+mt+mtbk 0.508 0.131 0.497 0.134 0.499 0.133 0.499 0.137
PTK src 0.467 0.134 0.469 0.134 0.476 0.134 0.477 0.133
PTK src+mt 0.516 0.130 0.524 0.129 0.480 0.134 0.530 0.129
PTK src+mt+mtbk 0.520 0.130 0.523 0.130 0.524 0.130 0.526 0.130
(PTK src+mt) + (SK src+mt) 0.508 0.131 0.516 0.132 0.510 0.131 0.518 0.132
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.515 0.131 0.515 0.132 0.516 0.131 0.516 0.132
Baseline WMT 0.359 0.140

Table 3: Evaluation results for the EN-DE dev set. The highlighted numbers correspond to the systems
submitted to the shared task.

Learning Platform) is a Java Machine Learning
library that provides the venue for implementing
kernel based machine learning algorithms together
with kernel functions. KeLP provides built-in sup-
port for multiple vectorial or structured data rep-
resentations, which can be leveraged at the same
time by combining different kernels into a single
model. The package has a series of advantages,
among them platform-independence, flexibility of
use and its modularity that makes it easily exten-
sible. The training of the QE prediction models
was performed using the Support Vector Machine
epsilon-Regression implementation with default
parameters from the KeLP package. For the base-
line systems a radial basis function (rbf) kernel
was chosen, while for the other implemented QE
systems the linear combination between the base-
line features rbf kernel and the additional struc-
tural kernels was used.

4 Evaluation and results

4.1 Experimental setup

The evaluation was performed using the datasets
released for the QE sentence-level shared task by
the Second Conference On Machine Translation
(WMT17) 5. The data consists of tuples, contain-
ing the source segment, the target sentence and
a manually post-edited version of the target sen-
tence, together with their associated post-editing
score.

The WMT17 dataset is composed of both
English-German and German-English tuples. The
English-German dataset, pertaining to the IT do-
main, consists of 23000 tuples for training, with
additional 1000 instances for development. Two
sets, comprised of 2000 units each, were made

5http://www.statmt.org/wmt17/quality-estimation-
task.html

available for testing. On the other hand, the
German-English dataset provides 25000 tuples for
training, 1000 units for development and a test
set consisting of 2000 instances, with the gen-
eral domain categorized as Pharmaceutical. The
QE baseline systems used for evaluation are based
on the sets of 17 baseline features made avail-
able by the QE sentence-level shared task. They
consist of surface features (e.g the number of to-
kens/punctuation marks in the source sentence),
language model features (e.g LM probability of
the source/target sentences), but also n-gram based
features (e.g percentage of unigrams in quartile 4
of frequency (higher frequency words) in a corpus
of the source language).

4.2 Results

The systems were evaluated based on their pre-
dicted scores using Pearson’s correlation coeffi-
cient and the Mean Average Error (MAE), with
the former being chosen as the primary method
of evaluation for the WMT17 sentence-level QE
task. We experimented with different model com-
binations and the results of the evaluation are pre-
sented in the tables that follow, where we have
highlighted our submissions to the sentence level
shared task. To better distinguish between models,
the following QE system notation scheme was uti-
lized: [Kernel [level]], where Kernel identifies the
type of kernel used: PTK or SK and level repre-
sents the input type of sentence the kernel was ap-
plied to: source (marked with src), target (marked
with mt) and back-translated target (marked with
mtbk). The linear combination between the dif-
ferent kernel functions was marked with the plus
sign. The systems can be categorized according to
multiple criteria. The first one considers the pres-
ence of the new kernel features, which divides the
systems into baseline features and baseline+new
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.448 0.131 0.443 0.132 0.456 0.131 0.451 0.132
SK src+mt 0.506 0.126 0.490 0.127 0.510 0.125 0.494 0.126
SK src+mt+mtbk 0.510 0.125 0.498 0.126 0.513 0.125 0.500 0.126
PTK src 0.461 0.129 0.439 0.130 0.474 0.128 0.452 0.129
PTK src+mt 0.508 0.124 0.500 0.124 0.515 0.124 0.508 0.123
PTK src+mt+mtbk 0.511 0.124 0.508 0.124 0.516 0.123 0.514 0.124
(PTK src+mt) + (SK src+mt) 0.517 0.125 0.508 0.125 0.520 0.126 0.511 0.125
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.522 0.124 0.515 0.124 0.524 0.124 0.517 0.124
Baseline WMT 0.345 0.136

Table 4: Evaluation results for the EN-DE 2016 test set

baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.422 0.138 0.420 0.138 0.427 0.138 0.427 0.137
SK src+mt 0.482 0.132 0.470 0.133 0.485 0.132 0.473 0.133
SK src+mt+mtbk 0.494 0.131 0.482 0.132 0.495 0.131 0.483 0.132
PTK src 0.444 0.133 0.440 0.136 0.452 0.132 0.449 0.133
PTK src+mt 0.496 0.129 0.493 0.129 0.502 0.129 0.499 0.129
PTK src+mt+mtbk 0.504 0.129 0.505 0.129 0.508 0.129 0.509 0.128
(PTK src+mt) + (SK src+mt) 0.497 0.131 0.494 0.131 0.499 0.131 0.496 0.131
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.508 0.130 0.506 0.130 0.509 0.130 0.508 0.130
Baseline WMT 0.387 0.135

Table 5: Evaluation results for the EN-DE 2017 test set.

features systems. The second criterion is repre-
sented by the presence of the lemmatization in
the pre-processing pipeline of the input sentences,
which partitions the systems into exact and not ex-
act ones.

A series of preliminary experiments was con-
ducted which indicated that strictly structural ker-
nel based methods could not capture all the rele-
vant features for constructing a high performing
QE system. Therefore, a combination between
the baseline rbf kernel with additional structural
kernels was implemented for the reported QE sys-
tems.

We can notice that all the systems, correspond-
ing to both language pairs outperformed the base-
line systems in terms of Pearson correlation. Of
particular interest are the systems making use of
the new kernel features, which succeeded in sur-
passing the corresponding systems that only used
the baseline features.

The results also show that the addition of the
back-translation as additional input data, proved
on average beneficial for improving the correla-
tion scores over systems that make use of only the
source and target sentences as input data for the
kernel functions.

In addition, we can observe that the sequence
kernels based systems are highly performant in

terms of Pearson’s coefficient, albeit slightly
worse on average than the tree kernels based im-
plementations. This is a very important aspect, as
the integration of sequence kernels into QE sys-
tems does not require additional external tools and
therefore makes them well suited for low-resource
language pairs, that might lack high-quality syn-
tactic tools like parsers or taggers. Moreover, by
employing a sequence kernel, the parsing of MT
output is effectively bypassed. This constitutes an
advantage as the parsing of target sentences often
represents a challenging task due to the ungram-
maticality of the MT generated output.

5 Conclusions and future work

In this paper, we presented our submission to the
sentence level QE task, based on sequence and
tree kernels. We have also investigated the perfor-
mance of additional kernel-based features, as well
as the benefit of incorporating a back-translation
of the machine translation output as an additional
input data representation, which to our knowledge
has not been studied before. The results indicate
that both ideas contribute useful additions to the
baseline systems. We have also demonstrated that
sequence kernels are a high performing method for
predicting the quality of MT translations, that have
the advantage of not requiring additional resources
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for their computation.
We plan to further extend the current work by

using constituency trees besides dependency trees
for the computation of the tree kernels. We also
plan to investigate if the choice of the MT system
for the back-translation, affects the evaluation re-
sults. Lastly, more combination schemes between
the tree and sequence kernels will be explored to-
gether with additional datasets and language pairs.
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Abstract

In this paper, we present a two-stage neu-
ral quality estimation model that uses mul-
tilevel task learning for translation quality
estimation (QE) at the sentence, word, and
phrase levels. Our approach is based on
an end-to-end stacked neural model named
Predictor-Estimator, which has two stages
consisting of a neural word prediction
model and neural QE model. To efficiently
train the two-stage model, a stack prop-
agation method is applied, thereby en-
abling us to jointly learn the word pre-
diction model and QE model in a sin-
gle learning mode. In addition, we de-
ploy multilevel task learning with stack
propagation, where the training examples
available for all QE subtasks (i.e., sen-
tence/word/phrase levels) are used to train
a Predictor-Estimator for a specific sub-
task. All of our submissions to the QE
task of WMT17 are ensembles that com-
bine a set of neural models trained under
different settings of varying dimensionali-
ties and shuffling training examples, even-
tually achieving the best performances for
all subtasks at the sentence, word, and
phrase levels.

1 Introduction

In this paper, we describe the two-stage end-to-
end neural models submitted to the Shared Task
on Sentence/Word/Phrase-Level Quality Estima-
tion (QE task) at the 2017 Conference on Ma-
chine Translation (WMT17). The task aims at es-
timating quality scores/categories for an unseen
translation without a reference translation at var-
ious granularities (i.e., sentence/word/phrase lev-
els) (Specia et al., 2013).

Our neural network-based models for
sentence/word/phrase-level QE are based on
Predictor-Estimator architecture (Kim et al.,
2017; Kim and Lee, 2016), which is a two-stage
end-to-end neural QE model. In this submission
to WMT 2017, our Predictor-Estimator model is
further advanced by extensively applying a stack
propagation method (Zhang and Weiss, 2016) in
order to efficiently train the two-stage model.

The Predictor-Estimator architecture (Kim
et al., 2017; Kim and Lee, 2016) is the two-stage
neural QE model (Figure 1) consisting of two
types of stacked neural models: 1) a neural word
prediction model (i.e., word predictor) trained
from additional large-scale parallel corpora and
2) a neural QE model (i.e., quality estimator)
trained from quality-annotated noisy parallel
corpora called QE data. The Predictor-Estimator
architecture uses word prediction as a pre-task
for QE. Kim et al. (2017) showed that word
prediction is helpful for improving the QE per-
formance. In the first stage, the word predictor,
which is based on a bidirectional and bilingual
recurrent neural network (RNN) language model
– the modification of the attention-based RNN
encoder-decoder (Bahdanau et al., 2015; Cho
et al., 2014) – predicts a target word conditioned
with unbounded source and target contexts. QE
feature vectors (QEFVs) are the approximated
knowledge transferred from word prediction to
QE. In the second stage, QEFVs are used as
inputs to the quality estimator for estimating
sentence/word/phrase-level translation quality.

Stack propagation (Zhang and Weiss, 2016) is a
learning method for efficient joint learning that en-
ables backpropagation down the stacked models.
Zhang and Weiss (2016) applied stack propaga-
tion for stacked part-of-speech (POS) tagging and
parsing models by alternating between stochas-
tic updates to POS tagging or parsing objectives,
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𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
(𝒙𝒙𝟏𝟏,⋯ ,𝒙𝒙𝒊𝒊,⋯ ,𝒙𝒙𝑻𝑻𝑿𝑿)

𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
(𝒚𝒚𝟏𝟏,⋯ ,𝒚𝒚𝒋𝒋,⋯ ,𝒚𝒚𝑻𝑻𝒀𝒀)

𝐐𝐐𝐐𝐐 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
(𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆/𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘/𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍) 

𝐐𝐐𝐐𝐐 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗
(𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝟏𝟏,⋯ ,𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝒋𝒋,⋯ ,𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝑻𝑻𝒀𝒀)

𝐑𝐑𝐑𝐑𝐑𝐑-𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 
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Figure 1: Two-stage Predictor-Estimator architec-
ture (Kim et al., 2017).

where continuous hidden layer activations of the
POS tagger network are used as an input to the
parser network.

We applied the Predictor-Estimator architec-
ture to the sentence/word/phrase-level QE task of
WMT17. In the original Predictor-Estimator ar-
chitecture proposed by Kim et al. (2017), the word
predictor and quality estimator are trained individ-
ually. As a result, the backpropagation in train-
ing the quality estimator does not go down for
the word predictor network. Because there ex-
ists a continuous and differentiable link between
the stacked word predictor and quality estimator,
we used stack propagation to jointly learn two-
stage models in the Predictor-Estimator. Further-
more, we deployed multilevel task learning with
stack propagation, where a task-specific Predictor-
Estimator is trained by using not only the task-
specific training examples but also all other train-
ing examples of QE subtasks. Finally, all of our
submissions for the QE task of WMT17 were
ensembles that combine a set of neural models
trained under different settings of varying dimen-
sionalities and shuffled training examples.

2 Improving Predictor-Estimator with
Stack Propagation

In this section, we describe the three types of
Predictor-Estimators using stack propagation: 1)
the base model (PredictorEstimator), 2) Predictor-
Estimator using stack propagation for a single-
level task (PredictorEstimator + (SingleLevel) Stackprop),

and 3) Predictor-Estimator using multilevel task
learning with stack propagation (PredictorEstimator

+ MultiLevel Stackprop).

2.1 Base Model
Our base model is the original Predictor-
Estimator, where a word predictor and qual-
ity estimator are trained individually. We
used the Pre&Post-QEFV/Bi-RNN model, which
showed the best performance among the Predictor-
Estimator models presented by Kim et al. (2017).
The Pre&Post-QEFV/Bi-RNN model is a two-
stage model that uses Pre&Post-QEFV extracted
from the word predictor and Bi-RNN applied in
the quality estimator. Pre&Post-QEFV is the sum-
mary representation in the word predictor net-
works and involves approximating the transferred
knowledge from each target word prediction. This
consists of the word prediction-based weight-
inclusive indirect representation (i.e., Pre-QEFV)
and direct hidden state (i.e., Post-QEFV).

2.2 Using Stack Propagation
Because the Predictor-Estimator architecture has
a continuous and differentiable link between the
stacked word predictor and quality estimator, al-
lowing backpropagation from the quality estima-
tor to the word predictor is a valuable approach. To
jointly learn the two-stage models in the Predictor-
Estimator, stack propagation is applied by alter-
nating between stochastic updates to word predic-
tion or QE objectives, thus performing backpropa-
gation down from the quality estimator to the word
predictor (Figure 2).

2.3 Using Multilevel Task Learning with
Stack Propagation

We implemented multilevel task learning with
stack propagation that uses the training ex-
amples available for all QE subtasks (sen-
tence/word/phrase level) to train a task-specific
Predictor-Estimator. There are mutual com-
mon parts in the Predictor-Estimator networks for
sentence/word/phrase-level QE: 1) all of the word
predictor networks and 2) input parts and hidden
states of the quality estimator networks, except for
the output parts at each level. In multilevel task
learning with stack propagation, these common
parts of the task-specific Predictor-Estimator net-
works are trained by using not only task-specific
training examples but also all of the other training
examples of QE subtasks.
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Figure 2: Applied stack propagation (Zhang and Weiss, 2016) to Predictor-Estimator architecture by
alternating stochastic updates.

This approach is based on the idea that QE
at all levels has a common origin because qual-
ity annotations at each level of QE data1 are ob-
tained by comparing the same post-edited tar-
get references with the same target translations
to calculate the human-targeted translation edit
rate (HTER) (Snover et al., 2006). By using
multilevel task learning with stack propagation,
mutually beneficial relationships can be learned
between each level. We alternate not only be-
tween stochastic updates to word prediction or
QE objectives but also between stochastic up-
dates to sentence/word/phrase-level QE objectives
for jointly learning mutual common parts of the
Predictor-Estimator network2.

3 Experimental Results

3.1 Experimental settings
We evaluated our models for the WMT17
QE task of sentence/word/phrase-level English-
German and German-English. To train our two-
stage models, we used QE data for the WMT17
QE task (Specia and Logacheva, 2017) and par-

1QE data consist of source sentences, target translations
(not references), and their target quality annotations for sen-
tence/word/phrase levels.

2An original phrase-level Predictor-Estimator and orig-
inal word-level Predictor-Estimator have different architec-
tures in that the input of the former is phrase-level QEFV,
which is the average of its constituent word-level QEFVs.
However, in multilevel task learning with stack propaga-
tion for phrase-level QE, we use a word-level Predictor-
Estimator architecture. In the word-level Predictor-Estimator
for phrase-level QE, if any word in the phrase boundary
is tagged as ‘BAD,’ the output of the phrase level has a
‘BAD’ tag, which exactly corresponds with the purpose of
the phrase-level QE.

allel corpora including the Europarl corpus, com-
mon crawl corpus, news commentary, rapid cor-
pus of EU press releases for the WMT17 transla-
tion task3, and src-pe (source sentences-their tar-
get post-editions) pairs for the WMT17 QE task.
All Predictor-Estimator models were initialized
with a word predictor and quality estimator that
were pre-trained individually.

3.2 Results of the Single Predictor-Estimator
Models

For a single Predictor-Estimator model, we used
one type of dimensionality settings4.

Table 1 presents the experimental results for
the single Predictor-Estimator models with the
English-German QE development set at the sen-
tence, word, and phrase levels. Among the three
types of models, the Predictor-Estimator using
multilevel task learning with stack propagation
consistently exhibited the best performance in all
of our runs. Because this was the most sophis-
ticated among our three types of models, we be-
lieve that applying more advanced approaches to
Predictor-Estimator brings further improvements.
The base model, which was the simplest Predictor-
Estimator model, exhibited somewhat lower per-
formance than others. The models using stack
propagation for sentence/word/phrase-level QE
consistently performed better than the base mod-
els without stack propagation. This result means

3http://www.statmt.org/wmt17/translation-task.html
4The vocabulary size was 70,000, the word embedding

dimensionality was 500, the size of the hidden units of the
word predictor was 700, and the size of the hidden units of
the quality estimator was 100.

564



Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6436 0.1125 0.1582 0.6851 0.1190
+ (SingleLevel) Stackprop 0.6476 0.1122 0.1567 0.6957 0.1209
+ MultiLevel Stackprop 0.6785 0.1047 0.1502 0.7267 0.1234

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5104 0.5747 0.8881
+ (SingleLevel) Stackprop 0.5335 0.5906 0.9034
+ MultiLevel Stackprop 0.5374 0.6018 0.8930

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5262 0.6367 0.8264
+ (SingleLevel) Stackprop 0.5631 0.6674 0.8438
+ MultiLevel Stackprop 0.5664 0.6697 0.8457

Table 1: Results of the single Predictor-Estimator models on the WMT17 En-De dev set.

Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6375 0.1094 0.1480 0.6665 0.1138
+ (SingleLevel) Stackprop 0.6377 0.1092 0.1473 0.6698 0.1149
+ MultiLevel Stackprop 0.6599 0.1057 0.1450 0.6914 0.1188

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5086 0.5768 0.8818
+ (SingleLevel) Stackprop 0.5203 0.5898 0.8822
+ MultiLevel Stackprop 0.5287 0.5951 0.8883

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5116 0.6227 0.8216
+ (SingleLevel) Stackprop 0.5512 0.6522 0.8452
+ MultiLevel Stackprop 0.5527 0.6523 0.8473

Table 2: Results of the single Predictor-Estimator models on the WMT17 En-De test set.

that stack propagation is advantageous for efficient
joint learning. The use of multilevel task learning
with stack propagation for sentence-level QE sig-
nificantly improved the QE performance. The use
of single-level stack propagation for word/phrase-
level QE also significantly improved the QE per-
formance.

Tables 2-3 present the experimental results
of the single Predictor-Estimator models for the
English-German and German-English QE test set
at the different levels.

3.3 Results of Ensembles of Multiple
Instances

To develop ensemble-based submissions for the
WMT17 QE task, we used two types of single
models: the simplest (base model) and most so-
phisticated (Predictor-Estimator using multilevel
task learning with stack propagation).

Martins et al. (2016) combined 15 instances of
neural models to make ensembles; they used three
types of neural models and trained five instances
for each type by using different data shuffles.

In our experiments, we made ensembles of
multiple instances trained under different set-

tings of varying dimensionalities and shuffled
training examples for the two selected models
(i.e., the simplest and the most sophisticated
single models). We averaged the predicted scores
from each instance for producing the ensemble
results. The ensembles for the simplest single
model were made by averaging 15 predictions
from each single model with five types of di-
mensionality settings5 to produce three trained
instances with the different shuffling training
examples, called PredictorEstimator-Ensemble6.

51) The vocabulary size was 70,000 words, the word em-
bedding dimensionality was 500, the size of the hidden units
of the word predictor was 700, and the size of the hidden units
of the quality estimator was 100. 2) The vocabulary size was
70,000 words, the word embedding dimensionality was 500,
the size of the hidden units of the word predictor was 700,
and the size of the hidden units of the quality estimator was
150. 3) The vocabulary size was 100,000 words, the word
embedding dimensionality was 700, the size of the hidden
units of the word predictor was 1000, and the size of the hid-
den units of the quality estimator was 100. 4) The vocabulary
size was 100,000 words, the word embedding dimensionality
was 700, the size of the hidden units of the word predictor
was 1000, and the size of the hidden units of the quality es-
timator was 150. 5) The vocabulary size was 100,000 words,
the word embedding dimensionality was 700, the size of the
hidden units of the word predictor was 1000, and the size of
the hidden units of the quality estimator was 200.

6In the submissions for WMT17 QE task,
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Sentence Level Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
PredictorEstimator 0.6826 0.0987 0.1428 0.6065 0.1010
+ (SingleLevel) Stackprop 0.6888 0.0977 0.1458 0.6202 0.1026
+ MultiLevel Stackprop 0.6985 0.0952 0.1461 0.6408 0.1039

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.4864 0.5259 0.9249
+ (SingleLevel) Stackprop 0.5008 0.5361 0.9342
+ MultiLevel Stackprop 0.5051 0.5411 0.9334

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑
PredictorEstimator 0.5069 0.5674 0.8934
+ (SingleLevel) Stackprop 0.5143 0.5671 0.9068
+ MultiLevel Stackprop 0.5246 0.5829 0.8999

Table 3: Results of the single Predictor-Estimator models on the WMT17 De-En test set.

Sentence Level (Scoring Variant) Pearson’s r ↑ MAE ↓ RMSE ↓ Rank

PredictorEstimator-Ensemble 0.6731 0.1067 0.1412 2
PredictorEstimator-MultiLevel-Ensemble 0.6891 0.1016 0.1390
PredictorEstimator-Combined-MultiLevel-Ensemble 0.6954 0.1019 0.1371 1
BASELINE 0.397 0.136 0.175

Sentence Level (Ranking Variant) Spearman’s ρ ↑ DeltaAvg ↑ Rank

PredictorEstimator-Ensemble 0.7029 0.1198 2
PredictorEstimator-MultiLevel-Ensemble 0.7194 0.1221
PredictorEstimator-Combined-MultiLevel-Ensemble 0.7253 0.1232 1
BASELINE 0.425 0.0745

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5429 0.6069 0.8945 5
PredictorEstimator-MultiLevel-Ensemble 0.5602 0.6210 0.9021
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5679 0.6283 0.9039 1
BASELINE 0.361 0.407 0.886

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5492 0.6518 0.8426 2
PredictorEstimator-MultiLevel-Ensemble 0.5808 0.6728 0.8633
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5859 0.6787 0.8633 1
BASELINE 0.327 0.402 0.814

Table 4: Results of ensembles of multi-instance Predictor-Estimator models on the WMT17 En-De test
set.

Sentence Level (Scoring Variant) Pearson’s r ↑ MAE ↓ RMSE ↓ Rank

PredictorEstimator-Ensemble 0.7146 0.0942 0.1359 2
PredictorEstimator-MultiLevel-Ensemble 0.7170 0.0907 0.1359
PredictorEstimator-Combined-MultiLevel-Ensemble 0.7280 0.0911 0.1332 1
BASELINE 0.441 0.128 0.175

Sentence Level (Ranking Variant) Spearman’s ρ ↑ DeltaAvg ↑ Rank

PredictorEstimator-Ensemble 0.6327 0.1044 2
PredictorEstimator-MultiLevel-Ensemble 0.6550 0.1061
PredictorEstimator-Combined-MultiLevel-Ensemble 0.6542 0.1064 1
BASELINE 0.45 0.0681

Word Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5160 0.5516 0.9356 3
PredictorEstimator-MultiLevel-Ensemble 0.5271 0.5609 0.9398
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5347 0.5687 0.9402 1
BASELINE 0.342 0.365 0.939

Phrase Level F1-mult ↑ F1-BAD ↑ F1-OK ↑ Rank

PredictorEstimator-Ensemble 0.5428 0.5990 0.9062 2
PredictorEstimator-MultiLevel-Ensemble 0.5490 0.6032 0.9101
PredictorEstimator-Combined-MultiLevel-Ensemble 0.5611 0.6150 0.9122 1
BASELINE 0.360 0.397 0.907

Table 5: Results of ensembles of multi-instance Predictor-Estimator models on WMT17 De-En test set.
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Ensembles for the most sophisticated single
model were made by averaging 15 predictions
yielded from each single model with three
types of dimensionality settings7 to produce five
trained instances with different shuffling training
examples, called PredictorEstimator-MultiLevel-
Ensemble. We also created an ensemble that
combines both PredictorEstimator-Ensemble
and PredictorEstimator-MultiLevel-Ensemble,
called PredictorEstimator-Combined-MultiLevel-
Ensemble.

Tables 4-5 present the experimental re-
sults for the ensembles of multi-instance
Predictor-Estimator models with the English-
German/German-English test set for sentence-
/word-/phrase-level QE8. In all of our runs,
PredictorEstimator-Combined-MultiLevel-
Ensemble exhibited the best performance and was
ranked first for all subtasks at the different levels
for the WMT17 QE task.

4 Conclusion

We presented a two-stage end-to-end neural QE
model that uses multilevel task learning with
stack propagation for sentence/word/phrase-level
QE. We used the Predictor-Estimator architec-
ture (Kim et al., 2017; Kim and Lee, 2016)
for sentence/word/phrase-level QE. We applied
stack propagation (Zhang and Weiss, 2016) to
the Predictor-Estimator architecture for efficient
joint learning. Finally, we deployed multilevel
task learning with stack propagation to use the
training examples available for all QE subtasks to
train a task-specific Predictor-Estimator. We de-
veloped ensembles by combining a set of neural
models trained under different settings of vary-
ing dimensionalities and shuffling training exam-
ples. Our ensemble-based submissions achieved

PredictorEstimator-Ensemble was denoted as
PredictorEstimator-SingleLevel-Ensemble.

71) The vocabulary size was 70,000 words, the word em-
bedding dimensionality was 500, the size of the hidden units
of the word predictor was 700, and the size of the hidden units
of the quality estimator was 100. 2) The vocabulary size was
70,000 words, the word embedding dimensionality was 500,
the size of the hidden units of the word predictor was 700, and
the size of the hidden units of the quality estimator was 150.
3) The vocabulary size was 70,000 words, the word embed-
ding dimensionality was 500, the size of the hidden units of
the word predictor was 700, and the size of the hidden units
of the quality estimator was 200.

8PredictorEstimator-Combined-MultiLevel-Ensemble
and PredictorEstimator-Ensemble were our two submissions
for the WMT17 QE task.

the best performances for all subtasks at the vari-
ous levels for the WMT17 QE task.
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André F. T. Martins
Unbabel & Instituto de Telecomunicações

Lisbon, Portugal
andre.martins@unbabel.com

Fabio N. Kepler
Unbabel

University of Pampa, Alegrete, Brazil
kepler@unbabel.com
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Abstract

This paper presents the contribution of the
Unbabel team to the WMT 2017 Shared
Task on Translation Quality Estimation.
We participated on the word-level and
sentence-level tracks. We describe our
two submitted systems: (i) STACKEDQE,
a “pure” QE system, trained only on
the provided training sets, which is a
stacked combination of a feature-rich se-
quential linear model with a neural net-
work, and (ii) FULLSTACKEDQE, which
also stacks the predictions of an automatic
post-editing system, trained on additional
data. When evaluated on the English-
German and German-English datasets,
FULLSTACKEDQE achieved word-level
F MULT
1 scores of 56.6% and 52.9%, and

sentence-level correlation Pearson scores
of 64.1% and 62.6%, respectively. Our
system ranked second in both tracks, be-
ing statistically indistinguishable from the
best system in the word-level track.

1 Introduction

Quality estimation is the task of evaluating a trans-
lation system’s quality without access to reference
translations (Blatz et al., 2004; Specia et al., 2013).
This paper describes the contribution of the Unba-
bel team to the Shared Task on Sentence-Level and
Word-Level Quality Estimation (QE Tasks 1 and
2) at the 2017 Conference on Statistical Machine
Translation (WMT 2017).

In the word-level task, the goal is to predict the
word-level quality of machine translated text, by
assigning a label of OK or BAD to each word in

the translation. The sentence-level task attempts
to predict the HTER of each sentence, along with
a ranking of the sentences. Two language pairs
and domains are considered: English-German (IT
domain) and German-English (medical domain).

Our submission is largely based on the approach
that we have recently proposed in Martins et al.
(2017), which ensembles a “pure” quality estima-
tion system with predictions derived from an au-
tomatic post-editing system. The focus was on
developing a word-level system, and to use the
word label predictions to predict the sentence-
level HTER.

Our system architecture is described in full de-
tail in the following sections. We first describe
our “pure” QE system (§2), which consists of a
neural model (NEURALQE) stacked into a lin-
ear feature-rich classifier (LINEARQE). Then, we
train an APE system (using a large amount of arti-
ficial “roundtrip translations”) and adapt it to pre-
dict word-level quality labels (yielding APEQE,
§3). We show that the pure and the APE-based QE
system are highly complementary (§4): our best
system is a stacked combination of LINEARQE,
NEURALQE, and APEQE. By employing a simple
word-to-sentence conversion, we adapt our sys-
tems to sentence-level QE. Overall, we achieve
word-level F MULT

1 scores of 56.6% and 52.9% and
sentence-level Pearson scores of 64.1% and 62.6%
for English-German and German-English, respec-
tively.

The following external resources were used:
part-of-speech tags and extra syntactic depen-
dency information were obtained with Turbo-
Tagger and TurboParser (Martins et al., 2013),1

1Publicly available on http://www.cs.cmu.edu/
˜ark/TurboParser/.
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trained on the Penn Treebank (for English) and on
the version of the German TIGER corpus used in
the SPMRL shared task (Seddah et al., 2014). For
the neural models, we used pre-trained word em-
beddings from Polyglot (Al-Rfou et al., 2013).

For our FULLSTACKEDQE submission, we also
use additional data to train the APE-based QE sys-
tems: for English-German, the set of 500K arti-
ficial roundtrip translations provided by Junczys-
Dowmunt and Grundkiewicz (2016), and, for
German-English, the UFAL Medical Corpus pro-
vided in the WMT17 Biomedical Translation task.

2 Pure Quality Estimation

We use the pure quality estimation system devel-
oped by the Unbabel team and described in Mar-
tins et al. (2017), which consists of an ensemble
of a linear feature-based classifier with a neural
network. We briefly describe the linear (§2.1) and
neural (§2.2) components of our system, as well as
their combination (§2.3). Further details are pre-
sented in Martins et al. (2016, 2017).

2.1 Linear Sequential Model

The linear component of our model is a discrimi-
native feature-based sequential model (called LIN-
EARQE). The system receives as input a tuple
〈s, t,A〉, where s = s1 . . . sM is the source sen-
tence, t = t1 . . . tN is the translated sentence, and
A ⊆ {(m,n) | 1 ≤ m ≤ M, 1 ≤ n ≤ N} is a
set of word alignments. It predicts as output a se-
quence ŷ = y1 . . . yN , with each yi ∈ {BAD, OK}.
This is done as follows:

ŷ = argmaxy

N∑

i=1

w>φu(s, t,A, yi)

+
N+1∑

i=1

w>φb(s, t,A, yi, yi−1). (1)

Above, w is a vector of weights, φu(s, t,A, yi)
are unigram features (depending only on a sin-
gle output label), φb(s, t,A, yi, yi−1) are bigram
features (depending on consecutive output labels),
and y0 and yN+1 are special start/stop symbols.

Table 1 shows the unigram and bigram fea-
tures used in the LINEARQE system. We include
features that depend on the target word and its
aligned source word, as well as the context sur-
rounding them.2 We include also syntactic fea-

2Features involving the aligned source word are replaced
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Figure 1: Architecture of our NEURALQE system.

tures to detect grammatically incorrect construc-
tions. We use features that involve the depen-
dency relation, the head word, and second-order
sibling and grandparent structures. Features in-
volving part-of-speech (POS) tags and syntactic
information are obtained with TurboTagger and
TurboParser (Martins et al., 2013). The feature
weights are learned by running 50 epochs of the
max-loss MIRA algorithm (Crammer et al., 2006),
with regularization constant C ∈ {10−k}4k=1 and
a Hamming cost function placing a higher penalty
on false positives than on false negatives (cFP ∈
{0.5, 0.55, . . . , 0.95}, cFN = 1 − cFP), to account
for the existence of fewer BAD labels than OK la-
bels in the data. These values are tuned on the
development set.

2.2 Neural System
Next, we describe the neural component of our
pure QE system, which we call NEURALQE.

The architecture of NEURALQE is depicted in
Figure 1. We used Keras (Chollet, 2015) to im-
plement our model. The system receives as in-
put the source and target sentences s and t, their
word-level alignments A, and their corresponding
POS tags obtained from TurboTagger. The input
layer follows a similar architecture as QUETCH
(Kreutzer et al., 2015), with the addition of POS
features. A vector representing each target word is
obtained by concatenating the embedding of that
word with those of the aligned word in the source.3

The immediate left and right contexts for source
and target words are also concatenated. We use

by NIL if the target word is unaligned. If there are multiple
aligned source words, they are concatenated into a single fea-
ture.

3For the cases in which there are multiple source words
aligned to the same target word, the embeddings are aver-
aged.
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Features Label Input (referenced by the ith target word)

unigram yi ∧ . . . ∗BIAS
∗WORD, LEFTWORD, RIGHTWORD
∗SOURCEWORD, SOURCELEFTWORD, SOURCERIGHTWORD
∗LARGESTNGRAMLEFT/RIGHT, SOURCELARGESTNGRAMLEFT/RIGHT
∗POSTAG, SOURCEPOSTAG
†WORD+LEFTWORD, WORD+RIGHTWORD
†WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

simple bigram yi ∧ yi−1 ∧ . . . ∗BIAS

rich bigrams yi ∧ yi−1 ∧ . . . all above
yi+1 ∧ yi ∧ . . . WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

syntactic yi ∧ . . . DEPREL, WORD+DEPREL
HEADWORD/POSTAG+WORD/POSTAG
LEFTSIBWORD/POSTAG+WORD/POSTAG
RIGHTSIBWORD/POSTAG+WORD/POSTAG
GRANDWORD/POSTAG+HEADWORD/POSTAG+WORD/POSTAG

Table 1: Features used in the LINEARQE system (see Martins et al., 2016 for a detailed description).
Features marked with ∗ are included in the WMT16 baseline system. Those marked with † were proposed
by Kreutzer et al. (2015).

the pre-trained 64-dimensional Polyglot word em-
beddings (Al-Rfou et al., 2013) for English and
German, and refine them during training. In ad-
dition to this, POS tags for each source and target
word are also embedded and concatenated. POS
embeddings have size 50 and are initialized as de-
scribed by Glorot and Bengio (2010). A dropout
probability of 0.5 is applied to the resulting vector
representations.

The following layers are then applied in se-
quence:

1. Two feed-forward layers of size 400 with rec-
tified linear units (ReLU; Nair and Hinton
(2010));

2. A layer with bidirectional gated recurrent
units (BiGRU, Cho et al. (2014)) of size 200,
where forward and backward vectors are con-
catenated, trained with layer normalization
(Ba et al., 2016);

3. Two feed-forward ReLU layers of size 200;

4. A BiGRU layer of size 100 with identical
configuration to the previous BiGRU;

5. Two more feed-forward ReLU layers of sizes
100 and 50, respectively.

As the output layer, a softmax transformation over
the OK/BAD labels is applied. We provide ablation
experiments in Martins et al. (2017) to validate this
architecture choice.

We train the model with the RMSProp algo-
rithm (Tieleman and Hinton, 2012) by minimiz-
ing the cross-entropy with a linear penalty for BAD

word predictions, as in Kreutzer et al. (2015). We
set the BAD weight factor to 3.0. All hyperparam-
eters are adjusted based on the development set.
Target sentences are bucketed by length and then
processed in batches (without any padding or trun-
cation).

Finally, we also trained 5 independent instances
of NEURALQE with different random initializa-
tions and different data shuffles. We ensemble
these systems by taking the averaged probability
of each word being BAD. Tables 2–3 show the re-
sults. We observe that, for both language pairs, the
neural model outperforms the linear model, and
the ensemble of 5 neural systems achieves an ex-
tra boost (most noticeable in the English-German
dataset).

2.3 Stacking Neural and Linear Models

We now stack the NEURALQE system (§2.2)
into the LINEARQE system (§2.1) as an en-
semble strategy; we call the resulting system
STACKEDQE.

The individual instances of the neural systems
are incorporated in the stacking architecture as dif-
ferent features, yielding STACKEDQE. In total, we
have 5 predictions (probability values given by
each NEURALQE system) for every word in the
training, development and test datasets. These pre-
dictions are plugged as additional features in the
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LINEARQE model. As unigram features, we used
one real-valued feature for every model prediction
at each position, conjoined with the label. As bi-
gram features, we used two real-valued features
for every model prediction at the two positions,
conjoined with the label pair.

For the remainder of this paper, we will take
STACKEDQE as our pure QE system.

3 APE-Based Quality Estimation

To develop our APE-based QE system (APEQE),
we followed a similar approach as the one de-
scribed in Martins et al. (2017), with a few minor
differences, explained below.

Junczys-Dowmunt and Grundkiewicz (2016)
applied neural translation models to the APE prob-
lem, treating different models as components in a
log-linear model, allowing for multiple inputs (the
source s and the translated sentence t) that were
decoded to the same target language (post-edited
translation p). Two systems were considered, one
using s as the input (s → p) and another using
t as the input (t → p). For English-German, we
used the 500K artificial roundtrip translations pro-
vided by the shared task organizers, along with
the original data from the shared task (oversam-
pled 20 times, as in Junczys-Dowmunt and Grund-
kiewicz (2016)). For German-English, we only
considered the s→ p machine translation system,
trained from a subset of the UFAL Medical Cor-
pus provided in the WMT17 Biomedical Transla-
tion task. This subset was obtained through cross-
entropy filtering. For this, we built an in-domain
trigram language model from the English post-
edited training data. We then calculated cross-
entropy scores for the UFAL corpus according to
the language model. We sorted the corpus by in-
creasing cross-entropy and kept the first 500K sen-
tences to be used as additional training data.

To convert the resulting APE systems into
word-level quality estimators, we need to turn the
automatic post-edited sentences into word quality
labels. This is done in a straightforward way by
using the TERCOM software tool (Snover et al.,
2006)4 with the default settings (tokenized, case
insensitive, exact matching only, shifts disabled).
This tool computes the HTER (the normalized edit
distance) between the translated and post-edited
sentence. As a by-product, it aligns the words in
the two sentences, identifying substitution errors,

4http://www.cs.umd.edu/˜snover/tercom.

word deletions (i.e. words omitted by the trans-
lation system), and insertions (redundant words in
the translation). This is mapped deterministically
into OK and BAD labels.

Our approach for the shared task differs from
Martins et al. (2017) in which we skipped the
QE-tuning step when training the log-linear APE
model; instead, we kept the output of the s →
p and the t → p systems, converted each to
word-level quality labels, and then include the two
predictions as additional features in the FULL-
STACKEDQE system, described below. We de-
note the individual systems as APEQE s → p
and APEQE t → p, and the combined system as
FULLSTACKEDQE s, t→ p.

4 Full Stacked System

Finally, we consider a larger stacked system where
we stack both NEURALQE and APEQE into LIN-
EARQE. This mixes pure QE with APE-based QE
systems; we call the result FULLSTACKEDQE.
The procedure is analogous to that described in
§2.3, with extra binary features for the APE-based
word quality label predictions. For training, we
used jackknifing to ensure the predictions on the
training set are not biased.

4.1 Word-Level QE

The performance of the FULLSTACKEDQE sys-
tem on the English-German and German-English
development datasets are shown in Tables 2–3.
For English-German, we compare with the system
from Martins et al. (2017).

For both language pairs, we can see that the
APE-based and the pure QE systems are highly
complementary. For English-German, the full
combination of the linear, neural, and APE-based
systems improves the scores with respect to the
best individual system by about 5.5 points. There
is a small improvement by including also a fea-
ture from APE t → p, in addition to s → p. For
German-English, we observe an improvement of
4.9 points.

4.2 Sentence-Level QE

We followed the same procedure of Martins et al.
(2017) to convert word-level quality predictions to
a sentence-level HTER prediction. For the APE
system, we simply measured the HTER between
the translated sentence t and the predicted cor-
rected sentence p̂. For a pure QE system, we ap-
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F MULT
1 dev F MULT

1 test 2016

Martins et al. (2017) 56.80 57.47

LINEARQE 47.71 48.09
NEURALQE (single) 49.58 49.95
NEURALQE (5-avg) 51.37 51.38
STACKEDQE 52.72 52.89
APEQE (s→ p) 51.43 52.47
APEQE (t→ p) 35.27 37.13
FULLSTACKEDQE (s→ p) 57.18 58.04
FULLSTACKEDQE (s, t→ p) 57.55 58.36

Table 2: Performance of the several word-level
QE systems on the development and WMT16
English-German test datasets.

F MULT
1 dev

LINEARQE 48.07
NEURALQE (single) 49.39
NEURALQE (avg-5) 49.58
STACKEDQE 53.22
APEQE (s→ p) 45.09
FULLSTACKEDQE (s→ p) 58.08

Table 3: Performance of the several word-level
QE systems on the German-English development
dataset.

plied the following word-to-sentence conversion
technique: (i) run a QE system to obtain a se-
quence of OK and BAD word quality labels; (ii)
use the fraction of BAD labels as an estimate for
HTER. Finally, to combine the APE and pure QE
systems toward sentence-level QE, we simply take
the average of the two HTER predictions above.

Table 4 shows the results obtained with our pure
QE system (STACKEDQE), with our APE-based
system (APEQE), and with the combination of the
two (FULLSTACKEDQE). We report also the per-
formance of the system of Martins et al. (2017) for
English-German, for comparison.

5 Final Results

Finally, we show in Tables 5–6 the results ob-
tained in the test set for our two submitted systems,
STACKEDQE and FULLSTACKEDQE, in word-
level and sentence-level quality estimation. As
expected, the inclusion of the predictions made
by the APE system gave a significant boost for
the word-level task (>5 F MULT

1 points for English-
German, and >6 points for German-English) and
for the sentence-level task (>5 Pearson correla-
tion points for English-German, >4 points for
German-English).

6 Conclusions

We have presented the contribution of the Unba-
bel team to the WMT 2017 Shared Task on Trans-
lation Quality Estimation. Our word-level sys-
tem combines a pure quality estimation system,
based on stacking a neural and feature-based lin-
ear model, and an APE-based quality estimation
system, which uses the predictions of an auto-
matic post-editing system to generate additional
features. We applied a simple conversion strategy
to obtain a sentence-level quality estimator based
on the word-level one. The system is evaluated on
two language pairs, English-German and German-
English.
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Abstract

We present a new model for text re-
gression that seamlessly combine engi-
neered features and character-level infor-
mation through deep parallel convolution
stacks, multi-layer perceptrons and multi-
task learning. We use these models to
create the SHEF/CNN systems for the
sentence-level Quality Estimation task of
WMT 2017 and Emotion Intensity Analy-
sis task of WASSA 2017. Our experiments
reveal that combining character-level clues
and engineered features offers notice-
able performance improvements over us-
ing only one of these sources of informa-
tion in isolation.

1 Introduction

Text regression consists in estimating a numeric
label based on information available from the text.
The label can represent any abstract property of
said text: its appropriateness, sentiment, fluency,
simplicity, quality, etc. Due to their wide ap-
plicability in both research and industry, some
of these tasks have been gaining a lot of atten-
tion. These include Quality Estimation and Emo-
tion Intensity Analysis, which are the subjects of
shared tasks held at the WMT 2017 conference1

and WASSA 2017 workshop2 (Mohammad and
Bravo-Marquez, 2017), respectively.

In Quality Estimation (QE), one attempts to es-
timate the quality of a machine translated text
based on the information that can be extracted
from the original sentence and its translation. The
task has many variants, given that the quality of
a translation can be estimated at word, phrase,

1http://www.statmt.org/wmt17
2http://optima.jrc.it/wassa2017

sentence or even document level. Quality esti-
mates can be incorporated in Machine Transla-
tion (MT) decoding or used for re-ranking of top
candidates, for example, allowing for a more in-
telligently guided translation process (Avramidis,
2012), or they can be used to help human transla-
tors decide which automatic translations are worth
post-editing, and which should be re-translated
from scratch (Turchi et al., 2015). Sentence-level
QE is the most popular variant, mostly due the
fact that most modern statistical and neural MT
systems translate one sentence at a time. In this
task, the input is the original-translated sentence
pair and the output is some numeric label that rep-
resents quality. The most commonly used label
is HTER, which measures the human post-editing
effort required to fix the translation in question
(Snover et al., 2006).

As shown in (Bojar et al., 2016), the perfor-
mance of QE approaches submitted to the WMT
shared tasks have steadily improved in recent
years. However, the nature of these approaches
have not changed much: most of the top rank-
ing systems employ well-known regression meth-
ods and extensive feature engineering. Some of
the most notable examples are the RTM systems
of WMT 2014 and 15, which managed to reach
the top of the ranks by employing Referential
Translation Machines trained with SVMs for re-
gression (Bicici, 2016). The LORIA (Langlois,
2015) and YSDA (Kozlova et al., 2016) systems of
WMT 2015 and 2016, respectively, achieved sim-
ilar performance by also pairing SVMs with many
resource-heavy features.

Neural Networks for sentence-level QE were
introduced in WMT 2016 with the SimpleNets
(Paetzold and Specia, 2016) and POSTECH (Kim
and Lee, 2016) systems. While the SimpleNets
system uses sequence-to-label LSTMs to predict
the quality of a translation’s n-grams and then
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combines them, the POSTECH system learns
quality labels at word-level using a sequence-to-
sequence model, and then combines them with
a sequence-to-label model to predict quality at
sentence-level. Though very interesting and dis-
tinct strategies, neither of them managed to out-
perform the best scoring SVM-based approach of
WMT 2016.

In the task of Emotion Intensity Analysis (EIA),
Neural Networks have not yet been successfully
employed. Unlike typical Sentiment Analysis
tasks, which are set up as either binary or multi-
class classification problems that require one to
determine the opinion or sentiment in a given text,
EIA aims at quantifying a certain emotion in a text,
such as fear, anger, joy, sadness, etc. In the Emo-
tion Intensity shared task of SemEval 2016 (Kir-
itchenko et al., 2016), which is the first of its kind,
none of the five systems submitted employ neural
regressors. We were also unable to find any other
contributions outside the SemEval 2016 task that
explore neural approaches to EIA.

Given the volume of opportunities available
when it comes to neural solutions for text re-
gression, we introduce a new neural approach for
the task. We innovate by using deep convolu-
tional networks and multi-task learning to com-
bine character-level information from the texts at
hand with engineered features. Using this ap-
proach, we create the SHEF/CNN systems for the
sentence-level QE task of WMT 2017 and the
Emotion Intensity Analysis task of WASSA 2017.
In what follows, we describe our approach in de-
tail.

2 Overview of Tasks

As previously mentioned, we address two text re-
gression tasks in this paper: the sentence-level
Quality Estimation task of WMT 2017 and Emo-
tion Intensity Analysis task of WASSA 2017. The
next Sections describe each of those tasks.

2.1 Quality Estimation at WMT 2017

In the sentence-level QE task of WMT 2017 par-
ticipants were asked to create systems that pre-
dict the human post-editing effort required to cor-
rect an automatically translated sentence. Train-
ing, development and test sets were provided
for two language pairs: English-German and
German-English. The training and development
sets for both language pairs are composed of

23,000/25,000 and 1,000/1,000 instances, respec-
tively. Each instance is composed of a source
(original) and target (translated) sentence pair, as
well as the target’s manually post-edited version
and an HTER label between 0 and 1 calculated
based on the post-edit. The test set is composed
of 2,000 instances without post-edits nor HTER
labels. For training, development and test sets the
organizers made available a set of 17 baseline fea-
tures.

The task is divided in two sub-tasks: scoring
and ranking. In the scoring task, systems had to
estimate HTER scores and were evaluated through
Pearson correlation. In the ranking task, sys-
tems had to rank the translations in the test set
from highest to lowest quality, and were evaluated
through Spearman correlation. The main differ-
ence between the data provided for the WMT 2017
QE tasks and the data of previous editions is that,
for the first time, the tasks of all QE levels (sen-
tence, word and phrase) contain annotations for
the same set of translations. Because of that, one
can very intuitively employ any variety of multi-
task learning approaches.

2.2 Emotion Intensity at WASSA 2017

Systems submitted to the Emotion Intensity Anal-
ysis task of WASSA 2017 were asked to estimate
the intensity of various emotions felt by authors
while writing tweets. Training, development and
test sets were made available containing four emo-
tions: anger, fear, joy and sadness. The size of the
datasets is illustrated in Table 1.

Emotion Train Dev Test
Anger 857 84 760
Fear 1,147 110 995
Joy 823 79 714
Sadness 786 74 673

Table 1: Dataset sizes for the Emotion Intensity
Analysis task of WASSA 2017

Each instance is composed of a tweet and an in-
tensity label between 0 and 1 of the emotion in
question. Labels were collected through crowd-
sourcing. Systems were evaluated through Pear-
son correlation.

3 Model Architecture

Figure 1 illustrates the neural model architecture
of the SHEF/CNN systems for the QE task of
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WMT 2017. As it can be noticed, the model takes
as input a one-hot character-level representation of
the source and target, as well as a set of engineered
features. As output, our model produces the nu-
meric labels desired.

The model is divided in three main sections:
a pair of deep convolution layer stacks for the
source (original) and target (translated) sentences,
a multi-layer perceptron for the engineered fea-
tures, and a final multi-layer perceptron to com-
bine all this information. The model used for the
EIA task of WASSA 2017 is identical, except that
it only has one set of convolution stacks for the
tweet being analysed.

3.1 Extracting Character-Level Clues

In order to exploit the information at character-
level from the text, we use a convolution archi-
tecture similar to the one introduced by (Kim
et al., 2016), who successfully employ character-
level information for language modelling. First
we transform the one-hot character-level represen-
tation of the sentence into a sequence of charac-
ter embeddings. We then feed them to a series
of parallel one-dimensional convolutions of dif-
ferent window sizes. Each of these convolutions
captures the information of character n-grams of
a given length: a convolution of window size one
addresses unigrams, one with size two addresses
bigrams, and so on. Finally, the resulting values
produced by the convolution filters are passed on
to a one-dimensional max-pooling layer.

In order to capture information at different ab-
straction levels, we stack various convolution and
max-pooling layers for each window size, thus
creating a deep architecture. This deep architec-
ture differs from the one used by (Kim et al., 2016)
in the sense that they apply only one stack of
convolution/max-pooling layers for each window
size. The values produced by the last max-pooling
layer of each window size are then flattened so that
they can be easily concatenated.

The intuition behind using such an architecture
lies in the assumption that sequences of charac-
ters hold important clues with respect to the text’s
properties, such as quality and emotion. In QE,
these clues could be sequences containing mor-
phological errors in words from the source or tar-
get sentences, or sequences in-between tokens of
the target that suggest an ungrammatical segment,
for example. In EIA, these clues can be emo-

tionally charged emojis, curse words, exclamation
marks, etc.

3.2 Incorporating Engineered Features
We complement character-level information with
engineered features, given that the most effective
QE and EIA methods in previous work heavily ex-
ploit them (Kim and Lee, 2016; Kozlova et al.,
2016; Refaee and Rieser, 2016; Wang et al., 2016).
To do so, we apply a simple multi-layer percep-
tron (MLP) over a set of input engineered fea-
tures. This allows to capture abstract relations be-
tween the features provided. The output of the
outermost layer is then concatenated with the flat-
tened character-level information provided by the
remainder of the network.

Finally, we pass the concatenated features and
character-level information to another MLP in or-
der for our model to be able to capture any re-
lations between them. At the very edge of our
model, we include output nodes for as many tasks
as we wish to train our model over.

4 SHEF/CNN Model for QE

As illustrated in Figure 1, the sentence-level QE
model employs one convolution stack for each of
the source and target sides of the translation pair.
We configure the model as follows:

• Embedding size: We train character embed-
dings with 50 dimensions.

• Window range: We use 4 parallel stacks of
convolutions with window sizes from 1 to 4.

• Convolution depth: Each stack contains 4
pairs of convolution/max-pooling layers with 50
convolution filters each and a pool length of 4.

• Feature MLP depth: We stack 2 dense layers
with 50 hidden units over engineered features.

• Final MLP depth: The MLP that combines
convolutions and features is composed of 2
stacked dense layers with 50 hidden units each.

• Engineered feature set: We use the 17 baseline
features provided by the task organizers.

This architecture was selected through experi-
mentation. The output nodes of our multi-task QE
setup predict three values:

• HTER from the sentence-level dataset;
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Figure 1: Architecture of the SHEF/CNN+BASE systems
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• The number of BAD labels from the word-level
dataset; and

• The number of BAD labels from the phrase-
level dataset.

Note that the data from the word and phrase-
level datasets are used as a mere complement to
HTER prediction. It is important to mention that
we also tried predicting the full label sequences
for word and phrase-level, but the results obtained
were not as promising. We train our model until
convergence with Stochastic Gradient Descent and
Mean Squared Error over all outputs jointly.

5 SHEF/CNN Model for EIA

The model used for the EIA task of WASSA 2017
applies only one convolution stack over the tweet
being analysed, given that the task is not charac-
terized by a sentence pair. The window range,
convolution depth, as well as feature and final
MLP depths are identical to the model used for
the WMT 2017 task. We train one model for each
emotion targeted in the shared task: anger, fear,
joy and sadness.

Since the organizers did not provide a set of
baseline features, we produced our own features
using the Stanford Sentiment Treebank (Socher
et al., 2013), which is composed of 239,232 text
segments annotated with respect to their positiv-
ity probability i.e. how likely they are to convey
a positive emotion. The positivity values range
from 0.0 (absolutely negative) to 1.0 (absolutely
positive). Using this data, we extract nine features
from each tweet:

• Minimum, maximum and average positivity of
single words in the tweet;

• Minimum, maximum and average positivity of
bigrams in the tweet; and

• Minimum, maximum and average positivity of
trigrams in the tweet.

Our multi-task learning setup is composed of
two output layers that predict:

• The tweets’ emotion intensity; and

• The tweets’ positivity value.

We first train our models over the sentiment
positivity values from the Stanford Sentiment

Treebank until convergence, then train them over
the emotion intensity training sets of WASSA
2017 until convergence. The training algorithm
and metric used are Stochastic Gradient Descent
and Mean Squared Error, respectively.

6 WMT 2017 Results

We evaluate the performance of four variants of
the SHEF/CNN model:

• SHEF/CNN-F: Uses only the MLP over the en-
gineered features trained over HTER.

• SHEF/CNN-C: Uses only the character-level
convolution stacks trained over HTER.

• SHEF/CNN-C+F: Uses both engineered fea-
tures and character-level information trained
over HTER.

• SHEF/CNN-C+F+M: Uses the same archi-
tecture of SHEF/CNN-C+F, but the model is
trained through multi-task learning over the val-
ues listed in Section 4.

Table 2 illustrates the Pearson, Root Mean
Squared Error (RMSE) and Mean Absolute Er-
ror (MAE) scores for the scoring task, and Spear-
man correlation scores for the ranking task of each
language pair. Boldface values represent the best
scores obtained across SHEF/CNN models. We
also include the results from the official baseline
and from the top performing team (POSTECH).

The results reveal that, although we outper-
form the task baseline for English-German, the
SHEF/CNN models do not offer competitive per-
formance to state-of-the-art QE systems that rely
on resource-heavy strategies. Nonetheless, some
valuable observations can be drawn from the
results. Combining engineered features with
character-level clues yields a more reliable model
than simply using either of them alone, which
suggests that character-level clues can be a valu-
able source of complementary information to en-
gineered features. Our multi-task learning setup
did not improve on the results of our model. We
hypothesize that the secondary output labels could
not offer a significant volume of complementary
information to the model.

7 WASSA 2017 Results

Table 3 illustrates the Pearson and Spearman cor-
relation scores for each emotion. We compare the
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English-German German-English
p MAE RMSE r p MAE RMSE r

POSTECH/MultiLevel 0.714 0.096 0.134 0.710 0.728 0.091 0.133 0.470
POSTECH/SingleLevel 0.686 0.101 0.139 0.690 0.715 0.094 0.136 0.440

Baseline 0.397 0.136 0.175 0.425 0.441 0.128 0.175 0.450

SHEF/CNN-F 0.384 0.176 0.137 0.412 0.092 0.208 0.145 0.034
SHEF/CNN-C 0.374 0.181 0.146 0.393 0.379 0.184 0.148 0.408
SHEF/CNN-C+F 0.416 0.174 0.135 0.441 0.390 0.179 0.136 0.382
SHEF/CNN-C+F+M 0.402 0.178 0.135 0.448 0.350 0.202 0.162 0.380

Table 2: Results for the sentence-level QE task of WMT 2017

Fear Joy Anger Sadness
p r p r p r p r

Prayas 0.732 0.729 0.732 0.710 0.762 0.743 0.765 0.761
Emkay 0.690 0.690 0.705 0.692 0.726 0.703 0.767 0.764
venkatesh-1729 0.728 0.728 0.678 0.654 0.705 0.684 0.749 0.744

Baseline 0.652 0.635 0.654 0.662 0.639 0.615 0.648 0.651

SHEF/CNN-F 0.166 0.153 0.271 0.313 0.222 0.212 0.241 0.240
SHEF/CNN-C 0.217 0.221 0.328 0.302 0.120 0.142 0.259 0.253
SHEF/CNN-C+F 0.293 0.284 0.517 0.510 0.279 0.260 0.323 0.326
SHEF/CNN-C+F+M 0.109 0.096 0.407 0.392 0.311 0.276 0.233 0.228

Table 3: Results for the EIA task of WASSA 2017

performance of all SHEF/CNN variants described
in the previous sections and also include the offi-
cial task baseline and the three top performing ap-
proaches in the EIA task: the Prayas, Emkay and
venkatesh-1729 systems.

The SHEF/CNN models are outperformed by a
noticeable margin by strategies that heavily em-
ploy engineered features and external resources,
such as large databases of emotion intensity la-
bels. Nonetheless, our results reveal the same phe-
nomenon highlighted in our experiments with QE:
for all emotions, combining engineered features
with character-level information yields better per-
formance scores than using only one of these in-
formation sources. This serves as further evidence
that character-level convolutions can be effectively
used as a complement to engineered features.

Our multi-task learning approach only managed
to obtain performance improvements for anger.
We believe this is due to fact that the positivity val-
ues present in the Stanford Sentiment Treebank,
which is used in our multi-task setup, accurately
quantify only the degree with which the reviewer
is pleased, and hence happy, or displeased, and
hence angry. Because the other emotions in the
WASSA 2017 task do not commonly permeate
the act of writing a product review, the multi-task

setup was not able to help the model trained for
them.

8 Conclusions

We introduced a text regression model that uses
deep convolution neural networks and multi-layer
perceptrons to combine the character-level infor-
mation present in texts with the information from
engineered features.

We tested several variants of our model in two
text regression shared tasks: the sentence-level
Quality Estimation task of WMT 2017 and the
Emotion Intensity Analysis task of WASSA 2017.
We found that, although our model is not able
to outperform classic resource-heavy strategies,
combining character-level data with engineered
features results in noticeable performance gains
for both tasks. We also found that, although multi-
task learning can in principle help our model, the
setup must be carefully crafted, otherwise it com-
promises its performance.

We plan to further test with other tasks the hy-
pothesis that character-level convolutions consti-
tute an intuitive way of complementing the per-
formance of typical feature-based text regression
models. We will also test more elaborate convolu-
tion architectures, such as using stacked LSTMs.

580



Acknowledgments

This work was supported by the QT21 project
(H2020 No. 645452).

References
Eleftherios Avramidis. 2012. Comparative quality esti-

mation: Automatic sentence-level ranking of mul-
tiple machine translation outputs. In Proceedings
of 24th COLING. The COLING 2012 Organizing
Committee, pages 115–132.

Ergun Bicici. 2016. Referential translation machines
for predicting translation performance. In Proceed-
ings of the First Conference on Machine Translation.
Association for Computational Linguistics, Berlin,
Germany, pages 777–781.
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Abstract

In this paper the UHH submission to the
WMT17 Metrics Shared Task is presented,
which is based on sequence and tree ker-
nel functions applied to the reference and
candidate translations. In addition we also
explore the effect of applying the ker-
nel functions on the source sentence and
a back-translation of the MT output, but
also on the pair composed of the candi-
date translation and a pseudo-reference of
the source segment. The newly proposed
metric was evaluated using the data from
WMT16, with the results demonstrating a
high correlation with human judgments.

1 Introduction

The evaluation of Machine Translation (MT) rep-
resents a very important domain of research,
as providing meaningful, automatic and accurate
methods for determining the quality of machine-
translated output is a key component in the devel-
opment cycle of a MT system. However, the task
is inherently difficult due to the expressiveness of
natural language, which often allows conveying a
message in more than one equivalent ways. When
translating from a source language into a target
one, the input data for evaluation conventionally
consists of a set of tuples, with each tuple com-
posed of:

• a source segment, representing the sentence
to be translated in the source language

• a candidate translation (also known as a target
segment), obtained by translating the source
segment into the target language using an MT
system

• a reference translation, representing a correct
human-generated translation of the source
segment

As a research field, MT evaluation can be di-
vided into two categories: reference-free evalu-
ation and reference-based one. The reference-
free evaluation, also known as Quality Estimation,
aims at providing automatic methods, for assess-
ing the quality of candidate translations, which
do not require reference translations. In the case
of a reference-based evaluation, the target seg-
ment is compared with the reference translation
resulting in a score that measures the similarity
between the two sentences. Different approaches
for computing the comparison have been imple-
mented, with the most frequently used one be-
ing BLEU (Papineni et al., 2002), which measures
the quality of the candidate translation by count-
ing the number of n-grams it has in common with
the reference translations. Nonetheless, multiple
disadvantages of BLEU have already been pointed
out, as in Callison-Burch et al. (2006), where it is
shown that an increase of the BLEU score does not
necessary correlate with a better performing sys-
tem. This has motivated further research into ad-
ditional MT evaluation methods that rely on more
than lexical matching by additionally including
the syntactic and semantic structure of the sen-
tences (e.g. (Popović and Ney, 2009), (Gautam
and Bhattacharyya, 2014) ).

We propose a new method for the evaluation
of MT output, based on tree and sequence kernel
functions, applied on the pair of reference and can-
didate translations. In addition, we study the im-
pact of applying the kernels on the tuple consist-
ing of the source segment and a back-translation,
together with the pair comprised of the candidate
translation and a pseudo-reference. A pseudo-
reference is the result of translating the source
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segment into the target language, while a back-
translation is obtained by translating the target
segment into the source language. The evalua-
tion results show that the new metric strongly cor-
relates with human judgments, outperforming the
state-of-the-art methods.

2 Related work

MT evaluation methods can be categorized ac-
cording to the level of analysis that they ad-
dress into lexical ones (e.g BLEU (Papineni et al.,
2002), TER (Snover et al., 2006)), syntactic ones
(e.g. (Popović and Ney, 2007), (Giménez and
Màrquez, 2007)) or semantic ones (e.g. (Castillo
and Estrella, 2012)), with hybrid combinations in-
tegrating more than one representational layer at a
time.

A syntactic evaluation method based on tree
kernels is proposed in Liu and Gildea (2005). It
uses the subtree kernel introduced in Collins and
Duffy (2002) to calculate the similarity between
the reference and the candidate translations. Be-
sides this, a syntactic metric based on counting the
number of fixed-depth subtrees shared by the two
translations is also introduced, with both metrics
being applied on the constituency trees of the in-
put data. Additionally, a dependency tree based
metric is presented, which computes the number
of common headword chains, where a headword
chain is defined as the concatenation of words that
form a path in the dependency tree.

Another MT evaluation method that makes use
of tree kernels is introduced in Guzmán et al.
(2014). It also uses the subtree kernel introduced
in Collins and Duffy (2001), but in this case it cal-
culates the similarity between the discourse trees
of the candidate and reference translation. The
evaluation combined the newly proposed metric
with already existing ones and the results showed
that the addition is beneficial for improving the
correlation scores.

The role of back-translations has also been in-
vestigated before, like in the case of Rapp (2009)
where the quality of a candidate translation is as-
sessed by measuring the similarity, in terms of
a modified version of BLEU, between its back-
translation and the initial source segment. In the
case of pseudo-references, they have been used
as an additional source of data for tuning the pa-
rameters of MT systems, like in the case of Am-
mar et al. (2013). An evaluation method based

on pseudo-references is presented in Albrecht and
Hwa (2007) and then further extended in Albrecht
and Hwa (2008), where a metric is trained to
correlate with human judgments based on fea-
tures extracted with the help of three pseudo-
references. The features are in the form of 18
kinds of reference-based scores together with an
additional set of 25 monolingual fluency scores.
The results showed that the new metric correlates
well with human assessments and generalizes well
across different language pairs.

The novelty of the MT Evaluation metric in-
troduced in this paper is twofold. First of all,
the method makes use of the Partial Tree Kernel
(PTK), a more general type of kernel function,
which to the authors’ knowledge has not been ap-
plied in the context of MT metrics-based evalua-
tion before. Secondly, the proposed method also
explores what impact do sequence kernels (SK)
have on the quality of a kernel evaluation metric,
by studying its potential individually, but also in
combination with the Partial Tree Kernel. Further-
more, we extend on the previous work of pseudo-
references and back-translations by studying their
impact in the context of using them as input data
for kernel functions.

3 Methods and implementation

A kernel function makes use of structural repre-
sentations of the input data in order to calculate
the number of substructures they share, without
explicitly stating the feature spaces correspond-
ing to the two representations (Moschitti, 2006a).
The types of representations taken into account
can be, among others, vectorial, sequential or tree-
based. The tree kernels developed so far distin-
guish themselves from one another by the types
of tree fragments (e.g. subsets, subtrees or partial
trees) and the type of syntactic trees (constituency
or dependency) they employ in their computa-
tion, which influences their suitability for certain
tasks (see Moschitti (2006a)). Contrastively, se-
quence kernels (e.g (Bunescu and Mooney, 2005),
(Nguyen et al., 2009)) make use of subsequences
in the computation of the kernel.

The new method for the evaluation of Machine
Translation proposed in this paper, denoted as
TSKM, makes use of both tree and sequence ker-
nels, which are applied on the pair of candidate
and reference translations. The tree kernel used
is represented by the Partial Tree Kernel (PTK)
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Figure 1: Example of a dependency tree.

(Moschitti, 2006a). It uses partial tree fragments,
which are a generalization over subtrees and sub-
set trees, so that a node and its partial descen-
dants can constitute a valid fragment. An ex-
ample of a dependency tree is presented in Fig-
ure 1 1 and some possible partial trees for it are
(has(carried(out))) or (carried(out talks)). For
the sequence kernel (SK), the kernel introduced
in Bunescu and Mooney (2005) is utilized, which
computes the number of common patterns shared
by the two input sentences.

Formally, TSKM can be defined as:

TSKMbasic = TSKM(r, c) = PTK(r,c)+SK(r,c)
2

(1)
with r and c denoting the reference and the can-

didate translations and PTK and SK referring to
the scores of the Partial Tree Kernel and the Se-
quence Kernel.

Furthermore, we experimented with using an
additional pseudo-reference and a back-translation
in the computation of the metric in order to explore
how the different combination schemes influence
the performance of TSKM. One possible kind of
combination can be represented as:

TSKMcomb =
TSKMbasic+TSKMpseudo+TSKMback

3

(2)

TSKMpseudo = TSKM(c, st) =
PTK(c,st)+SK(c,st)

2

(3)

TSKMback = TSKM(s, ct) =
PTK(s,ct)+SK(s,ct)

2

(4)

1The visualization was obtained using Arborator
https://arborator.ilpga.fr/q.cgi (Gerdes, 2013)

with st and ct representing the pseudo-reference
and the back-translation respectively and s mark-
ing the source segment. Our rationale for utilizing
the pseudo-reference was motivated by two fac-
tors. In the first place, we wanted to determine
whether an additional reference, even if only an
approximate one, helps to better predict the qual-
ity of the candidate translation. Furthermore, we
also wanted to investigate the possibility to apply
our new evaluation method, in the scenario with-
out official reference translation. Producing refer-
ence translations is a time-consuming and expen-
sive task, therefore an evaluation method that per-
forms well even without reference translations be-
ing available would be highly desirable.

In the case of back-translations, we wanted to
investigate if the quality of a candidate transla-
tion can be approximated using the quality of
its back-translation. This would prove extremely
beneficial, especially in the case of low-resource
language pairs, where no high quality analysis
tools (e.g lemmatizers, pos-taggers or parsers) for
the target language are available, a situation that
would prevent TSKM from being applied. In our
experiments, both the pseudo-references together
with the back-translations were obtained using the
free online Google Translator Toolkit 2.

To apply the tree and sequence kernels for the
task of Machine Translation evaluation, a prepro-
cessing of the input data is necessary. In the case
of PTK, the input data was first tokenized and
pos-tagged, followed by a parsing step using the
Bohnet graph-based dependency parser (Bohnet,
2010) and the publicly available syntactic analy-

2https://translate.google.com/toolkit
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not exact exact

TSKM cs-en fi-en ru-en tr-en Average cs-en fi-en ru-en tr-en Average

SK(r,c) .997 .939 .958 .973 .967 .995 .850 .957 .924 .932
SK(c,st) .993 .426 .948 .948 .829 .995 .391 .949 .895 .808
SK(r,c)+SK(c,st) .998 .507 .955 .961 .855 .998 .454 .955 .908 .829

PTK(r,c) .991 .932 .962 .957 .961 .992 .890 .959 .953 .949
PTK(c,st) .997 .427 .961 .958 .836 .998 .403 .960 .938 .825
PTK(r,c)+PTK(c,st) .997 .531 .969 .960 .864 .997 .492 .967 .946 .851

SK(r,c)+ PTK(r,c) .990 .944 .961 .970 .965 .990 .876 .960 .944 .943
SK(r,c)+SK(c,st)+ PTK(r,c)+PTK(c,st) .999 .515 .961 .964 .860 .999 .466 .960 .930 .839

mosesBLEU - - - - - .990 .752 .950 .765 .864
mosesWER - - - - - .982 .770 .958 .680 .848
mosesPER - - - - - .981 .770 .974 .947 .918
mosesCDER - - - - - .995 .846 .968 .836 .911
mtevalBLEU - - - - - .992 .858 .962 .899 .928
mtevalNIST - - - - - .988 .924 .966 .952 .958

Table 1: Evaluation results in terms of Pearson correlation for the different TSKM variants. The high-
lighted TSKM variant indicates the submission to the WMT17 Metrics Task.

sis models 3. The dependency parse trees obtained
were converted to tree representations which can
be used by the PTK. The lexical-centered-tree ap-
proach presented in Croce et al. (2011) was uti-
lized, which required storing both the grammatical
relation and the pos-tag information as the right-
most children of a dependency tree node. The
score of the kernel functions were normalized us-
ing the formula from Croce et al. (2011):

score =
K(T1, T2)√

K(T1, T1) ? K(T2, T2)
(5)

with T1 and T2 standing for the input data tu-
ple and K indicating the type of kernel function.
Regarding SK, only a tokenization of the data was
required, as the SK function was applied on sub-
structures composed of the lexical items.

For the computation of the kernel functions we
used the Partial Tree Kernel4 and the Sequence
Kernel 5 implementations, found in the KeLP
(Kernel-based Learning Platform) (Filice et al.,
2015b) (Filice et al., 2015a) library. KeLP is an
open source Java platform encompassing kernel
based Machine Learning algorithms together with
multiple types of kernel functions. The imple-
mented kernels support either vector based input
representations or structural ones in the form of
trees, sequences or graphs.

3https://code.google.com/archive/p/mate-
tools/downloads

4based on (Moschitti, 2006a)
5based on (Bunescu and Mooney, 2005)

4 Evaluation and results

4.1 Experimental setup

The evaluation of TSKM was performed using
data pertaining to the News domain from the First
Conference On Machine Translation (WMT16) 6.
For the results obtained in the WMT17 Metrics
Task, please refer to the official results paper. The
following language pairs were used in the evalu-
ation: English-German, Czech-English, German-
English, Finnish-English, Russian-English and
Turkish-English. The MT outputs evaluated corre-
spond to systems submitted to the WMT16 News
Translation Task (Bojar et al., 2016), having dif-
ferent types ranging from statistical phrase-based
to neural or syntax-based ones. The test sets
consist of approximately 3000 tuples, incorporat-
ing the source segment together with the refer-
ence and candidate translations. We evaluated
TSKM in terms of Pearson correlation with human
judgments. During the manual evaluation phase
of WTM16, human judgments were collected by
ranking five candidate translations, with ties be-
ing allowed. In order to compute a single TSKM
score for an MT system, all the individual sentence
scores were combined by averaging them.

Different variants of TSKM were taken into ac-
count for evaluation. To investigate how the lexi-
cal variation affects the performance of the metric,
we also implemented versions of the metric where
lemmas are used instead of the exact lexical items.

6http://www.statmt.org/wmt16/metrics-task/
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not exact exact

TSKM de-en en-de de-en en-de

SK(r,c) .921 .643 .919 .715
SK(c,st) .957 .713 .955 .752
SK(r,c)+SK(c,st) .944 .705 .942 .758
SK(r,c)+SK(s,ct) .950 .568 .931 .640

PTK(r,c) .941 .701 .944 .756
PTK(c,st) .966 .761 .968 .789
PTK(r,c)+PTK(c,st) .957 .750 .960 .792
PTK(r,c)+PTK(s,ct) .921 .687 .953 .735

SK(r,c)+ PTK(r,c) .928 .667 .928 .733
SK(r,c)+SK(c,st)+ SK(s,ct) .970 .693 .964 .753
PTK(r,c)+PTK(c,st)+ PTK(s,ct) .979 .770 .973 .810
SK(r,c)+SK(c,st)+PTK(r,c)+PTK(c,st) .948 .722 .948 .772
SK(r,c)+SK(s,ct)+PTK(r,c)+PTK(s,ct) .954 .622 .931 .684

SK(r,c)+SK(c,st)+SK(s,ct)+
PTK(r,c)+PTK(c,st)+PTK(s,ct)

.974 .724 .969 .777

mosesBLEU - - .880 .784
mosesWER - - .926 .771
mosesPER - - .843 .681
mosesCDER - - .927 .779
mtevalBLEU - - .905 .752
mtevalNIST - - .887 .625

Table 2: Evaluation results in terms of Pearson
correlation for the en-de and de-en language pairs

4.2 Results
The results of the evaluation are presented in Ta-
bles 1 and 2, which contain the correlation scores
for the different TSKM variants taken into ac-
count. For comparison purposes, the scores for
some state-of-the-art MT evaluation methods are
also presented: BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), PER (Tillmann et al.,
1997), CDER (Leusch et al., 2006) and WER. The
results were obtained using the evaluation scripts
made available by the WMT16 conference 7. The
following metric notation was adopted for each
of the TSKM variants evaluated: Kernel[level],
where Kernel identifies the type of kernel utilized
(SK or PTK) and level refers to the input data tuple
used in the calculation. The possible tuple types
are:

• (r,c) - the pair of reference and candidate
translations

• (c,st) - the pair of candidate translations and
translated source

• (s,ct) - the pair of source segment and back-
translated candidate

In Table 1, the results of TSKM when applied
to the Czech-English, Finnish-English, Russian-
English and Turkish-English language pairs are

7http://www.statmt.org/wmt16/results.html

exact

TSKM tr-en ru-en

SPTK(r,c) .976 .970
SPTK(c,st) .960 .964

CSPTK(r,c) .972 .968
CSPTK(c,st) .968 .960

Table 3: Evaluation results in terms of Pearson
correlation for SPTK and CSPTK.

presented. We first experimented with applying
TSKM on the (r,c) and the (c,st) input data pairs.
The best performing TSKM variant, SK(r,c)+
PTK(r,c), represents the combination between
PTK and SK applied on the reference and can-
didate translations. Its average correlation score
over all language pairs outperforms the state-of-
the-art metrics. We can observe that the addition
of the pair consisting of the candidate translation
and the pseudo-reference generated mixed results.
In the case of Finnish-English there was an ob-
vious downgrade in performance, possibly due to
the complex morphology of Finnish. Another ob-
servation to be pointed out is that the ’not exact’
TSKM variants are stronger correlated with the
human judgments than their ’exact’ counterparts.

In addition to the metric variants presented
in Table 1, we further extended the evaluation
to the English-German and German-English lan-
guage pairs by including the source and back-
translation tuple in the evaluation, with the re-
sults being presented in Table 2. In this case, the
best performing method for both language pairs,
PTK(r,c)+PTK(c,st)+ PTK(s,ct), makes use of all
the three possible input data tuples, succeeding to
outperform the state-of-the-art metrics. Yet an-
other aspect worth to point out is that, in the case
of English-German, the ’exact’ metric variants are
the ones that display better correlations. This
would suggest that when choosing between ’not
exact’ or ’exact’ variants for TSKM, the direction
of the translation (e.g. in/out of English) should be
taken into account. Moreover, we can observe that
there is a drastic decrease of correlation in the case
of English-German translations, which can possi-
bly be explained by the highly inflectional nature
of the German language.

Additional preliminary evaluation experiments,
presented in Table 3, were performed after the
submission to the Shared Task. Generalizations
of the Partial Tree Kernel were used, namely
the Smoothed Partial Tree Kernel (SPTK) (Croce
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et al., 2011) and the Compositional Smoothed Par-
tial Tree Kernel (CSPTK) (Annesi et al., 2013)
(Annesi et al., 2014). The SPTK uses a term simi-
larity function to semantically match tree nodes.
The term similarity function can be obtained
through either word vector spaces or distributional
analysis. On the other hand, the CSPTK represents
a generalization of SPTK, which uses Distribu-
tional Compositional Semantics to determine the
degree of similarity between tree fragments. The
implementations for these kernels together with an
example wordspace for English are also available
in the KeLP package. The results show that by
relaxing the matching constraints to allow for lex-
ical variation these kernels outperform PTK when
used by TSKM.

5 Conclusions and future work

In this paper, we introduced TSKM, our submis-
sion to the WMT17 Metrics Task, which is based
on tree and sequence kernels. The metric was
evaluated using multiple language pairs, with the
evaluation results being very encouraging. We
also experimented with applying the kernel func-
tions on additional tuple input data, that involve
back-translations and pseudo-references. In the
case of the pseudo-reference the results indicate
that its addition to TSKM can be beneficial, espe-
cially in the case of the PTK. However, the most
important aspect to notice is that, with the ex-
ception of Finnish-English, the pseudo-reference
based methods achieved correlation scores that are
very similar to the official reference based ones,
which suggests that TSKM could be applied even
in the context of artificially generated reference
translations. The addition of the back-translations
of the target sentences to TSKM generated encour-
aging results, which prompts us to extend the eval-
uation to include further language pairs.

Based on the evaluation results, we can also ob-
serve that the SK metric variants succeeded in at-
taining correlation scores that are relatively simi-
lar to the PTK variants. This suggests that the SK
metric variant can be successfully used in the case
when no syntactic analysis tools are available for
the target language.

Future work will be concentrated on using the
constituency trees as a structural input represen-
tations for PTK in addition to the dependency
trees. The evaluation will also be extended to de-
termine how well does TSKM generalize across

domains. We also plan to analyze in more detail
the decrease in correlation scores when using the
pseudo-reference in the case of Finnish-English,
by using different MT systems to generate addi-
tional pseudo-references in order to determine if
the type of MT system influences the correlation
with human judgments. Another future work idea
is to extend the evaluation for SPTK and CSPTK,
by including them in different TSKM combina-
tions and evaluating on additional language pairs.

References
Joshua Albrecht and Rebecca Hwa. 2007. Regression

for sentence-level MT evaluation with pseudo refer-
ences. In Annual Meeting-Association for Compu-
tational Linguistics. volume 45, page 296.

Joshua Albrecht and Rebecca Hwa. 2008. The role of
pseudo references in MT evaluation. In Proceedings
of the Third Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
pages 187–190.

Waleed Ammar, Victor Chahuneau, Michael
Denkowski, Greg Hanneman, Wang Ling, Austin
Matthews, Kenton Murray, Nicola Segall, Yulia
Tsvetkov, Alon Lavie, and Chris Dyer. 2013.
The CMU Machine Translation systems at WMT
2013: Syntax, synthetic translation options, and
pseudo-references. In 8th Workshop on Statistical
Machine Translation. page 70.

Paolo Annesi, Danilo Croce, and Roberto Basili. 2013.
Towards compositional tree kernels. In Joint Sym-
posium on Semantic Processing.. page 15.

Paolo Annesi, Danilo Croce, and Roberto Basili. 2014.
Semantic compositionality in tree kernels. In Pro-
ceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Man-
agement. ACM, pages 1029–1038.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. The 23rd Inter-
national Conference on Computational Linguistics
(COLING 2010) .

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Confer-
ence on Machine Translation. Proceedings of the
First Conference on Machine Translation, Volume 2:
Shared Task Papers pages 131–198.

Razvan Bunescu and Raymond Mooney. 2005. Sub-
sequence kernels for Relation Extraction. Advances

587



in Neural Information Processing Systems, Vol. 18:
Proceedings of the 2005 Conference (NIPS) .

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of BLEU in
Machine Translation research. In In EACL. pages
249–256.

Julio Castillo and Paula Estrella. 2012. Semantic Tex-
tual Similarity for MT evaluation. In Proceedings of
the Seventh Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
pages 52–58.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. Proceedings of NIPS
2001 pages 625–632.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th annual meeting on association
for computational linguistics. Association for Com-
putational Linguistics, pages 263–270.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via convo-
lution kernels on dependency trees. Proceedings of
the 2011 Conference on Empirical Methods in Nat-
ural Language Processing pages 1034–1046.

George Doddington. 2002. Automatic evaluation
of Machine Translation quality using n-gram co-
occurrence statistics. In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research. Morgan Kaufmann Publishers
Inc., pages 138–145.

Simone Filice, Giuseppe Castellucci, Roberto Basili,
Giovanni Da San Martino, and Alessandro Mos-
chitti. 2015a. KeLP: a Kernel-based Learning Plat-
form in Java. The workshop on Machine Learning
Open Source Software (MLOSS): Open Ecosystems
.

Simone Filice, Giuseppe Castellucci, Danilo Croce,
and Roberto Basili. 2015b. KeLP: a kernel-based
learning platform for Natural Language Processing.
Proceedings of ACL-IJCNLP 2015 System Demon-
strations pages 19–24.

Shubham Gautam and Pushpak Bhattacharyya. 2014.
Layered: Metric for Machine Translation evaluation.
ACL 2014 page 387.

Kim Gerdes. 2013. Collaborative dependency annota-
tion. In DepLing. pages 88–97.
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Abstract

We describe a new version of MEANT,
which participated in the metrics task of
the Second Conference on Machine Trans-
lation (WMT 2017). MEANT 2.0 uses idf-
weighted distributional ngram accuracy to
determine the phrasal similarity of seman-
tic role fillers and yields better correlations
with human judgments of translation qual-
ity than earlier versions. The improved
phrasal similarity enables a subversion of
MEANT to accurately evaluate translation
adequacy for any output language, even
languages without an automatic semantic
parser. Our results show that MEANT,
which is a non-ensemble and untrained
metric, consistently performs as well as
the top participants in previous years -
including ensemble and trained ones -
across different output languages. We also
present the timing statistics for MEANT
for better estimation of the evaluation cost.
MEANT 2.0 is open source and publicly
available.1

1 Introduction

We introduce a new version of MEANT, which
participated in evaluating MT systems for all lan-
guage pairs in the metrics task of the Second
Conference on Machine Translation (WMT 2017).
MEANT 2.0 is a non-ensemble and untrained met-
ric that only requires a monolingual corpus in the
output language to build the word embeddings and
an automatic shallow semantic parser to obtain the
predicate-argument structure to evaluate MT sys-
tems for a language pair. We have also build a
degraded subversion, MEANT 2.0 - nosrl, to eval-
uate MT systems for any output language by re-

1http://chikiu-jackie-lo.org/home/index.php/meant

moving the dependency on semantic parsers for
semantic role labeling (SRL) the reference and the
machine translations. The correlation of MEANT
with human judgments has been improved by us-
ing both inverse document frequency (idf) and dis-
tributional ngram accuracy within the phrasal sim-
ilarity calculation: the former to weight the impor-
tance of each word for better adequacy, the latter
to to account for word reordering for greater flu-
ency. Our results show that MEANT consistently
performs as well as the top participants in previous
years across different output languages, including
ensemble and trained participants. We also present
the timing statistics that show the relatively low
cost of running MEANT. This highly portable and
open source semantic MT evaluation metric is a
more accurate alternative to BLEU in evaluating
translation quality for low-resource languages.

2 The family of MEANT

MEANT and its variants (Lo et al., 2015, 2014;
Lo and Wu, 2011a) evaluate translation adequacy
by measuring the similarity of the semantic frames
and their role fillers between the human reference
and machine translations. Figure 1 illustrates the
concept of MEANT - the semantic roles and their
fillers of the reference translation match more with
those of the MT2 than with those of the MT1,
therefore MT2 is a more adequate translation than
MT1.

MEANT consistently outperforms the com-
monly used automatic MT evaluation metrics,
BLEU (Papineni et al., 2002), NIST (Doddington,
2002), METEOR (Denkowski and Lavie, 2014),
TER (Snover et al., 2006), CDER (Leusch et al.,
2006) and WER in correlation with human ade-
quacy judgment. It is relatively easy to port to
other languages. In the full version of MEANT,
it required only a monolingual corpus (for eval-
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Figure 1: Example that illustrates the concept of MEANT. The solid role alignments mean the translation
is mostly correct while the dotted role alignments mean the translation is partly correct. The semantic
roles and fillers of the reference match more with those of MT2 than those of MT1, therefore MT2 is a
more adequate translation than MT1.

uating lexical semantic similarity) and an auto-
matic semantic parser (for evaluating frame se-
mantic similarity) of the output language. In sec-
tion 3, we describe a new subversion of MEANT
that can be computed even when a semantic parser
for the output language is unavailable.

MEANT is the weighted f-scores over corre-
sponding semantic frames and role fillers in the
reference and the machine translations. MEANT
is generally computed as follows:

1. Apply a shallow semantic parser to both the
reference and machine translations.

2. Apply the maximum weighted bipartite
matching algorithm to align the semantic

frames between the reference and machine
translations according to the lexical similar-
ities of the predicates.

3. For each pair of the aligned frames, apply the
maximum weighted bipartite matching algo-
rithm to align the arguments between the ref-
erence and MT output according to the lexi-
cal similarity of role fillers.

4. Compute the weighted f-score over the
matching role labels of these aligned predi-
cates and role fillers according to the follow-
ing definitions:
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q
0
i,j ≡ ARG j of aligned frame i in MT

q
1
i,j ≡ ARG j of aligned frame i in REF

w
0
i ≡ #tokens filled in aligned frame i of MT

total #tokens in MT

w
1
i ≡ #tokens filled in aligned frame i of REF

total #tokens in REF

w
0
nf ≡ #tokens that are not fillers of any role inMT

total #tokens in MT

w
1
nf ≡ #tokens that are not fillers of any role in REF

total #tokens in REF
w{pred|j} ≡ weight of similarity of predicates or ARG j

esent ≡ the whole sentence string of MT

fsent ≡ the whole sentence string of REF

ei,{pred|j} ≡ role fillers of pred or ARG j of the aligned frame i of MT

fi,{pred|j} ≡ role fillers of pred or ARG j of the aligned frame i of REF

s(e, f) = lexical similarity of token e and f

prece,f =

∑
e∈e max

f∈f
s(e, f)

| e | (1)

rece,f =

∑
f∈f max

e∈e
s(e, f)

| f | (2)

ssent =
2 · precesent,fsent · recesent,fsent
precesent,fsent + recesent,fsent

(3)

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

(4)

si,j =
2 · precei,j ,fi,j · recei,j ,fi,j
precei,j ,fi,j + recei,j ,fi,j

(5)

precision =

∑
i w

0
i

wpredsi,pred+
∑
j wjsi,j

wpred+
∑
j wj |q0i,j |

+ w0
nfssent

∑
i w

0
i + w0

nf

(6)

recall =

∑
i w

1
i

wpredsi,pred+
∑
j wjsi,j

wpred+
∑
j wj |q1i,j |

+ w1
nfssent

∑
i w

1
i + w1

nf

(7)

MEANT =
precision · recall

α · precision + (1− α) · recall (8)

where s(e, f) is the lexical similarity computed
using word embeddings (Mikolov et al., 2013). By
aggregating the lexical similarities, we can obtain
the phrasal similarities. ssent is the phrasal simi-
larity of the whole sentence between the reference
and the MT output. si,pred is the phrasal similari-
ties of the predicates between the reference trans-
lations and the MT output and si,j is that of the
role fillers of the arguments of role type j.
wpred is the weight of the lexical similarities of

the aligned predicates in step 2. wj is the weight
of the phrasal similarities of the role fillers of the
arguments of role type j of the aligned frames be-
tween the reference translations and the MT output
in step 3 if their role types are matching. There is
a total of 12 weights for the set of semantic role
labels in MEANT (Lo and Wu, 2011b) estimated
by heuristics (Lo and Wu, 2012).

Finally, the weight α for the precision and re-
call is introduced for different usages of MEANT.
α should be set to 1 so that MEANT is pure recall
when it is used for MT evaluation and α should be

set to 0.5 so that MEANT is the balance of pre-
cision and recall, when it is used for MT system
optimization.

HMEANT (Lo and Wu, 2011a) is the variant
of MEANT for human evaluation, where the se-
mantic roles in the reference and in the MT output
are annotated by humans. XMEANT (Lo et al.,
2014) is the cross-lingual variant of MEANT,
which estimates translation quality of the MT out-
put against the source sentence using automatic se-
mantic parsers for the input and output languages
and alignment probabilities to determine the cross-
lingual lexical semantic similarity.

3 Improvements in MEANT 2.0

We improve the performance of MEANT on eval-
uating translation adequacy by weighing the im-
portance of each word by inverse document fre-
quency when computing phrasal similarity, so
that a higher score will be given to phrases with
more matches for content words than for function
words. We also modify the phrasal similarity cal-
culation so that instead of aggregating lexical sim-
ilarities for the bag of words in the phrase, it ag-
gregates ngram lexical similarities. Thus, the word
order of the semantic role fillers for the whole sen-
tence is taken into account. Our development ex-
periments showed that the optimal value of n is
2.

We also generalize the concept of weighted pre-
cision and recall when computing phrasal similar-
ities for the semantic role fillers. Lastly, we sim-
plify the computation of the frame semantic simi-
larities by introducing a weight β to linearly com-
bine the phrasal similarity of the whole sentence
and the frame semantic similarity of the reference
and the MT output into MEANT. Our develop-
ment experiments show that the optimal value of
β is 0.1. In summary, equations (1) to (8) are re-
placed by equations (9) to (16) as follow:

prece,f ≡ idf-weighted max-aligned distributional ngram precision (9)

rece,f ≡ idf-weighted max-aligned distributional ngram recall (10)

si,pred =
precei,pred,fi,pred

·recei,pred,fi,pred
α·precei,pred,fi,pred+(1−α)·recei,pred,fi,pred

(11)

si,j =
precei,j ,fi,j

·recei,j ,fi,j
α·precei,j ,fi,j+(1−α)·recei,j ,fi,j

(12)

ssent =
precesent,fsent

·recesent,fsent
α·precesent,fsent+(1−α)·recesent,fsent

(13)

precision =

∑
i w

0
i

wpredsi,pred+
∑
j wjsi,j

wpred+
∑
j wj |q0i,j |∑

i w
0
i

(14)

recall =

∑
i w

1
i

wpredsi,pred+
∑
j wjsi,j

wpred+
∑
j wj |q1i,j |∑

i w
1
i

(15)

591



lang. # sent. # tokens # resulted vocab.
cs 67M 1,088M 1,963k
de 184M 3,444M 4,018k
en 331M 6,585M 2,368k
fi 14M 215M 1,405k
fr 38M 1,047M 950k
hi 1M 37M 82k
lv 11M 194M 586k
pl 39M 318M 885k
ro 2M 57M 233k
ru 52M 983M 1,708k
tr 2M 34M 279k
zh 61M 2,227M 911k

Table 1: Statistics of resources used to train the
word embeddings and the resulted vocabulary size
of the model.

MEANT = β
precision · recall

α · precision + (1− α) · recall + (1− β)ssent (16)

As a result, for languages without an auto-
matic semantic parser or sentences without a valid
predicate-argument structure recognized by an au-
tomatic semantic parser, the MEANT score is the
phrasal similarity of the whole sentence.

4 Setup

We use the monolingual corpora provided for
the WMT translation task (Bojar et al., 2014,
2015, 2016a) to build the word embeddings for
evaluating lexical similarities using word2vec
(Mikolov et al., 2013). Table 1 summarizes the
resources used to train the word embeddings and
the resulting vocabulary size of the distributional
lexical semantic similarity model.

We use mateplus (Roth and Woodsend,
2014) for German and English semantic role label-
ing and mate-tools (Björkelund et al., 2009)
for Chinese semantic role labeling. Instead of
the 12 semantic role types used in (Lo and Wu,
2011b), we merge the semantic role labels of Chi-
nese, English and German into 8 role types (who,
did, what, whom, when, where, why, how) for
more robust performance.

For languages except Chinese, tokenization step
simply involves separating punctuations at the end
of the words in both the reference and the MT out-
put. Chinese does not have clear word boundaries.
Each individual Chinese character usually carries
multiple meanings and relies on surrounding char-
acters to disambiguate it. Naive Chinese character
segmentation would affect the accuracy of the vec-
tor representation and the distributional lexical se-
mantic similarity model. Thus, we use ICTCLAS

(Zhang et al., 2003) to segment the Chinese mono-
lingual corpus into words before building the word
embeddings.

5 Experiments and results

We use the WMT 2014-2016 metrics task evalu-
ation set (Machacek and Bojar, 2014; Stanojević
et al., 2015; Bojar et al., 2016b) for our develop-
ment experiments. The official human judgments
of translation quality were collected using relative
ranking. The annotators were given the original
input and the reference and were asked to order up
to 5 different MT outputs according to the transla-
tion quality.

Two other kinds of human judgments of transla-
tion quality were collected in the WMT 2016 met-
rics task. The direct assessment evaluation proto-
col gave the annotators the reference and one MT
output only and asked them to evaluate the trans-
lation adequacy of the MT output on an absolute
scale. The HUME metric (Birch et al., 2016) is
very similar to HMEANT, which evaluates trans-
lation adequacy via semantic units in the input sen-
tence annotated by humans following the UCCA
(Abend and Rappoport, 2013) guidelines. How-
ever, HUME also takes nominal and adjectival ar-
gument structures into account (instead of only
predicate argument structure as in HMEANT).

Due to space limitations, we only report the re-
sults of MEANT 2.0, MEANT 2.0 - nosrl,
BLEU and the best correlation in each of the in-
dividual language pairs. Since we use exactly the
same protocol for each of the test sets, our reported
results are directly comparable with those reported
in Machacek and Bojar (2014); Stanojević et al.
(2015); Bojar et al. (2016b). We summarize the
observations in the following sections.

5.1 Correlation with human at system-level

5.1.1 On relative ranking judgment
Table 2 shows the Pearson’s correlation with the
WMT 2014-2016 official human relative ranking
scores at system-level. As expected, MEANT 2.0
performs significantly better than MEANT 2.0 -
nosrl in most of the language pairs. Overall,
both MEANT 2.0 and the nosrl variant are very
competitive with other metrics for all test sets.

For the WMT14 test set, MEANT 2.0 is the
best metric among all participants in that year
in the de-en and en-de direction. On aver-
age over from-English directions, MEANT 2.0
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input language cs de fr hi ru en en en en en
output language en en en en en ave. cs fr hi ru ave. de

WMT14 MEANT 2.0 .990 .960 .979 .791 .843 .913 – – – – – .482
RRsys MEANT 2.0 - nosrl .983 .957 .979 .761 .830 .902 .978 .941 .986 .938 .961 .236

individual best .993 .943 .981 .976 .870 .944 .988 .960 .990 .941 .959 .357
BLEU .909 .832 .952 .956 .789 .888 .976 .937 .973 .915 .950 .216
input language cs de fi fr ru en en en en en
output language en en en en en ave. cs de fi fr ru ave.

WMT15 MEANT 2.0 .974 .965 .946 .994 .970 .970 – .764 – – – –
RRsys MEANT 2.0 - nosrl .972 .956 .939 .995 .969 .966 .984 .676 .833 .961 .937 .878

individual best .993 .981 .977 .997 .981 .978 .977 .879 .878 .964 .970 .916
BLEU .957 .865 .929 .975 .851 .915 .936 .573 .602 .948 .841 .780
input language cs de fi ro ru tr en en en en en en
output language en en en en en en cs de fi ro ru tr

WMT16 MEANT 2.0 .989 .947 .953 .940 .990 .980 – .540 – – – –
RRsys MEANT 2.0 - nosrl .985 .928 .969 .917 .984 .978 .967 .541 .902 .868 .925 .933

individual best .997 .985 .974 .970 .990 .981 .975 .915 .974 .959 .954 .956
BLEU .992 .905 .858 .899 .962 .899 .968 .752 .868 .897 .835 .745

Table 2: Pearson’s correlation of the metric scores with the WMT 2014-2016 official human relative
ranking scores at system-level. For consistency with the task overview paper, en-de results are not
included into out-of-English system average in WMT 2014 results (Machacek and Bojar, 2014); system
average are not reported in WMT 2016 results (Bojar et al., 2016b).

input language cs de fi ro ru tr en
output language en en en en en en ru

WMT16 MEANT 2.0 .990 .950 .966 .946 .959 .990 –
DAsys MEANT 2.0 - nosrl .988 .942 .979 .930 .958 .987 .946

individual best .995 .985 .980 .957 .976 .982 .966
BLEU .989 .808 .864 .940 .837 .895 .838

Table 3: Pearson’s correlation of metric scores with the WMT 2016 direct assessment of translation
adequacy at system-level.

- nosrl is the best metric among all the partici-
pants in that year. On average over into-English
directions, MEANT 2.0 ties with the 4th-place
participant in that year while MEANT 2.0 -
nosrl is in 7th place. Both variants of MEANT
lose only to ensemble and trained metrics in that
year.

For the WMT15 test set, MEANT 2.0 -
nosrl is the best metric among all the partici-
pants in that year in the en-cs direction. On av-
erage over into-English directions, MEANT 2.0
is in 6th place while the nosrl variant is in 9th
place. Both variants of MEANT lose only to en-
semble and trained metrics in that year.

For the WMT16 test set, MEANT 2.0 ties for
1st place with the best metric in the ru-en direction
in that year. Both variants of MEANT perform as
well as the leading metrics in all other directions,
except en-de.

5.1.2 On direct assessment judgment

Table 3 shows the Pearson’s correlation with the
WMT 2016 direct assessment of translation ade-
quacy at system-level.

Both MEANT 2.0 and MEANT 2.0 -
nosrl beat all the other metrics that year in the
tr-en direction and perform very competitively
when compared to the leading pack in other
directions. MEANT 2.0 performs better than the
nosrl variant in all directions, except fi-en.

5.2 Correlation with human judgment at
segment-level

5.2.1 On relative ranking judgment
Table 4 shows the Kendall’s correlation with the
WMT 2014-2016 official human relative ranking
judgments at segment-level. Similar to the corre-
lation at the system-level, MEANT 2.0 performs
significantly better than MEANT 2.0 - nosrl
for most language pairs.

For the WMT14 test set, MEANT 2.0 beats
all the participants in the en-de direction while
the nosrl variant beats all the participants in all
other from-English directions (and their average)
in that year. On the average of all the to-English
directions, MEANT 2.0 and the nosrl variant
are in 2nd and 3rd place respectively and only lose
to an ensemble and trained metric in that year.
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input language cs de fr hi ru en en en en en
output language en en en en en ave. cs de fr hi ru ave.

WMT14 MEANT 2.0 .325 .353 .421 .421 .348 .374 – .279 – – – –
RRseg MEANT 2.0 - nosrl .312 .354 .426 .410 .341 .367 .355 .254 .314 .294 .472 .338

individual best .328 .380 .433 .438 .355 .386 .344 .268 .293 .286 .440 .319
sentBLEU .213 .271 .378 .300 .263 .285 .290 .191 .256 .227 .381 .269
input language cs de fi fr ru en en en en en
output language en en en en en ave. cs de fi fr ru ave.

WMT15 MEANT 2.0 .463 .465 .424 .402 .400 .431 – .398 – – – –
RRseg MEANT 2.0 - nosrl .463 .454 .421 .406 .401 .429 .472 .386 .344 .365 .442 .402

individual best .495 .482 .445 .398 .418 .447 .446 .399 .380 .366 .439 .400
sentBLEU .391 .360 .308 .358 .329 .349 .290 .191 .256 .227 .381 .269
input language cs de fi ro ru tr en en en en en en
output language en en en en en en cs de fi ro ru tr

WMT16 MEANT 2.0 .355 .453 .414 .345 .401 .373 – .360 – – – –
RRseg MEANT 2.0 - nosrl .347 .438 .411 .338 .400 .364 .436 .360 .329 .271 .428 .325

individual best .388 .420 .481 .383 .420 .424 .422 .334 .364 .307 .405 .337
sentBLEU .284 .265 .368 .272 .330 .245 .359 .236 .306 .233 .328 .222

Table 4: Kendall’s correlation of metric scores with the WMT 2014-2016 official human relative ranking
judgments at segment-level. For consistency with the task overview paper, system averages are not
reported in WMT 2016 results (Bojar et al., 2016b).

input language cs de fi ro ru tr en
output language en en en en en en ru

WMT16 MEANT 2.0 .674 .510 .539 .607 .535 .588 –
DAseg MEANT 2.0 - nosrl .672 .484 .522 .587 .540 .577 .664

individual best .713 .601 .598 .661 .618 .663 .666
sentBLEU .557 .448 .484 .499 .502 .532 .550

Table 5: Pearson’s correlation of metric scores with the WMT 2016 direct assessment of absolute trans-
lation adequacy at segment-level.

For the WMT15 test set, both MEANT 2.0 and
MEANT 2.0 - nosrl beat all the participating
metrics in that year in the fr-en direction. MEANT
2.0 - nosrl also has the highest correlation
with human in the en-cs and en-ru directions and
the overall average of the from-English directions.
Again, on the average of all the to-English direc-
tions, MEANT 2.0 and the nosrl variant are in
2nd and 3rd place respectively and only lose to an
ensemble and trained metric.

For the WMT16 test set, both MEANT 2.0
and MEANT 2.0 - nosrl beat all other partic-
ipants in that year in the de-en, en-de directions
while MEANT 2.0 - nosrl is also the cham-
pion in the en-cs and the en-ru directions. Both
variants perform very competitively when com-
pared to the leading metrics in all other directions.

5.2.2 On direct assessment judgment

Table 5 shows the Pearson’s correlation of
MEANT with the WMT 2016 direct assessment
of absolute translation adequacy at segment-level.
Both variants of MEANT perform very competi-
tively when compared to the leading pack in other
directions. MEANT 2.0 performs better than the

HUME

input language en en en en
output language cs de pl ro
MEANT 2.0 – .522 – –
MEANT 2.0 - nosrl .508 .522 .619 .479
individual best .544 .480 .639 .435
sentBLEU .349 .377 .550 .328

Table 6: Pearson’s correlation of metric scores
with the WMT 2016 HUME human assessment at
segment-level.

nosrl variant in all directions, except ru-en.

5.2.3 On HUME evaluation
Table 6 shows the Pearson’s correlation of
MEANT with the HUME human assessment on
the himltest test set at segment-level.

Both MEANT 2.0 and MEANT 2.0 -
nosrl beat all other participating metrics in
that year in the en-de direction. MEANT 2.0
- nosrl also has the highest correlation with
HUME among all the participants in that year in
the en-pl direction.

5.3 Evaluation speed

Table 7 shows the average time (in seconds) for
each step of a typical WMT system evaluation
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lang. # pairs tok. load srl score
cs 2.8k 3 158 – 56
de 2.6k 2 333 1010 41
en 2.8k 2 195 1120 46
fi 2.3k 2 114 – 24
fr 3.0k 4 77 – 61
hi 2.5k 4 7 – 35
lv 2.0k 2 47 – 13
pl 0.3k 1 72 – 4
ro 2.0k 1 19 – 10
ru 2.9k 5 142 – 27
tr 3.0k 4 23 – 17
zh 2.0k 501 75 1175 16

Table 7: Average time in seconds for each step of
evaluating a typical WMT system using MEANT:
tokenizing both the reference and the MT output;
loading the distributional lexical semantic similar-
ity model; semantic role labeling the reference and
the MT output; and scoring the MT output.

on different output languages using MEANT. The
time taken for punctuation tokenization is almost
negligible. This is because in common practice for
MT system development, the validation and eval-
uation set are reused frequently, so the process-
ing of the reference translation is typically pre-
computed. Furthermore, the MT system is trained
to output tokenized translations, so it is not neces-
sary to run the tokenization step on the MT out-
put. Therefore, the tokenization step does not af-
fect the time cost of MEANT in practical appli-
cations (even in the case of Chinese, where word
segmentation takes significantly longer).

The loading time of the word embedding model
is proportional to the vocabulary size of the model
reported in table 1; it takes less than a second to
load 10k vocabularies into memory.

Automatic semantic role labeling (SRL) is the
most time consuming step in running MEANT.
The time reported in table 7 includes parsing both
the reference and the MT output. However, as
pointed out above, common practice for MT sys-
tem development is to frequently reuse the valida-
tion and evaluation sets. Thus, semantic role la-
beling of the reference translation could be pre-
computed to reduce the time taken for the SRL
step in the development cycle.

Finally, the time used in computing the
MEANT score is proportional to the size of the
evaluation set and the word embedding model.
The scoring step processes around 50 to 100 sen-
tences each second.

6 Conclusion

We present a new version of MEANT that partici-
pated in evaluating MT systems for all language
pairs in the metrics task of the Second Confer-
ence on Machine Translation (WMT 2017). The
correlation of MEANT with human judgment has
been improved by better addressing translation ad-
equacy via weighing the importance of each word
in the phrasal similarity computation by inverse
document frequency, and better addressing trans-
lation fluency via using distributional ngram accu-
racy to account for word reordering in the compu-
tation. Our results show that MEANT consistently
performs well across different output languages in
the previous year’s test set at both system-level and
segment-level.

MEANT 2.0 - nosrl is a non-ensemble and un-
trained metric that requires only a monolingual
corpus in the output language for building the
word embeddings to evaluate MT systems for a
new language pair. Although there is an overhead
time cost in semantic role labeling sentence pairs
in MEANT 2.0 and loading the word embedding
model in both MEANT 2.0 and its nosrl subver-
sion, the time cost can be reduced almost by half
in real applications. This highly portable and open
source semantic MT evaluation metric is a more
accurate alternative to BLEU in evaluating trans-
lation quality for low-resource languages.
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Ondřej Bojar, Yvette Graham, Amir Kamran, and
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Abstract

Existing metrics to evaluate the quality of
Machine Translation hypotheses take dif-
ferent perspectives into account. DPM-
Fcomb, a metric combining the merits
of a range of metrics, achieved the best
performance for evaluation of to-English
language pairs in the previous two years
of WMT Metrics Shared Tasks. This
year, we submit a novel combined met-
ric, Blend, to WMT17 Metrics task. Com-
pared to DPMFcomb, Blend includes the
following adaptations: i) We use DA hu-
man evaluation to guide the training pro-
cess with a vast reduction in required train-
ing data, while still achieving improved
performance when evaluated on WMT16
to-English language pairs; ii) We carry out
experiments to explore the contribution of
metrics incorporated in Blend, in order to
find a trade-off between performance and
efficiency.

1 Introduction

Automatic machine translation evaluation
(AMTE) has received much attention in recent
years, with the aim of providing quick and stable
measurements of the performance of machine
translation (MT) systems. Various metrics for
AMTE have been proposed and most operate via
computation of the similarity between the MT hy-
pothesis and the reference translation. However,
different metrics focus on different perspectives
in terms of measuring similarity. For lexical based
metrics, BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002) count n-gram co-occurrence,

Meteor (Denkowski and Lavie, 2014) and GTM
(Melamed et al., 2003) catch different kinds of
matches, ROUGE (Lin and Och, 2004) captures
common subsequences, WER (Nießen et al.,
2000), PER (Tillmann et al., 1997) and TER
(Snover et al., 2009) compute the post-editing
distance between the hypothesis and the reference
translation. Syntactic based metrics mainly use
shallow syntactic structures (Chan and Ng, 2008;
Zhu et al., 2010), dependency tree structures
or constituent tree structures (Owczarzak et al.,
2007; Liu and Gildea, 2005). Semantic measures
(Lo et al., 2012) and discourse similarity based
metrics (Guzmán et al., 2014) have also been
proposed.

Different metrics evaluate similarity between
hypotheses and reference translations from vari-
ous perspectives, each of which has pros and cons.
One straightforward and effective method to take
advantage of the merits of existing metrics is to
combine quality scores assigned by these metrics,
like DPMFcomb (Yu et al., 2015a).

In WMT15 and WMT16 Metrics tasks, DPM-
Fcomb was the best metric on average for to-
English language pairs (Stanojević et al., 2015;
Bojar et al., 2016). DPMFcomb incorporates lex-
ical, syntactic and semantic based metrics, using
ranking SVM1 to train parameters of each metric
score and achieves a high correlation with human
evaluation. Human evaluations in terms of rela-
tive ranking (RR) accumulated in WMT Metrics
tasks are adopted to generate training data and to
guide the training process. Human relative rank-
ing is carried out by ranking the quality of 5 MT
hypotheses of the same source segment from 1 to
5 via comparison with the reference translation.

1http://www.cs.cornell.edu/People/tj/svm light/svm rank.html
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cs-en de-en fi-en ro-en ru-en tr-en en-ru
WMT15 500 500 500 − 500 − 500
WMT16 560 560 560 560 560 560 560

Table 1: The number of sampled DA data for each language pair in WMT15 and WMT16.

Therefore, human RR only provides relative dif-
ferences in quality of a given 5 hypotheses rather
than the overall absolute quality of hypotheses.
Besides, the low inter-annotator agreement level in
RR (Callison-Burch et al., 2007) has been a long-
lasting issue in MT human evaluation. The ability
and the reliability of RR raise our concern whether
the capability of the model trained with RR as the
golden standard may be limited.

Fortunately, a new emerged evaluation ap-
proach, direct assessment (DA) (Graham et al.,
2013), has been proven more reliable for evalua-
tion of metrics and was recently adopted as the of-
ficial human evaluation in WMT17. DA produces
absolute quality scores of hypotheses, by measur-
ing to what extend the hypothesis adequately ex-
presses the meaning of the reference translation,
through a 1-100 continuous rating scale that facil-
itates reliable quality control of crowd-sourcing.
Large numbers of repeat human assessments per
translation are standardized and then combined
into a mean score as the final quality score of the
MT hypothesis.

The recent development in human evaluation of
MT motivates us to propose a new combined met-
ric, named as Blend 2, by adopting DA, as opposed
to RR, to guide the training process indicating that
a more reliable gold standard can lead to more re-
liable results even with less training data. Further-
more, we explore the contribution of metrics in-
corporated in Blend, aiming at finding a trade-off
between performance and efficiency of Blend.

What follows is a brief review of DPMFcomb,
before a description of Blend formulation is pro-
vided in Section 2, followed by experiments and
results in Section 3, before the conclusions in sec-
tion 4.

2 Metrics

2.1 Review of DPMFcomb

DPMFcomb utilizes human relative ranking data
to train a combined metric that produces quality
scores for MT hypotheses. In the training pro-

2Blend is available: https://github.com/qingsongma/blend

cess, metrics are incorporated as features in the
form of metric scores attributed to the same hy-
potheses, with relative ranks as the gold standard
to guide SVM-rank to learn parameters for fea-
tures. When testing, the predicted ranking scores
produced by DPMFcomb reflect the quality of hy-
potheses. DPMFcomb allows the combination of
the advantages of a set of arbitrary metrics re-
sulting in a metric with a high correlation with
human assessment. DPMFcomb includes default
metrics provided by Asiya MT evaluation toolkit
(Giménez and Màrquez, 2010), as well as three
other metrics, namely ENTF (Yu et al., 2015c),
REDp (Yu et al., 2014) and DPMF (Yu et al.,
2015b). Over the past two years of WMT met-
rics tasks, DPMFcomb has achieved the best per-
formance for evaluation of MT of to-English lan-
guage pairs.

2.2 Blend: A Novel Combined Metric based
on DA

Although RR reflects the quality of hypotheses to
some extent, it has two obvious defects. Firstly,
RR provides relative ranks of the given competing
MT hypotheses, which only reflects relative dif-
ferences in quality rather than the absolute qual-
ity of hypotheses. On the other hand, RR suffers
from low inter-annotator agreement levels. As a
result, the capability of the model trained with RR
as the golden standard could be limited. How-
ever, DA with carefully design of criteria (Gra-
ham et al., 2013) produces highly reliable overall
quality scores for each hypothesis (Graham et al.,
2015). In addition, since DA has replaced RR as
the official human evaluation in the news domain
in WMT17, more DA data would become avail-
able in the coming years. These motivate our new
combined metric, specially designed based on DA,
rather than RR, named as Blend, which means it
is a metric that can blend advantages of arbitrary
metrics in a combined metric that has a high cor-
relation with human assessment.

Our metric follows the basic formulation of
DPMFcomb. However, since DA is an absolute
quality judgment, which is different from RR, the
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cs-en de-en fi-en ro-en ru-en tr-en avg
Blend.all .991 .954 .969 .879 .942 .972 .951
MPEDA .988 .923 .971 .905 .923 .975 .948
BEER .985 .871 .964 .828 .894 .975 .920

Table 2: System-level Pearson correlation of metric scores and DA human scores with 10K hybrid sys-
tems for to-English language pairs on WMT16, where “avg” denotes the average Pearson correlation of
all language pairs.

cs-en de-en fi-en ro-en ru-en tr-en avg
Blend.all .710 .615 .602 .636 .622 .658 .641

DPMFcomb .713 .598 .584 .627 .615 .663 .633
METRICS-F .696 .601 .557 .662 .618 .649 .631

Table 3: Segment-level Pearson correlation of metric scores and DA human scores for to-English lan-
guage pairs on WMT16, where “avg” denotes the average Pearson correlation of all language pairs.

training data and the method of Blend are differ-
ent from that of DPMFcomb. We employ SVM
regression from libsvm (Chang and Lin, 2011) 3

for training, with training data consisting of fea-
tures in terms of incorporated metric scores for
hypotheses and the gold standard in terms of DA
human scores.

3 Experiments

We carry out experiments to compare the perfor-
mance of DPMFcomb and Blend. We also explore
the contribution of incorporated metrics in Blend
to find a trade-off between performance and effi-
ciency.

3.1 Setups

Our experiments are tested on WMT16 to-English
and English-Russian (en-ru) language pairs. We
use DA data sampled from WMT15 and WMT16
(Table 1) for Blend. Since there is only a lim-
ited amount of DA data available at present, we
employ all other to-English DA data as training
data (4800 sentences) when testing on each to-
English language pair (560 sentences) in WMT16.
For en-ru, we use en-ru DA data in WMT15 (500
sentences) to train and test on en-ru DA data in
WMT16 (560 sentences).

Features in both the training data and the test
data are scaled to be in [-1,1]. We use epsilon-
SVR with RBF kernel, and the epsilon is set to
0.1.

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/

3.2 Blend vs DPMFcomb

In WMT16, DPMFcomb incorporates 57 metrics
and was trained with SVM-rank on 445K train-
ing segments extracted from WMT12-WMT14 to-
English language pairs according to human judg-
ments in terms of RR. For comparison, Blend
incorporates the same 57 metrics but is trained
with SVM regression on only 4,800 training data
extracted from sampled DA data in WMT15-
WMT16 for each to-English language pair. We
name it Blend.all.

We present the system and segment-level Pear-
son correlation results in Table 2 and Table 3, re-
spectively. Table 2 shows Blend.all has higher av-
erage system-level Pearson correlation (.951) with
DA human scores compared to the two high per-
forming metrics MPEDA (.948) and BEER (.920)
on WMT16 for to-English language pairs.

Table 3 shows segment-level Pearson correla-
tions of Blend.all and two other high-performing
metrics DPMFcomb and EMTRICS-F on WMT16
for to-English language pairs. From Table 3 we
can see Blend.all achieves the best performance in
3 out of 6 to-English languages pairs and state-of-
the-art performance on average. It is worth not-
ing that even though the training data of Blend.all
is far less than that of DPMFcomb, Blend.all has
higher average Pearson correlation (.641), trained
on DA scores, than that of DPMFcomb (.633),
trained on RR scores.

In all, the above results show Blend trained with
DA data outperforms DPMFcomb trained with RR
data on WMT16 for to-English language pairs.
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cs-en de-en fi-en ro-en ru-en tr-en avg
Blend.all .710 .615 .602 .636 .622 .658 .641
Blend.lex .704 .589 .583 .625 .620 .674 .632
Blend.syn .656 .528 .494 .560 .533 .610 .564
Blend.sem .610 .533 .492 .507 .501 .554 .533

Table 4: Segment-level Pearson correlation of Blend incorporating different level of linguistic metrics
for to-English language pairs on WMT16, where “avg” denotes the average Pearson correlation of all
language pairs.

cs-en de-en fi-en ro-en ru-en tr-en avg
Blend.lex .704 .589 .583 .625 .620 .674 .632

Blend.lex+CharacTer .707 .596 .575 .628 .620 .680 .634
Blend.lex+BEER .709 .589 .580 .627 .622 .673 .634
Blend.lex+DPMF .706 .592 .590 .632 .626 .670 .636
Blend.lex+ENTF .703 .595 .588 .629 .629 .676 .637

Blend.lex+4 .709 .601 .584 .636 .633 .675 .640

Table 5: Segment-level Pearson correlation of Blend.lex incorporating 4 other metrics for to-English
language pairs on WMT16, where “avg” denotes the average Pearson correlation of all language pairs.

3.3 Trade-off between Performance and
Efficiency

It is convenient for Blend to combine arbitrary
metrics in order to achieve a high correlation with
human assessment. However, it would be useful to
know if any metric does not contribute greatly to
Blend in terms of performance, while at the same
time leads to low efficiency. To explore this, we
separate out the default metrics for to-English lan-
guage pairs provided by Asiya toolkit into three
categories, namely, lexical, syntactic, and seman-
tic based metrics. Blend.lex is the variant that in-
corporates only default lexical based metrics in
Asiya toolkit, while Blend.syn, and Blend.sem.
incorporate only syntactic and semantic metrics,
respectively. Blend.lex includes 25 metrics, but
with only 9 kinds of metrics, since some of them
are simply different variants of the same metric.
Blend.syn includes 17 metrics and Blend.sem 13
metrics but in reality each only corresponds to 3
distinct metrics, similar to Blend.lex.

The experimental results on WMT16 are shown
in Table 4. It is not all that surprising that
Blend.all incorporated with all default Asiya met-
rics achieves the best performance in 5 out of 6
language pairs and on average. However, it may
be worth noting that the average Pearson corre-
lation of Blend.lex is only 0.009 less than that
of Blend.all, while the performance of Blend.syn
and Blend.sem are quite far worse than that of

Blend.all, and even that of Blend.lex. Since syn-
tactic and semantic based metrics are usually com-
plex, and the performance of Blend.lex is compa-
rable with that of Blend.all, Blend can operate ef-
fectively with only incorporating the default lexi-
cal based metrics from Asiya toolkit.

We further add 4 other metrics to Blend.lex.,
CharacTer(Wang et al., 2016), a novel character-
based metric; BEER(Stanojević and Sima’an,
2015), a metric combining different kinds of fea-
tures; DPMF and ENTF, which proved to be effec-
tive. All of these 4 metrics are convenient to use.
Table 5 shows Blend.lex+4 (.640) achieves better
performance than that of Blend.lex (.632), and is
very close to that of Blend.all (.641) as shown in
Table 3.

Hence, we submit Blend.lex+4 to WMT17 Met-
rics task for to-English language pairs, since it pro-
vides a good trade-off between performance and
efficiency for Blend.

3.4 Experiments on from-English language
pairs

Blend can be effective to evaluate the quality of
from-English MT hypotheses if incorporated met-
rics support from-English language pairs. We
carry out experiments on WMT16 for en-ru lan-
guage pair as shown in Table 6.4 Blend.default

4For from-English language pairs, there is only en-ru DA
data available at present.
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en-ru
Blend.default .613

Blend.default+2 .675
BEER .666

Table 6: Segment-level Pearson correlation for en-
ru in WMT16.

is trained on only 500 sentences and incorporates
default lexical based metrics from Asiya toolkit
for en-ru, including 20 metrics, but with 9 kinds
of metrics only. Compared with Blend.default,
Blend.default+2 incorporates two more metrics,
CharacTer and BEER, but achieves great improve-
ment with segment-level Pearson correlation from
.613 to .675. The incorporated metric BEER is
the best performing metric (.666) on WMT16 for
en-ru, which is trained with large amounts of data.
Beer contributes to Blend apparently, meanwhile
Blend can further improve the performance of
BEER, indicating the effectiveness of the com-
bined metric Blend. We submit Blend.default+2
to WMT17 Metrics task for en-ru.

4 Conclusions

The performance of DPMFcomb proves the effec-
tiveness of the idea of combining metrics. How-
ever, DPMFcomb cannot extend itself to the new
development of human evaluation. Therefore, we
propose a novel metric Blend to employ DA data.
Blend is also a combined metric that can take good
advantage of the merits of existing metrics, and
performs better than DPMFcomb, even with far
less training data. Blend is easy to be trained and
flexible to be applied to any language pairs. In this
paper we present experiments on WMT16 Metrics
task, which shows Blend achieves state-of-the-art
performance on average for to-English language
pairs and for en-ru. Furthermore, we carry out ex-
periments with different settings and find a good
trade-off for Blend in terms of performance and
efficiency.
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Abstract

In this paper, we propose three different
methods for automatic evaluation of the
machine translation (MT) quality. Two
of the metrics are trainable on direct-
assessment scores and two of them use de-
pendency structures. The trainable metric
AutoDA, which uses deep-syntactic fea-
tures, achieved better correlation with hu-
mans compared e.g. to the chrF3 metric.

1 Introduction

With the ongoing research of the machine transla-
tion (MT) systems in the past the need for accu-
rate automatic evaluation of the translation quality
became unquestionable. Even though the human
judgment of the MT system outputs still holds as
the most reliable form of evaluation, the high cost
of human evaluation together with the amount of
time required for such evaluation makes human
judgment unsuitable for large scale experiments
where we need to evaluate many different system
configurations in a relatively short timespan. An
additional important limitation of human evalua-
tion is that it cannot be exactly repeated. This led
to development of various methods for automatic
MT evaluation in the past with the aim to elimi-
nate the need for the expensive human assessment
of the developed MT systems.

In this paper we suggest three novel methods for
automatic MT evaluation together with their direct
comparison:

1. AutoDA: A linear regression model using
semantic features trained on WMT Direct
Assessment scores (Bojar et al., 2016) or
HUMEseg scores (Birch et al., 2016).

2. TreeAggreg: N-gram based metric computed
over aligned syntactic structures instead of

the linear representation of the translated sen-
tences.

3. NMTScorer: A neural sequence classifier
which assigns correct/incorrect flags to the
evaluated sentence segments.

Table 1 shows the main properties of the pro-
posed methods. Some of them were mainly devel-
oped for Czech as the target language and were
later modified to be applied to other languages.
The differences in the data preprocessing and their
impact on the resulting evaluator are also de-
scribed in this paper.

2 AutoDA: Automatic Direct Assessment

AutoDA is a sentence-level metric trainable on
any direct assessment scores. The metric is based
on a simple linear regression combining several
features extracted from the automatically aligned
translation-reference pair. There may be also other
established metrics within the features.

The training data with golden direct-assessment
scores available are shown in Table 2.

We describe two variants. The first one works
only on Czech and uses many semantic features
based of rich Czech tectogrammatical annotation
(Böhmová et al., 2003). The second one uses
much fewer features, however, it is language uni-
versal and needs only a dependency parsing model
available.

2.1 AutoDA Using Czech Tectogrammatics
This metric automatically parses the Czech trans-
lation candidate and the reference translation and
uses various semantic features to compute the final
score.

2.1.1 Word Alignment
AutoDA relies on automatic alignment between
the translation candidate and the reference trans-
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Method Resource Type Trainable Metric Type
AutoDA Monolingual/Bilingual* Yes Segment-level Linear Regression
TreeAggreg Monolingual No Tree Segment-level ChrF**
NMTScorer Bilingual Yes Segment-level Classification

Table 1: Overview of the examined methods. Currently, AutoDA uses only monolingual resources even
though extracting additional features from the bilingual data (*) is possible. TreeAggreg can use any
string-level metric for score computation instead of ChrF (**).

Dataset Source Target # Sentences

WMT16 DAseg
TR/FI/CS/RO/RU/DE EN

560
EN RU

WMT15 DAseg
DE/RU/FI/CS EN

500
EN RU

WMT16 HUMEseg EN CS/DE/PL/RO ∼350

Table 2: Overview of the available data for training AutoDA.

lation. The easiest way of obtaining word align-
ments is to run GIZA++ (Och and Ney, 2000) on
the set of sentence pairs. GIZA++ was designed to
align documents in two languages and it can obvi-
ously also align documents in a single language,
although it does not benefit in any way from the
fact that many words are identical in the aligned
sentences. GIZA++ works well if the input corpus
is sufficiently large, to allow for extraction of reli-
able word co-occurrence statistics. While the test
sets alone are too small, we have a corpus of para-
phrases for Czech (Bojar et al., 2013). We thus
run GIZA++ on all possible paraphrase combina-
tions together with the reference-translation pairs
we need to align and then extract alignments only
for the sentences of interest.

2.1.2 Tectogrammatical Parsing
We use Treex1 framework (Popel and Žabokrtský,
2010) to do the tagging, parsing and tectogram-
matical annotation. Tectogrammatical annotation
of sentence is a dependency tree, in which only
content words are represented by nodes. The main
label of the node is a tectogrammatical lemma
– mostly the same as the morphological lemma,
sometimes combined with a function word in case
it changes its meaning. Other function words and
grammatical features of the words are expressed
by other attributes of the tectogrammatical node.
An example of a pair of tectogrammatical trees is
provided in Figure 1. The main attributes are:

• tectogrammatical lemma (t-lemma): the
lexical value of the node,

1http://ufal.mff.cuni.cz/treex

• functor: the semantic value of the syntac-
tic dependency relation. Functors express
the functions of individual modifications in
the sentence, e.g. ACT (Actor), PAT (Pa-
tient), ADDR (Addressee), LOC (Location),
MANN (Manner),

• sempos: semantic part of speech: n (noun),
adj (adjective), v (verb), or adv (adverbial),

• formeme: morphosyntactic form of the node.
The formeme includes for example preposi-
tions and cases of the nouns, e.g. n:jako+1
for nominative case with preposition jako.

• grammatemes: tectogrammatical counter-
parts of morphological categories, such as
number, gender, person, negation, modality,
aspect, etc.

2.1.3 Scores for Matching Attributes Ratios

Given the word- (or node-) alignment links be-
tween tectogrammatical annotations of the trans-
lation and reference sentences, we can count the
percentage of links where individual attributes
agree, e.g. the number of pairs of tectogrammat-
ical nodes that have the same tectogrammatical
lemma. These scores capture only a portion of
what the tectogrammatical annotations offer, for
instance, we they do not consider the structure of
the trees at all. For the time being, we take these
scores as individual features and use them in a
combined model.
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Figure 1: Example of aligned tectogrammatical trees of the reference “Podobně jako kofeinový nápoj
také alkohol zabraňuje vstřebávánı́ vápnı́ku z potravin, které jı́me.” and the candidate translation “Jako
kofeinový nápoj, alkohol v těle zabraňuje vstřebávánı́ kalcia z potravy.”

2.1.4 Linear Regression Training
We collect 83 various features based on match-
ing tectogrammatical attributes computed on all
nodes or a subsets defined by particular seman-
tic part-of-speech tags. To this set of features,
we add two BLEU scores (Papineni et al., 2002)
computed on forms and on lemmas and two chrF3
scores (Popovic, 2015) computed on trigrams and
sixgrams, so we have 87 features in total.

We train a linear regression model to obtain a
weighted mix of features that fits best the WMT16
HUMEseg scores. Since the amount of annotated
data available is low, we use the jackknife strategy:

• We split the annotated data into ten parts.

• For each tenth, we train the regression on all
the rest data and apply it to this tenth.

By this procedure, we obtain automatically as-
signed scores for all sentences in the data. The cor-
relation coefficients are shown in Table 3, along
with the individual features.

In addition to the regression using all 87 fea-
tures, we also did a feature selection, in which
we manually chose only 23 features with a posi-
tive impact on the overall correlation score. For
instance, we found that the BLEU scores can be

metric en-cs
aligned-tnode-tlemma-exact-match 0.449
aligned-tnode-formeme-match 0.429
aligned-tnode-functor-match 0.391
aligned-tnode-sempos-match 0.416
lexrf-form-exact-match 0.372
lexrf-lemma-exact-match 0.436
BLEU on forms 0.361
BLEU on lemmas 0.395
chrF3 0.540
AutoDA (87 features) 0.625
AutoDA (selected 23 features) 0.659

Table 3: Selected Czech deep-syntactic features
and their correlation against WMT16 HUMEseg
dataset. Comparison with BLEU, chrF3, and our
trainable AutoDA (using chrF3 as well).

easily omitted without worsening the correlation.
Conversely, the chrF scores are very valuable and
omiting them would lower the correlation signifi-
cantly.

We see that chrF3 alone performs reasonably
well (Pearson of 0.54), If we combine it with a se-
lected subset our features, we are able to achieve
the correlation of up to 0.659.
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2.2 Language Universal AutoDA
We have seen that deep-syntactic features help to
train an automatic metric with higher correlation
for Czech. Even though we have no similar tools
for other languages so far, we try to extract simi-
lar features for them as well. The source code is
available online. 2

2.2.1 Universal Parsing
We use Universal Dependencies (UD) by Nivre
et al. (2016b), a collection of treebanks in a com-
mon annotation style, where all our testing lan-
guages are present – version 1.3 covers 40 lan-
guages (Nivre et al., 2016a). For syntactic anal-
ysis, we use UDPipe by Straka et al. (2016), a to-
kenizer, tagger, and parser in one tool, which is
trained on UD. The UD tagset consists of 17 POS
tags; the big advantage is that the tagset is the same
for all the languages and therefore we can easily
extract e.g. content words, prepositional phrases,
etc.

2.2.2 Monolingual Alignment
Unlike from Czech, we did not known about the
existing corpus of paraphrases available across
other languages,3 so we used a simple monolin-
gual aligner based on word similarities and rel-
ative positions in the sentence. Our implemen-
tation is inspired by the heuristic Monolingual
Greedy Aligner written by Martin Popel (Rosa
et al., 2012), which is available in the Treex frame-
work.4

First, we compute scores for all possible align-
ment connections between tokens of the reference
and translated sentence:

score(i, j) = w1JaroWinkler(W t
i ,W

r
j )

+ w2I(T
t
i = T r

j )

+ w3(1− |(i/len(t)− j/len(r)|),
(1)

where JaroWinkler(W t
i ,W

r
j ) defines similarity

between the given words (Winkler, 1990), I(T t
i =

T r
j ) is a binary indicator testing the identity of

POS tags, and (1−|(i/len(t)−j/len(r)|) tells us
how close are the two words according to their rel-
ative positions in the sentences. The weights were

2https://github.com/ufal/auto-hume
3Multilingual corpus of paraphrases has been released by

Chris Callison-Burch’s group and is available here: http:
//paraphrase.org/#/download

4https://github.com/ufal/treex/

set manually to w1 = 8, w2 = 3, and w3 = 3;
they were not tuned for this specific task. When
we have the scores, we can simply produce uni-
directional alignments (i.e. find the best token in
the translation for each token in the reference and
vice versa) and then symmetrize them to create in-
tersection (one-to-one) or union (many-to-many)
alignments. We finally use union symmetrization,
since it achieved slightly better correlation with
humans.

2.2.3 Extracting Features
We distinguish content words from function ones
by the POS tag. The tags for nouns (NOUN,
PROPN), verbs (VERB), adjectives (ADJ), and
adverbs (ADV) correspond more or less to content
words. Then there are pronouns (PRON), symbols
(SYM), and other (X), which may be sometimes
content words as well, but we do not count them.
The rest of POS tags represent function words.

Now, using the alignment links and the content
words, we can compute numbers of matching con-
tent word forms and matching content word lem-
mas. The universal annotations contains also mor-
phological features of words: case, number, tense,
etc. Therefore, we also create equivalents of tec-
togrammatical formemes or grammatemes. Our
features can thus check for instance the percent-
age of aligned words with matching morphologi-
cal number or tense.

2.2.4 Regression and Results
We compute all the scores proposed in the pre-
vious section on the four languages and test the
correlation on WMT16 HUMEseg dataset (Birch
et al., 2016). German UD annotation does not con-
tain lemmas and morphological features, so some
scores for German could not be computed.

Similarly as in Section 2.1.4, we trained a lin-
ear regression on all the features together with
chrF3 score. The results computed by 10-fold
cross-validation on WMT16 HUMEseg dataset
and comparison with chrF and NIST5 scores is
shown in Table 4.

3 Tree Aggregated Evaluation

TreeAggreg is a simple sentence-level metric, re-
motely inspired by HUME. Rather than being
a full standalone metric, it can be regarded as

5Unlike in previous experiment, we compare the results
using NIST rather than BLEU since it is better suited for
segment-level evaluation.
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metric en-cs en-de en-pl en-ro
NIST 0.436 0.481 0.418 0.611
NIST cased 0.421 0.481 0.410 0.611
chrF1 0.505 0.497 0.428 0.608
chrF3 0.540 0.511 0.419 0.638
NIST on content lemmas 0.416 – 0.361 0.542
matching lemmas 0.431 – 0.393 0.565
matching forms 0.372 0.478 0.405 0.576
matching content lemmas 0.359 – 0.408 0.536
matching content forms 0.321 0.470 0.427 0.552
matching formemes 0.347 0.170 0.357 0.420
matching tense -0.094 – -0.118 0.079
matching number 0.286 – 0.205 0.404
AutoDA (linear regression) 0.604 0.525 0.453 0.656

Table 4: Pearson correlations of different sentence-level metrics on WMT16 HUMEseg dataset. Standard
NIST and chrF metrics are compared with our individual features matching. AutoDA combines all the
features together with the chrF3 score and the NIST score computed on content lemmas only. Other
NIST scores are not included in AutoDA, since they do not bring any improvement.

a metric template, for in principle, any string-
based MT metric can be plugged into it; we used
chrF3 (Popovic, 2015) in our work.

In TreeAggreg, we are trying to improve an
existing string-based metric by applying it in a
syntax-tree-based context. This is motivated by
our belief that dependency trees are a good means
of capturing sentence structure, which may be rel-
evant for MT evaluation metrics, as the MT out-
put should presumably transfer the information
present in the source sentence into a similar syn-
tactic structure as the reference translation uses.
However, in string-based MT metrics, the syntac-
tic structure of a sentence is typically ignored.

In our rather light-weight attempt to employ
syntactic analysis in MT evaluation, we segment
the sentences into phrases based on their depen-
dency parse trees, and evaluate these phrases inde-
pendently with the string-based MT metric. The
resulting scores are then aggregated into a final
sentence-level score using a simple weighted av-
erage.

Our source codes are available online.6

3.1 Method

To be able to apply TreeAggreg to measuring the
correspondence of a translation t to the reference
r, we first need to apply a set of NLP tools in a
pre-processing pipeline:

6https://github.com/ufal/auto-hume/
tree/rudolf

1. align reference and translation

2. parse reference

3. parse translation

We use the monolingual aligner presented in Sec-
tion 2.2.2, using the unidirectional alignment from
reference to translation; i.e. for each reference
word we get exactly one translation word aligned
to it (not necessarily unique). We use the UDPipe
tool to provide the dependency parse trees (see
Section 2.2.1).

Next, both the reference and the translation are
split into the following types of segments:

1. the whole sentence (sr, st)

2. the sentence root (rr, rt)

3. for each immediate dependent (dir, dit) of the
root, the continuous span defined by its sub-
tree (pir, pit)

Whole sentence This is simply the base string-
based MT metric applied in the standard way.

Sentence root The sentence root is selected ac-
cording to the parse trees; usually this is the main
verb in the sentence.

Subtree spans As we expect the dependency
analysis of the reference to be much more accurate
than that of the translation, we only use the ref-
erence parse tree to identify the root dependents’
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spans, and the word alignment to identify the cor-
responding spans in the translation:

• pir contains all words from sr that are transi-
tively dependent on dir, the ith dependent of
rr; pir includes dir but excludes rr

• pit contains the first and last word from st
which are aligned to any of the words in pir,
and all of the words between them

The string-level metricm(r, t) is then computed
on each corresponding pair of the reference and
translation segments. A weighted average of the
segment-level scores is computed, where longer
segments are given higher weight: the weight is
the sum of the numbers of words in the reference
segment and in the translation segment. Addition-
ally, for the (sr, st) segment pair, which is still the
most important component of the metric, we use
a double weight. Thus, the final score m is com-
puted as follows:

ms = m(sr, st) · (|sr|+ |st|) · 2
mr = m(rr, rt) · 2
mi

p = m(pir, p
i
t) · (|pir|+ |pit|)

m =
ms +mr +

∑
i∈Dep(rr)

mi
p

2|sr|+ 2|st|+ 2 +
∑

i∈Dep(rr)
|pir|+ |pit|

Dep(rr) are all immediate dependents of rr.

3.2 Development
When developing the TreeAggreg metric, we tried
multiple configurations, evaluating each of them
on the WMT16 HUMEseg dataset for correlation
with human judgments, and then selected the one
that performed best, which we have just described.

For example, we also experimented with more
fine-grained segmentations, such as taking each
node together only with its immediate dependents
as a span. However, such setups performed poorer,
probably because they depend more heavily on the
high structural similarity of the translation to the
reference. Still, it seems reasonable to assume that
at least the arguments of the root node should usu-
ally correspond well between the reference and the
candidate translation.

We also tried to put more weight to certain
words that we expected to be more important, such
as dir (immediate dependents of the root rr) How-
ever, this always led to a deterioration in the corre-
lation of the metric to human judgments. Thus, an

Lang. chrF3 TreeAggreg Difference
en-cs 0.5403 0.5473 +0.0070
en-de 0.5111 0.5078 −0.0033
en-pl 0.4186 0.4266 +0.0080
en-ro 0.6314 0.6226 −0.0088
Average 0.5254 0.5261 +0.0007

Table 5: Evaluation of TreeAggreg (our metric)
and chrF3 (baseline) with Pearson’s correlation to
human judgments.

important property of our metric seems to be that
each reference word is taken into account exactly
twice.7

3.3 Evaluation

To evaluate our metric, we measured Pearson’s
correlation of chrF3-based TreeAggreg scores
with sentence-level human judgments on the
WMT16 HUMEseg dataset. For comparison, we
also measure the correlation of a baseline metric,
which is the vanilla sentence-level chrF3.

As shown in Table 5, our metric performs com-
parably to the chrF3 baseline, leading to a slight
improvement for two language pairs, and a slight
deterioration for the other two.

Thus, our approach of employing sentence syn-
tactic structure into a string-based MT metric
seems to affect the metric only minimally. More-
over, the TreeAggreg metric was developed and
evaluated on the same data and therefore the com-
parison in Table 5 is not quite fair, however, the
number of configurations tested was very little.

4 Neural MT Scorer

Neural MT Scorer is a model that predicts a proba-
bility for a given source/target translation pair us-
ing a simplified architecture that is based on ex-
isting NMT models with attention. The predicted
number should reflect how much the meaning of
source and target matches. We used that model
for a different task (scoring phrase table entries in
PBMT) where it performed well. Note that as of
now, Neural MT Scorer indeed does not make any
use of the reference translation, so it is effectively
a quality estimation method.

The training data for the model are bilingual
corpus (set of sentences that should be classified

7The same holds for words in the translation only if the
pit spans do not overlap, are contiguous, include both the first
and the last word in the sentence, and do not include rr .
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as entirely correct) as well as a set of sentences
that should be classified as incorrect (we obtain
these by performing some random operations on
the bilingual corpus). We do not train it on data
specific for the metrics task (i.e. the model is only
trained to recognize correct and incorrect transla-
tions, but small differences among different trans-
lations of the same sentence might not be recog-
nized), therefore there is a room for potential im-
provement.

We do not use any smoother labeling than 0/1
(correct/incorrect), since even a single word omis-
sion may cause completely different meaning of
the sentence. At inference time, the output is a
float number between 0 and 1.

4.1 Architecture

We use two LSTM encoders, one for source and
one for target side. The vector representations of
the source words are fed into the source LSTM
encoder to obtain one representation ps of the en-
tire sentence. Also, the intermediate outputs of the
source LSTM encoder are used in an attentional
layer when processing the target sentence in the
target LSTM encoder. The final cell states ps and
pt are used to measure the bilingual similarity by
σ(pTs pt). The entire architecture is very similar to
(Bahdanau et al., 2014), except that we use the at-
tention mechanism while encoding the target side.
Note that there is also no softmax layer over the
word dictionary – we know the entire source and
target sentences and so we do not need to predict
the next word; we just need one score between 0
and 1. This should allow for faster training of the
model; however, we need to provide labeled train-
ing data. We currently generate wrong sentences
using these basic operations:

• change a few words to completely random
ones from the source/target dictionary

• take a translation of a completely different
sentence

• utilize WordNet to change the polarity of a
sentence

• remove/add some random words at a random
place

4.2 Evaluation

We evaluated the model on the WMT16 HUME-
seg dataset, but currently it performs poorly. It

Languages NMT Scorer
en-cs 0.4099
en-de 0.3462
en-pl 0.3261
en-ro 0.4792
Average 0.3903

Table 6: Evaluation of NMT Scorer with Pearson
correlation to human judgments.

should be possible to improve it significantly by
optimizing the training process for the metrics task
(for example by adding another layer that uses the
final representations ps and pt to predict human
scores and finetune the entire model on some man-
ually evaluated datasets). The Pearson correlation
coefficients to human judgements are shown in Ta-
ble 6.

5 Conclusion

We presented three metrics. AutoDA is a trainable
metric combining syntactic features matching and
chrF and naturally significantly outperforms chrF
on all four tested languages.

In TreeAggreg, we tried to enrich a string-based
MT metric with light-weight information about
the syntactic structure of the sentences, but the re-
sults seem rather disappointing.

NMTScorer in which we used two LSTM en-
coders for source sentence and candidate transla-
tion and predicted sentence similarity also did not
prove to work well.
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trainable pipeline for processing CoNLL-U files per-
forming tokenization, morphological analysis, pos
tagging and parsing. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16). European Language Re-
sources Association (ELRA), Paris, France.

William E. Winkler. 1990. String comparator met-
rics and enhanced decision rules in the fellegi-sunter
model of record linkage. In Proceedings of the Sec-
tion on Survey Research Methods (American Statis-
tical Association). pages 354–359.

611



Proceedings of the Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 612–618
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

CHRF ++: words helping character n-grams

Maja Popović
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Abstract

Character n-gram F-score (CHRF) is
shown to correlate very well with hu-
man relative rankings of different machine
translation outputs, especially for morpho-
logically rich target languages. However,
its relation with direct human assessments
is not yet clear. In this work, Pearson’s
correlation coefficients for direct assess-
ments are investigated for two currently
available target languages, English and
Russian. First, different β parameters (in
range from 1 to 3) are re-investigated with
direct assessment, and it is confirmed that
β = 2 is the optimal option. Then sepa-
rate character and word n-grams are inves-
tigated, and the main finding is that, apart
from character n-grams, word 1-grams
and 2-grams also correlate rather well with
direct assessments. Further experiments
show that adding word unigrams and bi-
grams to the standard CHRF score im-
proves the correlations with direct assess-
ments, though it is still not clear which
option is better, unigrams only (CHRF+)
or unigrams and bigrams (CHRF++). This
should be investigated in future work on
more target languages.

1 Introduction

Recent investigations (Popović, 2015; Stanojević
et al., 2015; Popović, 2016; Bojar et al., 2016)
have shown that the character n-gram F-score
(CHRF) represents a very promising evaluation
metric for machine translation, especially for mor-
phologically rich target languages – it is fast, it
does not require any additional tools or informa-
tion, it is language independent and tokenisation
independent, and it correlates very well with hu-

man relative rankings (RR) (Callison-Burch et al.,
2008). In order to produce these rankings, human
annotators have to decide which sentence trans-
lation is better/worse than another without giving
any note about the absolute quality of any of the
evaluated translations. This type of human judg-
ment has been the offical evaluation metric and
gold standard for all automatic metrics at WMT

shared tasks from 2008 until 2016.
Another type of human judgment, direct human

assessment (DA) (Bojar et al., 2016), has become
additional official evaluation metric for WMT-16,
and the only one for WMT-17. These assessments
consist of absolute quality scores for each trans-
lated sentence. Contrary to RR, the relation be-
tween CHRF and DA has still not been investigated
systematically. Preliminary experiments in previ-
ous work (Popović, 2016) shown that, concern-
ing DA, the main advantage of character-based F-
score CHRF in comparison to word-based F-score
WORDF is better correlation for good translations
for which WORDF often assigns too low scores.

In this work, we systematically investigate re-
lations between DA and both character and word
n-grams, as well as their combinations. The
scores are calculated for all available translation
outputs from the WMT-15 and WMT-16 shared
tasks (Bojar et al., 2016) which contain two target
languages, English (translated from Czech, Ger-
man, Finnish, Romanian, Russian and Turkish)
and Russian (translated from English), and then
compared with DAs on segment level using Pear-
sons’s correlation coefficient.

2 n-gram based F-scores

The general formula for an n-gram based F-score
is:

ngrFβ = (1 + β2)
ngrP · ngrR

β2 · ngrP + ngrR
(1)
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where ngrP and ngrR stand for n-gram preci-
sion and recall arithmetically averaged over all n-
grams from n = 1 to N:

• ngrP
n-gram precision: percentage of n-grams in
the hypothesis which have a counterpart in
the reference;

• ngrR
n-gram recall: percentage of n-grams in the
reference which are also present in the hy-
pothesis.

and β is a parameter which assigns β times more
weight to recall than to precision.

WORDF is then calculated on word n-grams
and CHRF is calculated on character n-grams. As
for maximum n-gram length N, previous work
reported that there is no need to go beyond
N=4 for WORDF (Popović, 2011) and N=6 for
CHRF (Popović, 2015).

CHRF++ score is obtained when the word n-
grams are added to the character n-grams and
averaged together. The best maximum n-gram
lengths for such combinations are again N=6 for
character n-grams and N=2 or N=1 for word n-
grams, which will be discussed in Section 4.3.

3 Motivation for adding word n-grams to
CHRF

A preliminary experiment on a small set of texts
reported in previous work (Popović, 2016) with
different target languages and different types of
DA1 shown that for poorly rated sentences, the
standard deviations of CHRF and WORDF scores
are similar – both metrics assign relatively simi-
lar (low) scores. On the other hand, for the sen-
tences with higher human rates, the deviations for
CHRF are (much) lower. In addition, the higher
the human rating is, the greater is the difference
between the WORDF and CHRF deviations. These
results indicate that CHRF is better than WORDF
mainly for segments/systems of higher translation
quality – the CHRF scores for good translations are
more concentrated in the higher range, whereas
the WORDF scores are often too low.

In order to further investigate these premises,
scatter plots in Figure 1 are produced for CHRF
and WORDF with DA for the Russian→English
and English→Russian WMT-16 data.

1none of them equal to the variant used in WMT

Figure 1 confirms the findings from previous
work, since a number of WORDF values is indeed
pessimistic – high DA but low WORDF, whereas
CHRF values are more concentrated, i.e. correlate
better with DA values. However, these plots raised
another question – are CHRF scores maybe too
optimistic (i.e. segments with high CHRF score
and low DA score)? Certainly not to such extent
as WORDF scores are pessimistic, but still, could
some combination of character and word n-grams
improve the correlations of CHRF?

4 Pearson correlations with direct
assessments

In order to explore combining CHRF with word n-
grams, the following experiments are carried out
in terms of calculating Pearson’s correlation coef-
ficient between DA and different n-gram F-scores:

1. As a first step, β parameter is re-investigated
for DA, both for CHRF and WORDF in order
to check if β = 2 is a good option for DA, too;

2. Individual character and word n-grams are
investigated in order to see if some are bet-
ter than others and to which extent;

3. Finally, various combinations of character
and word n-grams were explored and the
results are reported for the most promising
ones.

4.1 β parameter revisited
Previous work (Popović, 2016) reported that the
best β parameter both for CHRF and for WORDF
is 2 in terms of Kendall’s τ segment level correla-
tion with human relative rankings (RR). However,
this parameter has not been tested for direct hu-
man assessments (DA) – therefore we tested sev-
eral β in terms of Pearson correlations with DA.
It is confirmed that putting more weight on preci-
sion is not good, and the results for β = 1,2,3 are
reported in Table 1. Both for CHRF and WORDF,
the correlations for β = 2,3 are comparable, and
better than for β =1. Since there is almost no dif-
ference between 2 and 3, and putting too much
weight to recall could jeopardise some other appli-
cations such as system tuning or system combina-
tion (for example, (Sánchez-Cartagena and Toral,
2016) decided to use CHRF1 because CHRF3 lead
to generation of too long sentences), we decided
to choose β = 2 which will be used for all further
experiments.
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(a) Russian→English, WORDF
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(b) English→Russian, WORDF
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(c) Russian→English, CHRF
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(d) English→Russian, CHRF

Figure 1: Scatter plots for (a)(b) WORDF and (c)(d) CHRF with DA for (a)(c) Russian→English and
(b)(d) English→Russian WMT-16 texts confirm that WORDF values are overly pessimistic – a number of
WORDF points lies in the lower right quadrant, i.e. a number of segments with high DA values has a low
WORDF value. On the other hand, CHRF points are more concentrated, especially for morphologically
rich Russian. However, are some of them too optimistic? (i.e. segments with high CHRF scores and low
DA scores)

4.2 Individual character and word n-grams

Individual n-grams were also investigated in pre-
vious work, however (i) only character n-grams
and (ii) only compared with RR, not with DA. In
this work, we carried out systematic investigation
on both character and word n-grams’ correlations
with DA, and the results are reported in Table 2.
It should be noted that, to the best of our knowl-
edge, word n-grams with order less than 4 have
not been investigated yet in the given context of
correlations with RR or DA. Implicitly, the ME-
TEOR metric (Banerjee and Lavie, 2005) is based
on word unigrams with additional information and
generally correlates better with human rankings
than the BLEU metric (Papineni et al., 2002) based
on uni-, bi-, 3- and 4-gram precision.

The results show that, similarly to the correla-
tions with RR, the best character n-grams are of
the middle lengths i.e. 3 and 4. The main finding

is, though, that the best word n-grams are the short
ones, namely unigrams and bigrams.

Following these results for individual n-grams,
several different experiments have been carried
out, involving different character n-gram weights,
combining character and word n-grams with dif-
ferent weights, etc., however no consistent im-
provements have been noticed in comparison to
the standard uniform n-gram weights, not even by
removing or setting low weight for character uni-
grams. The only noticeable improvement was ob-
served when word 4-grams and 3-grams were re-
moved.

4.3 The emergence of CHRF++
Findings reported in the previous section raised
the following questions: (i) are word 3-grams and
4-grams the ”culprits” for overly pessimistic be-
haviour of WORDF described in Section 3? (ii)
Could the ”good guys”, i.e. word unigrams and
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2016/2015 cs-en de-en fi-en ro-en ru-en tr-en en-ru mean

CHRF1 .644/.542 .452/.600 .454/.565 .570 .522/.601 .551 .642/.606 .562
CHRF2 .658/.552 .469/.605 .457/.573 .581 .534/.613 .556 .661/.624 .574
CHRF3 .660/.552 .472/.604 .455/.572 .582 .535/.614 .555 .661/.622 .574
WORDF1 .587/.503 .453/.540 .428/.525 .504 .498/.549 .531 .572/.527 .519
WORDF2 .598/.512 .462/.543 .437/.535 .518 .504/.559 .536 .580/.533 .526
WORDF3 .600/.514 .464/.543 .439/.537 .522 .504/.561 .536 .582/.534 .528

Table 1: Pearson’s correlation coefficients of CHRF and WORDF with direct human assessments (DA)
for different β parameters. Bold represents the best character level value and underline represents the
best word level value. The best β values are 2 and 3.

2016/2015 cs-en de-en fi-en ro-en ru-en tr-en en-ru mean

chr1-gram .544/.448 .355/.407 .313/.417 .443 .358/.527 .337 .531/.489 .431
chr2-gram .644/.537 .441/.556 .420/.547 .554 .504/.599 .513 .652/.631 .550
chr3-gram .662/.539 .472/.604 .459/.582 .579 .533/.613 .559 .683/.661 .579
chr4-gram .657/.542 .472/.614 .460/.581 .582 .538/.602 .562 .682/.655 .579
chr5-gram .644/.540 .467/.611 .456/.559 .576 .532/.588 .559 .676/.640 .571
chr6-gram .627/.539 .463/.599 .447/.539 .568 .521/.578 .553 .662/.623 .560
word1-gram .631/.509 .481/.529 .434/.566 .504 .505/.606 .510 .601/.564 .537
word2-gram .611/.528 .473/.546 .441/.513 .529 .513/.551 .539 .575/.549 .531
word3-gram .546/.461 .426/.513 .387/.470 .498 .469/.519 .475 .536/.472 .481
word4-gram .479/.382 .385/.458 .337/.369 .427 .404/.468 .380 .478/.397 .414

Table 2: Pearson’s correlation coefficients of CHRF and WORDF with direct human assessments (DA)
for individual character and word n-grams. Bold represents the best character level value and underline
represents the best word level value.
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bigrams diminish potentially too optimistical be-
haviour of CHRF?

In order to get the answers, the Pearson correla-
tions are calculated for CHRF combined with four
WORDFs with different maximum n-gram lengths,
i.e. N=1,2,3,4 and the results are presented in Ta-
ble 3. In addition, correlations are presented also
for CHRF and two variants of WORDF (usual N=4
and the best N=2).

First, it can be seen that removing word 3-grams
and 4-grams improves the correlation for WORDF
which becomes closer to CHRF (and even better
for one of the two German→English texts). Fur-
thermore, it can be seen that adding word uni-
grams and bigrams to CHRF improves the corre-
lations of CHRF in the best way. Therefore this
is the variant which is chosen to be the CHRF++.
Next best option (CHRF+) is to add only word un-
igrams i.e. words, and this one is the best one for
translation into Russian. Possible reasons are mor-
phological richness of Russian as well as rather
free word order, however the test set in this exper-
iment is too small to draw any conclusions. Both
CHRF++ and CHRF+ should be further tested on
more texts and on more morphologically rich lan-
guages.

Scatter plots presented in Figure 2 visualise the
improvement of correlations by CHRF++: WORDF
with N=4 (a) is, as already shown, too pessimistic.
Lowering the maximum n-gram length to 2 (b)
moves a number of pessimistic points upwards,
thus improving the correlation. When added to
slightly overly optimistic CHRF (c), the points for
both metrics are moved more towards the middle
(d).

5 Conclusions

The results presented in this work show that
adding short word n-grams, i.e. unigrams and
bigrams to the character n-gram F-score CHRF
improves the correlation with direct human as-
sessments (DA). Since the amount of available
texts with DA is still small, it is still not possi-
ble to conclude which variant is better: adding
only unigrams (CHRF+) or unigrams and bigrams
(CHRF++). This is especially hard to conclude for
translation into morphologically rich languages,
since only Russian was available until now. In
order to explore both CHRF+ and CHRF++ more
systematically, both are submitted to the WMT-17
metrics task for translations from English. For

translation into English, only CHRF++ is submit-
ted since it outperformed the other variant for En-
glish. For Chinese, only the raw CHRF has been
submitted since the concept “Chinese words” is
generally not clear. Further work should include
more data and more distinct target languages.

The tool for calculating CHRF++ (as well as
CHRF+ and CHRF since it is possible to change
maximum n-gram lengths) is publicly available
at https://github.com/m-popovic/chrF. It is a
Python script which requires (multiple) reference
translation(s) and a translation hypothesis (output)
in the raw text format. It is language independent
and does need tokenisation or any similar prepro-
cessing of the text. The default β is set to 2, but
it is possible to change. It provides both segment
level scores as well as document level scores in
two variants: micro- and macro-averaged.
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2016/2015 cs-en de-en fi-en ro-en ru-en tr-en en-ru mean

WORDF (4-gram) .598/.512 .462/.543 .437/.535 .518 .504/.559 .536 .580/.533 .526
WORD2-F .642/.537 .490/.557 .455/.563 .535 .526/.592 .553 .603/.575 .552
CHRF (6-gram) .658/.552 .469/.605 .457/.573 .581 .534/613 .556 .661/.624 .574
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C6W3F .663/.559 .486/.603 .471/.584 .578 .542/.615 .574 .672/.641 .582
C6W2F (CHRF++) .668/.561 .487/.606 .470/.585 .580 .544/.619 .570 .679/.650 .585
C6W1F (CHRF+) .665/.558 .480/.606 .464/.585 .579 .540/.620 .562 .685/.654 .583

Table 3: Pearson’s correlation coefficients with direct human assessments (DA) of CHRF enhanced with
word n-grams together with CHRF and two variants of WORDF: N=4 and N=2. Bold represents the best
overall value.
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(a) wordF (n-gram order = 4)
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(b) word2F (n-gram order = 2)
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(c) CHRF (n-gram order = 6)

 0

 20

 40

 60

 80

 100

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

c6
w

2
F

human

"en-ru.c6w2f2.for-plot"

(d) CHRF++ (CHRF +word2F)

Figure 2: Scatter plots for (a) WORDF with N=4, (b) WORDF with N=2, (c) CHRF and (d) CHRF++
(CHRF enhanced with word bigrams) with DA for English→Russian WMT-16 text. Removing word 3-
grams and 4-grams decreases the number of “pessimistic” WORDF points in the lower right quadrant.
Combining CHRF with word unigrams and bigrams further decreases the frequency of such points and
also lowers overall CHRF scores pushing the points more towards the middle.
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Abstract

In this participation in the WMT’2017
metrics shared task we implement a fuzzy
match score for n-gram precisions in the
BLEU metric. To do this we learn n-
gram embeddings; we describe two ways
of extending the WORD2VEC approach to
do so. Evaluation results show that
the introduced score beats the original
BLEU metric on system and segment
level.

1 The Painfully Familiar Metric

The BLEU metric (Papineni et al., 2002) has
deeply rooted in the machine translation com-
munity and is used in virtually every paper on
machine translation methods. Despite the well-
known criticism (Callison-Burch et al., 2006) and
a decade of collective efforts to come up with a
better translation quality metric (from Callison-
Burch et al., 2007 to Bojar et al., 2016) it still ap-
peals with its ease of implementation, language in-
dependence and competitive agreement rate with
human judgments, with the only viable alternative
on all three accounts being the recently introduced
CHRF (Popovic, 2015).

The original version of BLEU is harsh on sin-
gle sentences: one of the factors of the score is
a geometric mean of n-gram precisions between
the translation hypothesis and reference(s) and as
a result sentences without 4-gram matches get a
score of 0, even if there are good unigram, bi-
gram and possibly trigram matches. There have
been several attempts to “soften” this approach
by using arithmetic mean instead (NIST, Dod-
dington, 2002), allowing for partial matches using

lemmatization and synonyms (METEOR, Baner-
jee and Lavie, 2005) and directly implementing
fuzzy matches between n-grams (LEBLEU, Vir-
pioja and Grönroos, 2015).

Our work is most closely related to LEBLEU,
where BLEU is augmented with fuzzy
matches based on the character-level Leven-
shtein distance. Here we use independently
learned word and n-gram embeddings instead.

2 The Continuous Vector Space Steroids

Together with neural networks came the necessity
to map sparse discrete values (like natural lan-
guage words) into dense continuous vector rep-
resentations. This is done explicitly e.g. with
WORD2VEC (Mikolov et al., 2013), as well as
learned as part of the whole learning process in
neural networks-based language models (Mikolov
et al., 2010) and translation approaches (Bahdanau
et al., 2015). The approach of learning embed-
dings has since been extended for example to
items in a relational database (Barkan and Koenig-
stein, 2016), sentences and documents (Le and
Mikolov, 2014) and even users (Amir et al., 2017).

The core part of this work consists of n-gram
embeddings, the aim of which is to find similar-
ities between short phrases like “research paper”
and “scientific article”, or “do not like” and “hate”.
We propose two solutions, both reducing the prob-
lem to the original WORD2VEC ; the first one only
handles n-grams of the same length while the sec-
ond one is more general. These are described in
the following sections.

2.1 Separate N-gram Embeddings

Our first approach is learning separate embedding
models for unigrams, bigrams and trigrams. While
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unigram embeddings are handled by the baseline
WORD2VEC method, in this approach we group
the n-gram tokens into a single entry, ignoring the
overlapping parts, for example:

Uni-grams: this is a test .
Bi-grams: this is is a a test test .
Tri-grams: this is a is a test a test .

and then compute embeddings for the new tokens
with the baseline approach.

Since the number of different n-grams is much
higher than single tokens, we filter out bi-grams
that occur less than 30 times and tri-grams that oc-
cur less than 50 times.

2.2 Joint N-gram Embeddings

Our first method can only learn similarities be-
tween n-grams of the same lengths. While it is
enough for this submission’s metric, it also runs
the danger of learning overlapping n-grams, as
these are generated next to each other. We there-
fore define a more general solution.

By modifying the process of extracting input-
output training pairs from text sentences we can
achieve direct inclusion of both the words and the
n-grams, with each of them being treated a sepa-
rate lexical entry. See Figure 1 for an example of
skip-gram training:

alice was beginning to …

Figure 1: Example of skip-gram training for words
and n-grams. Boxes show the input entries and ar-
rows point to output entries; context window width
of 1 is used for a simpler figure’s sake. We follow
(Yu and Dredze, 2015) and predict single words on
the output side while feeding words and n-grams
on the input side.

In addition to frequency filtering we also sam-
ple the n-grams randomly, sometimes includ-
ing or excluding them from training. To in-
crease the chances of more rare n-grams being in-
cluded we define the sampling probability based
on smoothed reverse frequency:

p = exp(−β log(f)) = 1

fβ
,

where f is the n-gram absolute frequency, p is the
sampling probability and β is a small weight. For
example with β = 1

8 the sampling likelihood of an
tri-gram with minimum frequency (50) is 0.613,
while a high frequency like 10000 will have the
probability of 0.316. Using this dynamic probabil-
ity is equivalent to down-sampling the more fre-
quent n-grams, leaving more exposure to the en-
tries with lower frequency.

Finally, by sampling only n-grams that do not
overlap we reduce the problem to the original
word-level WORD2VEC by randomly re-deciding
which n-grams to join into a single lexical entry
at each epoch. This also means that n-grams are
present as both the input and output entries.

In the next section we apply the learned n-gram
embeddings to compute a soft-constraint transla-
tion metric score.

3 BLEU2VEC

The original BLEU metric defines a hard con-
straint: a word or n-gram from the hypothesis is
considered either precise or not. Our modification
is defined as follows:

• a hypothesis translation word or n-gram
present in the reference translation is consid-
ered precise (weight 1)

• all other words and n-grams in the hypothe-
sis are aligned to same-length n-grams in the
reference by greedily selecting the most sim-
ilar pair first. Similarity is computed via the
cosine of the embeddings, and is used as the
pair’s weight

• overlaps are not allowed: once a pair is
aligned it is removed from the search space
for the next n-grams

The rationale behind this simple modification
is that partially correct words will be hopefully
considered similar by the embedding model, while
completely wrong words will only find alignments
with lower similarity.

4 Evaluation

In order to evaluate the metric we trained word
and n-gram embeddings using the monolingual
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Metric fi-en de-en cs-en ru-en Average
BLEU 0.929 0.865 0.958 0.851 0.901
BLEU2VEC SEP 0.953 0.867 0.970 0.857 0.912
BLEU2VEC JOINT 0.946 0.863 0.969 0.846 0.906

Table 1: System-level correlation between human judgments from WMT’2015 and the original
BLEU metric as well as our two modifications. BLEU2VEC SEP stands for separate n-gram embedding
learning and BLEU2VEC JOINT stands for the joint learning model.

Metric fi-en de-en cs-en ru-en Average
SENT-BLEU 0.308 0.360 0.391 0.329 0.347
BLEU2VEC SEP 0.327 0.366 0.422 0.320 0.359
BLEU2VEC JOINT 0.326 0.363 0.417 0.318 0.356

Table 2: Segment-level correlation between human judgments and the SENT-BLEU metric as well as our
two modifications.

data from the WMT’2017 news translation shared
task: we took a random 50 million sentences from
the News Crawl corpora for each language (ex-
cept Chinese, where we used a portion of Common
Crawl).

While this year’s human judgments are still be-
ing annotated at the time of final submission, we
present correlation results based on WMT 2015
data for English in Table 1 for system-level corre-
lations and Table 2 for segment-level correlations.

Results show that both our metrics perform bet-
ter than the baseline on system-level evaluation.
In all cases the joint n-gram embedding learning
model performs slightly worse than the separate
learning approach.

The same effect can be seen on segment-level
evaluations, whereas for Russian-English transla-
tions the correlation of both our metrics is worse
than SENT-BLEU.

5 Discussion and Conclusions

We defined BLEU2VEC, a modification of the
BLEU score that uses word and n-gram embed-
ding similarities for fuzzy matches. Compared
to our expectations the metric is underwhelm-
ing, but still has higher system-level and segment-
level correlations than the original BLEU metric
in most evaluated cases.

The main disadvantage of the metric is that the
embedding models need to be trained for it to
work. On one hand, only raw text is needed for the
training. On another hand, this means that the re-
sults depend on the size of the training material, as
well as the text domain overlap and other similar-

ities/dissimilarities between the training data and
the evaluated translations. Evaluating how much
this affects the metric remains to be done in future
work.

Our future plans include evaluating the met-
ric on other languages; one can expect a big-
ger difference in metric performance for mor-
phologically complex languages, since our metric
aims at reducing the sparsity effect of the original
BLEU metric. Other ways of representing words
with embeddings have to be experimented with,
especially the ones where word and character-level
representations are mixed, like Charagram (Wi-
eting et al., 2016). It is also interesting to see,
whether this metric can be used for hill-climbing
and system development.

The code of our implementation is available on
GitHub1.
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Ondřej Bojar, Yvette Graham, Amir Kamran, and
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Abstract

This paper presents the LIG-CRIStAL
submission to the shared Automatic Post-
Editing task of WMT 2017. We propose
two neural post-editing models: a mono-
source model with a task-specific atten-
tion mechanism, which performs particu-
larly well in a low-resource scenario; and
a chained architecture which makes use of
the source sentence to provide extra con-
text. This latter architecture manages to
slightly improve our results when more
training data is available. We present and
discuss our results on two datasets (en-de
and de-en) that are made available for the
task.

1 Introduction

It has become quite common for human translators
to use machine translation (MT) as a first step, and
then to manually post-edit the translation hypoth-
esis. This can result in a significant gain of time,
compared to translating from scratch (Green et al.,
2013). Such translation workflows can result in
the production of new training data, that may be
re-injected into the system in order to improve it.
Common ways to do so are retraining, incremental
training, translation memories, or automatic post-
editing (Chatterjee et al., 2015).

In Automatic Post-Editing (APE), the MT sys-
tem is usually considered as a blackbox: a separate
APE system takes as input the outputs of this MT
system, and tries to improve them. Statistical Post-
Editing (SPE) was first proposed by Simard et al.
(2007). It consists in training a Statistical Machine
Translation (SMT) system (Koehn et al., 2007), to
translate from translation hypotheses to a human
post-edited version of those. Béchara et al. (2011)
then proposed a way to integrate both the transla-

tion hypothesis and the original (source language)
sentence. More recent contributions in the same
vein are (Chatterjee et al., 2016; Pal et al., 2016).

When too little training data is available, one
may resort to using synthetic corpora: with sim-
ulated PE (Potet et al., 2012), or round-trip
translation (Junczys-Dowmunt and Grundkiewicz,
2016).

Recently, with the success of Neural Machine
Translation (NMT) models (Sutskever et al., 2014;
Bahdanau et al., 2015), new kinds of APE methods
have been proposed that use encoder-decoder ap-
proaches (Junczys-Dowmunt and Grundkiewicz,
2016, 2017; Libovický et al., 2016; Pal et al.,
2017; Hokamp, 2017), in which a Recurrent Neu-
ral Network (RNN) encodes the source sequence
into a fixed size representation (encoder), and an-
other RNN uses this representation to output a
new sequence. These encoder-decoder models are
generally enhanced with an attention mechanism,
which learns to look at the entire sequence of en-
coder states (Bahdanau et al., 2015; Luong et al.,
2016).

We present novel neural architectures for au-
tomatic post-editing. Our models learn to gener-
ate sequences of edit operations, and use a task-
specific attention mechanism which gives infor-
mation about the word being post-edited.

1.1 Predicting Edit Operations

We think that post-editing should be closer to
spelling correction than machine translation. Our
work is based on Libovický et al. (2016), who
train a model to predict edit operations instead of
words. We predict 4 types of operations: KEEP,
DEL, INS(word), and EOS (the end of sentence
marker). This results in a vocabulary with three
symbols plus as many symbols as there are possi-
ble insertions.

A benefit of this approach is that, even with little
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training data, it is very straightforward to learn to
output the translation hypothesis as is (MT base-
line). We want to avoid a scenario where the APE
system is weaker than the original MT system and
only degrades its output. However, this approach
also has shortcomings, that we shall see in the re-
mainder of this work.

Example If the MT sequence is "The cats
is grey", and the output sequence of edit
ops is "KEEP DEL INS(cat) KEEP KEEP
INS(.)", this corresponds to doing the fol-
lowing sequence of operations: keep "The",
delete "cats", insert "cat", keep "is", keep
"grey", insert "." The final result is the post-
edited sequence "The cat is grey ."

We preprocess the data to extract such edit se-
quences by following the shortest edit path (sim-
ilar to a Levenshtein distance, without substitu-
tions, or with a substitution cost of +∞).

1.2 Forced Attention

State-of-the-art NMT systems (Bahdanau et al.,
2015) learn a global attention model, which helps
the decoder look at the relevant part of the input
sequence each time it generates a new word. It is
defined as follows:

attnglobal(h, st) =
A∑

i=1

atihi (1)

ati = softmax(eti) (2)

eti = vT tanh(W1hi +W2st + b2) (3)

where st is the current state of the decoder, hi is
the ith state of the encoder (corresponding to the
ith input word). A is the length of the input se-
quence. W1, W2 and b2 are learned parameters of
the model. This attention vector is used to gener-
ate the next output symbol wt and to compute the
next state of the decoder st+1.

However, we don’t predict words, but edit op-
erations, which means that we can do stronger as-
sumptions as to how the output symbols align with
the input. Instead of a soft attention mechanism,
which can look at the entire input and uses the
current decoder state st to compute soft weights
ai; we use a hard attention mechanism which di-
rectly aligns t with i. The attention vector is then
attnforced(h, st) = hi.

The t → i alignment is pretty straightforward:
i is the number of KEEP and DEL symbols in the
decoder’s past output (w1, . . . , wt−1) plus one.

Task Train Dev
Test

Extra
2016

en-de
23k

1000 2000
500k

(12k + 11k) 4M
de-en 24k 1000 none none

Table 1: Size of each available corpus (number of
SRC, MT, PE sentence tuples).

Following the example presented earlier,
if the decoder’s past output is "KEEP DEL
INS(cat)", the next token to generate is nat-
urally aligned with the third input word (i = 3),
i.e., we’ve kept "The" and replaced "cats"
with "cat". Now, we want to decide whether
we keep the third input word "is", delete it, or
insert a new word before it.

If the output sequence is too short, i.e., the end
of sentence marker EOS is generated before the
pointer i reaches the end of the input sequence, we
automatically pad with KEEP tokens. This means
that to delete a word, there must always be a cor-
responding DEL symbol. This ensures that, even
when unsure about the length of the output se-
quence, the decoder remains conservative with re-
spect to the sequence to post-edit.

1.3 Chaining Encoders

The model we proposed does not make any use of
the source side SRC. Making use of this informa-
tion is not very straightforward in our framework.
Indeed, we may consider using a multi-encoder
architecture (Zoph and Knight, 2016; Junczys-
Dowmunt and Grundkiewicz, 2017), but it does
not make much sense to align an edit operation
with the source sequence, and such a model strug-
gles to learn a meaningful alignment.

We propose a chained architecture, which com-
bines two encoder-decoder models (see fig. 1). A
first model SRC → MT, with a global attention
mechanism, tries to mimic the translation process
that produced MT from SRC. The attention vectors
of this first model summarize the part of the SRC
sequence that led to the generation of each MT to-
ken. A second model MT→ OP learns to post-edit
and uses a forced attention over the MT sequence,
as well as the attention vectors over SRC com-
puted by the first system. Both models are trained
jointly, by optimizing a sum of both losses.
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Figure 1: There are two bidirectional encoders
that read the SRC and MT sequences. We max-
imize two training objectives: a translation ob-
jective (SRC → MT) and a post-editing objec-
tive (MT → OP). The OP decoder does a forced
alignment with the MT encoder (t → i), and uses
the corresponding global attention context ci over
SRC: c′i = tanh(H1ci +H2h

′
i + b′). The MT de-

coder and MT encoder share the same embeddings.

2 Experiments

This year’s APE task consists in two sub-tasks: a
task on English to German post-editing in the IT
domain (en-de), and a task on German to English
post-editing in the medical domain (de-en). Ta-
ble 1 gives the size of each of the corpora avail-
able. The goal of both tasks is to minimize the
HTER (Snover et al., 2006) between our automatic
post-editing output, and the human post-editing
output.

The en-de 23k training set is a concatenation
of last year’s 12k dataset, and a newly released
11k dataset. A synthetic corpus was built and
used by the winner of last year’s edition (Junczys-
Dowmunt and Grundkiewicz, 2016), and is avail-
able this year as additional data (500k and 4M cor-
pora).

For the en-de task, we limit our use of external
data to the 500k corpus. For the de-en task, we
built our own synthetic corpus, using a technique
similar to (Junczys-Dowmunt and Grundkiewicz,
2016).

2.1 Synthetic Data

Desiderata We used similar data selection tech-
niques as Junczys-Dowmunt and Grundkiewicz
(2016), applied to the de-en task. However, we
are very reticent about using as much parallel

data as the authors did. We think that access to
such amounts of parallel data is rarely possible,
and the round-trip translation method they used
too cumbersome and unrealistic. To show a fair
comparison, this paper should show APE scores
when translating from scratch with an MT system
trained with all this parallel data.

To mitigate this, we decided to limit our use
of external data to monolingual English (common-
crawl). So, the only parallel data we use is the
de-en APE corpus.

PE side Similarly to Junczys-Dowmunt and
Grundkiewicz (2016) we first performed a coarse
filtering of well-formed sentences of common-
crawl. After this filtering step, we obtained about
500M lines. Then, we estimated a trigram lan-
guage model on the PE side of the APE corpus,
and sorted the 500M lines according to their log-
score divided by sentence length. We then kept the
first 10M lines. This results in sentences that are
mostly in the medical domain.

MT and SRC sides Using this English corpus,
and assuming its relative closeness to the PE side
of the APE corpus, we now need to generate SRC
and MT sequences. This is where our approach dif-
fers from the original paper.

Instead of training two SMT systems PE →
SRC and SRC → MT on huge amounts of paral-
lel data, and doing a round-trip translation of the
monolingual data, we train two small PE → SRC
and PE → MT Neural Machine Translation sys-
tems on the APE data only.

An obvious advantage of this method is that we
do not need external parallel data. The NMT sys-
tems are also fairly quick to train, and evaluation
is very fast. Translating 10M lines with SMT can
take a very long time, while NMT can translate
dozens of sentences at once on a GPU.

However, there are strong disadvantages: for
one, our SRC and MT sequences have a much
poorer vocabulary as those obtained with round-
trip translation (because we only get words that
belong to the APE corpus). Yet, we hope that the
richer target (PE) may help our models learn a bet-
ter language model.

TER filtering Similarly to Junczys-Dowmunt
and Grundkiewicz (2016), we also filter the triples
to be close to the real PE distribution in terms of
TER statistics. We build a corpus of the 500k clos-
est tuples. For each tuple in the real PE corpus,
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Token Count Percentage
KEEP 326581 66.9%
DEL 76725 15.7%
" 5170 1.1%
, 3249 0.7%

die 2461 0.5%
der 1912 0.4%
zu 1877 0.4%

werden 1246 0.3%
KEEP 18367 90.4%
DEL 801 3.9%
" 199 1.0%
> 130 0.6%
, 93 0.5%
zu 63 0.3%

werden 37 0.2%
wird 30 0.1%

Table 2: Top 8 edit ops in the target side of the
training set for en-de (top), and most generated
edit ops by our primary (500k + 23k) system on
dev set (bottom).

we select a random subset of 1000 tuples from
the synthetic corpus and pick the tuple whose eu-
clidean distance with the real PE tuple is the low-
est. This tuple cannot be selected again. We loop
over the real PE corpus until we obtain a filtered
corpus of desirable size (500k).

2.2 Experimental settings

We trained mono-source forced models, as well
as chained models for both APE tasks. We also
trained mono-source models with a global atten-
tion mechanism, similar to (Libovický et al., 2016)
as a measure of comparison to our forced models.

For en-de, we trained two sets of models (with
the same configuration) on the 12k train set (to
compare with 2016 competitors), and on the new
(23k) train set.

The encoders are bidirectional LSTMs of size
128. The embeddings have a size of 128. The first
state of the decoder is initialized with the last state
of the forward encoder (after a non-linear transfor-
mation with dropout). Teacher forcing is used dur-
ing training (instead of feeding the previous gen-
erated output to the decoder, we feed the ground
truth). Like Bahdanau et al. (2015), there is a max-
out layer before the final projection.

We train our models with pure SGD with a
batch size of 32, and an initial learning rate of 1.0.

We decay the learning rate by 0.8 every epoch for
the models trained with real PE data, and by 0.5
every half epoch for the models that use additional
synthetic data. The models are evaluated periodi-
cally on a dev set, and we save checkpoints for the
best TER scores.

We manually stop training when TER scores on
the dev set stop decreasing, and use the best check-
point for evaluation on the test set (after about 50k
steps for the small training sets, and 120k steps for
the larger ones).

Unlike Junczys-Dowmunt and Grundkiewicz
(2016), we do not use subword units, as we found
them not to be beneficial when predicting edit op-
erations. For the larger datasets, our vocabularies
are limited to the 30,000 most frequent symbols.

Our implementation uses TensorFlow (Abadi
et al., 2015), and runs on a single GPU.1

2.3 Results & Discussion

As shown in table 3, our forced (contrastive 1) sys-
tem gets good results on the en-de task, in limited
data conditions (12k or 23k). It improves over the
MT and SPE baselines, and over the global atten-
tion baseline (Libovický et al., 2016). The chained
model, which also uses the source sentence, is able
to harness larger volumes of data, to obtain yet
better results (primary model). However, it lags
behind large word-based models trained on larger
amounts of data (Junczys-Dowmunt and Grund-
kiewicz, 2016, 2017; Hokamp, 2017).2

Figure 2 compares alignments performed by our
attention models. We see that the global attention
model struggles to learn a meaningful alignment
on a small dataset (12k). When more training data
is available (23k), it comes closer to our forced
alignment.

We see that our good results on en-de do not
transfer well to de-en (see table 4). The BLEU
scores are already very high (about 16 points
above those of the en-de data, and 10 points above
the best APE outputs for en-de). This is probably
due to the translation direction being reversed (be-
cause of its rich morphology, German is a much
harder target that English). The results obtained
with a vanilla SMT system (SPE) seem to confirm
this difficulty.

1Our source code, and the configurations used in the ex-
periments are available here: https://github.com/
eske/seq2seq/tree/APE

2More results are published on the web page of the task:
http://statmt.org/wmt17/ape-task.html
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Model PE attention Data
dev test 2016 test 2017

Steps
TER BLEU

Baseline none 24.81 24.76 24.48 62.49
SPE 12k 24.64 24.69 62.97

Best 2016 (AMU) 4M + 500k + 12k 21.46 21.52
Best 2017 (FBK) 23k + ? 19.60 70.07

Mono-source
global

12k
24.15 24.26 29000

forced (contr. 1) 23.20 23.32 23.51 64.52 16600

Chained
forced (contr. 2) 23.40 23.30 23.66 64.46 23600
forced (primary) 500k + 12k 22.77 22.94 23.22 65.12 119200

Mono-source
global

23k
23.60 23.55 47200

forced (contr. 1) 23.07 22.89 23.08 65.57 38800

Chained
forced (contr. 2) 22.61 22.76 23.15 64.94 50400
forced (primary) 500k + 23k 22.03 22.49 22.81 65.91 121200

Table 3: Results on the en-de task. The SPE results are those provided by the organizers of the task (SMT
system). The AMU system is the winner of the 2016 APE task (Junczys-Dowmunt and Grundkiewicz,
2016). FBK is the winner of this year’s edition. We evaluate our models on dev every 200 training steps,
and take the model with the lowest TER. The steps column gives the corresponding training time (SGD
updates). 500k + 12k is a concatenation of the 500k synthetic corpus with the 12k corpus oversampled
20 times. 500k + 23k is a concatenation of 500k with 23k oversampled 10 times.

The only reason why our de-en systems are able
to not deteriorate the baseline, is that they only
learned to do nothing, by producing arbitrarily
long sequences of KEEP symbols. Furthermore,
we see that the best results are obtained very early
in training, before the models start to overfit and
deteriorate the translation hypotheses on the dev
set (see steps column).

The difference between our scores on the de-
en dataset is not statistically significant, therefore
we cannot draw conclusions as to which model is
the best. Furthermore, it turns out that our mod-
els output almost only KEEP symbols, resulting in
sequences almost identical to the MT input, which
explains why the scores are so close to those of the
baseline (see table 5).

Adding substitutions is not particularly useful
as it leads to even more data sparsity: it doubles
the vocabulary size, and results in less DEL sym-
bols, and less training feedback for each individual
insertion.

Future work One major problem when learning
to predict edit ops instead of words, is the class im-
balance. There are much more KEEP symbols in
the training data as any other symbol (see tables 2
and 5). This results in models that are very good at
predicting KEEP tokens (do-nothing scenario), but
very cautious when producing other symbols. This

also results in bad generalization as most symbols
appear only a couple of times in the training data.

We are investigating ways to get a broader train-
ing signal when predicting KEEP symbols. This
can be achieved either by weight sharing, or by
multi-task training (Luong et al., 2016).

Another direction that we may investigate, is
how we obtain sequences of edit operations (from
PE data in another form). Our edit operations
are extracted artificially by taking the shortest edit
path between MT and PE. Yet, this does not neces-
sarily correspond to a plausible sequence of oper-
ations done by a human. One way to obtain more
realistic sequences of operations, would be to col-
lect finer-grained data from human post-editors:
key strokes, mouse movements and clicks could
be used to reconstruct the ‘true’ sequence of edit
operations.

Finally, we chose to work at the word level,
when a human translator often works at the charac-
ter level. If a word misses a letter, he won’t delete
the entire word and write it back. However, work-
ing with characters poses new challenges: longer
sequences means longer training time, and more
memory usage. Also, it is easier to learn seman-
tics with words (a character embedding does less
sense). Yet, using characters means more train-
ing data, and less sparse data, which could be very
useful in a post-editing scenario.
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Model PE attention Data
train-dev dev test 2017

Steps
TER BLEU

Baseline none 16.11 15.58 15.55 79.54
SPE 24k 15.74 79.28

Best 2017 (FBK) 24k + ? 15.29 79.82

Mono-source
global

24k
16.06 15.55 5200

forced (contr. 1) 16.05 15.57 15.62 79.48 3400

Chained
forced (contr. 2) 16.02 15.63 15.68 79.35 7000
forced (primary) 500k + 24k 15.98 15.67 15.53 79.46 27200

Table 4: Results on the de-en task. Because the test set was not available before submission, we used
a small part (1000 tuples) of the training set as a train-dev set. This set was used for selecting the best
models, while the provided dev set was used for final evaluation of our models. The 500k + 24k corpus
is a concatenation of our synthetic corpus with the 24k corpus oversampled 10 times.

(a) Global attention 12k train set (b) Global attention 23k train set (c) Forced attention

Figure 2: Alignments of predicted edit operations (OP) with translation hypothesis (MT), on en-de dev
set, obtained with different attention models.

Token Count Percentage
KEEP 382891 78.19%
DEL 51977 10.61%
the 2249 0.46%
, 1691 0.35%
of 1620 0.33%
to 1022 0.21%
a 952 0.19%
in 919 0.19%

Token Count Percentage
KEEP 17861 99.62%
DEL 52 0.29%
UNK 4 0.02%
: 3 0.02%
the 2 0.01%
Have 2 0.01%
A 1 0.01%
> 1 0.01%

Table 5: Top 8 edit ops in the target side of the training set for de-en (left), and most generated edit ops
by our primary system on train-dev (right).
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Abstract

Previous phrase-based approaches to Au-
tomatic Post-editing (APE) have shown
that the dependency of MT errors from the
source sentence can be exploited by jointly
learning from source and target informa-
tion. By integrating this notion in a neu-
ral approach to the problem, we present
the multi-source neural machine transla-
tion (NMT) system submitted by FBK to
the WMT 2017 APE shared task. Our
system implements multi-source NMT in
a weighted ensemble of 8 models. The
n-best hypotheses produced by this en-
semble are further re-ranked using fea-
tures based on the edit distance between
the original MT output and each APE hy-
pothesis, as well as other statistical models
(n-gram language model and operation se-
quence model). This solution resulted in
the best system submission for this round
of the APE shared task for both en-de and
de-en language directions. For the for-
mer language direction, our primary sub-
mission improves over the MT baseline up
to -4.9 TER and +7.6 BLEU points. For
the latter, where the higher quality of the
original MT output reduces the room for
improvement, the gains are lower but still
significant (-0.25 TER and +0.3 BLEU).

1 Introduction

Automatic post-editing (APE) aims to correct sys-
tematic machine translation (MT) errors, thereby
reducing translators workload and eventually in-
creasing translation productivity. The task, well
motivated in (Bojar et al., 2015) and (Bojar et al.,
2016), becomes necessary when working in a
“black-box” condition where the MT engine used

to translate is not directly accessible for retrain-
ing or for more radical internal modifications. As
pointed out in (Bojar et al., 2015), from the appli-
cation point of view an APE system can help to: i)
improve MT output by exploiting information un-
available to the decoder, or by performing deeper
text analysis that is too expensive at the decoding
stage; ii) provide professional translators with im-
proved MT output quality to reduce (human) post-
editing effort and iii) adapt the output of a general-
purpose MT system to the lexicon/style requested
in a specific application domain.

Different APE paradigms based on statistical
methods (Simard et al., 2007; Dugast et al., 2007;
Isabelle et al., 2007; Lagarda et al., 2009; Potet
et al., 2012; Rosa et al., 2013; Lagarda et al.,
2015; Chatterjee et al., 2017) have been proposed
in the past showing the effectiveness of APE sys-
tems. In the previous round of the APE shared task
(WMT16), neural (Junczys-Dowmunt and Grund-
kiewicz, 2016), hybrid (Chatterjee et al., 2016),
and phrase-based (Pal et al., 2016b) solutions were
all able to significantly improve MT output qual-
ity in domain-specific settings, with neural sys-
tem being the best in 2016. Some of the previ-
ous approaches, both phrase-based (Béchara et al.,
2011; Chatterjee et al., 2015b) and neural (Li-
bovický et al., 2016) also suggested the impor-
tance of jointly learning both from the source sen-
tences and from the corresponding translations in
order to take advantage of the strict dependency
between translation errors and the original source
sentences.

Learning from these lessons, this year the FBK
participation in the APE task is based on a multi-
source neural sequence-to-sequence architecture.
We extend the existing NMT implementation in
the Nematus toolkit (Sennrich et al., 2016a) to fa-
cilitate multi-source training and decoding. This
year we participated in both translation directions
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(en-de and de-en) with similar system architec-
tures consisting of an ensemble of 8 neural models
followed by a re-ranker. On both tasks, our pri-
mary submissions achieved the best results, with
significant improvements over the baseline (-4.9
TER and +7.6 BLEU for en-de and -0.25 TER and
+0.3 BLEU for de-en).

2 Neural Machine Translation

As normally done in APE, we cast the problem as
a “monolingual translation” task in which a system
is trained on (src, mt, pe) triplets to “translate” (i.e.
correct) rough MT output (mt) into fluent and ad-
equate translations by learning from human post-
edits (pe). Following the recent success of neural
approaches (to MT in general and APE in partic-
ular), we develop our neural APE systems around
the sequence-to-sequence encoder-decoder archi-
tecture proposed in (Bahdanau et al., 2014) and
further developed by Sennrich et al. (2016a) in the
Nematus toolkit (Sennrich et al., 2017).

Neural machine translation aims to optimize
the parameters of the model to maximize the
log-likelihood of the training data. The ultimate
goal is to estimate a conditional probability model
pΘ(y|x), where Θ is the parameter set of the
model (the weights and biases of the network), y is
a target sentence and x is a source sentence. Thus,
the objective function is:

argmax
Θ

1

N

N∑

n=1

log(pΘ(yn|xn)); (1)

where N is the total number of sentence pairs in
the training corpus. The conditional probability is
computed as:

pΘ(y|x) =

Ty∏

t=1

pΘ(yt|y<t, x) (2)

where Ty is the number of words in the target sen-
tence. Given all the previous target words y<t and
the source x, the probability of target word yt, is
modelled by the decoder network as follows:

pΘ(yt|y<t, x) = g(ẏt−1, st, ct) (3)

where ẏt−1 is the word embedding of the previous
target word, st is the hidden state of the decoder,
and ct the source context vector (encoding of the
source sentence x) at time t. The decoder state st
is computed by a gated recurrent unit (GRU) (Cho

et al., 2014) in two steps. First, the previous hid-
den state and the previous target word embedding
are used to compute an intermediate hidden state
by a GRU unit:

s′t = f ′(st−1, ẏt−1) (4)

Then, the intermediate hidden state and the source
context vector are passed to another GRU to com-
pute the final hidden state of the decoder. In short:

st = f(s′t, ct) (5)

The source context vector is a weighted sum of all
the hidden states of a bi-directional encoder (Bah-
danau et al., 2014).1

ct =

Tx∑

j=1

atjhj (6)

where atj is the attention weight given to the j-th
encoder hidden state at decoding time t, and Tx is
the number of words in the source sentence. The
attention weight represents the importance of the
j-th hidden state of the encoder in generating the
target word of time t. It is drawn from a probabil-
ity distribution over all the hidden states of the en-
coder, which is computed by applying a softmax
operator over all the scores of the hidden units of
the encoder:

atj =
exp(etj)∑Tx
k=1 exp(etk)

(7)

where etj and etk are the score of the j-th and k-th
hidden units of the encoder at time step t, which
is a function of the intermediate hidden state of
the decoder (as mentioned in Equation 4) and the
hidden state of the encoder, as shown below:

etj = a(s′t, hj) (8)

The hidden state hj of the j-th source word is a
concatenation of the hidden states of the forward
and backward encoders:

hj = [
−→
hj ;
←−
hj ] (9)

where
−→
hj and

←−
hj are respectively the hidden state

of the forward and backward encoders. These hid-
den states are computed by the GRU unit that takes

1In rest of the paper, by encoder we mean bi-directional
encoder
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previous/next hidden state and the word embed-
ding of the j-th source word (ẋj).

−→
h j = f(ẋj ,

−→
h j−1) (10)

←−
h j = f(ẋj ,

←−
h j+1) (11)

3 Multi-source implementation

The strict connection between MT errors and the
input source sentences suggests to develop APE
systems that leverage information both from the
source (src) and it’s corresponding translation (mt)
instead of looking at the machine-translated sen-
tence in isolation. Exploiting source information
as an additional input can in fact help the sys-
tem to disambiguate corrections applied at each
time step. For example, the German phrase “mein
Haus” (EN: my house) looks correct but if the
source phrase was “my home” then the correct
translation would be “mein Zuhaus”. In this case,
an APE system ignoring the source would have
left the sub-optimal MT output untouched.

Jointly learning from both source and transla-
tion has been previously proved to be effective in
(Béchara et al., 2011; Chatterjee et al., 2015b).
Such works, however, exploit the idea of a “joint
representation” of the input mainly in the statis-
tical phrase-based APE framework while, within
the neural paradigm, recent prior work mostly fo-
cuses on single-source systems (Pal et al., 2016a;
Junczys-Dowmunt and Grundkiewicz, 2016; Pal
et al., 2017). The only exception, to the best of
our knowledge, is the approach of Libovický et al.
(2016), who developed a multi-source neural APE
system. According to the authors, however, the
resulting network seems to be inadequate to learn
how to perform the minimum edits required to cor-
rect the MT segment. Rather, it learns to para-
phrase the input, which results in a high chance of
performing unnecessary corrections that would be
penalized by reference-based evaluations against
human post-edits. Therefore, to mitigate this prob-
lem, they represented the target as a minimum-
length sequence of edit operation needed to turn
the machine-translated sentence into the reference
post-edit.

Our multi-source APE implementation, which
is built on top of the network architecture dis-
cussed in §2, is similar to (Libovický et al., 2016)
but extends it with a context dropout, and consid-
ers the target as a sequence of words rather than

minimum-length sequence. We extend the archi-
tecture to have two encoders, one for src and an-
other for mt. Each encoder has its own attention
layer that is used to compute the weighted context
(Equation 6). The src and the mt weighted con-
texts (csrct and cmt

t respectively) are then passed
to a merger layer to obtain the final context
(ct−merge). The merger layer concatenates both
contexts and applies a linear transformation, thus
the final context captures information from both
the inputs:

ct−merge = [csrc
t ; cmt

t ] ∗Wct + bct (12)

where, Wct, bct are respectively the weight and
the bias of the merger layer. The final context
(ct−merge) is used by the decoder to compute tar-
get word probabilities (similar to Equation 3)

pΘ(yt|y<t, x) = g(ẏt−1, st, ct−merge) (13)

Context Dropout: Dropout was proposed by
Hinton et al. (2012) as a regularization technique
for deep networks to avoid over-fitting. The key
idea is to randomly drop some units (along with its
incoming and outgoing connections) from the neu-
ral network to prevent co-adaption on the training
data. It has been shown to be very effective on a
wide range of supervised learning tasks in vision,
speech recognition, document classification and
computational biology (Srivastava et al., 2014).
When applying dropout with a recurrent neural
network, Gal and Ghahramani (2016) showed that
using same dropout mask at each timestep is bet-
ter than ad hoc techniques where different dropout
are sampled at each time step. This strategy is also
retained in the Nematus toolkit with the exception
of using dropout at the token level instead of type
level. Since our multi-source architecture is im-
plemented on top of this toolkit, we also follow the
same dropout strategy. We use context dropout at
different layers of the network:

• To compute the attention score in Equation 8
we apply a shared dropout to the hidden state
of both encoders;

• To compute the final hidden state of the de-
coder in equation 5, we apply a dropout to the
merged context of the encoders (ct−merge).

We have observed that the use of context dropout
helps the model to avoid overfitting and allows
more stable performance on the validation set
when the model converges.
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4 Experiments and Development Results

In this section we summarize how our systems
have been trained, tuned and combined to pro-
duce the FBK submissions to the WMT 2017 APE
shared task.

4.1 Data
EN-DE: We use ∼4M artificially-created train-
ing data from (Junczys-Dowmunt and Grund-
kiewicz, 2016) to train generic models that are
later fine-tuned with ∼500K artificial2 and 23K
(replicated 20 times) real post-edited training data
collected from previous year and this year shared
task (Bojar et al., 2016).3 The development set
released in the previous year shared task is used
to evaluate and compare different models’ perfor-
mance. All the data is segmented using the byte
pair encoding technique to obtain sub-word units
following (Sennrich et al., 2016b) in order to avoid
the problem of out-of-vocabulary words.

DE-EN: We create artificial post-editing train-
ing data by a round-trip translation using the sub-
set of parallel data released in the medical task at
WMT’14 (Bojar et al., 2014). The parallel data is
used to build a phrase-based MT system (PBMT)
for both en-de and de-en language directions. The
monolingual English data (considered as pe) is
first translated into German (considered as source)
using the en-de PBMT system, and then back-
translated into English (considered as mt) using
the de-en PBMT system. The parallel and mono-
lingual data each consists of ∼2M segments. To
train the APE systems we concatenate the round-
trip translated data, the parallel data where we con-
sider the reference as the MT output itself, and the
shared task training data (25K triplets) replicated
160 times to avoid possible biases towards the ar-
tificial data. All the data is segmented in sub-word
units (similar to the en-de direction), and the sys-
tems are evaluated on the development set released
for this years’ shared task.

4.2 Evaluation Metric
We run case-sensitive evaluation with TER, which
is based on edit distance, and BLEU (Papineni
et al., 2002), which is based on modified n-gram
precision. In addition to the standard evaluation

2https://github.com/amunmt/amunmt/
wiki/AmuNMT-for-Automatic-Post-Editing

3http://www.statmt.org/wmt17/ape-task.
html

metrics, we also measure the precision of our
APE system using sentence level TER score as
defined in (Chatterjee et al., 2015a):

Precision =
Number of Improved Sentences
Number of Modified Sentences

where “Number of Improved Sentences” is
the count of APE outputs that have lower TER
than the corresponding MT output, and “Number
of Modified Sentences” is the count of APE
outputs that have TER scores different from the
TER of the corresponding MT output.

4.3 Hyper parameters

The hyper parameters of all the systems in both
language directions are the same. The vocabu-
lary is created by selecting 50K most frequent sub-
words. Word embedding and GRU hidden state
size is set to 1024. Network parameters are op-
timized with Adagrad (Duchi et al., 2011) with a
learning rate of 0.01 following the work by Fara-
jian et al. (2016), which empirically showed that
Adagrad has a faster convergence rate and better
performance than Adadelta (Zeiler, 2012). Source
and target dropout is set to 10%, whereas, encoder
and decoder hidden states, weighted source con-
text, and embedding dropout is set to 20% (Sen-
nrich et al., 2016a). After each epoch, the train-
ing data is shuffled and the batches are created af-
ter sorting 2000 samples in order to speed-up the
training. The batch size is set to 100 samples, with
a maximum sentence length of 50 sub-words.

4.4 Models

For both language directions, we trained four
types of networks to capture different information
that can be leveraged together via ensemble tech-
niques. The results of the single best model for
en-de and de-en from each network type are re-
spectively reported in Tables 1 and 2. The perfor-
mance trends among different networks are similar
for both language directions. However, the varia-
tion are less visible in the case of de-en given the
fact that the room of improvement is much lower
due to higher MT quality (15.58 TER and 79.46
BLEU scores). Therefore, we base our discus-
sion for each model below on the results achieved
on the development data for the en-de direction,
where the performance variations among different
networks are much more visible.
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SRC PE This system is similar to a NMT sys-
tem used for bilingual translation from a source
language to a target language. The parallel cor-
pus consist of source text and post-edits of MT
segments. We notice that the performance of this
system is below the MT Baseline indicating that
learning only from the source text is not enough to
improve the translation quality. Most likely, this
system generates (alternative, potentially correct)
translations that diverge from the MT output and
are thus penalized by automatic evaluation met-
rics that use human post-edits as references. This
can be confirmed from the fact that when we used
the reference test set for evaluation,4 the APE sys-
tem outperformed the MT Baseline by +4.2 BLEU
points (47.97 vs 43.79 BLEU scores).

MT PE This is a single-source neural APE sys-
tem similar to the previous one. However, in this
case the objective is “monolingual” translation as
opposed to bilingual in the previous case. Both
source and target languages are the same, and the
goal is to translate rough MT segments into their
corrected version. The results in Table 1 show
that learning from machine-translated text is bet-
ter than learning from the corresponding source
sentences (-3.2 TER and +6.0 BLEU points over
the MT Baseline). Though quite large, the perfor-
mance gain does not indicate if all the MT seg-
ments are improved. To better understand this as-
pect, we use the precision metric (as defined in
Section 4.2). A precision of 72% for this system
indicates that the majority of the MT segments that
are modified results in a better translation qual-
ity. The remaining 28% of deteriorated sentences
gives evidence of the “over-correction” problem
discussed in last years’ APE task overview (Bojar
et al., 2016).

MT+SRC PE One limitation of the “monolin-
gual translation” approach is that the APE system
is only trained on data in the target language, dis-
regarding information about the source language:
mappings learned from (mt, pe) pairs lose the con-
nection between the translated words (or phrases)
and the corresponding source terms (src). This im-
plies that information lost or distorted in the trans-
lation process is out of the reach of the APE com-
ponent, and the resulting errors are impossible to
recover. To overcome this limitation and to lever-
age both source and MT output, we introduced the

4http://hdl.handle.net/11234/1-2334

Systems TER BLEU Prec.
(%)

MT Baseline 24.81 62.92 -
SRC PE 26.66 61.91 49.07
MT PE 21.57 69.09 72.01
MT+SRC PE 19.77 70.72 78.22
MT+SRC PE TSL 20.07 70.52 78.77
Ens8 19.26 71.63 78.50
Ens8+Re-rank-A 19.22† 71.89† 78.84
Ens8+Re-rank-AB 19.35 70.94 78.07

Table 1: Performance of the APE systems on dev.
2016 (en-de) (“†” indicates statistically significant
differences wrt. MT Baseline with p<0.05).

Systems TER BLEU Precision
(%)

MT Baseline 15.58 79.46 -
SRC PE 28.50 58.17 20.22
MT PE 15.97 78.43 36.29
MT+SRC PE 15.61 78.59 44.67
MT+SRC PE TSL 15.89 78.48 42.58
Ens8 15.14 79.41 54.18
Ens8+Re-rank-A 15.04† 80.00† 68.86

Table 2: Performance of the APE systems on dev.
2017 (de-en) (“†” indicates statistically significant
differences wrt. MT Baseline with p<0.05).

multi-source neural sequence-to-sequence model
described in §3. Our multi-source neural APE
model clearly outperforms the strong monolingual
single-source model (-1.8 TER and +1.6 BLEU).
The improvement is also visible in terms of preci-
sion (+8.2%), which indicates that the source seg-
ment might be useful to disambiguate if the MT
word should be corrected or kept untouched, thus
helping to mitigate the over-correction problem.

MT+SRC PE TSL The low TER score of the
MT baseline (24.8 and 15.5 respectively for en-
de and de-en) indicates that the majority of the
MT words are correct. In order to induce a con-
servative approach (in other words, to induce the
APE system to preserve the correct MT words) we
use a task-specific loss (TSL) function that takes
into consideration the attention score of the MT
words before computing the target word probabil-
ities. The attention scores can act as a reward to
the target words that are present in the MT seg-
ment. To this aim, first we add the attention scores
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from the mt encoder (Equation 8) to the respec-
tive target words in the softmax layer. Then, we
apply softmax to obtain the target word probabili-
ties. More formally:

pΘ(yt|y<t, X
src, Xmt) =

eytdec +
∑

eytenc∑
y′(e

y′
dec +

∑
ey

′
enc)

(14)
where, eydec and eyenc are respectively the scores of
the target word computed by the decoder layer and
the attention layer of the mt encoder (eyenc = 0 if
y /∈ MT ). Since a target word can occur multiple
times in the MT segment, we sum the scores of all
occurrences. In case a target word is not present in
the MT segment the score is 0.

Ensemble (Ens8) In order to leverage all the
network architectures discussed above, we ensem-
ble the two best models for each of them. Since
the networks are very diverse in terms of informa-
tion learned from the input representation we ob-
served that weighing all the models equally does
not improve over the single system. Therefore,
we generate 50-best hypothesis from the ensem-
ble system and then tune the model weights with
Batch-MIRA (Cherry and Foster, 2012) on the de-
velopment set to maximize the BLEU score. We
observe that, after 3 cycles of decoding and tuning,
the performance converges. The weighted ensem-
ble of 8 models further improves the translation
quality (-0.8 TER and +1.1 BLEU) over the best
single multi-source model (MT+SRC PE).

Re-ranking Following the improvements ob-
tained by re-ranking n-best hypotheses as shown
in (Pal et al., 2017), we use a re-ranker in our
submissions with two different sets of features:

Edit Distance (Re-rank-A) The first set con-
sists of shallow features that can be easily
extracted on-the-fly. It captures different types of
edit operations performed by an APE system over
the MT output. These features include number
of insertions, deletions, substitutions, shifts,
and length ratio between the MT segment and
each APE hypothesis, computed using TER. In
addition, we compute precision and recall of the
APE hypotheses in order to avoid over-correction
by rewarding the hypotheses that are closer to the
MT segment. Precision is the percentage of words
generated by the APE system that are present
in the MT segment, and recall is the percentage
of words in the MT segment that are generated

by the APE system. The feature weights are
optimized with Batch-MIRA on the development
set to maximize the BLEU score. Re-ranking
with these features gave further improvements
over the ensemble system. Since this is the best
configuration (as seen from Table 1 and 2), we
evaluate this system on the 2016 APE test set. The
results of this evaluation are reported in Table 3.
We observe that this system achieves significant
improvement over the MT baseline (-5.4 TER and
8.7 BLEU points) also on the 2016 test set.

Systems TER BLEU
MT Baseline 24.76 62.11
APE Baseline 24.64 63.47
Ens8+Re-rank-A 19.32† 70.88†

Table 3: Performance of the APE systems on
the 2016 test set (en-de) (“†” indicates statisti-
cally significant differences wrt. MT Baseline
with p<0.05).

Statistical (Re-rank-AB) This re-ranker is similar
to the one used in (Pal et al., 2017). The feature
set consists of the log probability given by the
neural models itself, the statistical n-gram lan-
guage model probability as well as the perplexity
normalized by sentence length, and features from
operation sequence model. In addition to this,
we also integrate all the features used by the
previous re-ranker, following the same procedure
to optimize their weights. The result of this
system is reported in Table 1 (Ens8+Re-rank-AB).
We observe that this re-ranker does not yield
performance improvements, probably due to
over-fitting. We leave further investigations on
this aspect for future work.

5 Results on Test Data

The shared task evaluation has been carried out
on 2,000 unseen samples consisting of src and mt
pairs from the same domain of the training data.
Our primary submission is Ens8+Re-rank-A (in
Table 1 and 2) that is a weighted ensemble of 8
neural APE models (2 best models from SRC PE,
MT PE, MT+SRC PE, and MT+SRC PE TSL).
As a contrastive submission, we wanted to eval-
uate the performance of a simpler system with a
higher throughput. Therefore, we select a sin-
gle best multi-source model (MT+SRC PE) with
a re-ranker that is based only on edit-distance fea-
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tures (labelled as Contrastive-A in Table 4). For
en-de we also submitted (Ens8+Re-rank-AB) an-
other contrastive system that is based on ensem-
ble system plus the whole set of re-ranking fea-
tures (labelled as Contrastive-B in Table 4). Ac-
cording to the shared task results, as reported
in Table 4, our primary and contrastive submis-
sions achieve significant improvement over the
MT baseline for both language directions. It is
interesting to note that our contrastive-A submis-
sion, which is a much simpler version of the full-
fledged system, performs almost similar to our
primary submission for de-en and slightly worse
(+0.7 TER points) for en-de.

Systems en-de de-en
TER BLEU TER BLEU

MT Baseline 24.48 62.49 15.55 79.54
APE Baseline 24.69 62.97 15.74 79.28
Primary 19.6 70.07 15.29 79.82
Contrastive-A 20.3 69.11 15.31 79.64
Contrastive-B 21.55 67.28 - -

Table 4: Official results on 2017 test set.

6 Conclusion

Based on the lessons learned from previous work
on APE, which suggest that the dependency of
MT errors from the source sentence can be ex-
ploited by jointly learning from source and target
information, we developed a multi-source NMT
system. Our implementation extends the existing
NMT toolkit (Nematus) to train multi-source APE
systems that learn from source and MT text to-
gether in order to increase robustness and preci-
sion. We trained several networks with different
input representation (single-source/multi-source)
to finally built an ensemble of 8 neural models.
The n-best hypotheses generated by this ensem-
ble were further re-ranked using features based on
the edit distance between the original MT output
and each APE hypothesis, as well as other statis-
tical models (n-gram language model and opera-
tion sequence model). On the en-de and de-en test
data released for the WMT 2017 APE shared task,
our primary submissions achieved significant im-
provements over the task baselines, which we out-
performed by a large margin (+7.6 and +0.3 BLEU
points on en-de and de-en) ranking first on both
language directions.
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Abstract

This work describes the AMU-UEdin sub-
mission to the WMT 2017 shared task on
Automatic Post-Editing. We explore mul-
tiple neural architectures adapted for the
task of automatic post-editing of machine
translation output. We focus on neural
end-to-end models that combine both in-
putsmt and src in a single neural architec-
ture, modeling {mt, src} → pe directly.
Apart from that, we investigate the influ-
ence of hard-attention models which seem
to be well-suited for monolingual tasks, as
well as combinations of both ideas.

1 Introduction

During the WMT 2016 APE two systems relied
on neural models, the CUNI system (Libovický
et al., 2016) and the shared task winner, the sys-
tem submitted by the Adam Mickiewicz Univer-
sity (AMU) team (Junczys-Dowmunt and Grund-
kiewicz, 2016). This submission explored the ap-
plication of neural translation models to the APE
problem and achieved good results by treating
different models as components in a log-linear
model, allowing for multiple inputs (the source
src and the translated sentence mt) that were de-
coded to the same target language (post-edited
translation pe). Two systems were considered, one
using src as the input (src→ pe) and another us-
ing mt as the input (mt → pe). A simple string-
matching penalty integrated within the log-linear
model was used to control for higher faithfulness
with regard to the raw MT output. The penalty
fires if the APE system proposes a word in its out-
put that has not been seen in mt. The influence of
the components on the final result was tuned with
Minimum Error Rate Training (Och, 2003) with
regard to the task metric TER.

With neural encoder-decoder models, and
multi-source models in particular, the combination
of mt and src can be now achieved in more natu-
ral ways than for previously popular phrase-based
statistical machine translation (PB-SMT) systems.
Despite this, results for multi-source or double-
source models in APE scenarios are incomplete or
unsatisfying in terms of performance.

In this work, we explore a number of single-
source and double-source neural architectures
which we believe to be better fits to the APE task
than vanilla encoder-decoder models with soft at-
tention. We focus on neural end-to-end models
that combine both inputs mt and src in a single
neural architecture, modeling {mt, src} → pe di-
rectly. Apart from that, we investigate the influ-
ence of hard-attention models which seem to be
well-suited for monolingual tasks. Finally, we cre-
ate combinations of both architectures.

Following (Junczys-Dowmunt and Grund-
kiewicz, 2016), we also attempt to generate more
artificial data for the task. Instead of relying on
filtering towards specific error rates, we generate
text with fitting error rates from the start which
allows us to retain more data.

2 Encoder-Decoder Models with
APE-specific Attention Models

2.1 Standard Attentional Encoder-Decoder
The attentional encoder-decoder model in Marian1

is a re-implementation of the NMT model in Ne-
matus (Sennrich et al., 2017). The model differs
from the standard model introduced by Bahdanau
et al. (2014) by several aspects, the most important
being the conditional GRU with attention. The
summary provided in this section is based on the
description in Sennrich et al. (2017). More de-
tails on the specific architectures in this shared

1https://github.com/marian-nmt/marian
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task submission are given in Junczys-Dowmunt
and Grundkiewicz (2017).

Given the raw MT output sequence
(x1, . . . , xTx) of length Tx and its manually
post-edited equivalent (y1, . . . , yTy) of length Ty,
we construct the encoder-decoder model using the
following formulations.

Encoder context A single forward encoder state−→
h i is calculated as:

−→
h i = GRU(

−→
h i−1,F[xi])

where F is the encoder embeddings matrix. The
GRU RNN cell (Cho et al., 2014) is defined as:

GRU (s,x) =(1− z)� s+ z� s, (1)

s = tanh (Wx+ r�Us) ,

r = σ (Wrx+Urs) ,

z = σ (Wzx+Uzs) ,

where x is the cell input, s is the previous recurrent
state, W, U, Wr, Ur, Wz , Uz are trained model
parameters2; σ is the logistic sigmoid activation
function. The backward encoder state is calculated
analogously over a reversed input sequence with
its own set of trained parameters.

Let hi be the annotation of the source symbol
at position i, obtained by concatenating the for-
ward and backward encoder RNN hidden states,
hi = [

−→
h i;
←−
h i], the set of encoder states C =

{h1, . . . ,hTx} then forms the encoder context.

Decoder initialization The decoder is initial-
ized with start state s0, computed as the average
over all encoder states:

s0 = tanh

(
Winit

∑Tx
i=1 hi

Tx

)

Conditional GRU with attention We follow
the Nematus implementation of the conditional
GRU with attention, cGRUatt:

sj = cGRUatt (sj−1,E[yj−1],C) (2)

where sj is the newly computed hidden state, sj−1
is the previous hidden state, C the source context
and E[yj−1] is the embedding of the previously
decoded symbol yi−1.

The conditional GRU cell with attention,
cGRUatt, has a complex internal structure, consist-
ing of three parts: two GRU layers and an inter-
mediate attention mechanism ATT.

2Biases have been omitted.

Layer GRU1 generates an intermediate repre-
sentation s′j from the previous hidden state sj−1
and the embedding of the previous decoded sym-
bol E[yj−1]:

s′j = GRU1 (sj−1,E[yj−1]) .

The attention mechanism, ATT, inputs the en-
tire context set C along with intermediate hidden
state s′j in order to compute the context vector cj
as follows:

cj =ATT
(
C, s′j

)
=

Tx∑

i

αijhi,

αij =
exp(eij)∑Tx

k=1 exp(ekj)
,

eij =vᵀ
a tanh

(
Uas

′
j +Wahi

)
,

where αij is the normalized alignment weight
between source symbol at position i and target
symbol at position j and va,Ua,Wa are trained
model parameters.

Layer GRU2 generates sj , the hidden state of
the cGRUatt, from the intermediate representation
s′j and context vector cj :

sj = GRU2

(
s′j , cj

)
.

Deep output Finally, given sj , yj−1, and cj , the
output probability p(yj |sj , yj−1, cj) is computed
by a softmax activation as follows:

p(yj |sj ,yj−1, cj) = softmax (tjWo)

tj = tanh (sjWt1 +E[yj−1]Wt2 + cjWt3)

Wt1 ,Wt2 ,Wt3 ,Wo are the trained model pa-
rameters.

This rather standard encoder-decoder model
with attention is our baseline and denoted as
ENCDEC-ATT.

The following models reuse most parts of the
architecture described above wherever possible,
most differences occur in the decoder RNN cell
and the attention mechanism. The encoders are
identical, so are the deep output layers.

2.2 Hard Monotonic Attention
Aharoni and Goldberg (2016) introduce a sim-
ple model for monolingual morphological re-
inflection with hard monotonic attention. This
model looks at one encoder state at a time, start-
ing with the left-most encoder state and progress-
ing to the right until all encoder states have been
processed.
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The target word vocabulary Vy is extended with
a special step symbol (V ′y = Vy ∪ {〈STEP〉}) and
whenever 〈STEP〉 is predicted as the output sym-
bol, the hard attention is moved to the next encoder
state. Formally, the hard attention mechanism
is represented as a precomputed monotonic se-
quence (a1, . . . , aTy) which can be inferred from
the target sequence (y1, . . . , yTy) (containing orig-
inal target symbols and Tx step symbols) as fol-
lows:

a1 = 1

aj =

{
aj−1 + 1 if yj−1 = 〈STEP〉
aj−1 otherwise.

For a given context C = {h1, . . . ,hTx}, the at-
tended context vector at time step j is simply haj .

Following the description by Aharoni and Gold-
berg (2016) for their LSTM-based model, we now
adapt the previously described encoder-decoder
model to incorporate hard attention. The encoder
as well as the output layer of the previous model
remain unchanged. Given the sequence of atten-
tion indices (a1, . . . , aTy), the conditional GRU
cell (Eq. 2) used for hidden state updates of the de-
coder is replaced with a simple GRU cell (Eq. 1)
(thus removing the soft-attention mechanism):

sj = GRU
(
sj−1,

[
E[yj−1];haj

])
(3)

where the cell input is now a concatenation of the
embedding of the previous target symbol E[yj−1]
and the currently attended encoder state haj . This
model is labeled ENCDEC-HARD.

We find this architecture compelling for mono-
lingual tasks that might require higher faithfulness
with regard to the input. With hard monotonic at-
tention, the translation algorithm can enforce cer-
tain constraints:

1. The end-of-sentence symbol can only be gen-
erated if the hard attention mechanism has
reached the end of the input sequence, en-
forcing full coverage;

2. The 〈STEP〉 symbol cannot be generated once
the end-of-sentence position in the source has
been reached. It is however still possible to
generate content tokens.

Obviously, this model requires a target se-
quence with correctly inserted 〈STEP〉 symbols.
For the described APE task, using the Longest

Common Subsequence algorithm (Hirschberg,
1977), we first generate a sequence of match,
delete and insert operations which transform the
raw MT output (x1, · · ·xTx) into the corrected
post-edited sequence (y1, · · · yTy)

3. Next, we map
these operations to the final sequence of steps and
target tokens according to the following rules:

• For each matched pair of tokens x, y we pro-
duce symbols: 〈STEP〉 y;

• For each inserted target token y, we produce
the same token y;

• For each deleted source token x we produce
〈STEP〉;

• Since at initialization of the model a1 = 1,
i.e. the first encoder state is already attended
to, we discard the first symbol in the new se-
quence if it is a 〈STEP〉 symbol.

2.3 Hard and Soft Attention
While the hard attention model can be used to en-
force faithfulness to the original input, we would
also like the model to be able to look at informa-
tion anywhere in the source sequence which is a
property of the soft attention model.

By re-introducing the conditional GRU cell
with soft attention into the ENCDEC-HARD model
while also inputting the hard-attended encoder
state haj , we can try to take advantage of both at-
tention mechanisms. Combining Eq. 2 and Eq. 3,
we get:

sj = cGRUatt
(
sj−1,

[
E[yj−1];haj

]
,C
)
. (4)

The rest of the model is unchanged; the transla-
tion process is the same as before and we use the
same target step/token sequence for training. This
model is called ENCDEC-HARD-ATT.

2.4 Soft Double-Attention
Neural multi-source models (Zoph and Knight,
2016) seem to be natural fit for the APE task, as
raw MT output and original source language in-
put are available. Although application to the APE
problem have been reported (Libovický and Helcl,
2017), state-of-the-art results seem to be missing.

In this section we give details about our double-
source model implementation. We rename the ex-
isting encoder C to Cmt to signal that the first en-
coder consumes the raw MT output and introduce

3Similar to GNU wdiff.
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a structurally identical second encoder Csrc =
{hsrc

1 , . . . ,hsrc
Tsrc
} over the source language. To

compute the decoder start state s0 for the multi-
encoder model we concatenate the averaged en-
coder contexts before mapping them into the de-
coder state space:

s0 = tanh

(
Winit

[∑Tmt
i=1 h

mt
i

Tmt
;

∑Tsrc
i=1 hsrc

i

Tsrc

])
.

In the decoder, we replace the conditional GRU
with attention, with a doubly-attentive cGRU cell
(Calixto et al., 2017) over contexts Cmt and Csrc:

sj = cGRU2-att
(
sj−1,E[yj−1],Cmt,Csrc

)
(5)

The procedure is similar to the original cGRU,
differing only in that in order to compute the con-
text vector cj , we first calculate contexts vectors
cmt
j and csrcj for each context and then concate-

nate the results:

s′j =GRU1 (sj−1,E[yj−1]) ,

cmt
j =ATT

(
Cmt, s′j

)
=

Tmt∑

i

αijh
mt
i ,

csrcj =ATT
(
Csrc, s′j

)
=

Tsrc∑

i

αijh
src
i ,

cj =
[
cmt
j ; csrcj

]
,

sj =GRU2

(
s′j , cj

)
.

This could be easily extended to an arbitrary
number of encoders with different architectures.
During training this model is fed with a tri-parallel
corpus, during translation both input sequences
are processed simultaneously to produce the cor-
rected output. This model is denoted as ENCDEC-
DOUBLE-ATT.

2.5 Hard Attention with Soft
Double-Attention

Analogously to the procedure described in sec-
tion 2.3, we can extend the doubly-attentive cGRU
to take the hard-attended encoder context as addi-
tional input:

sj = cGRU2-att

(
sj−1,

[
E[yj−1];hmt

aj

]
,Cmt,Csrc

)

In this formulation, only the first encoder con-
text Cmt is attended to by the hard monotonic at-
tention mechanism. The target training data con-
sists of the step/token sequences used for all pre-
vious hard-attention models. We call this model
ENCDEC-HARD+DOUBLE-ATT.

Data set Sentences TER

training set 2016 12,000 26.22
training set 2017 11,000 –
development set 2016 1,000 24.81
test set 2016 2,000 –

artificial-large 2016 4,335,715 36.63
artificial-small 2016 531,839 25.28

artificial 2017 15,158,354 27.45

Table 1: Statistics for artificial data sets in
comparison to official training and development
data, adapted from Junczys-Dowmunt and Grund-
kiewicz (2016).

3 Artifical Data

We also attempt to generate more artificial data for
the task. Instead of relying on filtering towards
specific error rates, we generate text with fitting
error rates from the start which allows us to re-
tain more data. To obtain the monolingual source
data we follow the steps described by (Junczys-
Dowmunt and Grundkiewicz, 2016). Next we
train a English-to-German MT system using data
from the WMT2016 shared task on IT translation.
This system is used to translate it’s own training
data into German. Although input sentence have
been seen, the translations are far from perfect.
Next we create an MT system to translate from
correct German to imperfect German MT output.
This system can now be applied to create raw Ger-
man MT output from correct German text.

In order to achieve matching TER statistics we
use a simple implementation of the Nelder-Mead
algorithm for parameter tuning. For unknown rea-
sons, MERT or kb-Mira would not create output
with the desired error-rates.

Using this system we create a new large set
of pseudo-PE data, translating domain-selected
monolingual data from German into German
pseudo-MT output. The English input is created
with an German-to-English phrase-based MT sys-
tem. We translate about 15 million sentences in
this manner, creating new artificial APE triplets.

4 Experiments and Results

4.1 Training, Development, and Test Data

We perform all our experiments with the offi-
cial WMT16 (Bojar et al., 2016) automatic post-
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dev 2016 test 2016 test 2017
Model TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑
WMT17-baseline 1 – – – – 24.48 62.49
WMT17-baseline 2 – – – – 24.69 62.97

CONTRASTIVE 19.74 70.61 19.30 70.34 19.83 69.38
PRIMARY – – 19.21 70.51 19.77 69.50

Table 2: Submitted system results

editing data and the respective development and
test sets. The training data consists of a small
set of 23,000 post-editing triplets (src,mt, pe),
where src is the original English text, mt is
the raw MT output generated by an English-to-
German system, and pe is the human post-edited
MT output. The MT system used to produce the
raw MT output is unknown, so is the original train-
ing data. The task consist of automatically correct-
ing the MT output so that it resembles human post-
edited data. The main task metric is TER (Snover
et al., 2006) – the lower the better – with BLEU
(Papineni et al., 2002) as a secondary metric.

Table 1 summarizes the data sets used in this
work. To produce our final training data set we
oversample the original training data 20 times and
add all three artificial data sets (they may overlap).
This results in a total of slightly more than 21M
training triplets. We keep the development set as
a validation set for early stopping and report re-
sults on the WMT16 test set. The data is already
tokenized, additionally we truecase all files and
apply segmentation into BPE subword units. We
reuse the subword units distributed with the arti-
ficial data set. For the hard-attention models, we
create new target training and development files
following the procedure from section 2.2.

4.2 Training parameters

All models are trained on the same training data.
Models with single input encoders take only the
raw MT output (mt) as input, double-encoder
models use raw MT output (mt) and the original
source (pe). The training procedures and model
settings are the same whenever possible:

• All embedding vectors consist of 512 units,
the RNN states use 1024 units. We choose
a vocabulary size of 40,000 for all inputs
and outputs. When hard attention models are
trained the maximum sentence length is 100

to accommodate the additional step symbols,
otherwise 50.

• To avoid overfitting, we use pervasive
dropout (Gal, 2015) over GRU steps and in-
put embeddings, with dropout probabilities
0.2, and over source and target words with
probabilities 0.2.

• We use Adam (Kingma and Ba, 2014) as our
optimizer, with a mini-batch size of 64. All
models are trained with Asynchronous SGD
(Adam) on three to four GPUs.

• We train all models until convergence (early-
stopping with a patience of 10 based on dev-
set cross-entropy cost), saving model check-
points every 10,000 mini-batches.

• The best eight model checkpoints w.r.t. dev-
set cross-entropy of each training run are
averaged element-wise (Junczys-Dowmunt
et al., 2016) resulting in new single models
with generally improved performance.

• For the multi-source models we repeat the
mentioned procedure four times with differ-
ent randomly initialized weights and random
seeds to later form model ensembles.

Training time for one model on four NVIDIA
GTX 1080 GPUs or NVIDIA TITAN X (Pascal)
GPUs is between two and three days, depending
on model complexity.

4.3 Submitted System

We chose an ensemble of four ENCDEC-
HARD+DOUBLE-ATT systems (four distinct train-
ing runs with different random weights initializa-
tions) as our final system. In Table 2, this system
is marked as CONSTRASTIVE. We also noticed
that providing the system output once more as sys-
tem input to the same system results in a small im-
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dev 2016 test 2016
Model TER↓ BLEU↑ TER↓ BLEU↑
WMT16-baseline 1 (Bojar et al., 2016) 25.14 62.92 24.76 62.11
WMT16-baseline 2 (Bojar et al., 2016) – – 24.64 63.47
Junczys-Dowmunt and Grundkiewicz (2016) 21.46 68.94 21.52 67.65

Pal et al. (2017) SYMMETRIC – – 21.07 67.87
Pal et al. (2017) RERANKING – – 20.70 69.90

Table 3: Results from the literature for the WMT 2016 APE development and test set

dev 2016 test 2016
Model TER↓ BLEU↑ TER↓ BLEU↑
ENCDEC-ATT 22.01 68.11 22.27 66.90

ENCDEC-HARD 22.72 66.82 22.72 65.86
ENCDEC-HARD+ATT 22.11 67.82 22.10 67.15

ENCDEC-DOUBLE-ATT 20.79 69.28 20.69 68.56
ENCDEC-DOUBLE-ATT × 4 20.10 70.24 19.92 69.40

ENCDEC-HARD+DOUBLE-ATT 20.83 69.02 20.87 68.14
ENCDEC-HARD+DOUBLE-ATT × 4 20.08 70.05 20.34 68.96

Table 4: Post-submission results, the main task metric is TER (the lower the better)

provement. This one-time looped system is our
primary submission PRIMARY.

5 Post-submission analysis

This section is based on the work in Junczys-
Dowmunt and Grundkiewicz (2017). After the
submission we performed a number of in-depth
experiments to verify our intuitions about the se-
lected models for a better controlled data setting.
We restricted all training, development data to data
available during the WMT 2016 shared task on
APE and test on test set 2016. We also only
used artificial data made available by Junczys-
Dowmunt and Grundkiewicz (2016), dicarding the
newly created data in this work. To produce our
final training data set we oversample the original
training data 20 times and add the artificial data
sets. This results in a total of slightly more than
5M training triplets. For the hard-attention mod-
els, we create new target training and development
files following the LCS-based procedure outlined
in section 2.2.

Table 3 contains a selection of most relevant re-
sults for the WMT16 APE shared task – during the
task and afterwards. WMT 2016-baseline 1 is the
raw uncorrected mt output, baseline 2 is the results

of a vanilla phrase-based Moses system (Koehn
et al., 2007) trained only on the official 12,000
sentences. Junczys-Dowmunt and Grundkiewicz
(2016) is the best system at the shared task. Pal
et al. (2017) SYMMETRIC is the currently best re-
ported result on the WMT16 APE test set for a sin-
gle neural model (single source), whereas Pal et al.
(2017) RERANKING – the overall best reported re-
sult on the test set – is a system combination of Pal
et al. (2017) SYMMETRIC with phrase-based mod-
els via n-best list re-ranking.

In Table 4 we present the results for the mod-
els discussed in this work. The double-attention
models outperform the best WMT16 system and
the currently reported best single-model Pal et al.
(2017) SYMMETRIC. The ensembles also beat the
system combination Pal et al. (2017) RERANK-
ING in terms of TER (not in terms of BLEU
though). The simpler double-attention model with
no hard-attention ENCDEC-DOUBLE-ATT reaches
slightly better results on the test set than its
counterpart with added hard attention ENCDEC-
HARD+DOUBLE-ATT, but the situation would
have been less clear if only the dev set were used
to choose the best model.
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Abstract

This work presents a novel approach to
Automatic Post-Editing (APE) and Word-
Level Quality Estimation (QE) using en-
sembles of specialized Neural Machine
Translation (NMT) systems. Word-level
features that have proven effective for QE
are included as input factors, expanding
the representation of the original source
and the machine translation hypothesis,
which are used to generate an automati-
cally post-edited hypothesis. We train a
suite of NMT models that use different
input representations, but share the same
output space. These models are then en-
sembled together, and tuned for both the
APE and the QE task. We thus attempt to
connect the state-of-the-art approaches to
APE and QE within a single framework.
Our models achieve state-of-the-art results
in both tasks, with the only difference in
the tuning step which learns weights for
each component of the ensemble.

1 Introduction

Translation destined for human consumption of-
ten must pass through multiple editing stages. In
one common scenario, human translators correct
machine translation (MT) output, correcting errors
and omissions until a perfect translation has been
produced. Several studies has shown that this pro-
cess, referred to as "post-editing", is faster than
translation from scratch (Specia, 2011), or inter-
active machine translation (Green et al., 2013).

A relatively recent line of research has tried to
build models which correct errors in MT auto-
matically (Simard et al., 2007; Bojar et al., 2015;
Junczys-Dowmunt and Grundkiewicz, 2016). Au-
tomatic Post-Editing (APE) typically views the

system that produced the original translation as a
black box, which cannot be modified or inspected.
An APE system has access to the same data that
a human translator would see: a source sentence
and a translation hypothesis. The job of the sys-
tem is to output a corrected hypothesis, attempt-
ing to fix errors made by the original translation
system. This can be viewed as a sequence-to-
sequence task (Sutskever et al., 2014), and is also
similar to multi-source machine translation (Zoph
and Knight, 2016; Firat et al., 2016). However,
APE intuitively tries to make the minimum num-
ber of edits required to transform the hypothesis
into a satisfactory translation, because we would
like our system to mimic human translators in at-
tempting to minimize the time spent correcting
each MT output. This additional constraint on
APE models differentiates the task from multi-
source MT.

The Word Level QE task is ostensibly a simpler
version of APE, where a system must only decide
whether or not each word in an MT hypothesis be-
longs in the post-edited version – it is not neces-
sary to propose a fix for errors. Most recent work
has considered word-level QE to be a sequence la-
beling task, and employed the standard tools of
structured prediction to solve it, i.e. structured pre-
dictors such as CRFs or structured SVMs, which
take advantage of sparse representations and very
large feature sets, as well as dependencies between
labels in the output sequence (Logacheva et al.,
2016; Martins et al., 2016). However, Martins
et al. (2017) recently proposed a new method of
word-level QE using APE, which simply uses an
APE system to produce a "pseudo-post-edit" given
a source sentence and an MT hypothesis. Their ap-
proach, which we call APE-QE, is the basis of the
work presented here. In APE-QE, the original MT
hypothesis is then aligned with the pseudo-post-
edit from the APE system using word level edit-
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distance, and words which correspond to Insert or
Delete operations are labeled as incorrect. Note
that this also corresponds exactly to the way QE
datasets are currently created, with the only dif-
ference being that human post-edits are typically
used to create gold-standard data (Bojar et al.,
2015).

A key similarity between the QE and APE tasks
is that both use information from two sequences:
(1) the original source input, and (2) an MT hy-
pothesis. Martins et al. (2017), showed that APE
systems with no knowledge about the QE task al-
ready provide a very strong baseline for QE. Be-
cause the essential training data for the APE and
QE tasks is identical, consisting of parallel triples
of (SRC,MT, PE), it is also natural to consider
these tasks as two subtasks that make use of a sin-
gle underlying model.

In this work, we explicitly design ensembles of
NMT models for both word-level QE, and APE.
This approach builds upon the approach presented
in Martins et al. (2017), by incorporating features
which have proven effective for Word Level QE as
"factors" in the input to Neural Machine Transla-
tion (NMT) systems. We achieve state-of-the-art
results in both Automatic Post-Editing and Word-
Level Quality Estimation, matching the perfor-
mance of much more complex QE systems, and
significantly outperforming the current state-of-
the-art in APE.

The main contributions of this work are:

• Novel Input Representations for Neural APE
models

• New tuned ensembles for APE-QE

• An open-source decoder supporting ensem-
bles of models with different inputs1

The following sections discuss our approach to
creating hybrid models for APE-QE, which should
be able to solve both tasks with minimal modifica-
tion.

2 Related Work

Two important lines of research have recently
made breakthroughs in QE and APE.

1code avaiable at https://github.com/
chrishokamp/constrained_decoding

2.1 Automatic Post-Editing

APE and QE training datasets consist of
(SRC,MT, PE) triples, where the post-edited
reference is created by a human translator in the
workflow described above. However, publicly
available APE datasets are relatively small in
comparison to parallel datasets used to train
machine translation systems. Junczys-Dowmunt
and Grundkiewicz (2016) introduce a method
for generating a large synthetic training dataset
from a parallel corpus of (SRC,REF ) by first
translating the reference to the source language,
and then translating this "pseudo-source" back
into the target language, resulting in a “pseudo-
hypothesis" which is likely to be more similar to
the reference than a direct translation from source
to target. The release of this synthetic training
data was a major contribution towards improving
APE.

Junczys-Dowmunt and Grundkiewicz (2016)
also present a framework for ensembling SRC→
PE and SRC → PE NMT models together, and
tuning for APE performance. Our work extends
this idea with several new input representations,
which are inspired by the goal of solving both QE
and APE with the same model.

2.2 Quality Estimation

Martins et al. (2016) introduced a stacked archi-
tecture, using a very large feature set within a
structured prediction framework to achieve a large
jump in the state of the art for Word-Level QE.
Some features are actually the outputs of stan-
dalone feedforward and recurrent neural network
models, which are then stacked into the final sys-
tem. Although their approach creates a very good
final model, the training and feature extraction
steps are quite complicated. An additional disad-
vantage of this approach is that it requires "jack-
knifing" the training data for the standalone mod-
els that provide features to the stacked model, in
order to avoid overfitting in the stacked ensemble.
This requires training k versions of each model
type, where k is the number of jackknife splits.

Our approach is most similar to Martins et
al. (2017), the major differences are: we do not
use any internal features from the original MT sys-
tem, and we do not need to "jackknife" in order to
create a stacked ensemble. Using only NMT with
attention, we are able to surpass the state-of-the-
art in APE and match it in QE.
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Figure 1: Schematic of the architecture of our fac-
tored NMT systems

2.3 Factored Inputs

Alexandrescu and Kirchoff (2006) introduced lin-
guistic factors for neural language models. The
core idea is to learn embeddings for linguistic fea-
tures such as part-of-speech (POS) tags and depen-
dency labels, augmenting the word embeddings of
the input with additional features. Recent work
has shown that NMT performance can also be
improved by concatenating embeddings for addi-
tional word-level "factors" to source-word input
embeddings (Sennrich and Haddow, 2016). The
input representation ej for each source input xj
with factors F thus becomes Eq. 1:

ej =

|F |n

k=1

Ekxjk (1)

where
f

indicates vector concatenation, Ek is the
embedding matrix of factor k, and xjk is a one hot
vector for the k-th input factor.

3 Models

In this section we describe the five model types
used for APE-QE, as well as the ensembles of
these models which turn out to be the best-
performing overall. We design several features to
be included as inputs to APE. The operating hy-
pothesis is that that features which haven proven
useful for Quality Estimation should also have a
positive impact upon APE performance.

Our baseline models are the same models used
in Junczys-Dowmunt (2016)2. The authors pro-
vide trained SRC → PE and MT → PE mod-
els, which correspond to the last four checkpoints
from fine-tuning the models on the 500K training
data concatenated with the task internal APE data
upsampled 20 times. These models are referred to
as SRC and MT.

3.1 Word Alignments

Previous work has shown that alignment informa-
tion between source and target is a critical compo-
nent of current state-of-the-art word level QE sys-
tems (Kreutzer et al., 2015; Martins et al., 2016).
The sequential inputs for structured prediction, as
well as the feedforward and recurrent models in
existing work obtain the source-side features for
each target word using the word-alignments pro-
vided by the WMT task organizers. However, this
information is not likely to be available in many
real-world usecases for Quality Estimation, and
the use of this information also means that the MT
system used to produce the hypotheses is not actu-
ally a "black box", which is part of the definition of
the QE task. Clearly, access to the word-alignment
information of an SMT system provides a lot of in-
sight into the underlying model.

Because our models rely upon synthetic training
data, and because we wish to view the MT system
as a true black-box, we instead use the SRC NMT
system to obtain these alignments. The attention
model for NMT produces a normalized vector of
weights at each timestep, where the weights can be
viewed as the "alignment probabilities" for each
source word (Bahdanau et al., 2014). In order to
obtain the input representation shown in table 3,
we use the source word with the highest weight
from the attention model as an additional factor
in the input to another MT-aligned→ PE system.

2These models have been made available by the au-
thors at https://amunmt.github.io/examples/
postedit/
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WMT 2016 Dev
Model Input BLEU TER ↓ F1-Mult Accuracy
WMT 16 Best 68.94 .215 .493 –
Martins et al (2017) – – .568 –
SRC 55.47 .315 .506 .803
MT 66.66 .232 .328 .834
MT-aligned 68.32 .215 .437 .852
SRC+MT 69.17 .211 .477 .857
SRC+MT-factor 69.75 .209 .484 .859
Avg-All Baseline 71.02 .199 .476 .862
Avg-All APE-Tune 71.22 .197 .510 .866
Avg-All QE-Tune 66.92 .228 .554 .857
4-SRC+Avg-All QE-Tune 67.16 .225 .567 .860

WMT 2016 Test
Model Input BLEU TER ↓ F1-Mult Accuracy
WMT Baseline 62.11 .248 .324 –
WMT 16 Best 67.65 .215 .493 –
Martins et al (2017) 67.62 .211 .575 –
SRC 55.58 .304 .519 .809
MT 65.85 .234 .347 .837
MT-aligned 67.69 .216 .447 .854
SRC+MT 68.03 .212 .477 .857
SRC+MT-factor 68.28 .211 .473 .857
Avg-All Baseline 70.05 .198 .492 .865
Avg-All APE-Tuned 70.04 .196 .516 .868
Avg-All QE-Tuned 66.93 .219 .573 .864
4-SRC+Avg-All QE-Tune 66.94 .219 .575 .865

Table 1: Results for all models and ensembles on WMT 16 development and test datasets

The MT-aligned→ PE system thus depends upon
the SRC → PE system to produce the additional
alignment factor.

3.2 Inputting Both Source and Target

Following Crego et al. (2016), we train a model
which takes the concatenated source and MT as
input. The two sequences are separated by a spe-
cial BREAK token. We refer to this system as
SRC+MT.

3.3 Part-of-Speech and Dependency Labels

Sennrich and Haddow (2016) showed that infor-
mation such as POS tags, NER labels, and syntac-
tic roles can be included in the input to NMT mod-
els, generally improving performance. Inspired
by this idea, we select some of the top perform-
ing features from Martins et al. (Martins et al.,
2016), and include them as input factors to the

SRC+MT-factor model. The base representation
is the concatenated SRC+MT (again with a spe-
cial BREAK token). For each word in the English
source and the German hypothesis, we obtain the
part-of-speech tag, the dependency relation, and
the part-of-speech of the head word, and include
these as input factors. For both English and Ger-
man, we use spaCy3 to extract these features for all
training, development, and test data. The resulting
model is illustrated in figure 1.

3.4 Extending Factors to Subword Encoding

Our NMT models use subword encoding (Sen-
nrich et al., 2016), but the additional factors are
computed at the word level. Therefore, the factors
must also be segmented to match the BPE segmen-
tation. We use the {BILOU}- prefixes common
in sequence-labeling tasks such as NER to extend

3https://spacy.io/
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factor vocabularies and map each word-level fac-
tor to the subword segmentation of the source or
target text.

Table 3 shows the input representations for each
of the model types using an example from the
WMT 2016 test data.

3.5 Ensembling NMT Models

We average the parameters of the four best check-
points of each model type, and create an ensemble
of the resulting five models, called Avg-All Base-
line. We then tune this ensemble for TER (APE)
and F1-Mult (QE), using MERT (Och, 2003). The
tuned models are called Avg-All APE-Tuned and
Avg-All QE-Tuned, respectively. After observ-
ing that source-only models have the best single-
model QE performance (see section 5), we cre-
ated a final F1-Mult tuned ensemble, consisting of
the four individual SRC models, and the averaged
models from each other type (an ensemble of eight
models total), called 4-SRC+Avg-All QE-Tune.

3.6 Tuning

Table 2 shows the final weights for each ensemble
type after tuning. In line with the two-model en-
semble presented in Martins et al. (2017), tuning
models for F1-Mult results in much more weight
being allocated to the SRC model, while TER tun-
ing favors models with access to the MT hypothe-
sis.

APE (TER) QE (F1-Mult)
SRC .162 .228
MT .003 -.183

MT-aligned .203 .229
SRC+MT .222 .231

SRC+MT-factor .410 .129

Table 2: Final weights for each model type after
10 iterations of MERT for tuning objectives TER
and F1-Mult.

4 Experiments

All of our models are trained using Nematus (Sen-
nrich et al., 2017). At inference time we use
our own decoder, which supports weighted log-
linear ensembles of Nematus models4. Following
Junczys-Dowmunt and Grundkiewicz (2016), we

4https://github.com/chrishokamp/
constrained_decoding

first train each model type on the large (4M) syn-
thetic training data, then fine tune using the 500K
dataset, concatenated with the task-internal train-
ing data upsampled 20x. Finally, for SRC+MT
and SRC+MT-factor we continued fine-tuning
each model for a small number of iterations us-
ing the min-risk training implementation available
in Nematus (Shen et al., 2016). Table 4 shows the
best dev result after each stage of training.

For both APE and QE, we use only the task-
specific training data provided for the WMT 2017
APE task, including the extra synthetic training
data5. However, note that the SpaCy models used
to extract features for the factored models are
trained with external data – we only use the off-
the-shelf models provided by the SpaCy develop-
ers.

To convert the output sequence from an APE
system into OK,BAD labels for QE, we use the
APE hypothesis as a "pseudo-reference", which is
then aligned with the original MT hypothesis us-
ing TER (Snover et al., 2006).

5 Results

Table 1 shows the results of our experiments us-
ing the WMT 16 development and test sets. For
each system, we measure performance on BLEU
and TER, which are the metrics used in APE task,
and also on F1-Mult, which is the primary metric
used for the Word Level QE task. Overall tagging
accuracy is included as a secondary metric for QE.

All systems with input factors significantly im-
prove APE performance over the baselines. For
QE, the trends are less clear, but point to a
key difference between optimizing for TER vs.
F1_product: F1_product optimization probably
lowers the threshold for "changing" a word, as
opposed to copying it from the MT hypothesis.
This hypothesis is supported by the observation
that the source-only APE system outperforms all
other single models on the QE metrics. Because
the source-only systems cannot resort to copying
words from the input, they are forced to make
the best guess about the final output, and words
which are more likely to be wrong are less likely
to be present in the output. If input factors were
used with a source-only APE system, the perfor-
mance on word-level QE could likely be further
improved. However, this hypothesis needs more

5http://www.statmt.org/wmt17/ape-task.
html
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SRC auto vector masks apply predefined patterns as vector masks to bitmap and vector objects .
MT automatische Vektor- masken vordefinierten Mustern wie Vektor- masken , Bitmaps und Vektor- objekte

anwenden .

MT-aligned automatische|auto Vektor-|vector masken|masks vordefinierten|apply Mustern|patterns wie|as Vektor-
|vector masken|masks ,|to Bitmaps|to und|and Vektor-|vector objekte|objects anwenden|apply .|.

SRC+MT auto vector masks apply predefined patterns as vector masks to bitmap and vector objects . BREAK
automatische Vektor- masken vordefinierten Mustern wie Vektor- masken , Bitmaps und Vektor- objekte
anwenden .

SRC+MT Factored Auto|JJ|amod|NNS vector|NN|compound|NNS masks|NNS|nsubj|VBP apply|VBP|ROOT|VBP
predefined|VBN|amod|NNS patterns|NNS|dobj|VBP as|IN|prep|NNS vector|NN|compound|NNS
masks|NNS|pobj|IN to|TO|aux|VB bitmap|VB|relcl|NNS and|CC|cc|VB vector|NN|compound|NNS ob-
jects|NNS|conj|VB .|.|punct|VBP BREAK|BREAK|BREAK|BREAK Automatische|ADJA|nk|NN
Vektor-|B-NN|B-sb|B-VVINF masken|I-NN|I-sb|I-VVINF vordefinierten|ADJA|nk|NN
Mustern|NN|pd|NN wie|KOKOM|cd|NN Vektor-|B-NN|B-cj|B-KOKOM masken|I-NN|I-cj|I-KOKOM
,|$,|punct|NN Bitmaps|NN|cj|NN und|KON|cd|NN Vektor-|B-NN|B-cj|B-KON objekte|I-NN|I-cj|I-KON
anwenden|VVINF|ROOT|VVINF .|$.|punct|VVINF

PE (Reference) Automatische Vektormasken wenden vordefinierte Mustern als Vektormasken auf Bitmap- und Vek-
torobjekte an .

Gold Tags OK OK BAD OK BAD OK BAD BAD OK OK BAD OK

Table 3: Examples of the input for the five model types used in the APE and QE ensembles. The pipe
symbol ‘|’ separates each factor. ‘-’ followed by whitespace indicates segmentation according to the
subword encoding.

Model General Fine-tune Min-Risk
MT-aligned 60.31 67.54 –

SRC+MT 59.52 68.68 69.44
SRC+MT-factor 57.59 68.26 69.76

Table 4: Best BLEU score on dev set after each
of the training stages. General is training with 4M
instances, Fine-tune is training with 500K + up-
sampled in-domain data, Min-Risk uses the same
dataset as Fine-tune, but uses a minimum-risk loss
with BLEU score as the target metric.

analysis and experimentation to confirm.

6 Conclusion

This work has presented APE-QE, unifying mod-
els for APE and word-level QE by leveraging the
flexibility of NMT to take advantage of informa-
tive features from QE. Models with different input
representations are ensembled together and tuned
for either APE or QE, achieving state of the art
performance in both tasks. The complementary
nature of these tasks points to future avenues of
exploration, such as joint training using both QE
labels and reference translations, as well as the in-
corporation of other features as input factors.
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Abstract 

Automatic post-editing (APE) is a 

challenging task on WMT evaluation 

campaign. We find that only a small 

number of edit operations are required 

for most machine translation outputs, 

through analysis of the training set of 

WMT17 APE en-de task. Based on 

this statistics analysis, two neural post-

editing (NPE) models are trained 

depended on the edit numbers: single 

edit and minor edits. The improved 

quality estimation (QE) approach is 

exploited to rank models, and select 

the best translation as the post-edited 

output from the n-best list translation 

hypotheses generated by the best APE 

model and the raw translation system. 

Experimental results on the datasets of 

WMT16 APE test set show that the 

proposed approach significantly outp-

erformed the baseline. Our approach 

can bring considerable relief from the 

overcorrection problem in APE. 

1 Introduction 

Automatic post-editing (APE) aims to learn how 

to correct machine translation errors by use of the 

human post-editing feedback. The traditional 

statistical post-editing builds monolingual 

statistical phrased-based machine translation 

system to translate the wrong raw outputs into 

good translations (Simard et al., 2007; Bechara et 

al., 2011; Chatterjee et al., 2015). In recent years, 

with the great success of deep learning achieved 

in machine translation, many works have applied 

neural machine translation (NMT) to the APE 

task. 

Pal et al. proposed to exploit the bidirectional 

source RNN encoder-decoder model to establish 

a monolingual machine translation system for 

APE (Pal et al., 2016). Compared with the tradi-

tional statistical post-editing approaches, their 

approach gained more improvement. In the light 

of the context information of the translation, 

Pecina et al. proposed to respectively establish 

independent encoders for source sentences and 

raw machine translations (Pecina et al., 2016). 

Their approach is similar to the multi-source 

NMT (Zoph et al., 2016); the difference lies in 

the input information are source sentences and 

raw machine translation outputs. Grundkiewicz et 

al. proposed to combine the outputs of monolin-

gual NMT and bilingual NMT to improve the 

performance of APE task (Grundkiewicz et al., 

2016).  

This paper presents a new approach for APE 

which was submitted by the JXNU team to 

WMT17 APE shared task. In order to effectively 

reduce the overcorrection problem, we propose to 

build two specific neural post-editing (NPE) 

models in term of the edit numbers, and select the 

best model by machine translation quality estima-

tion (QE). The experiment results indicate that 

the proposed approach gains great improvement 

over the baseline officially released by the eval-

uation campaign.  

2 Data analysis 

Overcorrection problem refers to edit the machine 

translation output more times than it really needed, 

among these edit operations, some are not 

necessary or even wrong. Overcorrection may 

cause the resulting outputs of APE have lower 

translation quality than the raw translation outputs. 

To estimate the number of edit operations needed 

on the test set, we count the number of edit 

operations, including deletion, insert, substitution, 

and shift of word chunk, for the raw machine 

translation outputs on the training set of WMT16 

and WMT17 APE shared task by the open source 
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TER script
1
. The combination training set has 

23,000 triples that are source sentence, raw 

machine translation output, and its human 

reference translation. 

The distribution of the number of edit 

operations needed for raw machine translation 

outputs on the training set of WMT16 and 

WMT17 APE shared task are showed as Figure 1. 

The statistics indicate that the average number of 

edit operations for the raw machine translation 

outputs is 4. And the machine translation outputs 

need more than 1 edit operation account for 

20.47%, while 58.03% of machine translation 

outputs need to be edited 4 times or less. 
 

 

Figure 1: Distribution of the number of edit 

operations needed for machine translation outputs 

in the training set of WMT16 and WMT17 APE 

shared task. 
 

 
Figure 2: Distribution of the number of only one 

type edit operations needed for machine 

translation outputs. 
 

Because the raw machine translation outputs 

can be converted to good translation by deletion, 

insert, substitution, and shift of word chunk 
                                                      
1http://www.cs.umd.edu/~snover/tercom/ 

operations, we also extract the machine translation 

outputs that only one type of edit operation are 

needed to convert them into good translation, the 

distribution of the number of edit operations on 

the subset is shown as Figure 2, it shows that 

more than 80% of raw machine translation outputs 

needed 2 or less one type edit operations. 

3 Model 

From the distribution of the number of edit opera-

tions in the training set, there are a lot of raw ma-

chine translation outputs needed a small amount 

of edit operations, less than 4 times; and there al-

so exist a lot of raw machine translation outputs 

needed only one type edit operations. Thus, we 

speculate that this phenomenon is also available 

for the test set. In order to reduce the overcorrec-

tion in the test set, we train two NPE models aim-

ing at these two conditions. 

Follow by Grundkiewicz et al. (2016) work, a 

NPE model is build and trained with the training 

set officially released by the evaluation campaign, 

called NPEBASELINE.   

We extract a triplet corpus with raw machine 

translation outputs needed 4 or less edit 

operations from the training dataset, and train a 

NPE system, called NPEMINOR. In the meantime, 

in order to strengthen the ability of editing the 

raw machine translation outputs by one single 

type edit operations, we use a triplet corpus 

contained machine translations with 2 or less one 

single edit operations from the training dataset, 

and train a NPE system, called NPESINGLE. 

In order to combine NPEBASELINE, NPEMINOR 

and NPESINGLE, we merge outputs of these three 

systems which are regarded as an n-best list trans-

lation hypothesis, and introduce the sentence-

level QE approach (Specia et al., 2013) to score 

and rank the n-best list translation hypothesis. 

QE approach aim is to estimate the qualities of 

translation without human references on the basis 

of features abstracted from the source sentences 

and machine translation outputs which reflect 

translation complexity, fluency and adequacy. 

Adopted the sentence-level QE approach to 

score and rank translation outputs in the n-best 

lists, we find that the QE approach can be proved 

to be very effective when it comes to one source 

sentence with great difference in qualities of trans-

lation, however, it's not very effective when one 

source sentence with small difference in qualities 

of translation.  
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In order to reduce the impact of misjudgment, a 

hierarchical classification method is used to select 

the best translation output among the merged n-

best list. First, the translation hypotheses are score 

by the QE method and the scores are converted in-

to the five-point scale. Thus, if the qualities of 

translation hypotheses are classified into different 

level, they can be ranked according to the quality 

level; if they are in the same level, a statistical 

language model, SRILM (Stolckeet al., 2002), is 

introduced to score and rank the translation hy-

potheses to get the best one. 

 

 
Figure 3: The flow chart of how to select the best 

translation by the QE approach 

4 Experiments 

In order to test the performance of the proposed 

approach, we conduct experiment on the test set 

of the WMT16 APE Task. The task focuses on the 

information technology domain, in which English 

source sentences have been translated into 

German (en-de) by an unknown MT system. The 

goal of the APE shared task is to examine 

automatic methods for correcting errors. 

4.1 Experiments setting 

Experimental data consist of corpus of WMT16 

and WMT17 APE shared task released by the 

evaluation campaign, and publicly released 

artificial post-editing data (Grundkiewicz et al., 

2016), including source language sentences, raw 

machine translation outputs and human 

references. Table 1 shows more details about 

this corpus. 

Due to the provided training triplets for en-de 

direction is too small to train neural models, 

Grundkiewicz et al. created artificial training 

triplets through applying cross-entropy filtering 

and round-trip translation to extend the provided 

training triplets and publicly released the 

extended one (Grundkiewicz et al., 2016). 

Therefore, we integrate these two corpora into a 

training set for training NPE systems. 
 

Data set Sentences length TER 

WMT16 training set 12,000 17.89 26.22 

WMT17 training set 11,000 17.69 24.41 

WMT16 development set 1,000 19.75 24.81 

WMT16 test set 2,000 17.41 24.76 

Artificial data 500K 531,839 20.92 25.28 

Artificial data 4M 4,335,715 15.86 36.63 

Table 1: Statistics of the provided data sets: 

number of sentences, average sentence lengths 

and TER score. 

 

The sentences in the corpus have been 

tokenized and truecased when preprocessing. To 

deal with the limited ability of neural translation 

models to handle out-of-vocabulary words, 

tokens are splited into subword units (Sennrich et 

al., 2015b) to improve the systems' performance.  

We apply Nematus
2
 to train the bidirectional 

RNN encoder-decoder model with attention 

mechanism. The size of minibatches is set 80, 

vocabulary size is set 40000, maximum sentence 

length is set 50, the dimension of word 

embeddings is set 500, the size of hidden layers is 

set 1024, and the optimization algorithm 

proposed by Adadelta (Zeiler, 2012) is used. 

Compared with Nematus's approach, AmuNMT
3
 

based on C++/CUDA (Grundkiewicz et al., 2016) 

decode at a faster speed on CPU. Thus, we apply 

AmuNMT's approach to decode to-be-edited 

machine translations with a beam size of 12 and 

length normalization when decoding. 

4.2 Experiments result 

4.2.1 NPEBASELINE system 

The APE corpus with size of 4M is used to train 

the NPEBASELINE system, while the combined 

corpus of APE corpus with size of 500k and the 

                                                      
2http://github.com/rsennrich/nematus 
3http://github.com/emjotde/amunmt 
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WMT16 and WMT17 training set are used to 

optimize the parameters of the system. 

4.2.2 NPEMINOR & NPESINGLE systems 

Filtered the above training set by the following 

rules respectively: machine translations needed 4 

or less edits and machine translations needed 2 or 

less single edit operations, two sub training sets, 

contained 278.9 K and 160.6 K training triples, 

are obtained. At the same time, the development 

set of the WMT16 APE shared task are filtered 

by the rules, and two sub development sets, 

contained 1199 and 810 triples, are obtained.  
 

System TER BLEU 

Raw MT output 12.66 76.13 

NPEBASELINE 12.20 78.53 

NPEMINOR 10.24 81.80 

Table 2: System performance of the NPEMINOR 

and the NPEBASELINE systems in the sub 

development set. 

 

System TER BLEU 

Raw MT output 8.25 82.31 

NPEBASELINE 8.04 84.48 

NPEMINOR 6.20 88.07 

NPESINGLE 5.58 89.02 

Table 3: System performance of NPE systems in 

the sub development set. 

 

We respectively train and tune the NPEBASELINE 

model with the sub training set and sub 

development set, two NPE systems, called 

NPEMINOR and NPESINGLE, are gained. The system 

performance on the two sub development sets are 

shown in Table 2 and Table 3. 

4.2.3 Joint system 

To gain better system performance, the outputs 

of NPE systems and raw machine translations 

were combined into an n-best list of translation 

hypotheses. The improved machine translation 

QE was exploited to select the best outputs 

among the n-best list. 

As shown in Table 4, the system performance 

of combining the outputs of NPEBASELINE and 

NPEMINOR systems and raw machine translations 

gained 0.7 TER score and 1.76 BLEU score 

improvement over that of the NPEBASELINE system 

in the test set of WMT16 APE shared task. The 

system performance was further improved by 

0.75 TER score and 0.61 BLEU score when 

combined the NPESINGLE outputs. The result 

shows the effectiveness of the proposed 

approach. 

 

System TER BLEU 

Baseline1(Raw MToutput) 24.76 62.11 

Baseline2(Moses PBAPE) 24.64 63.47 

NPEBASELINE 23.78 64.97 

NPEBASELINE + NPEMINOR 23.08 66.73 

NPEBASELINE + NPEMINOR + NPESINGLE 22.33 67.34 

Table 4: Results of NPE systems in the WMT16 

test set  

4.3 Analysis 

In order to look into the reasons for system 

performance improvement, we extract 500 triples 

from the test set of WMT16 APE shared task, in 

which the NPEBASELINE system performed worse 

than the raw machine translations. The machine 

translations in the 500 triples are all over-

corrected by the NPEBASELINE system, however, 

the total amount of sentences occurring 

overcorrection reduce to 372 in the outputs of the 

jointed models. And it was found that 58.8% of 

machine translation sentences only need 4 or less 

edits, this illustrates that the jointed model 

contributes greatly to reducing overcorrection. 
 

 

Figure 4: Distribution of the number of edits 

needed in overcorrection sentences from outputs 

of NPEBASELINE and jointed systems. 

 

To show their differences on the number of 

edits more clearly, Figure 4 describes the 

distribution of the number of edits from outputs of 

NPEBASELINE system and jointed systems. The 

Figure 4 reveals that the frequency of 
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overcorrection of the joint system is lower than 

the NPEBASELINE system when corrected machine 

translation needed a small amount of edits (<=4). 

5 Conclusion 

Our submission to the WMT17 APE shared task 

en-de translation direction gains significantly 

improvements over the baselines, scoring 23.30 

on TER and 65.66 on BLEU in the official re-

sults. This indicates that it is necessary to build a 

NPE system for machine translations needed a 

smaller amount of edits. Future work should in-

clude the investigation of the proposed approach 

application to the de-en translation direction of 

the WMT APE shared task. 
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Abstract

Following upon the last year’s CUNI sys-
tem for automatic post-editing of machine
translation output, we focus on exploit-
ing the potential of sequence-to-sequence
neural models for this task. In this sys-
tem description paper, we compare sev-
eral encoder-decoder architectures on a
smaller-scale models and present the sys-
tem we submitted to WMT 2017 Auto-
matic Post-Editing shared task based on
this preliminary comparison. We also
show how simple inclusion of synthetic
data can improve the overall performance
as measured by an automatic evaluation
metric. Lastly, we list few example out-
puts generated by our post-editing system.

1 Introduction

Even with the recent substantial improvements
of the machine translation (MT) quality mainly
thanks to the increasingly popular neural models
(neural MT, NMT), many errors still remain in
the output require further post-editing. This can
be done manually, or as the automatic post-editing
(APE) task expects, automatically.

When phrase-based machine translation
(PBMT) was the indisputable state of the art,
some automatic post-editing (APE) systems
were based on the PBMT techniques (Simard
et al., 2007). With source-sentence information
(Béchara et al., 2011), post-editing results were
quite promising. It is therefore not surprising
that with the rise of the neural machine transla-
tion, neural APE systems based on the findings
in NMT research were built (Pal et al., 2016)
and even won last year’s WMT16 Shared Task
(Junczys-Dowmunt and Grundkiewicz, 2016).

In this paper, we present a baseline comparison
of several recent neural sequence-to-sequence ar-
chitectures, motivations behind our primary sub-
mission for the WMT17 Shared Task and further
improvements of this submission with regard to
model size and additional synthetic data.

2 Experiments

In automatic post-editing, we are expected to take
the output of an MT system that usually contains
various errors (morphological, lexical etc.) and to
generate a corrected version of the output. Most of
the time, there is also additional information avail-
able, e.g. the original sentence in the source lan-
guage and sometimes also some internal scores or
features from the primary MT system.

2.1 Examined Setups
If we look at the recent developments in the field
of NMT, we can see that there are many differ-
ent novel approaches that often bring significant
improvements to the overall performance of the
NMT system. It is natural to ask how these find-
ings can be applied to APE task and how much
they can contribute to the APE system perfor-
mance. We experimented in two areas: (1) how to
feed simultaneously the source sentence and the
MT output (multi-source input), and (2) whether
to use subword units or individual characters.

2.1.1 Multi-Source Input
All our experiments use both the source sentence
and the MT output to be corrected. As far as en-
coding the input is concerned, we examined two
basic approaches. We tried using a single encoder
that received the concatenation of the source sen-
tence and the corresponding MT output as sug-
gested by Niehues et al. (2016). The resulting in-
put sequence becomes longer and it may thus be
more difficult to encode, but it was reported that
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Figure 1: Illustration of a multiple-encoder sequence-to-sequence architecture as illustrated in Libovický
et al. (2016).

(through the attention mechanism) the decoder is
able to attend to relevant parts of the concatenated
sentences when generating output.

As an alternative option, we also tried using two
separate encoders, one for the source sentence and
one for the MT output (Libovický et al., 2016) as
shown in Figure 1. In this case, both encoders
encode their corresponding input sequences sepa-
rately and the concatenation of their final states is
passed to the decoder. The attention is computed
over the hidden states of both encoders as if they
were produced by a single encoder. Libovický and
Helcl (2017) present other options for combining
the attention of multiple encoders, but the investi-
gation of these methods is not covered in this pa-
per.

2.1.2 Subword Units or Characters

All data-driven approaches to MT suffer in qual-
ity when translating rare words (including words
not seen during training at all) and NMT is no ex-
ception. In out neural approach to APE, we would
still like our APE system to address errors in rare
words (e.g. by fixing their endings). A popular
approach of reducing the vocabulary size in NMT
is called byte-pair encoding (BPE, Sennrich et al.,
2015) which creates a vocabulary of most frequent
words, subword units and individual characters.
This way, even rare words can be successfully han-
dled by modifying their parts.

Another option is to use a fully character-level
encoder-decoder architecture. However, this ap-

proach in its basic form results in much longer se-
quences that are generally much harder to learn
for the underlying recurrent neural network (RNN,
Pascanu et al., 2012). Another downside is the in-
creased training and inference time for each sen-
tence. Recently, Lee et al. (2016) presented an en-
coder architecture that uses RNN over the output
of several hundreds convolutional filters that are
applied on the character-level embeddings, com-
bining the benefits of both convolutional and re-
current approaches.

2.2 Baseline Comparison
Based on the approaches described in the previous
section, we decided to compare the following sys-
tem variations:

• a single encoder (concatenated input, “con-
cat”) vs. two separate encoders (“two-enc”),

• BPE2BPE vs. CHAR2CHAR architecture.

Each system variation was trained using a single
Nvidia Tesla K20 5GB GPU. We set embedding
size and both encoder and decoder RNN size to
300 for all the systems. We used BPE vocabulary
of size 50k for the BPE2BPE systems and charac-
ter vocabulary of size 500 for the CHAR2CHAR
systems. We did not use dropout during train-
ing. For the CHAR2CHAR setups (i.e. RNN over
convolutional encoder by Lee et al., 2016), we re-
duced the number of convolutional filters propor-
tionally to the size of the used GPU, used segment
size 5 and highway network of depth 1.
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System BLEU
BPE2BPE two-enc 42.36
BPE2BPE concat 42.13
CHAR2CHAR two-enc 49.82
CHAR2CHAR concat 49.94

Table 1: Automatic evaluation of the proposed ar-
chitectures we trained. The model size was down-
scaled to 5GB due to the limited computation re-
sources.

The experiments were carried out in Neural
Monkey1 (Helcl and Libovický, 2017), a frame-
work for sequence-to-sequence modeling. Most of
the required neural network components together
with necessary preprocessing and postprocessing
were already implemented in the framework. We
added the RNN over convolutional encoder in this
work.

We used 12k sentences WMT16 APE training
dataset for training and we computed BLEU (Pa-
pineni et al., 2002) on WMT16 APE development
dataset to compare the baselines. The evaluation
was performed during training. We thus did not
use beam search and simply greedily chose the
most probable output at each decoding step to get
the validation output.

The best results for each architecture are shown
in Table 1. We can see that the character-level
post-editing models outperform the subword-level
models. However, the training was done using
only a small dataset which may possibly indicate
that the character level architecture is able to better
exploit the training data. Nevertheless, we chose
the character-level system for our remaining ex-
periments.

3 CUNI System for WMT17 APE Task

After the baseline comparison of the smaller
sequence-to-sequence models, we moved towards
training of the primary submission for the WMT17
post-editing task.

3.1 Common Settings

We decided to use the two-encoder character-
level architecture. Even though the single encoder
character-level architecture with concatenated in-
puts performed slightly better during the baseline
evaluation, we believe that the multi-encoder ar-

1https://github.com/ufal/neuralmonkey

chitecture offers higher potential for further im-
provement.2

The model was trained using GeForce GTX
1080 with 8GB memory with the following pa-
rameters:

• shared character-level vocabulary size: 500

• encoder RNN size: 256

• input embedding size: 300

• segment size: 5

• highway network depth: 2

• convolutional filters (size, number of filters):
(1,150), (2,200), (3,250), (4,250), (5,300),
(6,300), (7,350), (8,350)

• decoder RNN size: 512

• output embedding size: 300

During the inference, we used beam-search of
beam size 20 and length normalization to penalize
shorter sentences. Beam search parameters were
chosen based on the Lee et al. (2016).

First, we used only 23k sentences from WMT17
training dataset to train the system. We used this
model as a baseline which we tried to further im-
prove.

3.2 Synthetic Data

Since the basic training dataset provided for the
task was rather small we also tried to include the
training dataset from the previous WMT16 post-
editing task and furthermore, we added the syn-
thetic data (smaller dataset, ∼500k sentences) as
provided by last year’s submission of Junczys-
Dowmunt and Grundkiewicz (2016). To balance
the ratio of genuine and synthetic sentences in
the final dataset, we duplicated the WMT16 and
WMT17 sentence pairs several times to match
the size of the synthetic dataset. We then took
all the data and shuffled them randomly to create
a dataset consisting of ∼1M training sentences.
We used WMT16 APE dev set to evaluate the
model during the training.

2This still needs to be confirmed though by the future re-
search.
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Source You can also perform many types of transformations by dragging the bounding box for a selection .
OrigMT Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl .
Synth Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl ziehen .
Ref Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl ziehen .

Source 3D comments added to other views are listed as components of that view in the Model Tree .
OrigMT 3D hinzugefügten Kommentare zu anderen Ansichten als Komponenten anzuzeigen , die in der Modellhierarchie aufgeführt sind .
Synth 3D-Kommentare zu anderen Ansichten werden als Komponenten angezeigt , die in der Modellhierarchie aufgeführt sind .
Ref Anderen Ansichten hinzugefügte 3D-Kommentare werden in der Modellhierarchie als Komponenten dieser Ansicht aufgeführt .

Source Choose an option from the Key Algorithm menu .
OrigMT Wählen Sie eine Option aus dem Menü ” Algorithm . ”
Synth Wählen Sie eine Option aus dem Menü ” Algorithmu . ”
Ref Wählen Sie eine Option aus dem Menü ” Schlüsselalgorithmus . ”

Source Shift-drag to constrain the movement of the object horizontally , vertically , or diagonally .
OrigMT Halten Sie beim Ziehen des Zeigers über die Bewegung des Objekts horizontal , vertikal oder diagonal einzuschränken .
Synth Halten Sie beim Ziehen die Bewegung des Objekts die Bewegung des Objekts horizontal , vertikal oder diagonal eingeschränkt .
Ref Halten Sie beim Ziehen des Objekts die Umschalttaste gedrückt , um nur horizontale , vertikale oder diagonale Bewegungen zuzulassen .

Figure 2: Sample outputs from the original MT and our submitted model “Synth”. In the first two
examples, our model helped to produce correctly the main verb (in bold). In the third example, it
introduced a spelling error (underlined). The last example shows that the model can also severely damage
the sentence, introducing repetitions common in NMT output. The original output for the last sentence
was not perfect either, it does not mention the shift key at all (and our model does not fix it).

3.3 Predicting Edit Operations

Finally, inspired by Libovický et al. (2016), we
also trained a separate model that generates a se-
quence of post-editing operations (“editops”) in-
stead of directly generating the target sequence
of characters. Aside from generating characters
present in the training data, the model learns to use
special tokens “<keep>” and “<delete>”, or to
normally produce characters present in the train-
ing data, to indicate the modifications needed for
the MT output. We used the same network param-
eters and data (including the synthetic dataset) for
the model with and without BPE.

3.4 Evaluation

We evaluated these three models using the
WMT16 APE test set3, computing the BLEU
score on the produced outputs: baseline
CHAR2CHAR setup (Baseline), the model
trained with synthetic data (Synth) and the model
which produces edit operations instead of com-
plete sentences (Synth+editops). Table 2 shows
the results of the evaluation.

We can see that even when we choose the best
architecture based on the relative comparison and
increase the model capacity (“Baseline”), it is still
not enough to even get close to the original MT
output quality (“Original MT”). Introducing ad-
ditional synthetic data (“Synth”) fixed this and
actually outperformed the original MT, reaching

3http://www.statmt.org/wmt16/ape-task.
html

System BLEU
Original MT 62.09 (±1.04)
Baseline 50.86 (±3.96)
Synth 66.04 (±1.16)
Synth+editops 62.08 (±1.05)

Table 2: Automatic evaluation of the final 8GB
APE setups. The score of the original MT output is
shown for comparison. The± values are empirical
confidence intervals reflecting the variance in the
test set (Koehn, 2004).

BLEU of 66.04. We chose this system as our pri-
mary submission for the WMT16 APE task.

We were a little surprised that there was no im-
provement when using model that learned to gen-
erate post-editing operations (“Synth+editops”).
When we manually examined the generated out-
put, we found out that the system took the safer
path of keeping most of the machine translation
output because it probably resulted in fewer errors
than trying to change it. This could be probably
avoided by discouraging the model from keeping
the whole MT output unchanged and we plan in-
vestigating this approach in the future.

Even though we did not perform a thorough
manual evaluation, we present some examples of
our submitted system (“Synth”) outputs to give the
reader some insight to the model performance in
Figure 2. Our post-editing helped with the main
verb, but in other cases, it also damaged the sen-
tence structure or introduced spelling errors.
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4 Conclusion

In this paper, we compared several sequence-to-
sequence architectures that were previously pro-
posed for the NMT task and evaluated their per-
formance in automatic post-editing of English-to-
German MT output. Our setup relies on the origi-
nal source sentence and uses either subword units
(BPE) or individual characters.

With additional synthetic data, we were able to
improve over the original MT output in terms of
BLEU, but a quick manual inspection reveals that
errors can be easily also introduced and BLEU (or
other automatic metric) is not likely to give a reli-
able picture of the post-editing performance.
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Abstract

We describe the University of Mary-
land machine translation systems submit-
ted to the WMT17 German-English Ban-
dit Learning Task. The task is to adapt a
translation system to a new domain, using
only bandit feedback: the system receives
a German sentence to translate, produces
an English sentence, and only gets a scalar
score as feedback. Targeting these two
challenges (adaptation and bandit learn-
ing), we built a standard neural machine
translation system and extended it in two
ways: (1) robust reinforcement learning
techniques to learn effectively from the
bandit feedback, and (2) domain adapta-
tion using data selection from a large cor-
pus of parallel data.

1 Introduction

We describe the University of Maryland systems
for bandit machine translation. For the shared
translation task of the EMNLP 2017’s second
conference on machine translation (WMT17), we
focused on the task of bandit machine transla-
tion. This shared task was set up, consistent with
(Kreutzer et al., 2017), simultaneously as a bandit
learning problem and a domain adaptation prob-
lem. This raises the natural question: can we com-
bine these potentially complementary information
sources?

To investigate this question, we started from a
standard neural machine translation (NMT) setup
§21, and then we:

1. applied domain adaptation techniques by data
selection (Moore and Lewis, 2010) to the out-
of-domain data, with the goals of filtering out

1Our implementation is based on OpenNMT (Klein et al.,
2017), an open-source toolkit for neural MT.

harmful data and fine-tuning the training pro-
cess to focus only on relevant sentences (§4).

2. trained robust reinforcement learning algo-
rithms that can effectively learn from bandit
feedback (§3); this allows our model to “test”
proposed generalizations and adapt from the
provided feedback signals.

Tackling the problem of learning with ban-
dit feedback is important because neural machine
translation systems, like other natural language
processing technology, currently learn almost ex-
clusively from labeled data for a specific domain.
While this approach is useful, it cannot scale to a
broad variety of language and domains, as linguis-
tic systems often cannot generalize well beyond
their training data. Machine translation systems
need to be able to learn to improve their perfor-
mance from naturalistic interaction with users in
addition to labeled data.

Bandit feedback (Robbins, 1985) offers systems
the opportunity to “test” proposed generalizations
and receive feedback on their performance; par-
ticularly interesting are contextual bandit systems,
which make predictions based on a given input
context (Auer et al., 2002; Langford and Zhang,
2008; Beygelzimer et al., 2010; Dudik et al.,
2011). For example, a neural translation system
trained on parliament proceedings often performs
quite poorly at translating anything else. How-
ever, a translation system that is deployed to fa-
cilitate conversations between users might receive
either explicit feedback (e.g. thumbs up/down) on
its translations, or even implicit feedback, for ex-
ample, the conversation partner asking for clar-
ifications. There has recently been a flurry of
work specifically addressing the bandit structured
prediction problem (Chang et al., 2015; Sokolov
et al., 2016a,b), of which machine translation is a
special case.
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Because this task is—at it’s core—a domain
adaptation problem (for which a bandit learning
signal is available to “help”), we also explored the
use of standard domain adaptation techniques. We
make a strong assumption that a sizable amount
of monolingual, source language data is available
before bandit feedback begins.2 We believe that in
many realistic settings, one can at least get some
amount of unlabeled data to begin with (we con-
sider 40k sentences). Using this monolingual data,
we use data selection on a large corpus of parallel
out-of-domain data (Europarl, NewsCommentary,
CommonCrawl, Rapid) to seed an initial transla-
tion model.

Overall, the results support the following con-
clusions (§5), based on the limited setting of one
new domain and one language pair:

1. data selection for domain adaptation alone
improves translation quality by about 1.5
BLEU points.

2. on top of the domain adaptation, reinforce-
ment learning (which requires exploration)
leads to an initial degradation of about 3
BLEU points, which is recovered (on devel-
opment data) after approximately 40k sen-
tences of bandit feedback.3

One limitation of our current setup is that we
used bandit feedback on development data to train
a “critic” function for our reinforcement learning
implementation, which, in the worst case, means
that our results over-estimate performance on the
first 120k examples (more details in §5.3).

2 Neural MT architecture

We closely follow Luong et al. (2015) for the
structure of our neural machine translation (NMT)
systems. Our NMT model consists of an encoder
and a decoder, each of which is a recurrent neural
network (RNN). We use a bi-directionaral RNN
as the encoder and a uni-directional RNN as the
decoder. The model directly estimates the poste-
rior distribution Pθ(y | x) of translating a source
sentence x = (x1, · · · , xn) to a target sentence

2This raises a natural question: in the cases where this
assumption is unreasonable, could we do adaptation online?

3Unfortunately, due to our implementation bug, our eval-
uation of the test server is incomplete for the reinforcement
learning setting; see §5.3 for a discussion.

y = (y1, · · · , ym):

Pθ(y | x) =

m∏

t=1

Pθ(yt | y<t,x) (1)

where y<t are all tokens in the target sentence
prior to yt.

Each local distribution Pθ(y | y<t,x) is mod-
eled as a multinomial distribution over the target
language vocabulary. We represent this as a linear
transformation followed by a softmax function on
the decoder’s output vector h̃

dec
t :

Pθ(y | y<t,x) = softmax(W s h̃
dec
t ; τ) (2)

h̃
dec
t = tanh(W o[h

dec
t ; ct]) (3)

ct = attend(henc1:n ,h
dec
t ) (4)

where [.; .] is the concatenation of two vectors,
attend(., .) is an attention mechanism, 4, τ is the
temperature hyperparameter of the softmax func-
tion, henc and hdec are the hidden vectors gener-
ated by the encoder and the decoder, respectively.

During training, the encoder first encodes x to
a continuous vector Φ(x), which is used as the
initial hidden vector for the decoder. The decoder
performs RNN updates to produce a sequence of
hidden vectors:

hdec0 = Φ(x)

hdect = fθ

(
hdect−1,

[
h̃
dec
t−1; e(yt)

]) (5)

where e(.) is a word embedding lookup operation,
fθ is an LSTM cell. 5

At prediction time, the ground-truth token yt in
Eq. 5 is replaced by the model’s own prediction
ŷt:

ŷt = arg max
y
Pθ(y | ŷ<t,x) (6)

In a supervised learning framework, an NMT
model is typically trained under the maximum log-
likelihood objective:

Lsup(θ) = E(x,y)∼Dtr [logPθ (y | x)] (7)

where Dtr is the training set.
However, this learning framework is not appli-

cable to our problem since reference translations
are not available.

4We use the “concat” mechanism in (Luong et al., 2015).
5Feeding h̃

dec

t to the next step is “input feeding.”
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3 Reinforcement Learning

The translation process of an NMT model can be
viewed as a Markov decision process operating on
a continuous state space. The states are the hidden
vectors hdect generated by the decoder. The action
space is the target language’s vocabulary.

3.1 Markov decision process formulation
To generate a translation from a source sentence x,
an NMT model commences at an initial state hdec0 ,
which is a representation of x computed by the en-
coder. At time step t > 0, the model decides the
next action to take by defining a stochastic policy
Pθ(yt | y<t,x), which is directly parametrized by
the parameters θ of the model. This policy takes
the previous state hdect−1 as input and produces a
probability distribution over all actions (words in
the target vocabulary). The next action ŷt is cho-
sen either by taking arg max or sampling from this
policy. The encoder computes the current state
hdect by applying an RNN update on the previous
state hdect−1 and the next action taken ŷt (Eq. 5).

The objective of bandit NMT is to find a policy
that maximizes the expected quality of translations
sampled from the model’s policy:

Lpg(θ) = E x∼Dtr
ŷ∼Pθ(y|x)

[
R(ŷ,x)

]
(8)

whereR is a reward function that returns a score in
[0, 1] reflecting the quality of the input translation.

We optimize this objective function by policy
gradient methods. The gradient of the objective in
Eq. 8 with respect to θ is: 6

∇θLpg(θ) = Eŷ∼P (·) [R(ŷ)∇θ logPθ(ŷ)] (9)

=
m∑

t=1

E ŷt∼
P (·|ŷ<t)

[
R(ŷ)∇θ logPθ(ŷt | ŷ<t)

]

3.2 Advantage Actor-Critic

Algorithm 1 The A2C algorithm for NMT.
1: for k = 0 · · ·K do
2: receive a source sentence x
3: sample a translation: ŷ ∼ Pθ(y | x)
4: receive reward R(ŷ,x)
5: update the NMT model using the gradient in Eq. 9
6: update the critic model using the gradient in Eq. 12
7: end for

We follow the approach of the advantage actor-
critic (A2C) algorithm (Mnih et al., 2016), which

6For notation brevity, we omit x from this equation. The
expectations are also taken over all given x.

combines the REINFORCE algorithm (Williams,
1992) with actor-critic. The algorithm approxi-
mates the gradient in Eq. 9 by a single-point sam-
ple and normalize the rewards by V values to re-
duce variance:

∇θLpg(θ) ≈
m∑

t=1

∇θ logPθ(ŷt | ŷ<t,x)R̄t(ŷ<t,x)

with R̄t(ŷ<t,x) ≡ R(ŷ,x)− V (ŷ<t,x)
(10)

where ŷt ∼ P (· | ŷ<t,x) and V (ŷ<t,x) =
E [R(ŷ,x) | ŷ<t,x] is a baseline that estimates
the expected future reward given x and ŷ<t.

We train a critic model Vω to estimate the V
values. This model is an attention-based encoder-
decoder model that encodes a source sentence x
and decodes a predicted translation ŷ. At time step
t, it computes Vω(ŷ<t,x) = W o h̃

dec
t where h̃

dec
t

is the hidden state of the RNN decoder, and W o is
a matrix that transforms a vector into a scalar. 7

The critic model is trained to minimize the MSE
between its estimates and the true values:

Lcrt(ω) = Ex∼Dtr

[
m∑

t=1

‖R(ŷ,x)− Vω(ŷ<t,x)‖2
]

(11)
Given a fixed x, the gradient with respect to ω

of this objective is:

∇ωLcrt(ω) =
m∑

t=1

[R(ŷ)− Vω(ŷ<t)]∇ωVω(ŷ<t)

(12)
Algorithm 1 describes our algorithm. For each

x, we draw a single sample ŷ from the NMT
model, which is used for both estimating the gra-
dient of the NMT model (Eq. 10) and the gradient
of the critic model (Eq. 12). We update the NMT
model and the critic model simultaneously.

4 Domain Adaptation

We performed domain adaptation by choosing the
best out-of-domain parallel data for training us-
ing Moore and Lewis (2010) cross-entropy based
data selection technique.

Cross-Entropy Difference
The Moore and Lewis method uses the cross-
entropy difference HI(s) - HO(s) for scoring a

7We abuse the notation h̃
dec

to denote the decoder output.
But since the translation model and the critic model do not
share parameters, their decoder outputs are distinct.
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given sentence s, based on an in-domain language
modelLMI and an out-of-domain language model
LMO (Moore and Lewis, 2010). We trained LMO

using the German-English Europarl, NewsCom-
mentary, CommonCrawl and Rapid (i.e. out-of-
domain) data sets and LMI using the e-commerce
domain data provided by Amazon. After train-
ing both language models, we follow Moore and
Lewis method by applying the cross-entropy dif-
ference to score each sentence in the out-of-
domain data. The cross-entropy is mathematically
defined as:

H(W ) = − 1

n

n∑

i=1

logPLM (wi|w1, · · · , wi−1)

where PLM is the probability of a LM for the
word sequence W and w1, · · · , wi−1 represents
the history of the word wi.

Sentences with the lowest cross-entropy differ-
ence scores are the most relevant because they are
the more similar to the in-domain data and less
similar to the average of the out-of-domain data.
Using this criteria, the top n out-of-domain sen-
tences are used to create the training set Dtr. In
this work we consider various n sizes, selecting
the n that provides the best performance on the
validation set.

5 Experiments

This section describes the experiments we con-
ducted in attempt to assess the challenges posed
by bandit machine translation and our exploration
of efficient algorithms to improve machine trans-
lation systems using bandit feedback.

As explained in previous sections, this task re-
quires performing domain adaptation for machine
translation through bandit feedback. With this in
mind, we experimented with two types of mod-
els: simple domain adaptation without using the
feedbacks, and reinforcement learning models that
leverage the feedbacks. In the following sections,
we explain how we train the regular NMT model,
how we select training data for domain adaptation,
and how we use reinforcement learning to leverage
the bandit feedbacks.

We trained our systems using the out-of-domain
parallel data restricted by the shared task. The
entire out-of-domain dataset contains 4.5 mil-
lions parallel German-English sentences from Eu-
roparl, NewsCommentary, CommonCrawl and

Word embedding size 500
Hidden vector size 500
Number of LSTM layers 2
Batch size 64
Epochs 13
Optimizer SGD
Initial learning rate 1
Dropout 0.3
BPE size 20000
Vocab size ∼25k (*)

Table 1: NMT model’s training hyperparameters.
(*) with BPE we no longer need to prune the vo-
cabulary, and the exact size depends on the train-
ing data.

Rapid data for the News Translation (constrained)
task. Our NMT model is based on OpenNMT’s
(Klein et al., 2017) PyTorch implementation of
attention-based encoder-decoder model. We ex-
tended their implementation and added our imple-
mentation of the A2C algorithm. Details of the
model configuration and training hyperparameters
are listed in Table 1.

5.1 Subword Unit for Neural Machine
Translation

Neural machine translation (NMT) relies on first
mapping each word into the vector space, and tra-
ditionally we have a word vector corresponding to
each word in a fixed vocabulary. Due to the data
scarcity, it’s hard for the system to learn high qual-
ity representations for rare words. To address this
problem, with the goal of open vocabulary NMT,
Sennrich et al. (2015) proposed to learn subword
units and perform translation on a subword level.
We incorporated this approach in our system as
a preprocessing step. We generate the so-called
byte-pair encoding (BPE), which is a mapping
from words to subword units, on the whole train-
ing set (WMT15), for both the source and target
languages. The same mapping is used for all the
training sets in our system. After the translation,
we do an extra post-processing step to convert the
target language subword units back to words. With
BPE, the vocabulary size is reduced dramatically
and we no longer need to prune the vocabularies.
We find this approach to be very helpful and use it
for all our systems.

670



5.2 Domain Adaptation

As explained in Section 4, we use the data
selection method of (Moore and Lewis, 2010)
for domain adaptation. We use the kenlm
toolkit (Heafield, 2011) to build all the lan-
guage models used for the data selection. We
train 4-gram language models. For computing
the cross-entropy similarity scores, we use the
XenC (Rousseau, 2013) open source data selec-
tion tool. We use the mono-lingual data selec-
tion mode of XenC on the in-domain and out-of-
domain source sentences.

We have two parameters in this data selection
process: the size of in-domain dataset that is used
for training the in-domain language model, and
the size of the out-of-domain training data that we
select. We experimented with different configu-
rations and the results on the development server
are listed in Table 2. For obtaining the in-domain
data, we pre-fetch the source sentences from de-
velopment and training servers. For the training
server, we do not have enough keys to test all
combinations, so we picked several configurations
and for each sentence, we select randomly a sys-
tem to translate it. In addition, we also compare
with and without beam search. The purpose for
this is to provide another comparable baseline for
the later reinforcement learning model, for which
beam search cannot be used. Thus, the domain
adaptation system that we submit to the training
server is the uniformly random combination of 6
systems, and their individual average BLEU scores
are listed in Table 3.

It can be seen from these results that most con-
figurations of data selection improve the over-
all BLEU score. The model without data selec-
tion achieves 18.70 BLEU on the development
server, while the best data selection configurations
achieves 20.16, while on the training server the
scores are 18.65 without data selection and 20.13
with. It can also be seen from Table 3 that beam
search does help with improving the BLEU score.

5.3 Reinforcement Learning Results

While translating with the domain adaptation
models to the development server, we collect
320,000 triples of (source sentence, translation,
feedback) from 8 submitted systems. We use these
triples to pre-train the critic in the A2C algorithm.
We use the same pre-trained critic for all A2C-
trained systems. The critic for each model is then

in-domain size
o.o.d.% 40k 200k 800k

10% 18.50 18.57 18.85
20% 19.56 19.41 19.23
30% 19.54 20.16 19.11
40% 19.58 19.37 19.36
60% 18.88 18.81 19.59
85% 19.12 18.69 18.26

(*) 100% 18.70 18.70 18.70

Table 2: average BLEU scores of domain adapta-
tion systems on the development server with dif-
ferent combinations of in-domain size (x-axis) and
the percentage of out-of-domain data selected (y-
axis). (*) we show the BLEU score of using all the
out-of-domain data, do data selection performed
for this row.

i.d. size o.o.d. % beam=1 beam=5

0 100% 18.07 18.65 (+0.58)
40k 40% 18.77 19.51 (+0.74)

200k 30% 19.67 20.13 (+0.46)

Table 3: Average BLEU scores of domain adap-
tation systems on the training server with dif-
ferent combinations of in-domain size, out-of-
domain percentage, beam size, and the corre-
sponding BLEU scores.

updated jointly with the actor respectively. We use
Adam (Kingma and Ba, 2014) with learning rate
of 10−4 to update the both the translation model
and the critic model. We do not use dropout (Sri-
vastava et al., 2014) during training with A2C as it
makes learning less stable.

We note that there are some drawbacks when
using the A2C algorithm when it comes to gen-
erating translations. Normally we generate trans-
lations by greedy decoding, which means at each
time step we pick the word with the highest proba-
bility from the distribution produced by the model.
But with A2C, we need to sample from the distri-
bution of words to ensure exploration. As a direct
consequence, it is not clear how to apply beam
search for A2C (and for policy gradient methods
in general). To control the trade-off between ex-
ploration and exploitation, we use the temperature
hyperparameter τ in the softmax function. In our
experiments τ is set to 2

3 , which produces a more
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Figure 1: Comparing sampling, greedy decoding,
and the A2C algorithm on the development data.
Lines show average BLEU scores of every 2000
consecutive sentences.

peaky distribution and makes the model explore
less.

It is best to have batching during bandit training
for stability. Due to the limitation of the submis-
sion servers, that is, we only get the single reward
feedback each time, we had to devise a method
for batching for the feedback from the server. We
cache the rewards until we reach the batch size,
then do a batch update. However, due to some
bugs in the implementation of this method, some
sentences are not submitted in the correct order.
And at some test points on the training server the
scores are near or equal to zero.

In Figure 1 we present some results from the de-
velopment server. We use a data selection model
(200k in-domain data, 30% out-of-domain train-
ing data) as the baseline translation model, upon
which we use the A2C algorithm to improve fur-
ther. From this model, we generate translations
with both sampling and greedy decoding to see
how much the exploration required by the A2C al-
gorithm hurts the performance. Figure 1 shows
the average BLEU score of every 2000 sentences
from the development server. A2C loses at the be-
ginning because of exploration, and catches up as
it sees more examples. Using sampling instead of
greedy decoding, but exploration eventually im-
proves the model.

6 Conclusion

We present the University of Maryland neural ma-
chine translation systems for the WMT17 ban-
dit MT shared task. We employ two approaches:
out-of-domain data selection and reinforcement

learning. Experiments show that the best per-
formance is achieved with a model pre-trained
with only one-third of the available out-of-domain
data. When applying reinforcement learning to
further improve this model with bandit feedback,
the model performance degrades initially due to
exploration but gradually improves over time. Fu-
ture work is to determine if reinforcement learn-
ing is more effective on a larger bandit learning
dataset.
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Abstract

This paper describes LIMSI participation
to the WMT’17 shared task on Bandit
Learning. The method we propose to
adapt a seed system trained on out-domain
data to a new, unknown domain relies on
two components. First, we use a linear
regression model to exploit the weak and
partial feedback the system receives by
learning to predict the reward a translation
hypothesis will get. This model can then
be used to score hypotheses in the search
space and translate source sentences while
taking into account the specificities of the
in-domain data. Second, we use the UCB1
algorithm to choose which of the ‘adapted’
or ‘seed’ system must be used to translate
a given source sentence in order to maxi-
mize the cumulative reward.

Results on the development and train sets
show that the proposed method does not
succeed in improving the seed system. We
explore several hypotheses to explain this
negative result.

1 Introduction

The first Bandit Learning for Machine Translation
shared task (Sokolov et al., 2017) aims at adapting
a ‘seed’ MT system trained on out-domain corpora
to a new domain considering only a ‘weak’ signal,
namely a translation quality judgment rather than
a reference translation or a post-edition. Such a
situation arises when the user is not a skilled trans-
lator but can nevertheless decide whether a trans-
lation is useful or not. The signal is qualified as
‘weak’ as only the score of the translation pro-
duced by a system can be known, the same sen-
tence can not be translated twice and no reference
is ever revealed.

Adapting a MT system from a weak signal
raises three main challenges. First, the parame-
ters of the MT system must be estimated without
knowing the reference translation which rules out
most of the usual optimization methods for MT
such as MERT, MIRA or the computation of like-
lihood at the heart of NMT systems (Neubig and
Watanabe, 2016). Second, the system must be
trained in a ‘one-shot’ way as each source sen-
tence can only be translated once and will result
in a single reward. Third, no information about
the target domain is available and its specificities
must be discovered ‘on-the-fly’.

To address these challenges, we propose an
adaptation method that relies on two components.
First, we use a linear regression model to exploit
the weak and partial feedback the system receives
by learning to predict the reward a translation hy-
pothesis will get. This model can then be used
to score hypotheses of the search space and trans-
late source sentences while taking into account the
specificities of the in-domain data. Second, we
use the UCB1 algorithm to choose which of the
‘adapted’ or ‘seed’ system must be used to trans-
late a given source sentence in order to maximize
the cumulative reward.

The rest of this article is organized as follows:
we will first describe the shared task and the differ-
ent challenges it raises (§2). Then we will describe
the proposed method (§3–4) and discuss their re-
sults in §5.

2 Task Description

Bandit learning for MT follows an online learning
protocol: at the i-th iteration, a new source sen-
tence xi is received; the learner translates it and
gets a reward ri ∈ [0, 1] (a smoothed sentence-
level BLEU score in this shared task). The higher
the reward, the better the translation but no infor-
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mation about the actual reference is available. The
goal of the task is to maximize the cumulative re-
ward over T rounds:

∑T
i=1 ri.

Maximizing the cumulative reward faces an ex-
ploration/exploitation dilemma: if all the sen-
tences are translated using the seed system (i.e. a
system trained on out-domain data), the specifici-
ties of the domain will never be taken into account
and only ‘average’ translations will be predicted
(assuming the seed system is ‘good enough’).
However, training a new MT system from scratch
is also not a good strategy as, at the beginning the
system will predict many bad translations which i)
will have a negative impact on the cumulative re-
ward ii) might hinder training as the system will
only see bad hypotheses (i.e. only a small part of
the search space of a MT system will be explored).
Moreover, as no information about the target do-
main is available, the seed system may be, in fact,
very good for some input sentences and the best
strategy will simply be not to do any adaptation.

3 System Overview

We will now describes the two components of our
system: the first one (§3.1) will allow us to exploit
the weak and partial feedback we receive and the
second one (§3.2) will allow to discover the MT
system that translates in-domain data the best.

3.1 Optimizing a MT System from Weak
Feedback

Estimating the parameters of a MT system from
the rewards can not be done with the usual MT op-
timization methods: as the reference is not known,
it is impossible to score a n-best list as required
by methods optimizing a classification criterion
such as MERT or MIRA (Neubig and Watanabe,
2016). Moreover, as only one translation hypoth-
esis is scored, methods optimizing a ranking crite-
rion, such as PRO, can also not be used.

Instead we propose to simply learn a linear re-
gression to predict the reward a translation hy-
pothesis will get based on a joint feature represen-
tation φ(hi, xi) of the hypothesis and the source
sentence. Using a linear model allows us to eas-
ily integrate it into the decoder to score transla-
tion hypotheses: given a weight vector w, translat-
ing a source sentence x consists in looking, in the
search space, for the hypothesis that maximizes
the predicted reward, which amounts to finding
the longest path in a weighted directed acyclic

graph (Wisniewski et al., 2010; Wisniewski and
Yvon, 2013).

More precisely the weights of the MT system
are chosen by optimizing the regularized mean
squared error (MSE):

min
w

∑

i

(ri−w·φ(hi, xi))
2+λ2 ·||w||22+λ1 ·||w||1

(1)
where λ1 and λ2 are hyper-parameters controlling
the strength of the regularization. Solving Equa-
tion (1) with a stochastic gradient descent allows
us to update the weight vector each time a new re-
ward is received and to integrate learning in the
bandit protocol. Features and optimization meth-
ods are detailed in Section 4.2.

It is important to note that in the context of
Bandit MT, examples are not independently dis-
tributed: the score of the i-th observation depends
on the current value of the weight vector that, in
turn, depends on all the examples that have been
previously observed. This is a second aspect of
the exploration/exploitation dilemma described in
Section 2 as we have to trade off exploration of the
search space (to ensure that we correctly predict
the reward of any ‘kind’ of hypotheses and even-
tually discover better translations) while focusing
on the part of the search space that contains, ac-
cording to our current knowledge (i.e. value of the
weight vector), the best hypotheses.

In the following, we will denote ADAPTED the
MT system that uses the predicted reward to trans-
late a source sentence.

3.2 Trading off Exploration and Exploitation

Our system relies on the observation that each
new source sentence can be translated by different
systems: either the SEED system, the parameters
of which have been estimated on an out-domain
data set or the ADAPTED system the parameters of
which are continuously updated from the rewards.
The bandit learning task aims at deciding, for a
given input sentence, which system must be used
to translate it in order to maximizes the cumulative
reward.

The quality of a translation predicted by a given
system i can be modeled by a [0, 1]-valued random
variable Xi distributed with an unknown distribu-
tion and possessing an unknown expected value
µi. Would µi be known, the best strategy would
be to always translate sentences with the system
that has the highest µi. The challenge here is that
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µi is unknown and can change over time.
This framework corresponds to the multi-armed

bandit scenario (Bubeck and Cesa-Bianchi, 2012).
Many algorithms have been proposed to find the
best policy.1 In this shared task, we consid-
ered the UCB1 algorithm (Auer et al., 2002), that
consists in choosing the system that maximizes
x̄j +

√
2 log t

nj
, where nj represents the number

of times system j was chosen so far, t the num-
ber of rounds and x̄j the empirical mean reward of
the j-th system. After each decision, a reward is
observed and used to i) update the estimated em-
pirical mean reward of the system that has just
been chosen and ii) update the weight vector of
the ADAPTED system by doing one SGD step. In-
tuitively, this strategy selects a decision that has
either a ‘good’ expected reward or has not been
played for long. Importantly it never permanently
rules out a system no matter how poorly it per-
forms.

It can be proven (Auer et al., 2002) that the
UCB1 expected cumulative regret after T rounds
is at most O

(√
K · T · log T

)
where K is the

number of decisions that can be made. This means
that the difference between the cumulative reward
achieved by the UCB1 strategy and the cumulative
reward that would have been achieved by always
making the best decision is upper-bounded, i.e. the
UCB1 will allow us to discover which was the best
decision to make without making too many bad
decisions.

In the following, we denote UCB1 the strat-
egy that consists in using the UCB1 algorithm to
choose between the SEED and ADAPTED transla-
tion systems.

3.3 Variants
After analyzing our results on the development set
(see §5), we decide to consider two more strate-
gies:

• UCB1-SELECT that considers the same sys-
tems as the UCB1 strategy but only the trans-
lation hypothesis associated to a reward r in
[0.1, 1[ are considered to estimate the weights
of the ADAPTED system (other observations
are discarded);

• UCB1-SAMPLING in which two more MT
systems are considered (in addition to the

1A policy is a randomized algorithm which makes a de-
cision in each round based on the history of decisions and
observed rewards so far

ADAPTED and SEED systems): the first one,
SAMPLE-SEED samples translations from
the search space according to their score
predicted by the SEED system (the higher
its predicted score, the higher the probabil-
ity to select this hypothesis); the other one,
SAMPLE-UNIFORM samples translation hy-
potheses uniformly from the search space.

The latter strategy allows us to increase the di-
versity of translation hypotheses seen when es-
timating the weights of the ADAPTED system.
The former is motivated by our observations that
many good translation hypotheses have very low
rewards because the references used to compute
them are not a direct translation that can be pro-
duced by the MT system (i.e. the references are
unreachable) or that many source sentence do not
actually need to be translated (i.e. the source and
the reference are the same). Table 1 shows such
examples. We assume that these observations hin-
der the estimation of the model used to predict the
rewards has its gold value is completely unrelated
to the features describing the hypothesis.

source einfach genial und absolut cool !
hyp. simply brilliant and totally cool !
score 0.008633400213704501

source schwarz gr.xxl / xxxl
hyp. black gr.xxl / xxxl
score 0.0360645288

source 00603.117 , bt .
hyp. 00603.117 , bt .
score 1.0

Table 1: Example of a ‘good’ translation with very
bad rewards and of a perfect translation.

4 Experimental Details

4.1 The SEED System

We consider as our SEED system a phrase-
based system trained using the standard Moses
pipeline (Koehn et al., 2007): all corpora are
cleaned2 and tokenized; compounds are split on
the German side using our re-implementation
of (Koehn and Knight, 2003). Parallel data are

2Moses scripts are applied in the following order to
clean corpora: removing non-printing characters, replac-
ing and normalizing Unicode punctuation, lowercasing, pre-
tokenizing.
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aligned using FASTALIGN (Dyer et al., 2013)
and 5-gram language models is estimated using
KENLM (Heafield et al., 2013).

The language model is estimated on the mono-
lingual corpus resulting from the concatenation of
the EUROPARL (v7), NEWSCOMMENTARY (v12)
and NEWSDISCUSS (2015–2016) corpora. At the
end, our monolingual corpus contain 193,292,548
sentences. The translation model is estimated
from the CommonCrawl, NewsCo, Europarl
and Rapid corpora, resulting in a parallel corpus
made of 5,919,142 sentences.

Weights of the MT systems are estimated with
MERT on newstest-2016.

4.2 Training the Regression Model
We use Wowpal Wabbit (Agarwal et al., 2014)
to efficiently train a regressor to predict the re-
wards by optimizing the Mean Squared Error with
a stochastic gradient descent. We consider 32 fea-
tures: the 15 features of a baseline Moses system3

as well the score of the SEED system. We also
consider the logarithm of these features.

To account for the different feature ranges and
the mix of continuous and discrete features, we en-
hance the standard SGD by adding the following
three additional factors affecting the weight up-
dates when optimizing the MSE objective func-
tion:

• normalized updates to adjust for the scale of
each feature (Ross et al., 2013);

• adaptive, individual learning rate for each
feature (Duchi et al., 2011);

• importance aware update (Karampatziakis
and Langford, 2011).

The value of the hyper-parameters λ1 and λ2 are
chosen by maximizing prediction performance on
the 5,000 first examples on the development set.

5 Results

Performance of the proposed methods have been
evaluated on the two corpora provided by the
shared task organizers: a development set contain-
ing about 40,000 sentences and an official training
set containing 1,300,000 sentences, which will be
use to rank the participants. Unfortunately, given

31 language model score, 4 translation model scores, 6
scores describing lexical reordering, one distortion score, as
well as word, phrase and unknown word penalty

Strategy Cumulative BLEU

SEED 6970.21399
UCB1 6533.67157
UCB1-SAMPLING 6059.92188
UCB1-SELECT 6596.03351

Table 2: Results on the Development data set

its size, we were not able to translate all the train-
ing set.

The quality of the systems is evaluated both by
the cumulative reward (see §2) and by computing
the BLEU score on a specific corpus at different
‘checkpoints’.

Table 2 shows the cumulative reward achieved
by our systems on the development set. It ap-
pears that all the methods we proposed are outper-
formed by the seed system. Looking at the num-
ber of times each system was used by the different
strategies (Table 3), shows that, most of the time,
the seed system is selected, which confirms that it
achieves the best translation performance. Results
of the off-line evaluation, reported in Figure 1 and
on the training set confirm these observations.

Several hypotheses can be formulated to explain
these negative results:

• trying to adapt an MT system by changing
only the scores of a few models and without
additional resources or knowledge of the tar-
get domain may not offer enough flexibility;

• the estimation error of regressor may be too
large to discriminate the best translation hy-
pothesis of the search space. In practice the
mean squared error on the training data is
around 0.06.

• Our exploration strategy is not efficient
enough, and the learners never learns to score
‘good’ hypotheses. Indeed, as shown in Fig-
ure 2, most of the hypotheses seen during
training are of very low quality or correspond
to very short sentences that can be translated
trivially. In both cases, extracting useful in-
formation is difficult.

Analyzing these hypotheses in more depth is dif-
ficult without access to the references and results
on the training set.
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Strategy Out-Domain In-Domain Sample Moses Sample Uniform

SEED 100% — — —
UCB1 90.77% 9.23% — —
UCB1-SAMPLING 78.04% 7.67% 7.36% 6.94%
UCB1-SELECT 90.15% 9.85% — —

Table 3: Number of times each translation system is chosen by the UCB1 strategy on the development
set. ‘Out-Domain’ refers to the seed system, In-Domain to the system trained on the rewards and the last
two systems to systems sampling randomly hypotheses from the search space.
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Figure 1: Evolution of the BLEU score at the
different ‘check-points’ of the development and
training datasets.
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Abstract

This paper describes our submission to
the WMT 2017 Neural MT Training Task.
We modified the provided NMT system in
order to allow for interrupting and con-
tinuing the training of models. This al-
lowed mid-training batch size decremen-
tation and incrementation at variable rates.
In addition to the models with variable
batch size, we tried different setups with
pre-trained word2vec embeddings. Aside
from batch size incrementation, all our ex-
periments performed below the baseline.

1 Introduction

We participated in the WMT 2017 NMT Training
Task, experimenting with pre-trained word em-
beddings and mini-batch sizing. The underly-
ing NMT system (Neural Monkey, Helcl and Li-
bovický, 2017) was provided by the task organiz-
ers (Bojar et al., 2017), including the training data
for English to Czech translation. The goal of the
task was to find training criteria and training data
layout which leads to the best translation quality.
The provided NMT system is based on an atten-
tional encoder-decoder (Bahdanau, Cho, and Ben-
gio, 2014) and utilizes BPE for vocabulary size re-
duction to allow handling open vocabulary (Sen-
nrich, Haddow, and Birch, 2016).

We modified the provided NMT system in order
to allow for interruption and continuation of the
training process by saving and reloading variable
files. This did not result in any noticeable change
in the learning. Furthermore, it allowed for mid-
training mini-batch size decrementation and incre-
mentation at variable rates.

As our main experiment, we tried to employ
pre-trained word embeddings to initialize embed-
dings in the model on the source side (monolin-

gually trained embeddings) and on both source
and target sides (bilingually trained embeddings).

Section 1.1 describes our baseline system. Sec-
tion 2 examines the pre-trained embeddings and
Section 3 the effect of batch size modifications.
Further work and conclusion (Sections 4 and 5)
close the paper.

1.1 The Baseline System

Our baseline model was trained using the provided
NMT system and the provided data, including the
given word splits of BPE (Sennrich, Haddow, and
Birch, 2016). Of the two available configurations,
we selected the 4GB one for most experiments to
fit the limits of GPU cards available at MetaCen-
trum.1 This configuration uses a maximum sen-
tence length of 50, word embeddings of size 300,
hidden layers of size 350, and clips the gradient
norm to 1.0. We used a mini-batch size of 60 for
this model.

Due to resource limitations at MetaCentrum,
the training had to be interrupted after a week
of training. We modified Neural Monkey to en-
able training continuation by saving and loading
the model and we always submitted the continued
training as a new job. When tested with restarts ev-
ery few hours, we saw no effect on the training. In
total, our baseline ran for two weeks (one restart),
reaching BLEU of 15.24.

2 Pre-trained Word Embeddings

One of the goals of NMT Training Task is to re-
duce the training time. The baseline model needed
two weeks and it was still not fully converged.
Due to the nature of back-propagation, variables
closer to the expected output (i.e. the decoder) are
trained faster while it takes a much higher number
of iterations to propagate corrections to early parts

1https://metavo.metacentrum.cz/
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Figure 1: Results of pre-trained embeddings initialized models as compared to baseline model.

Baseline Source-Only Both Sides Larger Source-Only
Config for 4GB 4GB 4GB 8GB
Mini-batch size 60 60 60 150
Aux. symbols init. N (0, 0.012) U(0, 1) N (0, 0.012) N (0, 0.012)
Pre-trained embeddings none source source and target source

Embeddings model – CBOW Skip-gram CBOW
Pre-trained with – gensim bivec gensim

Table 1: The different setups of models initialized with pre-trained embeddings.

of the network. The very first step in NMT is to en-
code input tokens into their high-dimensional vec-
tor embeddings. At the same time, word embed-
dings have been thoroughly studied on their own
(Mikolov et al., 2013b) and efficient implementa-
tions are available to train embeddings outside of
the context of NMT.

One reason for using such pre-trained embed-
dings could lie in increased training data size (us-
ing larger monolingual data), another reason could
be the faster training: if the NMT system starts
with good word embeddings (for either language
but perhaps more importantly for the source side),
a lower number of training updates might be nec-
essary to specialize the embeddings for the trans-
lation task. We were not allowed to use additional
training data for the task, so we motivate our work
with the hope for a faster convergence.

2.1 Obtaining Embeddings

We trained monolingual word2vec CBOW embed-
dings (continuous bag of words model, Mikolov
et al., 2013a) of size 300 on the English side of the
corpus after BPE was applied to it, i.e. on the very
same units that the encoder in Neural Monkey will
be then processing. The training was done using
Gensim2 (Řehůřek and Sojka, 2010).

We started with CBOW embeddings because
they are significantly faster to train. However, as

2https://radimrehurek.com/gensim/

they did not lead to an improvement, we decided
to switch to the Skip-gram model which is slower
to train but works better for smaller amounts of
training data, according to T. Mikolov.3

Bilingual Skip-gram word embeddings were
trained on the parallel corpus after applying BPE
on both sides. The embeddings were trained using
the bivec tool4 based on the work of Luong, Pham,
and Manning (2015).

In all setups, the pre-trained word embeddings
were used only to initialize the embedding ma-
trix of the encoder (monolingual embeddings) or
both encoder and decoder (bilingual embeddings).
These initial parameters were trained with the rest
of the model.

The embeddings of the four symbols which are
added to the vocabulary for start, end, padding,
and unknown tokens were initialized randomly
with uniform and normal distributions.

2.2 Experiments with Embeddings

The tested setups are summarized in Table 1 and
the learning curves are plotted in Figure 1. The
line “Config for” indicates which of the provided
model sizes was used (the 4GB and 8GB setups
differ in embeddings and RNN sizes, otherwise,
the network and training are the same).

3https://groups.google.com/d/
msg/word2vec-toolkit/NLvYXU99cAM/
E5ld8LcDxlAJ

4https://github.com/lmthang/bivec
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Embeddings from Monolingual Training NMT Training
CBOW (no BPE) CBOW (BPE) Baseline Source-Only

Vocabulary Full Common subset (265 words)
WordSim-353 (ρ) 0.320 0.610 0.571 0.621 0.527
MEN (ρ) 0.300 0.610 0.621 0.583 0.591
SimLex-999 (ρ) 0.064 0.173 0.171 0.519 0.267

Table 2: Pairwise cosine distances between embeddings correlated with standard human judgments for
the common subset of the vocabularies. Best result in each row in bold.

We used uniform distribution from 0 to 1 in the
first experiment with embeddings and returned to
the baseline normal distribution in subsequent ex-
periments.

The best results we were able to obtain are
from a third experiment “Larger Source-Only”
with batch size increased to 150 but also with dif-
ferences in other model parameters. (We ran this
setup on a K80 card at Amazon EC2.) This run is
therefore not comparable with any of the remain-
ing runs, but we nevertheless submitted it as our
secondary submission for the WMT 2017 training
task (i.e. not to be evaluated manually).

2.3 Discussion

Due to lack of resources, we were not able to
run pairs of directly comparable setups. As Fig-
ure 1 however suggests, all our experiments with
pre-trained embeddings performed well below the
baseline of the 4GB model. This holds even for
the larger model size.

2.3.1 Analysis of Embeddings

In search for understanding the failure of pre-
trained embeddings,5 we tried to analyze the em-
beddings we are feeding and getting from our sys-
tem.

Recent work by Hill et al. (2017) has demon-
strated that embeddings created by monolingual
models tend to model non-specific relatedness of
words (e.g. teacher being related to student) while
those created from NMT models are more ori-
ented towards conceptual similarity (teacher ≈
professor) and lexical-syntactic information (the
Mikolov-style arithmetic with embedding vectors
for morphosyntactic relations like pluralization
but not for “semantic” relations like France-Paris).
It is therefore conceivable, that embeddings pre-
trained with the monolingual methods are not suit-
able for NMT.

5This negative result actually contradicts another set of
experiments using the Google News dataset embeddings cur-
rently carried out at our department.

We performed a series of tests to diagnose four
sets of embeddings: the baseline for the compar-
ison are embeddings trained monolingually with
the CBOW model without BPE processing. BPE
may have affected the quality of embeddings, so
we also evaluate CBOW trained on the training
corpus after applying BPE. These embeddings
were used to initialize the Source-Only setup. Fi-
nally two sets of embeddings are obtained from
Neural Monkey after the NMT training: from the
Baseline run (random initialization) and Source-
Only (i.e. the CBOW model used in initialization
and modified through NMT training).

The tests check the capability of the respective
embeddings to predict similar words, as manually
annotated in three different datasets: WordSim-
353, MEN and Simlex-999. WordSim-353 and
MEN contain a set of 353 and 3000 word pairs,
respectively, rated by human subjects according
to their relatedness (any relation between the two
words). Simlex-999, on the other hand, is made
up of 999 word pairs which were explicitly rated
according to their similarity. Similarity is a spe-
cial case of relatedness where the words are re-
lated by synonymy, hyponymy, or hypernymy (i.e.
an “is a” relation). For example, car is related to
but not similar to road, however it is similar to
automobile or to vehicle. Spearman’s rank cor-
relation (ρ) is then computed between the ratings
of each word pair (v, w) from the given dataset
and the cosine distance of their word embeddings,
cos(emb(v), emb(w)) over the entire set of word
pairs. The results of the tests are shown in Table 2.

The tests were performed for the intersecting
subset of all four vocabularies, i.e. the words not
broken by BPE and known to all three datasets.
(265 words). For the CBOW embeddings which
were trained without BPE being applied, the
scores of the full vocabulary (which has a much
higher coverage of the testing dataset pairs) is also
included.

As expected from Hill et al. (2017) results,
on SimLex-999 the Baseline embeddings com-
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Figure 2: Results of mini-batch decrementation compared to baseline model.

Baseline Decrease every 12h Decrease every 24h Decrease every 48h*
Starting mini-batch Size 60 100 100 150
Lowest mini-batch Size 60 5 5 20
Decreased every — 12 hours 24 hours 48 hours

Table 3: The different setups with mini-batch size decrementation. The run reducing every 48h was our
primary submission (*).

ing from NMT perform markedly better (0.519)
than other embeddings. The embeddings extracted
from the Source-Only model which was initialized
with the CBOW embeddings score somewhere in
the middle (0.267), which indicates that the NMT
model is learning word similarity and it moves to-
wards similarity from the general relatedness.

To a little extent, this is apparent even in the
values of the embedding vectors of the individual
words: we measured the cosine distance between
the embedding attributed to a word by the Base-
line NMT training and the embedding attributed
to it by “CBOW (BPE)”. The average cosine dis-
tance across all words in the common subset of
vocabularies was 1.003. After the training from
“CBOW (BPE)” to “Source-only”, the model has
moved closer to the Baseline, having an average
cosine distance of 0.995 (cosine of “Baseline” vs.
“Source-only” averaged over all words in the com-
mon subset). In other words, the training tried to
“unlearn” something from the pre-trained CBOW
(BPE).

For MEN, the general relatedness test set,
CBOW (BPE) embeddings perform best (0.621)
but Baseline NMT is also capable of learning these
relations quite well (0.583). The Source-Only
setup again moves somewhat to the middle in the
performance.

The poor performance of the CBOW embed-
dings on the full vocabulary (cf. columns 1 and 2
in Table 2) can be attributed to a lack of sufficient
coverage of less frequent words in the training cor-

pus. When “CBOW (no BPE)” is tested on the
common subset of vocabulary, it performs much
better. Our explanation is that words not broken
by BPE are likely to be frequent words. If the
corpus was not big enough to provide enough con-
text for all the words which were tested against the
human judgment datasets, suitable embeddings
would only be learned for the more frequent ones
(including those that were not broken by BPE). In-
deed, 263 words out of the set of 265 are among
the 10000 most frequent words in the full vocabu-
lary (of size 350881).

3 Mini-Batch Sizing

The effect of mini-batch sizing is primarily com-
putational. Theoretically speaking, mini-batch
size should affect training time, benefiting from
GPU parallelization, and not so much the final test
performance. It is common practice to choose the
largest mini-batch size possible, due to its com-
putational efficiency. Balles, Romero, and Hen-
nig (2016) have suggested that dynamic adapta-
tion of mini-batch size can lead to faster conver-
gence. What we experiment with in this set of ex-
periments is a much naiver concept based on in-
crementation and decrementation heuristics.

3.1 Decrementation

The idea of reducing mini-batch size during train-
ing is to help prevent over-fitting to the training
data. Smaller mini-batch sizes results in a nosier
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Figure 3: Results of the setup with increasing mini-batch size.

approximation of the gradient of the entire train-
ing set. Previous work by Keskar et al. (2016) has
shown that models trained with smaller mini-batch
size consistently converge to flat minima which re-
sults in an improved ability to generalize (as op-
posed to larger mini-batch size which tends to con-
verge to sharp minima of the training function).
By starting with a large mini-batch size, we aim
to benefit from larger steps early in the training
process (which means the optimization algorithm
will proceed faster) and then to reduce the risk
of over-fitting in a sharp minimum by gradually
decrementing mini-batch size.

In the first experiment, our primary submission,
we begin with the mini-batch size of 100 and de-
crease it by 20 every 48 hours down to mini-batch
size of 20. This was chosen heuristically.

In another two experiments, the mini-batch size
was decremented every 12 hours and every 24
hours starting from 100 and reaching down to the
size of 5. For these, the mini-batch size was re-
duced by 20 at each interval till it reached 20, then
it was halved twice and fixed at 5. A summary of
the different mini-batch size decrementation set-
tings tried can be seen in Table 3.

The performance of the setups when reducing
mini-batch is displayed in Figure 2. We see that
the more often we reduce the size, the sooner the

model starts losing its performance.
The plots are the performance on a held-out

dataset (as provided by the task organizers), so
what we are be seeing is actually over-fitting, the
opposite of what we wanted to achieve and what
one would expect from better generalization.

3.2 Incrementation
Due to time and resource restrictions, we managed
to complete the set of experiments with batch size
increasing only after the deadline for the training
task submissions. Interestingly, it is the only ex-
periment which managed to outperform our base-
line.

The model was trained for a week with mini-
batch size 65 and then for another week with mini-
batch size increased to 100. Although both the
baseline and this run are yet to converge, the in-
creased mini-batch size resulted in a very small
gain in terms of learning speed (measured in time),
as seen in the lower part of Figure 3. In terms of
training steps, there is no observable difference.

4 Further Work

4.1 Mini-Batch Size
In one of our experiments, have demonstrated that
variable mini-batch sizing could be possibly bene-
ficial. We suggest using different, smoother, incre-
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mentation and decrementation functions or trying
some method online mini-batch size adaptation,
e.g. based on the dissimilarity of the current sec-
tion of the corpus with the rest. This could be par-
ticularly useful in the common technique of model
fine-tuning when adapting to new domains.

Contrary to our expectations, reducing mini-
batch size during training leads to a loss on both
the heldout dataset and the training dataset. It is
therefore not a simple overfitting but rather gen-
uine loss in ability to learn. We assume that the
larger mini-batch size plays an important role in
model regularization and reducing it makes the
model susceptible to keep falling into very local
optima. Our not yet published experiments how-
ever suggest that if we used the smaller mini-batch
from the beginning, the model would not perform
badly, which is worth further investigation.

4.2 Pre-Trained Embeddings

The word2vec embeddings were not suitable for
the model. Scaling the whole embedding vector
space so that the euclidean distances are very small
but the cosine dissimilarities are preserved could
make it easier for the translation model to adjust
the embeddings but so far we did not manage to
obtain any positive results in this respect.

We can also speculate that since NMT models
produce embeddings which are best suited to the
translation task, initializing word embeddings us-
ing embeddings from previously trained models
could be a promising method of speeding up train-
ing.

5 Conclusion

In our submission to the WMT17 Training Task,
we tried two approaches: varying the mini-batch
size on the fly and initializing the models with
pre-trained word2vec embeddings. None of these
techniques resulted in any improvement, except
for a setup with mini-batch incrementation where
at least the training speed in wallclock time in-
creased (thanks to better use of GPU).

When analyzing the failure of the embeddings,
we confirmed the observation by Hill et al. (2017)
than NMT learns direct word similarity while
monolingual embeddings (CBOW) learn general
word relatedness.
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Abstract

The WMT17 Neural Machine Translation
Training Task aims to test various methods
of training neural machine translation sys-
tems. We describe the AFRL submission,
including preprocessing and its knowledge
distillation framework. Teacher systems
are given factors for domain, case, and
subword location. Student systems are
given multiple teachers’ output and a sub-
selected set of the training data designed
to match the target domain. Numerical re-
sults indicate that the student systems sur-
pass the teachers in translation quality and
that this benefit comes directly from the in-
clusion of the teachers’ output.

1 Introduction

This paper describes our development of sys-
tems for the WMT17 Neural Machine Translation
(NMT) Training Task (WMT, 2017). This task
tests methods of adjusting the NMT training pro-
cess, with a fixed size and format for the final
English-to-Czech system. A large (approx. 50 mil-
lion line) general-domain (mostly subtitles) bilin-
gual corpus is provided as a training set. A domain
is provided for each line of this corpus. News text,
the application domain, composes about 0.5% of
the corpus (see Table 1, column “Given”). A sub-
word expansion to be used is explicitly provided as
well. We preprocess the training data to standard-
ize some punctuation and character encoding dif-
ferences. We filter the data to remove some lines of
foreign languages and little information, approxi-
mately 5% of the training data.
We follow a teacher-student (aka knowledge

distillation) paradigm for this task (Ba and Caru-
ana, 2014). We train ten replicate systems larger
than the final system, based on all the training data

available. These systems are aware of different
factors (domain, case, subword location) for each
subword, allowing them to use this information to
learn finer details of translation. They also produce
different outputs, based on randomness in train-
ing. We translate the entire news-domain train-
ing corpus with all replicate systems. These out-
puts are added to the most applicable training data
as another set of references, and the final NMT
systems are trained from this decimated and aug-
mented training set.
We choose to resist making many changes to the

given systems, in order to provide useful a poste-
riori comparisons. To this end, we use:

• only neuralmonkey, or branches thereof, for
NMT

• the given data only

• alterations to given 4GB and 8GB configura-
tions only.

for all intermediate systems.

2 Preprocessing of Training Data

2.1 Normalization
We use several simple steps of text normaliza-
tion to produce a more standardized training set.
Some lines had been doubly-tokenized, and we
correct these (e.g., “&amp; quot ;” becomes
“&quot;”). Punctuation and spacing indicators
are made uniform (e.g., “Tha \x09D s” becomes
“That ' s”). Several characters were denoted by
non-standard Unicode codepoints, and these are
normalized. For instance, both of the codepoint
sequences \x03BF and \x043E look similar to and
were used for “o” in the English text.

2.2 Factor definition
We add several factors to the training set for the
teacher systems.
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We add a sentence-level factor of domain, with
the following given categories: fiction, subtitles,
paraweb, medical, and news.
We add a word-level factor for case (e.g., for the

line “Why did Dr . Henry Philip McCoy use
BASIC ?”) with the values:

1. no case (“.”, “?”)

2. lowercase (“did”, “use”)

3. all uppercase, more than one character
(“BASIC”)

4. mixed-case: any uppercase noninitial letter
(“McCoy”)

5. capitalized, at the beginning of a line or after
punctuation (“Why”, “Henry”)

6. capitalized abbreviation: preceding period
and not last word (“Dr”)

7. other (“Philip”)

Aword’s case factor comes from the first matching
condition in the above list.
Lowercasing is performed after this step, on

both the source and target sides, for the teachers’
training data. Information as to how the source
word is mixed-case is lost for the teacher systems
(e.g., “mPa” and “MPa” are equivalent).
Byte-pair-encoded (Gage, 1994) source text is

given a subword-level factor for position in sub-
word (non-subword, subword start, subword inte-
rior, subword end).
These factors are embedded into spaces with di-

mension equal to that of the square of the num-
ber of factors (e.g., 25 dimensions for the five fac-
tors in domain). While theoretically unimportant
at convergence, this increase in dimension might
encourage the training optimization to spend more
effort in understanding factors.

2.3 Cleanup
Byte-pair-encoded source text is filtered for use as
training data, based on two conditions. An En-
glish line must be at least 75% alphanumeric or
spaces. An English line must be at most 25% “@”
(two “@” being the subword continuation marker,
so this is ameasure of rare subwords). The filtering
is based on the lowercased parallel corpus used by
the teacher, but the filtered lines are also excluded
from the students’ cased training data.

This rough filter removes many of the non-
English lines of the source text. The English lines
that are filtered out appear to have little usable con-
tent. Table 1 shows how severely the different do-
mains were filtered and their relative representa-
tion in the cleaned-up data used for training the
teacher systems. The effect of filtering can be seen
by comparing the “Given” and “Teacher” columns.
Approximately 5% of the initial data is filtered

out by this process. Both the normalization and
cleanup processes have little quantitative effect in
final system quality, as seen by comparing “Given”
to “Teacher” in §5. However, the processes require
few resources, and we expect they haveminor time
and quality benefits.

3 Factored teacher systems

The teacher systems are based on the given 8
GB model configuration and trained using neu-
ralmonkey’s bandit-neuralmonkey branch1, which
seems to have good support for factors. The
teacher systems are provided the lowercased
general-domain training dataset, along with its do-
main, case, and subword location factors. Vectors
for the factor embeddings are merely concatenated
to the subword vectors. Convergence is declared
when none of the ten teacher systems improve its
validation set score for two days of training. This
occurred after approximately seven passes through
the training dataset. At that time, each teacher’s
model with the best validation score was used to
translate the news-domain from the training data.
The performance of the teacher systems on the val-
idation set newstest2016 is provided in Table 2.

4 Student systems

Training data for the student systems consist of
three parts. First, we include the news-domain data
from the “Teacher” set. Second, we add the out-
put of all ten teacher systems from translating this
news-domain training data.
The third component is the bilingual training

data from other domains, selected to be most suit-
able for training a news-domain system. To make
this corpus, we first limit the data to lines where
both languages (after the BPE process) are less
than 50 words, which is a limit in the model spec-
ification. We next remove duplicate lines in the
data, since some long lines similar to news data
are repeated many times, and we do not want them

1github.com/juliakreutzer/bandit-neuralmonkey
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Table 1: Breakdown of training corpora by domain, with numbers of lines in millions. “Given” is all
data provided for the task. “Teacher” is cleaned data used to train teachers. “Subselector” is length-
filtered and deduplicated data from which we subselect, along with news-domain data from “Teacher”.
“Selected” is output of subselector, along with news-domain data. “Student” is subselected data, along
with news-domain data, both from “Teacher” and as translated by the ten teacher systems.

Given Teacher Subselector Selected Student
Domain Lines % Lines % Lines % Lines % Lines %
fiction 5.9 12.2 5.8 12.5 5.4 16.2 1.6 22.7 1.6 16.7
subtitles 38.6 79.5 37.1 80.1 26.6 80.1 4.6 67.3 4.6 49.5
paraweb 2.3 4.7 1.8 3.9 0.5 1.6 0.3 3.9 0.3 2.9
medical 1.5 3.1 1.4 3.0 0.4 1.3 0.2 2.4 0.2 1.8
news 0.2 0.5 0.2 0.5 0.2 0.7 0.2 3.6 0.2 2.7

teacher news 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 26.5
Total 48.6 46.4 33.3 6.8 9.3

represented disproportionately. The distribution of
the remaining lines is given by the “Subselector”
columns (non-news rows) of Table 1.
Next, we break the corpus (approximately 33

million lines) into 44 parts (approximately 750,000
lines each) and apply our subselection algorithm
(Gwinnup et al., 2016). We use 4-grams and below
in the subselection coverage metric, and monolin-
gual coverage scores are summed to get the bilin-
gual coverage score that determines whether to in-
clude a line. We find a total of 6.6 million news-
like lines from the non-news domains to use in
training the student system, distributed as given by
the “Selected” column of Table 1. It is noteworthy
that the “fiction” domain was the most useful non-
news domain, with its percentage of the training
data increasing dramatically from “Given” to “Se-
lected”.
The final training data distribution for the stu-

dent system is given in Table 1, in the “Student”
columns. Our submitted student models had both
the 4 GB and 8 GB configurations provided by
the task organizers. Our 4 GB model made 8
passes through the student training set, and our 8
GB model made 4 passes. The performance on
the validation set newstest2016 is provided in Ta-
ble 2. Two replicates of each configuration were
trained, and the systems with the highest valida-
tion set scores were submitted.

5 Analysis

From Table 2 we see that the student systems per-
form even better on the validation set than the
teacher systems. The 4 GB systems perform about
half a BLEU point better, and the 8 GB systems

Table 2: Validation set BLEU scores of intermedi-
ate, factored 8GB teacher systems and final student
systems. Scores are computed internally by neu-
ralmonkey. Starred systems are submission sys-
tems.

System Replicate Score
Teacher 0 17.19
Teacher 1 16.98
Teacher 2 16.96
Teacher 3 17.07
Teacher 4 17.10
Teacher 5 17.01
Teacher 6 17.09
Teacher 7 16.82
Teacher 8 16.80
Teacher 9 17.14

Student 4GB 0 17.47
∗Student 4GB 1 17.58
∗Student 8GB 0 18.15
Student 8GB 1 18.05
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perform about one BLEU point better. To deter-
mine which stage in processing yielded the most
benefit, 4 GB systems matching the submission
criteria are built using all five of the training sets
seen in Table 1. Graphical training histories are
shown in Figure 1, summarized in Table 3. We
see clearly that using the “Student” training data
set both trains the fastest and leads to the highest-
scoring systems, beating others by about a BLEU
point on the validation set. The systems trained
on other datasets lead to scores within about half
a BLEU point of each other, with the smallest
dataset (i.e., “Selected”) training fastest and the
largest datasets (i.e., “Given” and “Teacher”) train-
ing the most slowly.
We believe that the success of the “Student”

training data is caused by using training data
with reachable and realistically conflicting transla-
tions. The conflicting translations provide “trans-
lator noise” and might prevent a system from over-
training or finding a strictly local optimum.
To test this theory, we build systems with ex-

actly the same size training set as “Student”, but
with different composition. For these, the teacher
output is replaced with:

• DupNews: ten identical copies of the news
data from the given bilingual corpus (for a to-
tal of eleven copies).

• DupTeach: ten identical copies of the output
from the best teacher system (i.e., from repli-
cate Teacher-0).

As shown in Table 3, both of these adjustments be-
gin training somewhat faster than “Selected” but
are negligibly different after one week of training,
at which point training is halted. This behavior
supports our hypothesis that realistically conflict-
ing translations improve the final system.

6 Discussion

We have given our method for creating the sys-
tems we submitted to theWMT17 Neural Machine
Translation Training Task. After cleaning the data,
we used factors to teach larger, teacher NMT sys-
tems. We trained our student submission systems
using in-domain output from the teacher systems,
rounded out with the most in-domain data from
the general training data. The output from mul-
tiple teacher systems was used to encourage the
student systems to include language ambiguity in
their training. Numerical results show that we
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Figure 1: Scores of 4GB systems on validation set
throughout training, with differing training data.
Two replicates were trained per dataset. Scores are
computed internally by neuralmonkey.

Table 3: Validation set BLEU scores of 4GB
systems trained using different data. Scores are
computed internally by neuralmonkey. “Dup-
News” and “DupTeach” training was halted after
one week, since negligible improvement over “Se-
lected” was found.
System-Replicate 4-day 7-day 14-day

Given-0 14.69 15.66 16.56
Given-1 14.88 15.44 16.57
Teacher-0 14.69 15.75 16.70
Teacher-1 14.58 15.48 16.58

Subselector-0 14.50 16.43 17.14
Subselector-1 14.44 16.25 17.33
Selected-0 16.00 16.98 17.17
Selected-1 15.94 16.67 17.13
Student-0 17.23 17.92 18.26
Student-1 17.15 17.95 18.37
DupNews-0 16.83 16.83
DupNews-1 16.68 16.68
DupTeach-0 16.66 16.99
DupTeach-1 16.66 16.94
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can distill knowledge of multiple well-informed
teacher systems into smaller student systems.
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Bojar, Ondřej, 169, 248, 348, 489, 525, 604, 661,

680
Bougares, Fethi, 20, 215, 288, 432
Boyer, Arthur, 234
Brantley, Kiante, 667
Braune, Fabienne, 315
Britz, Denny, 118
Burlot, Franck, 20, 43, 257, 348

Caglayan, Ozan, 288, 432
Calixto, Iacer, 440
Carlan, Chris, 422
Casacuberta, Francisco, 138
Chatterjee, Rajen, 157, 169, 630
Chen, Boxing, 330
Chen, Wei, 410
Chen, Yidong, 400
Chen, Zhiming, 551, 655
Cheng, Shanbo, 410
Cherry, Colin, 330
Chinea-Rios, Mara, 138
Cho, Eunah, 80, 366

Costa-jussà, Marta R., 283
Crego, Josep, 265
Currey, Anna, 148, 389

Danchenko, Pavel, 514
Daumé III, Hal, 667
Davis, James, 445
Deksne, Daiga, 374
Del, Maksym, 382
Deng, Yongchao, 265
Di Gangi, Mattia Antonino, 271
Ding, Shuoyang, 276
Duh, Kevin, 276
Duma, Melania, 556, 582
Duma, Mirela-Stefania, 483
Duselis, John, 445
Dutta Chowdhury, Koel, 440
Dwojak, Tomasz, 68

Elliott, Desmond, 215
Erdmann, Grant, 303, 687
Escolano, Carlos, 283

Farajian, M. Amin, 127, 630
Federico, Marcello, 127, 157, 271
Federmann, Christian, 169
Feng, Shi, 667
Fishel, Mark, 382, 619
Fonollosa, José A. R., 283
Foster, George, 330
Frank, Stella, 215
Fraser, Alexander, 32, 56, 315
Fürstenau, Hagen, 514

García-Martínez, Mercedes, 20, 288, 432
Germann, Ulrich, 389
Gildea, Daniel, 310
Gloncak, Vladan, 680
Graça, Miguel, 358
Graham, Yvette, 169, 489, 598
Grönroos, Stig-Arne, 296
Grozea, Cristian, 234
Guta, Andreas, 358
Gwinnup, Jeremy, 303, 445, 687

693



Ha, Thanh-Le, 366
Haddow, Barry, 99, 169, 234, 389
Heafield, Kenneth, 148, 389
Helcl, Jindřich, 99, 450, 525
Herranz, Luis, 432
Hokamp, Chris, 647
Holtz, Chester, 310
Hu, Jiawei, 428
Hu, Jinming, 400
Huang, Liang, 465
Huang, Liu, 655
Huang, Shujian, 169
Hübsch, Ondřej, 604
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