Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter

Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias Iosif, Nikolaos Malandrakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth Narayanan, Alexandros Potamianos

[How to correct problems with metadata yourself]


Abstract
In this paper, we describe our submission to SemEval2017 Task 4: Sentiment Analysis in Twitter. Specifically the proposed system participated both to tweet polarity classification (two-, three- and five class) and tweet quantification (two and five-class) tasks.
Anthology ID:
S17-2112
Volume:
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
Month:
August
Year:
2017
Address:
Vancouver, Canada
Editors:
Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, David Jurgens
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
675–682
Language:
URL:
https://aclanthology.org/S17-2112
DOI:
10.18653/v1/S17-2112
Bibkey:
Cite (ACL):
Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias Iosif, Nikolaos Malandrakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth Narayanan, and Alexandros Potamianos. 2017. Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 675–682, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in Twitter (Kolovou et al., SemEval 2017)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/S17-2112.pdf