Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Sayeed, Manfred Pinkal

[How to correct problems with metadata yourself]


Abstract
Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.
Anthology ID:
Q17-1003
Volume:
Transactions of the Association for Computational Linguistics, Volume 5
Month:
Year:
2017
Address:
Cambridge, MA
Editors:
Lillian Lee, Mark Johnson, Kristina Toutanova
Venue:
TACL
SIG:
Publisher:
MIT Press
Note:
Pages:
31–44
Language:
URL:
https://aclanthology.org/Q17-1003
DOI:
10.1162/tacl_a_00044
Bibkey:
Cite (ACL):
Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Sayeed, and Manfred Pinkal. 2017. Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction. Transactions of the Association for Computational Linguistics, 5:31–44.
Cite (Informal):
Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction (Modi et al., TACL 2017)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/Q17-1003.pdf
Video:
 https://preview.aclanthology.org/teach-a-man-to-fish/Q17-1003.mp4