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We dedicate the ACL 2011 proceedings to the memory of Fred Jelinek (1932-2010), who received
ACL’s Lifetime Achievement Award in 2009. His award acceptance speech can be found in
Computational Linguistics 35(4), and an obituary by Mark Liberman appeared in Computational
Linguistics 36(4). Several other newspaper and professional society obituaries have described his
extraordinary personal life and career.

Fred’s influence on computational linguistics is almost impossible to overstate. In the 1970s and 1980s,
he and his colleagues at IBM developed the statistical paradigm that dominates our field today, including
a great many specific techniques for modeling, parameter estimation, and search that continue to enjoy
wide use. Even more fundamentally, as Mark Liberman recounts in his obituary, Fred led the field away
from a mode where lone inventors defended their designs by appealing to aesthetics and anecdotes,
to a more communal and transparent process of evaluating methods objectively through controlled
comparisons on training and test sets.

Under Fred’s visionary leadership, the IBM group revolutionized speech recognition by adopting a
statistical, data-driven perspective that was deeply at odds with the rationalist ethos of the time. The
group began with Fred’s information-theoretic reconceptualization of the task as recovering a source
signal (text) after it had passed through a noisy channel. They then worked out the many components
needed for a full speech recognizer, along with the training algorithms for each component and global
decoding algorithms. Steve Young, in an obituary in the IEEE SLTC Newsletter, describes Fred as not
a pioneer but the pioneer of speech recognition.

In the 1980s, the IBM speech group’s work on language modeling drew them toward deeper analysis of
text. Fred and his colleagues introduced NLP methods such as word clustering, HMM part-of-speech
tagging, history-based parsing, and prefix probability computation in PCFGs. They famously turned
their noisy-channel lens on machine translation, founding the field of statistical MT with a series of
ingenious and highly influential models.
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After Fred moved to Johns Hopkins University in 1993, he worked tirelessly to improve language
modeling by incorporating syntactic and other long-range dependencies as well as semantic classes. He
also presided for 16 years over the Johns Hopkins Summer Workshops, whose 51 teams from 1995-
2010 attacked a wide range of topics in human language technology, many making groundbreaking
advances in the field.

There is a popular conception that Fred was somehow hostile to linguistics. Certainly he liked to
entertain others by repeating his 1988 quip that “Any time a linguist leaves the group, the recognition
rate goes up.” Yet he had tried to leave information theory for linguistics as early as 1962, influenced
by Noam Chomsky’s lectures and his wife Milena’s earlier studies with Roman Jakobson. He always
strove for clean formal models just as linguists do. He was deeply welcoming toward any attempt to
improve models through better linguistics, as long as they had a large number of parameters. Indeed, it
was one of the major frustrations of his career that it was so difficult to beat n-gram language models,
when humans were evidently using additional linguistic and world knowledge to obtain much better
predictive performance. As he said in an award acceptance speech in 2004, “My colleagues and I
always hoped that linguistics will eventually allow us to strike gold.”

Fred was skeptical only about the relevance of armchair linguistics to engineering, believing that there
was far more variation in the data than could be described compactly by humans. For this reason,
while he was quite interested in recovering or exploiting latent linguistic structure, he trusted human-
annotated linguistic data to be a better description of that structure than human-conceived linguistic
rules. Statistical models could be aided even by imperfect or incomplete annotations, such as unaligned
orthographic transcriptions, bilingual corpora, or syntactic analyses furnished by ordinary speakers.
Fred pushed successfully for the development of such resources, notably the IBM/Lancaster Treebank
and its successor, the Penn Treebank.

Fred influenced many of us personally. He was warm-hearted, witty, cultured, thoughtful about the
scientific process, a generous mentor, and always frank, honest, and unpretentious. The changes that
he brought to our field are largely responsible for its recent empirical progress and commercial success.
They have also helped make it attractive to many bright, technically sophisticated young researchers.
This proceedings volume, which is dedicated to his memory, testifies to the overwhelming success of
his leadership and vision.

By Jason Eisner, on behalf of ACL 2011 Organizing Committee
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Preface: General Chair

Welcome to the 49th Annual Meeting of the Association for Computational Linguistics in Portland,
Oregon. ACL is perhaps the longest-running conference series in computer science. Amazingly, it is
still growing. We expect this year’s ACL to attract an even larger number of participants than usual,
since 2011 happens to be an off-year for COLING, EACL and NAACL.

The yearly success of ACL results from the dedication and hard work of many people. This year is no
exception. I would like to thank all of them for volunteering their time and energy in service to our
community.

I thank the Program Co-Chairs Rada Mihalcea and Yuji Matsumoto for putting together a wonderful
main conference program, including 164 long papers, 128 short papers and much anticipated keynote
speeches by David Ferrucci and Lera Boroditsky. Tutorial Co-Chairs, Patrick Pantel and Andy Way
solicited proposals and selected six fascinating tutorials in a wide range of topics. The Workshop Co-
Chairs, Hal Daume III and John Carroll, organized a joint selection process with EMNLP 2011. The
program consists of 3 two-day workshops and 13 one-day workshops, a new record number for ACL.
Sadao Kurohashi, Chair of System Demonstrations, assembled a committee and oversaw the review of
46 demo submissions.

The Student Session is organized by Co-Chairs, Sasa Petrovic, Emily Pitler, Ethan Selfridge and Faculty
Advisors: Miles Osborne, Thamar Solorio. They introduced a new, poster-only format to be held in
conjunction with the main ACL poster session. They also obtained NSF funding to provide travel
support for all student session authors.

Special thank goes to Publication Chair, Guodong Zhou and his assistant Hong Yu. They produced the
entire proceedings of the conference.

We are indebted to Brain Roark and the local arrangement committee for undertaking a phenomenal
amount detailed work over the course of two years to host this conference, such as allocating
appropriate space to meet all the needs of the scientific program, compiling and printing of the
conference handbook, arranging a live tango band for the banquet and dance, to name just a few. The
local arrangement committee consists of: Nate Bodenstab (webmeister), Peter Heeman (exhibitions),
Christian Monson (student volunteers), Zak Shafran and Meg Mitchell (social), Richard Sproat (local
sponsorship), Mahsa Yarmohammadi and Masoud Rouhizadeh (student housing coordinators) and
Aaron Dunlop (local publications coordinator).

I want to express my gratitude to Ido Dagan, Chair of the ACL Conference Coordination Committee,
Dragomir Radev, ACL Secretary, and Priscilla Rasmussen, ACL Business Manager, for their advice
and guidance throughout the process.

ACL 2011 has two Platinum Sponsors (Google and Baidu), one Gold Sponsor (Microsoft), two
Silver sponsors (Pacific Northwest National Lab and Yahoo!), and seven Bronze Sponsors and six
Supporters. We are grateful for the financial support from these organizations. I would like to thank
and applaud the tremendous effort by the ACL sponsorship committee: Srinivas Bangalore (AT&T),
Massimiliano Ciaramita (Google), Kevin Duh (NTT), Michael Gamon (Microsoft), Stephen Pulman
(Oxford), Priscilla Rasmussen (ACL), and Haifeng Wang (Baidu).



Finally, I would like to thank all the area chairs, workshop organizers, tutorial presenters, authors,
reviewers and conference attendees for their participation and contribution. I hope everyone will have
a great time sharing ideas and inspiring one another at this conference.

ACL 2011 General Chair
Dekang Lin, Google, Inc.
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Preface: Program Committee Co-Chairs

Welcome to the program of the 2011 Conference of the Association for Computational Linguistics!
ACL continues to grow, and this year the number of paper submissions broke once again the record set
by previous years. We received a total of 1,146 papers, out of which 634 were submitted as long papers
and 512 were submitted as short papers. 25.7

To achieve the goal of a broad technical program, we followed the initiative from last year and solicited
papers under four main different categories: theoretical computational linguistics, empirical/data-
driven approaches, resources/evaluation, and applications/tools. We also continued to accept other
types of papers (e.g., surveys or challenge papers), although unlike the previous year, no separate
category was created for these papers. The papers falling under one of the four categories were reviewed
using specialized reviewed forms; we also had a general review form that was used to review the papers
that did not fall under one of the four main categories.

A new initiative this year was to also accept papers accompanied by supplemental materials (software
and/or datasets). In addition to the regular review of the research quality of the paper, the accompanied
resources were also reviewed for their quality, and the acceptance or rejection decisions were made
based on the quality of both the paper and the supplemental materials. Among all the submissions,
a total of 84 papers were accompanied by a software package and 117 papers were accompanied
by a dataset. Among all the accepted papers, 30 papers are accompanied by software and 35
papers are accompanied by a dataset. These materials will be hosted on the ACL web site under
http://www.aclweb.org/supplementals.

We are delighted to have two distinguished invited speakers: Dr. David Ferrucci (Principal Investigator,
IBM Research), who will talk about his team’s work on building Watson — a deep question answering
system that achieved champion-level performance at Jeopardy!, and Lera Boroditsky (Assistant
Professor, Stanford University), who will give a presentation on her research on how the languages
we speak shape the way we think. In addition, the recipient of the ACL Lifetime Achievement Award
will present a plenary lecture during the final day of the conference.

As in previous years, there will be three awards, one for the best long paper, one for the best long
paper by a student, and one for the best short paper. The candidates for the best paper awards were
nominated by the area chairs, who took into consideration the feedback they received from the reviewers
on whether a paper might merit a best paper prize. From among the nominations we received, we
selected the top five candidates for the long and short papers, and the final awards were then selected by
the area chairs together with the program co-chairs. The recipients of the best paper awards will present
their papers in a plenary session during the second day of the conference.

There are many individuals to thank for their contributions to the conference program. First and
foremost, we would like to thank the authors who submitted their work to ACL. The growing number of
submissions reflects how broad and active our field is. We are deeply indebted to the area chairs and the
reviewers for their hard work. They enabled us to select an exciting program and to provide valuable
feedback to the authors. We thank the general conference chair Dekang Lin and the local arrangements
committee headed by Brian Roark for their help and advice, as well as last year’s program committee
co-chairs, Stephen Clark and Sandra Carberry, for sharing their experiences. Additional thanks go to
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the publications chair, Guodong Zhang, who put this volume together, and Yu Hong, who helped him
with this task.

We are most grateful to Priscilla Rasmussen, who helped us with various logistic and organizational
aspects of the conference. Rich Gerber and the START team responded to our questions quickly, and
helped us manage the large number of submissions smoothly.

Enjoy the conference!

ACL 2011 Program Co-Chairs
Yuji Matsumoto, Nara Institute of Science and Technology
Rada Mihalcea, University of North Texas
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Invited Talk 1

Building Watson: An Overview of the DeepQA Project
David Ferrucci, Principal Investigator, IBM Research
Monday, June 20, 2011 9:00-10:00

Computer systems that can directly and accurately answer peoples' questions over a broad domain
of human knowledge have been envisioned by scientists and writers since the advent of
computers themselves. Open domain question answering holds tremendous promise for
facilitating informed decision making over vast volumes of natural language content.
Applications in business intelligence, healthcare, customer support, enterprise knowledge
management, social computing, science and government could all benefit from computer systems
capable of deeper language understanding. The DeepQA project is aimed at exploring how
advancing and integrating Natural Language Processing (NLP), Information Retrieval (IR),
Machine Learning (ML), Knowledge Representation and Reasoning (KR&R) and massively
parallel computation can greatly advance the science and application of automatic Question
Answering. An exciting proof-point in this challenge was developing a computer system that
could successfully compete against top human players at the Jeopardy! quiz show
(Www.jeopardy.com).

Attaining champion-level performance at Jeopardy! requires a computer to rapidly and accurately
answer rich open-domain questions, and to predict its own performance on any given question.
The system must deliver high degrees of precision and confidence over a very broad range of
knowledge and natural language content with a 3-second response time. To do this, the DeepQA
team advanced a broad array of NLP techniques to find, generate, evidence and analyze many
competing hypotheses over large volumes of natural language content to build Watson
(www.ibmwatson.com). An important contributor to Watson's success is its ability to
automatically learn and combine accurate confidences across a wide array of algorithms and over
different dimensions of evidence. Watson produced accurate confidences to know when to "buzz
in" against its competitors and how much to bet. High precision and accurate confidence
computations are critical for real business settings where helping users focus on the right content
sooner and with greater confidence can make all the difference. The need for speed and high
precision demands a massively parallel computing platform capable of generating, evaluating and
combing 1000's of hypotheses and their associated evidence. In this talk, | will introduce the
audience to the Jeopardy! Challenge, explain how Watson was built on DeepQA to ultimately
defeat the two most celebrated human Jeopardy Champions of all time and | will discuss
applications of the Watson technology beyond in areas such as healthcare.

Dr. David Ferrucci is the lead researcher and Principal Investigator (P1) for the Watson/Jeopardy!
project. He has been a Research Staff Member at IBM's T.J. Watson's Research Center since
1995 where he heads up the Semantic Analysis and Integration department. Dr. Ferrucci focuses
on technologies for automatically discovering valuable knowledge in natural language content
and using it to enable better decision making.
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How do the languages we speak shape the ways we think?
Lera Boroditsky, Assistant Professor, Stanford University
Wednesday, June 22, 2011 9:00-10:00

Do people who speak different languages think differently? Does learning new languages change
the way you think? Do polyglots think differently when speaking different languages? Are some
thoughts unthinkable without language? | will describe data from experiments conducted around
the world that reveal the powerful and often surprising ways that the languages we speak shape
the ways we think.

Lera Boroditsky is an assistant professor of psychology at Stanford University and Editor in Chief
of Frontiers in Cultural Psychology. Boroditsky's research centers on how knowledge emerges
out of the interactions of mind, world, and language, and the ways that languages and cultures
shape human thinking. To this end, Boroditsky's laboratory has collected data around the world,
from Indonesia to Chile to Turkey to Aboriginal Australia. Her research has been widely featured
in the media and has won multiple awards, including the CAREER award from the National
Science Foundation, the Searle Scholars award, and the McDonnell Scholars award.
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Lexicographic Semirings for Exact Automata Encoding of Sequence Models

Brian Roark, Richard Sproat, and Izhak Shafran
{roark, rws, zak}@cslu.ogi.edu

Abstract

In this paper we introduce a novel use of the
lexicographic semiring and motivate its use
for speech and language processing tasks. We
prove that the semiring allows for exact en-
coding of backoff models with epsilon tran-
sitions. This allows for off-line optimization
of exact models represented as large weighted
finite-state transducers in contrast to implicit
(on-line) failure transition representations. We
present preliminary empirical results demon-
strating that, even in simple intersection sce-
narios amenable to the use of failure transi-
tions, the use of the more powerful lexico-
graphic semiring is competitive in terms of
time of intersection.

1 Introduction and Motivation

Representing smoothed n-gram language models as
weighted finite-state transducers (WFST) is most
naturally done with a failure transition, which re-
flects the semantics of the “otherwise” formulation
of smoothing (Allauzen et al., 2003). For example,
the typical backoff formulation of the probability of
a word w given a history h is as follows

Pw | h
Plw|h) = {aflp(’wfh,)

where P is an empirical estimate of the probabil-
ity that reserves small finite probability for unseen
n-grams; «y, is a backoff weight that ensures nor-
malization; and h’ is a backoff history typically
achieved by excising the earliest word in the his-
tory h. The principle benefit of encoding the WFST
in this way is that it only requires explicitly storing
n-gram transitions for observed n-grams, i.e., count
greater than zero, as opposed to all possible n-grams
of the given order which would be infeasible in for
example large vocabulary speech recognition. This
is a massive space savings, and such an approach is
also used for non-probabilistic stochastic language

1

if c(hw) > 0
otherwise

€]

models, such as those trained with the perceptron
algorithm (Roark et al., 2007), as the means to ac-
cess all and exactly those features that should fire
for a particular sequence in a deterministic automa-
ton. Similar issues hold for other finite-state se-
quence processing problems, e.g., tagging, bracket-
ing or segmenting.

Failure transitions, however, are an implicit
method for representing a much larger explicit au-
tomaton — in the case of n-gram models, all pos-
sible n-grams for that order. During composition
with the model, the failure transition must be inter-
preted on the fly, keeping track of those symbols
that have already been found leaving the original
state, and only allowing failure transition traversal
for symbols that have not been found (the semantics
of “otherwise”). This compact implicit representa-
tion cannot generally be preserved when composing
with other models, e.g., when combining a language
model with a pronunciation lexicon as in widely-
used FST approaches to speech recognition (Mohri
et al., 2002). Moving from implicit to explicit repre-
sentation when performing such a composition leads
to an explosion in the size of the resulting trans-
ducer, frequently making the approach intractable.
In practice, an off-line approximation to the model
is made, typically by treating the failure transitions
as epsilon transitions (Mohri et al., 2002; Allauzen
et al., 2003), allowing large transducers to be com-
posed and optimized off-line. These complex ap-
proximate transducers are then used during first-pass
decoding, and the resulting pruned search graphs
(e.g., word lattices) can be rescored with exact lan-
guage models encoded with failure transitions.

Similar problems arise when building, say, POS-
taggers as WFST: not every pos-tag sequence will
have been observed during training, hence failure
transitions will achieve great savings in the size of
models. Yet discriminative models may include
complex features that combine both input stream
(word) and output stream (tag) sequences in a single
feature, yielding complicated transducer topologies
for which effective use of failure transitions may not
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be possible. An exact encoding using other mecha-
nisms is required in such cases to allow for off-line
representation and optimization.

In this paper, we introduce a novel use of a semir-
ing — the lexicographic semiring (Golan, 1999) —
which permits an exact encoding of these sorts of
models with the same compact topology as with fail-
ure transitions, but using epsilon transitions. Unlike
the standard epsilon approximation, this semiring al-
lows for an exact representation, while also allow-
ing (unlike failure transition approaches) for off-line
composition with other transducers, with all the op-
timizations that such representations provide.

In the next section, we introduce the semiring, fol-
lowed by a proof that its use yields exact represen-
tations. We then conclude with a brief evaluation of
the cost of intersection relative to failure transitions
in comparable situations.

2 The Lexicographic Semiring

Weighted automata are automata in which the tran-
sitions carry weight elements of a semiring (Kuich
and Salomaa, 1986). A semiring is a ring that may
lack negation, with two associative operations & and
® and their respective identity elements 0 and 1. A
common semiring in speech and language process-
ing, and one that we will be using in this paper, is
the tropical semiring (R U {oo}, min, +, 00, 0), i.e.,
min is the & of the semiring (with identity co) and
+ is the ® of the semiring (with identity 0). This is
appropriate for performing Viterbi search using neg-
ative log probabilities — we add negative logs along
a path and take the min between paths.

A (W, Wy ... W,)-lexicographic weight is a tu-
ple of weights where each of the weight classes
Wi, Ws...W,, must observe the path property
(Mohri, 2002). The path property of a semiring K
is defined in terms of the natural order on K such
that: @ <g biff a @ b = a. The tropical semiring
mentioned above is a common example of a semir-
ing that observes the path property, since:

w; Dwy =
w) @ wy =

min{wi, wy}

w1 + w2

The discussion in this paper will be restricted to
lexicographic weights consisting of a pair of tropi-
cal weights — henceforth the (T, T')-lexicographic
semiring. For this semiring the operations & and ®
are defined as follows (Golan, 1999, pp. 223-224):

2

if wy < ws or

<’U.)1, w2> (’(1)1 = w3 &
(wy,ws) ® (ws,wy) = wa < Wy)
(ws,ws) otherwise

(wi,ws) @ (w3, wg) = (w1 + wsz,ws + wy)

The term “lexicographic” is an apt term for this
semiring since the comparison for & is like the lexi-
cographic comparison of strings, comparing the first
elements, then the second, and so forth.

3 Language model encoding

3.1 Standard encoding

For language model encoding, we will differentiate
between two classes of transitions: backoff arcs (la-
beled with a ¢ for failure, or with € using our new
semiring); and n-gram arcs (everything else, labeled
with the word whose probability is assigned). Each
state in the automaton represents an n-gram history
string h and each n-gram arc is weighted with the
(negative log) conditional probability of the word w
labeling the arc given the history h. For a given his-
tory h and n-gram arc labeled with a word w, the
destination of the arc is the state associated with the
longest suffix of the string hw that is a history in the
model. This will depend on the Markov order of the
n-gram model. For example, consider the trigram
model schematic shown in Figure 1, in which only
history sequences of length 2 are kept in the model.
Thus, from history h; = w;_ow;_1, the word w;
transitions to h;1 = w;_1w;, which is the longest
suffix of h;w; in the model.

As detailed in the “otherwise” semantics of equa-
tion 1, backoff arcs transition from state h to a state
', typically the suffix of A of length |h| — 1, with
weight (—log ). We call the destination state a
backoff state. This recursive backoff topology ter-
minates at the unigram state, i.e., h = €, no history.

Backoff states of order k£ may be traversed either
via ¢-arcs from the higher order n-gram of order %k +
1 or via an n-gram arc from a lower order n-gram of
order k£ — 1. This means that no n-gram arc can enter
the zeroeth order state (final backoff), and full-order
states — history strings of length n — 1 for a model
of order n — may have n-gram arcs entering from
other full-order states as well as from backoff states
of history size n — 2.

3.2 Encoding with lexicographic semiring

For an LM machine M on the tropical semiring with
failure transitions, which is deterministic and has the



Figure 1: Deterministic finite-state representation of n-gram
models with negative log probabilities (tropical semiring). The
symbol ¢ labels backoff transitions. Modified from Roark and
Sproat (2007), Figure 6.1.

path property, we can simulate ¢-arcs in a standard
LM topology by a topologically equivalent machine
M’ on the lexicographic (T',T) semiring, where ¢
has been replaced with epsilon, as follows. For every
n-gram arc with label w and weight ¢, source state
s; and destination state s;, construct an n-gram arc
with label w, weight (0, ¢), source state s;, and des-
tination state s}. The exit cost of each state is con-
structed as follows. If the state is non-final, (0o, 00).
Otherwise if it final with exit cost ¢ it will be (0, c).
Let n be the length of the longest history string in
the model. For every ¢-arc with (backoff) weight
c, source state s;, and destination state s; repre-
senting a history of length k, construct an e-arc
with source state s, destination state s/, and weight
(®@2(=k) ) where ® > 0 and ®®("F) takes ® to
the (n — k:)th power with the ® operation. In the
tropical semiring, ® is 4, so ®@(K) = (n — k).
For example, in a trigram model, if we are backing
off from a bigram state h (history length = 1) to a
unigram state, n — k = 2 — 0 = 2, so we set the
backoff weight to (2®, — log ayp,) for some ® > 0.
In order to combine the model with another au-
tomaton or transducer, we would need to also con-
vert those models to the (7', T) semiring. For these
automata, we simply use a default transformation
such that every transition with weight c is assigned
weight (0, c). For example, given a word lattice
L, we convert the lattice to L’ in the lexicographic
semiring using this default transformation, and then
perform the intersection L' N M’. By removing ep-
silon transitions and determinizing the result, the
low cost path for any given string will be retained
in the result, which will correspond to the path
achieved with ¢-arcs. Finally we project the second
dimension of the (T', T') weights to produce a lattice
in the tropical semiring, which is equivalent to the
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resultof LN M, i.e.,
Co(det(eps-rem(L' N M'))) =LNM

where Co denotes projecting the second-dimension
of the (T',T) weights, det(-) denotes determiniza-
tion, and eps-rem(-) denotes e-removal.

4 Proof

We wish to prove that for any machine N,
ShortestPath(M’ N N') passes through the equiv-
alent states in M’ to those passed through in M for
ShortestPath(M N N). Therefore determinization
of the resulting intersection after e-removal yields
the same topology as intersection with the equiva-
lent ¢ machine. Intuitively, since the first dimension
of the (T',T') weights is O for n-gram arcs and > 0
for backoff arcs, the shortest path will traverse the
fewest possible backoff arcs; further, since higher-
order backoff arcs cost less in the first dimension of
the (T, T') weights in M’, the shortest path will in-
clude n-gram arcs at their earliest possible point.
We prove this by induction on the state-sequence
of the path p/p’ up to a given state s;/s in the respec-
tive machines M /M.
Base case: If p/p’ is of length 0, and therefore the
states s;/s/ are the initial states of the respective ma-
chines, the proposition clearly holds.
Inductive step: Now suppose that p/p’ visits
50...5i/5G...s; and we have therefore reached s;/s
in the respective machines. Suppose the cumulated
weights of p/p’ are W and (¥, W), respectively. We
wish to show that whichever s; is next visited on p
(i.e., the path becomes sy...s;5;) the equivalent state
s’ is visited on p’ (i.e., the path becomes 36...323;).
Let w be the next symbol to be matched leaving
states s; and s;-. There are four cases to consider:
(1) there is an n-gram arc leaving states s; and s; la-
beled with w, but no backoff arc leaving the state;
(2) there is no n-gram arc labeled with w leaving the
states, but there is a backoff arc; (3) there is no n-
gram arc labeled with w and no backoff arc leaving
the states; and (4) there is both an n-gram arc labeled
with w and a backoff arc leaving the states. In cases
(1) and (2), there is only one possible transition to
take in either M or M’, and based on the algorithm
for construction of M’ given in Section 3.2, these
transitions will point to s; and s;- respectively. Case
(3) leads to failure of intersection with either ma-
chine. This leaves case (4) to consider. In M, since
there is a transition leaving state s; labeled with w,



the backoff arc, which is a failure transition, can-
not be traversed, hence the destination of the n-gram
arc s; will be the next state in p. However, in M "
both the n-gram transition labeled with w and the
backoff transition, now labeled with ¢, can be tra-
versed. What we will now prove is that the shortest
path through M’ cannot include taking the backoff
arc in this case.

In order to emit w by taking the backoff arc out
of state s/, one or more backoff (¢) transitions must
be taken, followed by an n-gram arc labeled with
w. Let k be the order of the history represented
by state s}, hence the cost of the first backoff arc
is {((n — k)®, —log(a)) in our semiring. If we
traverse m backoff arcs prior to emitting the w,
the first dimension of our accumulated cost will be
m(n — k+ "1)®, based on our algorithm for con-
struction of M’ given in Section 3.2. Let s; be the
destination state after traversing m backoff arcs fol-
lowed by an n-gram arc labeled with w. Note that,
by definition, m < k, and £k — m + 1 is the or-
der of state s;. Based on the construction algo-
rithm, the state s; is also reachable by first emit-
ting w from state s to reach state s’ followed by
some number of backoff transitions. The order of
state s is either k (if & is the highest order in the
model) or k£ + 1 (by extending the history of state
s; by one word). If it is of order k, then it will re-
quire m — 1 backoff arcs to reach state s}, one fewer
than the path to state s) that begins with a back-
off arc, for a total cost of (m — 1)(n — k + 2-1)®
which is less than m(n — k + Z51)®. If state
s;. is of order k + 1, there will be m backoff
arcs to reach state s;, but with a total cost of
m(n—(k+1)+ 20 = m(n—k+ 23)®
which is also less than m(n — k + “-1)®. Hence
the state s; can always be reached from s, with a
lower cost through state s} than by first taking the
backoff arc from s;. Therefore the shortest path on
M’ must follow s...s;s’. O

This completes the proof.

S Experimental Comparison of ¢, ¢ and
(T, T) encoded language models

For our experiments we used lattices derived from a
very large vocabulary continuous speech recognition
system, which was built for the 2007 GALE Ara-
bic speech recognition task, and used in the work
reported in Lehr and Shafran (2011). The lexico-
graphic semiring was evaluated on the development
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set (2.6 hours of broadcast news and conversations;
18K words). The 888 word lattices for the develop-
ment set were generated using a competitive base-
line system with acoustic models trained on about
1000 hrs of Arabic broadcast data and a 4-gram lan-
guage model. The language model consisting of
122M n-grams was estimated by interpolation of 14
components. The vocabulary is relatively large at
737K and the associated dictionary has only single
pronunciations.

The language model was converted to the automa-
ton topology described earlier, and represented in
three ways: first as an approximation of a failure
machine using epsilons instead of failure arcs; sec-
ond as a correct failure machine; and third using the
lexicographic construction derived in this paper.

The three versions of the LM were evaluated by
intersecting them with the 888 lattices of the de-
velopment set. The overall error rate for the sys-
tems was 24.8%—comparable to the state-of-the-
art on this task!. For the shortest paths, the failure
and lexicographic machines always produced iden-
tical lattices (as determined by FST equivalence);
in contrast, 81% of the shortest paths from the ep-
silon approximation are different, at least in terms
of weights, from the shortest paths using the failure
LM. For full lattices, 42 (4.7%) of the lexicographic
outputs differ from the failure LM outputs, due to
small floating point rounding issues; 863 (97%) of
the epsilon approximation outputs differ.

In terms of size, the failure LM, with 5.7 mil-
lion arcs requires 97 Mb. The equivalent (T',T')-
lexicographic LM requires 120 Mb, due to the dou-
bling of the size of the weights.” To measure speed,
we performed the intersections 1000 times for each
of our 888 lattices on a 2993 MHz Intel® Xeon®
CPU, and took the mean times for each of our meth-
ods. The 888 lattices were processed with a mean
of 1.62 seconds in total (1.8 msec per lattice) us-
ing the failure LM; using the (7', T')-lexicographic
LM required 1.8 seconds (2.0 msec per lattice), and
is thus about 11% slower. Epsilon approximation,
where the failure arcs are approximated with epsilon
arcs took 1.17 seconds (1.3 msec per lattice). The

!The error rate is a couple of points higher than in Lehr and
Shafran (2011) since we discarded non-lexical words, which are
absent in maximum likelihood estimated language model and
are typically augmented to the unigram backoff state with an
arbitrary cost, fine-tuned to optimize performance for a given
task.

?If size became an issue, the first dimension of the (T, T')-
weight can be represented by a single byte.



slightly slower speeds for the exact method using the
failure LM, and (7', T) can be related to the over-
head of computing the failure function at runtime,
and determinization, respectively.

6 Conclusion

In this paper we have introduced a novel applica-
tion of the lexicographic semiring, proved that it
can be used to provide an exact encoding of lan-
guage model topologies with failure arcs, and pro-
vided experimental results that demonstrate its ef-
ficiency. Since the (T, T')-lexicographic semiring
is both left- and right-distributive, other optimiza-
tions such as minimization are possible. The par-
ticular (7', T')-lexicographic semiring we have used
here is but one of many possible lexicographic en-
codings. We are currently exploring the use of a
lexicographic semiring that involves different semir-
ings in the various dimensions, for the integration of
part-of-speech taggers into language models.

An implementation of the lexicographic semir-
ing by the second author is already available as
part of the OpenFst package (Allauzen et al., 2007).
The methods described here are part of the NGram
language-model-training toolkit, soon to be released
at opengrm.org.
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Abstract

Active Learning (AL) is typically initialized
with a small seed of examples selected ran-
domly. However, when the distribution of
classes in the data is skewed, some classes
may be missed, resulting in a slow learning
progress. Our contribution is twofold: (1) we
show that an unsupervised language modeling
based technique is effective in selecting rare
class examples, and (2) we use this technique
for seeding AL and demonstrate that it leads
to a higher learning rate. The evaluation is
conducted in the context of word sense disam-
biguation.

1 Introduction

Active learning (AL) (Settles, 2009) has become a
popular research field due to its potential benefits: it
can lead to drastic reductions in the amount of anno-
tation that is necessary for training a highly accurate
statistical classifier. Unlike in a random sampling
approach, where unlabeled data is selected for anno-
tation randomly, AL delegates the selection of un-
labeled data to the classifier. In a typical AL setup,
a classifier is trained on a small sample of the data
(usually selected randomly), known as the seed ex-
amples. The classifier is subsequently applied to a
pool of unlabeled data with the purpose of selecting
additional examples that the classifier views as infor-
mative. The selected data is annotated and the cycle
is repeated, allowing the learner to quickly refine the

decision boundary between the classes.
Unfortunately, AL is susceptible to a shortcom-
ing known as the missed cluster effect (Schiitze et
al., 2006) and its special case called the missed class
6

effect (Tomanek et al., 2009). The missed cluster ef-
fect is a consequence of the fact that seed examples
influence the direction the learner takes in its ex-
ploration of the instance space. Whenever the seed
does not contain the examples of a certain cluster
that is representative of a group of examples in the
data, the learner may become overconfident about
the class membership of this cluster (particularly if it
lies far from the decision boundary). As a result, the
learner spends a lot of time exploring one region of
the instance space at the expense of missing another.
This problem can become especially severe, when
the class distribution in the data is skewed: a ran-
domly selected seed may not adequately represent
all the classes or even miss certain classes altogether.
Consider a binary classification task where rare class
examples constitute 5% of the data (a frequent sce-
nario in e.g. word sense disambiguation). If 10
examples are chosen randomly for seeding AL, the
probability that none of the rare class examples will
make it to the seed is 60% '. Thus, there is a high
probability that AL would stall, selecting only the
examples of the predominant class over the course
of many iterations. At the same time, if we had a
way to ensure that examples of the rare class were
present in the seed, AL would be able to select the
examples of both classes, efficiently clarifying the
decision boundary and ultimately producing an ac-
curate classifier.

Tomanek et al. (2009) simulated these scenarios
using manually constructed seed sets. They demon-
strated that seeding AL with a data set that is artifi-
cially enriched with rare class examples indeed leads
to a higher learning rate comparing to randomly

!Calculated using Binomial distribution
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sampled and predominant class enriched seeds. In
this paper, we propose a simple automatic approach
for selecting the seeds that are rich in the examples
of the rare class. We then demonstrate that this ap-
proach to seed selection accelerates AL. Finally, we
analyze the mechanism of this acceleration.

2 Approach

Language Model (LM) Sampling is a simple unsu-
pervised technique for selecting unlabeled data that
is enriched with rare class examples. LM sampling
involves training a LM on a corpus of unlabeled can-
didate examples and selecting the examples with low
LM probability. Dligach and Palmer (2009) used
this technique in the context of word sense disam-
biguation and showed that rare sense examples tend
to concentrate among the examples with low prob-
ability. Unfortunately these authors provided a lim-
ited evaluation of this technique: they looked at its
effectiveness only at a single selection size. We pro-
vide a more convincing evaluation in which the ef-
fectiveness of this approach is examined for all sizes
of the selected data.

Seed Selection for AL is typically done ran-
domly. However, for datasets with a skewed dis-
tribution of classes, rare class examples may end
up being underrepresented. We propose to use LM
sampling for seed selection, which captures more
examples of rare classes than random selection, thus
leading to a faster learning progress.

3 Evaluation

3.1 Data

For our evaluation, we needed a dataset that is
characterized by a skewed class distribution. This
phenomenon is pervasive in word sense data. A
large word sense annotated corpus has recently
been released by the OntoNotes (Hovy et al., 2006;
Weischedel et al., 2009) project. For clarity of eval-
uation, we identify a set of verbs that satisfy three
criteria: (1) the number of senses is two, (2) the
number of annotated examples is at least 100, (3) the
proportion of the rare sense is at most 20%. The fol-
lowing 25 verbs satisfy these criteria: account, add,
admit, allow, announce, approve, compare, demand,
exist, expand, expect, explain, focus, include, invest,
issue, point, promote, protect, receive, remain, re-
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place, strengthen, wait, wonder. The average num-
ber of examples for these verbs is 232. In supervised
word sense disambiguation, a single model per word
is typically trained and that is the approach we take.
Thus, we conduct our evaluation using 25 different
data sets. We report the averages across these 25
data sets. In our evaluation, we use a state-of-the-
art word sense disambiguation system (Dligach and
Palmer, 2008), that utilizes rich linguistic features to
capture the contexts of ambiguous words.

3.2 Rare Sense Retrieval

The success of our approach to seeding AL hinges
on the ability of LM sampling to discover rare class
examples better than random sampling. In this ex-
periment, we demonstrate that LM sampling outper-
forms random sampling for every selection size. For
each verb we conduct an experiment in which we
select the instances of this verb using both methods.
We measure the recall of the rare sense, which we
calculate as the ratio of the number of selected rare
sense examples to the total number of rare sense ex-
amples for this verb.

We train a LM (Stolcke, 2002) on the corpora
from which OntoNotes data originates: the Wall
Street Journal, English Broadcast News, English
Conversation, and the Brown corpus. For each verb,
we compute the LM probability for each instance of
this verb and sort the instances by probability. In
the course of the experiment, we select one example
with the smallest probability and move it to the set
of selected examples. We then measure the recall of
the rare sense for the selected examples. We con-
tinue in this fashion until all the examples have been
selected. We use random sampling as a baseline,
which is obtained by continuously selecting a single
example randomly. We continue until all the exam-
ples have been selected. At the end of the exper-
iment, we have produced two recall curves, which
measure the recall of the rare sense retrieval for this
verb at various sizes of selected data. Due to the
lack of space, we do not show the plots that display
these curves for individual verbs. Instead, in Figure
1 we display the curves that are averaged across all
verbs. At every selection size, LM sampling results
in a higher recall of the rare sense. The average dif-
ference across all selection sizes is 11%.
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Figure 1: Average recall of rare sense retrieval for LM
and random sampling by relative size of training set

3.3 Classic and Selectively Seeded AL

In this experiment, we seed AL using LM sampling
and compare how this selectively seeded AL per-
forms in comparison with classic (randomly-seeded)
AL. Our experimental setup is typical for an active
learning study. We split the set of annotated exam-
ples for a verb into 90% and 10% parts. The 90%
part is used as a pool of unlabeled data. The 10%
part is used as a test set. We begin classic AL by
randomly selecting 10% of the examples from the
pool to use as seeds. We train a maximum entropy
model (Le, 2004) using these seeds. We then repeat-
edly apply the model to the remaining examples in
the pool: on each iteration of AL, we draw a sin-
gle most informative example from the pool. The
informativeness is estimated using prediction mar-
gin (Schein and Ungar, 2007), which is computed as
|P(c1|x) — P(ca|z)|, where ¢; and ¢y are the two
most probable classes of example x according to the
model. The selected example is moved to the train-
ing set. On each iteration, we also keep track of how
accurately the current model classifies the held out
test set.

In parallel, we conduct a selectively seeded AL
experiment that is identical to the classic one but
with one crucial difference: instead of selecting the
seed examples randomly, we select them using LM
sampling by identifying 10% of the examples from
the pool with the smallest LM probability. We also
produce a random sampling curve to be used as a
baseline. At the end of this experiment we have ob-
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tained three learning curves: for classic AL, for se-
lectively seeded AL, and for the random sampling
baseline. The final learning curves for each verb are
produced by averaging the learning curves from ten
different trials.

Figure 2 presents the average accuracy of selec-
tively seeded AL (top curve), classic AL (middle
curve) and the random sampling baseline (bottom
curve) at various fractions of the total size of the
training set. The size of zero corresponds to a train-
ing set consisting only of the seed examples. The
size of one corresponds to a training set consisting
of all the examples in the pool labeled. The accuracy
at a given size was averaged across all 25 verbs.

It is clear that LM-seeded AL accelerates learn-
ing: it reaches the same performance as classic AL
with less training data. LM-seeded AL also reaches
a higher classification accuracy (if stopped at its
peak). We will analyze this somewhat surprising be-
havior in the next section. The difference between
the classic and LM-seeded curves is statistically sig-
nificant (p = 0.0174) 2.
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Figure 2: Randomly and LM-seeded AL. Random sam-
pling baseline is also shown.

3.4 Why LM Seeding Produces Better Results

For random sampling, the system achieves its best
accuracy, 94.4%, when the entire pool of unlabeled
examples is labeled. The goal of a typical AL study
is to demonstrate that the same accuracy can be

>We compute the average area under the curve for each type
of AL and use Wilcoxon signed rank test to test whether the
difference between the averages is significant.



achieved with less labeled data. For example, in our
case, classic AL reaches the best random sampling
accuracy with only about 5% of the data. However,
it is interesting to notice that LM-seeded AL actually
reaches a higher accuracy, 95%, during early stages
of learning (at 15% of the total training set size). We
believe this phenomenon takes place due to overfit-
ting the predominant class: as the model receives
new data (and therefore more and more examples of
the predominant class), it begins to mislabel more
and more examples of the rare class. A similar idea
has been expressed in literature (Weiss, 1995; Kubat
and Matwin, 1997; Japkowicz, 2001; Weiss, 2004;
Chen et al., 2006), however it has never been veri-
fied in the context of AL.

To verify our hypothesis, we conduct an experi-
ment. The experimental setup is the same as in sec-
tion 3.3. However, instead of measuring the accu-
racy on the test set, we resort to different metrics
that reflect how accurately the classifier labels the in-
stances of the rare class in the held out test set. These
metrics are the recall and precision for the rare class.
Recall is the ratio of the correctly labeled examples
of the rare class and the total number of instances of
the rare class. Precision is the ratio of the correctly
labeled examples of the rare class and the number of
instances labeled as that class. Results are in Figures
3 and 4.
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Figure 3: Rare sense classification recall

Observe that for LM-seeded AL, the recall peaks
at first and begins to decline later. Thus the clas-
sifier makes progressively more errors on the rare
class as more labeled examples are being received.
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Figure 4: Rare sense classification precision

This is consistent with our hypothesis that the clas-
sifier overfits the predominant class. When all the
data is labeled, the recall decreases from about 13%
to only 7%, an almost 50% drop. The reason that
the system achieved a higher level of recall at first is
due to the fact that AL was seeded with LM selected
data, which has a higher content of rare classes (as
we demonstrated in the first experiment). The avail-
ability of the extra examples of the rare class allows
the classifier to label the instances of this class in
the test set more accurately, which in turn boosts the
overall accuracy.

4 Conclusion and Future Work

We introduced a novel approach to seeding AL, in
which the seeds are selected from the examples with
low LM probability. This approach selects more rare
class examples than random sampling, resulting in
more rapid learning and, more importantly, leading
to a classifier that performs better on rare class ex-
amples. As a consequence of this, the overall classi-
fication accuracy is higher than that for classic AL.

Our plans for future work include improving our
LM by incorporating syntactic information such as
POS tags. This should result in better performance
on the rare classes, which is currently still low.
We also plan to experiment with other unsupervised
techniques, such as clustering and outlier detection,
that can lead to better retrieval of rare classes. Fi-
nally, we plan to investigate the applicability of our
approach to a multi-class scenario.
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Abstract work, Ratnaparkhi (1999) proposed a maximum en-

_ tropy model for transition-based constituency pars-
We propose a generative model based on  ing. Of these approaches, only ISBNs induce high-
Temporal Restricted Boltzmann Machines for  gimensional latent representations to encode parse

transition based dependency parsing. The it suffer from either very approximate or
parse tree is built incrementally using a shift- .
slow inference procedures.

reduce parse and an RBM is used to model

each decision step. The RBM at the current Ve propose to address the problem _Of inferenc'e
time step induces latent features with the help  in a high-dimensional latent space by using an undi-
of temporal connections to the relevant previ- rected graphical model, Restricted Boltzmann Ma-

ous steps which provide context information.  chines (RBMs), to model the individual parsing
Our parser achieves Iabeleod and unlabe(l)ed at-  decisions. Unlike the Sigmoid Belief Networks
tachment scores of 88.72% and 91.65% re-  gpNq) ysed in ISBNs, RBMs have tractable infer-
spectively, which compare well with similar d for both f d and backward
previous models and the state-of-the-art. encg proce' ures for bo orV\{ar an ) ackward rea-
soning, which allows us to efficiently infer both the
_ probability of the decision given the latent variables
1 Introduction and vice versa. The key structural difference be-

There has been significant interest recently in mé_Wee” the two models is that the directed connec-

chine learning methods that induce generative mod{ons between latent and decision vectors in SBNs

els with high-dimensional hidden representationg?ecome unc_jirected in RBMs. A comple'_[e pa_rsing
including neural networks (Bengio et al., 2003; colmodel consists of a sequence of RBMs interlinked

lobert and Weston, 2008), Bayesian networks (Tit0\\/ia direct_ed edges, which gives usa form of Tempo-
and Henderson, 2007a), and Deep Belief Networl(fII Restricted Boltzmann Machines (TRBM) (Tay-

(Hinton et al., 2006). In this paper, we investi-l_or et al., 2007), but with_ the increm_entally speci—
gate how these models can be applied to dependeg%zd model structure required by parsing. In this pa-
parsing. We focus on Shift-Reduce transition-bas r, we analyze and contrast _ISBNS with TRBMs
parsing proposed by Nivre et al. (2004). In this clas nd Sh_OW that the latter provide an acc_urate_ and
of algorithms, at any given step, the parser has .eoretl'cally sound mpdel for parsing with high-
choose among a set of possible actions, each rep mensional latent variables.

senting an incremental modification to the partially2 An ISBN Parsing Model

built tree. To assign probabilities to these actions,

previous work has proposademory-based classi- Our TRBM parser uses the same history-
fiers(Nivre et al., 2004), SVMs (Nivre et al., 2006b),based  probability model as the ISBN
and Incremental Sigmoid Belief Networks (ISBN)parser of Titov and Henderson (2007b):
(Titov and Henderson, 2007b). In a related earlieP(tree) = TILP(Vi|v!,...,vi™1), where each
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Wy, accurate than the feed-forward one, there is no ana-
W ]Tﬁ ” WHH‘“[ o e [ HW ) lytical way to maximize likelihood w.r.t. the means
0o Hé)l oo HEDl e o HE>| e o HEDl of the latent variables, which requires an iterative
numerical method and thus makes inference very
Figure 1: An ISBN network. Shaded nodes represer@low, restricting the model to only shorter sentences.
decision variables and ‘H’ represents a vector of latent

variables. W), denotes the weight matrix for directed 3 Temppral Restricted Boltzmann
connection of type between two latent vectors. Machines

In the proposed TRBM model, RBMs provide an an-

vl is a parser decision of the typeeft-Arg \ ) o _
Right-Arc Reduceor Shift These decisions are fur- alytical way to do exact inference within each time
ep. Although information passing between time

ther decomposed into sub-decisions, as for examp?é o _ ) )
P(Left-Ardv?, ..., vi~1) P(LabelLeft-Arc V., ..., vi—1) steps is still approximated, TRBM inference is more

The TRBMs and ISBNs model these probabilities. accurate than the ISBN approximations.
In the ISBN model shown in Figure 1, the de-3.1 Restricted Boltzmann Machines (RBM)
cisions are shown as boxes and the sub-decisions , . . .
. . N RBM is an undirected graphical model with a
as shaded circles. At each decision step, the ISB grap

del also includ tor of latent variabl dset of binary visible variables, a set of binary la-
mode asc? 'f‘c u _es a vector otlatent variables, dee, ¢ variablesh, and a weight matrixV for bipar-
noted by ‘H’, which act as latent features of th

St tions bet dh. The probabil
parse history. As explained in (Titov and Hender—I © connections betweanan © probability

son, 2Q07b), the temporal connectio.ns between IOlc /Zr;eRBM h?i\:}:frg;t;g?hsp%:\rﬁ?ofﬁ rg\éilz)n and
tent variables are F:onstructeq to take into account t is the energy function defined as:
structural locality in the partial dependency struc-
ture. The model parameters are learned by back- E(V,h) = =Xia;v; — X;b;h; — X; juihjw;
propagating likelihood gradients. wherea; andb; are biases for corresponding visi-

Because decision probabilities are conditioned oble and latent variables respectively, ang is the
the history, once a decision is made the correspondymmetric weight between andh;. Given the vis-
ing variable becomes observed, or visible. In aftble variables, the latent variables are conditionally
ISBN, the directed edges to these visible variableisdependent of each other, and vice versa:
and the'large numbers of heavny mter-con'n_ected la- p(h; = 1v) = o(b; + Sivgws;) 1)
tent variables make exact inference of decision prob-
abilities intractable. Titov and Henderson (2007a) p(vi = 1|h) = o(a; + X;h;jwi;) 2
proposed two approximation procedures for inferyherec () = 1/(1 + %) (the logistic sigmoid).
ence. The first was a feed forward approximation RBM based models have been successfully used
where latent variables were allowed to depend only, image and video processing, such as Deep Belief
on their parent variables, and hence did not take intQetworks (DBNSs) for recognition of hand-written
account the current or future observations. Due tgigits (Hinton et al., 2006) and TRBMs for mod-
this limitation, the authors proposed to make latenéling motion capture data (Taylor et al., 2007). De-
variables conditionally dependent also on a set afpite their success, RBMs have seen limited use in
explicit features derived from the parsing historythe NLP community. Previous work includes RBMs
specifically, the base features defined in (Nivre et akgr topic modeling in text documents (Salakhutdinov
2006b). As shown in our experiments, this additiomind Hinton, 2009), an@iemporal Factored RBNbr
results in a blg improvement for the parsing task. |anguage mode”ng (Mmh and Hint0n1 2007)

The second approximate inference procedure,
called the incremental mean field approximation, ex3-2 Proposed TRBM Model Structure
tended the feed-forward approximation by updatingRBMs (Taylor et al., 2007) can be used to model
the current time step’s latent variables after eackequences where the decision at each step requires
sub-decision. Although this approximation is moresome context information from the past. Figure 2
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Figure 2: Proposed TRBM Model. Edges with no arrows b — b + chngcr)H Ml(C)'
gl lj

represent undirected RBM connections. The directed J ]
temporal connections between time steps contribute 4€re, 1 denotes the mean of the corresponding la-
bias to the latent layer inference in the current step.  tent variable. To keep inference tractable, we do not

_ do any backward reasoning across directed connec-
shows our proposed TRBM model with latent (qns 1o ypdates(?). Thus, the inference procedure

latent connections between time steps. Each Stgf atent variables takes into account both the parse

has an RBM with weightSVrpy composed Of pigtqry and the current observation, but no future ob-
smaller weight matrices corresponding to d'ﬁerengervations.

sub-decisions. For instance, for the actleft-Arc The limited set of possible values for the visi-
Whrpy consists of RBM weights between the la-|q |ayer makes it possible to marginalize out latent

tent vector and the sub-decisions: “Left-Arc” and g iaples in linear time to compute the exact likeli-
“Label”. Similarly, for the actionShift the sub- hood. Letvt(k) denote a vector witht = 1 and
decisions are “Shift”, “Part-of-Speech” and “Word”. _ ¢ W

R , Viizry = 0. The conditional probability of a sub-
The probability distribution of a TRBM is: deci3|>on is:
p(vi,hT) =TI p(v!, hh™), . h(©)) p(VH (k) |history!) = (1/2)Spe” BV BN (5)
wherev! denotes the set of visible vectors from time )
stepsl to T i.e. v! to v?. The notation for latent = (1/2)e™T1;(1 + %),

vectorsh is similar. h© denotes the latent VeCtor yhereZ — Sicuisibiee® jclatent] + eb;—i—wij)
in the past time step that is connected to the current g actually perform this calculation once for
latent vector through a connection of typ€To Sim-  each sub-decision, ignoring the future sub-decisions
pll%notatl(%r)l, we will derzote the past connectionsy that time step. This is a slight approximation,
{h™,...,n™7} by history’. The conditional distri- yt avoids having to compute the partition function
bution of the RBM at each time step is given by:  gyer all possible combinations of values for all sub-
p(V!, ht|history') = (1/2)exp(S;a:0! + Zi,jvfh’;wij decisions:
The complete probability of a derivation is:
+55(b; + Sl BYRL
(0 Wi he)h) p(vh) = p(v1).p(V3|history?)...p(vT |history™)

J

wherev} andh} denote theth visible andjth latent

variable respectively at time step hl(c) denotes a

latent variable in the past time step, azméf)Hlj de-
notes the weight of the corresponding connection.

34 TRBM Training

The gradient of an RBM is given by:

dlog p(v)/0wi; = (vihj)data— (vikj)model (6)
where ()4 denotes the expectation under distribu-
3.3 TRBM Likelihood and Inference tion d. In general, computing the exact gradient

Section 3.1 describes an RBM where visible varils intractable and previous work proposed a Con-
ables can take binary values. In our model, similar t§astive Divergence (CD) based learning procedure
(Salakhutdinov et al., 2007), we have multi-valuedhat approximates the above gradient using amlg
visible variables which we represent as one-hot bstep reconstructioiiHinton, 2002). Fortunately, our

nary vectors and model via a softmax distributionmodel has only a limited set of possible visible val-
exp(ag + Zj h§wkj) ues, which allows us to use a better approximation

(3) by taking the derivative of equation 5:
> explai + 35 ; hiwij) - 7
In cases where computing the partition function is still not

Latent Vanat_)le |nfgrence is similar to equation ]Teasible (for instance, because of a large vocabulary)pbagn
with an additional bias due to the temporal conneGnethods could be used. However, we did not find this to be

tions. necessary.

p(vi = 1) =
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0 log p(v' (k)| history") _ Modél LAS UAS

Ow (7) [ | ISBN wio features 38.38 5452

(Oki — p(V' () |history')) o (b; + wi;) b. | ISBN w/ features 88.65 91.44

c. | TRBM w/o features 86.01 89.78

Further, the weights on the temporal connections; | TRBM w/ features 88.72 91.65

are learned by back-propagating the likelihood gra-; | MST weonaid et ar, 2005 87.07 8995

dients through the directed links between steps.; | MaltyZ aietal. 2007 85.96 88.64

The back-proped gradient from future time steps isg_ MS Tait (Nivre and MeDonald, 2008) 87.45 90.22

aISO used tO train the Current RBM We|ghtS This h CoNLL 2008 #l(Johansson and Nugues, 2008) 9013 9245

back-propagation is similar to the Recurrent TRBM 7. ensemblé)o% (Surdeanu and Manning, 2010) 88.83  91.47

model of Sutskever et al. (2008). However, unlike ; | coNLL 2009 #1@ohnet 2009) 89.88  unknown

their model, we do not use CD at each step to com-

pute gradients. Table 1: LAS and UAS for different models.

3.5 Prediction on adding the features (rot) shows that the feed

We use the same beam-search decoding Strategyfgg/vard inference procedure for ISBNs relies heav-
used in (Titov and Henderson, 2007b). Given 4y on these feature connections to compensate for
derivation prefix, its partial parse tree and associhe lack of backward inference.
ated TRBM, the decoder adds a step to the TRBM The TRBM model avoids this problem as the in-
for calculating the probabilities of hypothesized nexference procedure takes into account the current ob-
decisions using equation 5. If the decoder selectssgrvation, which makes the latent variables much
decision for addition to the candidate list, then thenore informed. However, as row shows, the
current step’s latent variable means are inferred u3RBM model without features falls a bit short of
ing equation 4, given that the chosen decision is note ISBN performance, indicating that features are
visible. These means are then stored with the neindeed a powerful substitute for backward inference
candidate for use in subsequent TRBM calculationgn sequential latent variable models. TRBM mod-
) els would still be preferred in cases where such fea-
4 Experiments & Results ture engineering is difficult or expensive, or where

We used syntactic dependencies from the Englidh® objective is to compute the latent features them-
section of the CoNLL 2009 shared task datas&€lves. For a fair comparison, we add the same set
(Hajit et al., 2009). Standard splits of training, deOf features to the TRBM model (ro) and the per-
velopment and test sets were used. To handle wof@Mmance improves by about 2% to reach the same
sparsity, we replaced all t{@0S, word)pairs with level (non-§|gn|f|cant!y better) as ISBN with fea-
frequency less than 20 in the training set wig0s, tures. The improved inference in TRBM does how-
UNKNOWN) giving us only 4530 tag-word pairs. EVer come at the cost of increased training and test-
Since our model can work only with projective treesind time. Keeping the same likelihood convergence

we used MaltParser (Nivre et al., 2006a) to projecgriteria,_ we could train the ISBN in about 2 days and
tivize/deprojectivize the training input/test output. 1 RBM in about 5 days on a 3.3 GHz Xeon proces-
sor. With the same beam search parameters, the test

41 Results time was about 1.5 hours for ISBN and about 4.5

Table 1 lists the labeled (LAS) and unlabeled (UAS§iours for TRBM. Although more code optimization
attachment scores. Rawshows that a simple ISBN IS possible, this trend is likely to remain.

model without features, using feed forward infer- We also tried a Contrastive Divergence based
ence procedure, does not work well. As explainettaining procedure for TRBM instead of equation
in section 2, this is expected since in the absence @f but that resulted in about an absolute 10% lower
explicit features, the latent variables in a given layet AS. Further, we also tried a very simple model
do not take into account the observations in the pravithout latent variables where temporal connections
vious layers. The huge improvement in performancare between decision variables themselves. This
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model gave an LAS of only 60.46%, which indi-| Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
cates that without latent variables, it is very difficulf  says needed pressing | renewing
to capture the parse history. contends| expected | bridging cause
For comparison, we also include the performance adds encouraged curing repeat
numbers for some state-of-the-art dependency pars- insists allowed skirting | broken
ing systems. Surdeanu and Manning (2010) com-remarked| thought | tightening| extended

pare different parsing models using CoNLL 2008 . . .
shared task dataset (Surdeanu et al., 2008) WhiT ble 2: K-means clustering of words according to their
) Co ’ BM latent representations. Duplicate words in the
is the same as our dataset. Raws i show the per- <, me cluster are not shown.

formance numbers of some systems as mentioned in

their paper. Rowj shows the best syntactic model Model path lin
in CoNLL 2009 shared task. The TRBM model has ISBN w/o features | 0.228 | 0.381
only 1.4% lower LAS and 0.8% lower UAS com- ISBN w/features 0.366| 0.466
pared to the best performing model. TRBM w/o features| 0.386| 0.487
TRBM w/ features | 0.390| 0.489

4.2 Latent Layer Analysis

. Table 3: Wordnet similarity scores for clusters given by
We analyzed the latent layers in our models to see o et models.

they captured semantic patterns. A latent layer is a

vector of 100 latent variables. EveBhiftoperation are not very low, which shows that features are a
gives a latent representation for the correspondinigowerful way to compensate for the lack of back-
word. We took all the verbs in the developmengsetward inference. This is in agreement with their good
and partitioned their representations into 50 clugPerformance on the parsing task.

ters using the k-means algorithm. Table 2 shows

some partitions for the TRBM model. The partitions5 Conclusions & Future Work

look semantically meaningful but to get a quantitayve have presented a Temporal Restricted Boltz-
tive analysis, we computed pairwise semantic Siminann Machines based model for dependency pars-
larity between all word pairs in a given cluster andng. The model shows how undirected graphical
aggregated this number over all the clusters. The Sgrodels can be used to generate latent representa-
mantic similarity was calculated using two differentijons of local parsing actions, which can then be
similarity measures on the wordnet corpus (Millefysed as features for later decisions.

et al., 1990):pathandlin. pathsimilarity is a score  The TRBM model for dependency parsing could
between 0 and 1, equal to the inverse of the shortgsé extended to a Deep Belief Network by adding
path length between the two word sensks.simi-  one more latent layer on top of the existing one
larity (Lin, 1998) is a score between 0 and 1 baseginton et al., 2006). Furthermore, as done for
on thelnformation Contenbf the two word senses | njabeled images (Hinton et al., 2006), one could
and of the Least Common Subsumer. Table 3 showsarm high-dimensional features from unlabeled text,
the similarity scored. We observe that TRBM la- \yhich could then be used to aid parsing. Parser la-
tent representations give a slightly better clusteringsnt representations could also help other tasks such

than ISBN models. Again, this is because of the fagfs semantic Role Labeling (Henderson et al., 2008).
that the inference procedure in TRBMs takes into ac- A free distribution of our implementation is avail-

count the current observation. However, at the samg|e athttp://cui.unige.ch/ ~garg .
time, the similarity numbers for ISBN with features
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Efficient Online Locality Sensitive Hashing via Reservoir Counting

Benjamin Van Durme
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Abstract

We describe a novel mechanism called Reser-
voir Counting for application in online Local-
ity Sensitive Hashing. This technique allows
for significant savings in the streaming setting,
allowing for maintaining a larger number of
signatures, or an increased level of approxima-
tion accuracy at a similar memory footprint.

1 Introduction

Feature vectors based on lexical co-occurrence are
often of a high dimension, d. This leads to O(d) op-
erations to calculate cosine similarity, a fundamental
tool in distributional semantics. This is improved in
practice through the use of data structures that ex-
ploit feature sparsity, leading to an expected O(f)
operations, where f is the number of unique features
we expect to have non-zero entries in a given vector.

Ravichandran et al. (2005) showed that the Lo-
cality Sensitive Hash (LSH) procedure of Charikar
(2002), following from Indyk and Motwani (1998)
and Goemans and Williamson (1995), could be suc-
cessfully used to compress textually derived fea-
ture vectors in order to achieve speed efficiencies
in large-scale noun clustering. Such LSH bit signa-
tures are constructed using the following hash func-
tion, where 7 € R? is a vector in the original feature
space, and 7 is randomly drawn from N (0, 1)%:

. 1 ifd-7>0,

h(v) = { 0 otherwise.

If h® (%) is the b-bit signature resulting from b such
hash functions, then the cosine similarity between
vectors & and ¥ is approximated by:
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~ cos( 20@A@)

* 7T)7
where D(-,-) is Hamming distance, the number of
bits that disagree. This technique is used when
b < d, which leads to faster pair-wise comparisons
between vectors, and a lower memory footprint.

Van Durme and Lall (2010) observed! that if
the feature values are additive over a dataset (e.g.,
when collecting word co-occurrence frequencies),
then these signatures may be constructed online by
unrolling the dot-product into a series of local oper-
ations: ¥ 7 = X0y - T;, where ¥, represents features
observed locally at time ¢ in a data-stream.

Since updates may be done locally, feature vec-
tors do not need to be stored explicitly. This di-
rectly leads to significant space savings, as only one
counter is needed for each of the b running sums.

In this work we focus on the following observa-
tion: the counters used to store the running sums
may themselves be an inefficient use of space, in
that they may be amenable to compression through
approximation.? Since the accuracy of this LSH rou-
tine is a function of b, then if we were able to reduce
the online requirements of each counter, we might
afford a larger number of projections. Even if a
chance of approximation error were introduced for
each hash function, this may be justified in greater
overall fidelity from the resultant increase in b.

'A related point was made by Li et al. (2008) when dis-
cussing stable random projections.

2A b bit signature requires the online storage of b * 32 bits of
memory when assuming a 32-bit floating point representation
per counter, but since here the only thing one cares about these
sums are their sign (positive or negative) then an approximation
to the true sum may be sufficient.

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 18-23,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



Thus, we propose to approximate the online hash
function, using a novel technique we call Reservoir
Counting, in order to create a space trade-off be-
tween the number of projections and the amount of
memory each projection requires. We show experi-
mentally that this leads to greater accuracy approx-
imations at the same memory cost, or similar accu-
racy approximations at a significantly reduced cost.
This result is relevant to work in large-scale distribu-
tional semantics (Bhagat and Ravichandran, 2008;
Van Durme and Lall, 2009; Pantel et al., 2009; Lin
et al., 2010; Goyal et al., 2010; Bergsma and Van
Durme, 2011), as well as large-scale processing of
social media (Petrovic et al., 2010).

2 Approach

While not strictly required, we assume here to be
dealing exclusively with integer-valued features. We
then employ an integer-valued projection matrix in
order to work with an integer-valued stream of on-
line updates, which is reduced (implicitly) to a
stream of positive and negative unit updates. The
sign of the sum of these updates is approximated
through a novel twist on Reservoir Sampling. When
computed explicitly this leads to an impractical
mechanism linear in each feature value update. To
ensure our counter can (approximately) add and sub-
tract in constant time, we then derive expressions for
the expected value of each step of the update. The
full algorithms are provided at the close.

Unit Projection Rather than construct a projec-
tion matrix from N (0, 1), a matrix randomly pop-
ulated with entries from the set {—1,0, 1} will suf-
fice, with quality dependent on the relative propor-
tion of these elements. If we let p be the percent
probability mass allocated to zeros, then we create
a discrete projection matrix by sampling from the
multinomial: (1—?10 : —1,p : 0, 1_Tp : +1). An
experiment displaying the resultant quality is dis-
played in Fig. 1, for varied p. Henceforth we assume
this discrete projection matrix, with p = 0.5.> The
use of such sparse projections was first proposed by
Achlioptas (2003), then extended by Li et al. (2006).

3Note that if using the pooling trick of Van Durme and Lall
(2010), this equates to a pool of the form: (-1,0,0,1).
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Figure 1: With b = 256, mean absolute error in cosine
approximation when using a projection based on N (0, 1),
compared to {—1,0, 1}.

Unit Stream Based on a unit projection, we can
view an online counter as summing over a stream
drawn from {—1,1}: each projected feature value
unrolled into its (positive or negative) unary repre-
sentation. For example, the stream: (3,-2,1), can be
viewed as the updates: (1,1,1,-1,-1,1).

Reservoir Sampling We can maintain a uniform
sample of size k over a stream of unknown length
as follows. Accept the first k elements into an reser-
voir (array) of size k. Each following element at po-
sition n is accepted with probability % whereupon
an element currently in the reservoir is evicted, and
replaced with the just accepted item. This scheme
is guaranteed to provide a uniform sample, where
early items are more likely to be accepted, but also at
greater risk of eviction. Reservoir sampling is a folk-
lore algorithm that was extended by Vitter (1985) to
allow for multiple updates.

Reservoir Counting If we are sampling over a
stream drawn from just two values, we can implic-
itly represent the reservoir by counting only the fre-
quency of one or the other elements.* We can there-
fore sample the proportion of positive and negative
unit values by tracking the current position in the
stream, n, and keeping a log,(k + 1)-bit integer

*For example, if we have a reservoir of size 5, containing
three values of —1, and two values of 1, then the exchangeabil-
ity of the elements means the reservoir is fully characterized by
knowing k, and that there are two 1’s.



counter, s, for tracking the number of 1 values cur-
rently in the reservoir.’ When a negative value is
accepted, we decrement the counter with probability
. When a positive update is accepted, we increment
the counter with probability (1 — 7). This reflects an
update evicting either an element of the same sign,
which has no effect on the makeup of the reservoir,
or decreasing/increasing the number of 1’s currently
sampled. An approximate sum of all values seen up
to position n is then simply: n(zk—s — 1). While this
value is potentially interesting in future applications,
here we are only concerned with its sign.

Parallel Reservoir Counting On its own this
counting mechanism hardly appears useful: as it is
dependent on knowing 7, then we might just as well
sum the elements of the stream directly, counting in
whatever space we would otherwise use in maintain-
ing the value of n. However, if we have a set of tied
streams that we process in parallel,’ then we only
need to track n once, across b different streams, each
with their own reservoir.

When dealing with parallel streams resulting from
different random projections of the same vector, we
cannot assume these will be strictly tied. Some pro-
jections will cancel out heavier elements than oth-
ers, leading to update streams of different lengths
once elements are unrolled into their (positive or
negative) unary representation. In practice we have
found that tracking the mean value of n across b
streams is sufficient. When using a p = 0.5 zeroed
matrix, we can update n by one half the magnitude
of each observed value, as on average half the pro-
jections will cancel out any given element. This step
can be found in Algorithm 2, lines 8 and 9.

Example To make concrete what we have cov-
ered to this point, consider a given feature vec-
tor of dimensionality d = 3, say: [3,2,1]. This
might be projected into b = 4, vectors: [3,0,0],
[0,-2,1], [0,0,1], and [-3,2,0]. When viewed as
positive/negative, loosely-tied unit streams, they re-
spectively have length n: 3, 3, 1, and 5, with mean
length 3. The goal of reservoir counting is to effi-
ciently keep track of an approximation of their sums
(here: 3, -1, 1, and -1), while the underlying feature

3E.g., a reservoir of size k = 255 requires an 8-bit integer.
%Tied in the sense that each stream is of the same length,
e.g., (-1,1,1) is the same length as (1,-1,-1).
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k n m | mean(4) mean(A’)
10 20 10 3.80 4.02
10 20 1000 37.96 39.31
50 150 1000 101.30 101.83

100 1100 100 8.88 8.72
100 10100 10 0.13 0.10

Table 1: Average over repeated calls to A and A’.

vector is being updated online. A k£ = 3 reservoir
used for the last projected vector, [-3,2,0], might
reasonably contain two values of -1, and one value
of 1.7 Represented explicitly as a vector, the reser-
voir would thus be in the arrangement:
(1,-1,-1], [-1,1,-1], or [-1,-1, 1].

These are functionally equivalent: we only need to
know that one of the £ = 3 elements is positive.

Expected Number of Samples Traversing m con-
secutive values of either 1 or —1 in the unit stream
should be thought of as seeing positive or negative
m as a feature update. For a reservoir of size k, let
A(m,n, k) be the number of samples accepted when
traversing the stream from position n + 1 to n + m.
A is non-deterministic: it represents the results of
flipping m consecutive coins, where each coin is in-
creasingly biased towards rejection.

Rather than computing A explicitly, which is lin-
ear in m, we will instead use the expected number of
updates, A'(m,n, k) = E[A(m,n, k)], which can
be computed in constant time. Where H (z) is the
harmonic number of x:8

n+m k
23
t=n-+1
= k(H(n+m)—H(n))
n+m).

A'(m,n, k) =

~  klog.(

For example, consider m = 30, encountered at
position n = 100, with a reservoir of £k = 10. We
will then accept 10 log, (133) ~ 3.79 samples of 1.

As the reservoir is a discrete set of bins, fractional
portions of a sample are resolved by a coin flip: if
a = klog,(™t™), then accept u = [a] samples

n
with probability (a — |a]), and u = |a] samples

"Other options are: three -1’s, or one -1 and two 1’s.
$With z a positive integer, H (z) = >.7_, 1/x ~ log, (z) +
~, where y is Euler’s constant.



otherwise. These steps are found in lines 3 and 4
of Algorithm 1. See Table 1 for simulation results
using a variety of parameters.

Expected Reservoir Change We now discuss
how to simulate many independent updates of the
same type to the reservoir counter, e.g.: five updates
of 1, or three updates of -1, using a single estimate.
Consider a situation in which we have a reservoir of
size k with some current value of 5,0 < s < k, and
we wish to perform u independent updates. We de-
note by U, (s, u) the expected value of the reservoir
after these u updates have taken place. Since a sin-
gle update leads to no change with probability 7, we
can write the following recurrence for U} :

k_
Uk(s,u) = ZUL(s,u=1)+ ——Uk(s+1,u—1),

with the boundary condition: for all s, U} (s,0) = s.
Solving the above recurrence, we get that the ex-
pected value of the reservoir after these updates is:

Ul(s,u) = k + (s — k) (1—;)u,

which can be mechanically checked via induction.
The case for negative updates follows similarly (see
lines 7 and 8 of Algorithm 1).

Hence, instead of simulating u independent up-
dates of the same type to the reservoir, we simply
update it to this expected value, where fractional up-
dates are handled similarly as when estimating the
number of accepts. These steps are found in lines 5
through 9 of Algorithm 1, and as seen in Fig. 2, this
can give a tight estimate.

Comparison Simulation results over Zipfian dis-
tributed data can be seen in Fig. 3, which shows the
use of reservoir counting in Online Locality Sensi-
tive Hashing (as made explicit in Algorithm 2), as
compared to the method described by Van Durme
and Lall (2010).

The total amount of space required when using
this counting scheme is blogsy(k + 1) + 32: b reser-
voirs, and a 32 bit integer to track n. This is com-
pared to b 32 bit floating point values, as is standard.
Note that our scheme comes away with similar lev-
els of accuracy, often at half the memory cost, while
requiring larger b to account for the chance of ap-
proximation errors in individual reservoir counters.
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Figure 2: Results of simulating many iterations of U’,
for k = 255, and various values of s and w.

Algorithm 1 RESERVOIRUPDATE(n, k, m, 7, s)
Parameters:

n : size of stream so far

k : size of reservoir, also maximum value of s

m : magnitude of update

o : sign of update

s : current value of reservoir

1: if m = 0 or o = 0 then

2:  Return without doing anything

3 a:= A'(m,n, k) = klog, (2£™)

4: u := [a] with probability a — |a], |a] otherwise
5. ifc =1 then
6:
7:
8:
9:

s :=U'(s,a) =s(1—1/k)"
Return [s'] with probability s’ — | s’|, | s’| otherwise

log2.k

Mean.Absolute.Error

0.07 1

0.06

i i i | i i i i
1000 2000 3000 4000 5000 6000 7000 8000
Bits.Required

Figure 3: Online LSH using reservoir counting (red) vs.
standard counting mechanisms (blue), as measured by the
amount of total memory required to the resultant error.



Algorithm 2 COMPUTESIGNATURE(S,k,b,p)
Parameters:

S : bit array of size b

k : size of each reservoir

b : number of projections

p : percentage of zeros in projection, p € [0, 1]

1: Initialize b reservoirs R[1,...,b], each represented
by alog,(k + 1)-bit unsigned integer

2: Initialize b hash functions h;(w) that map features w
to elements in a vector made up of —1 and 1 each
with proportion 1%17, and 0 at proportion p.

3:n:=0

4: {Processing the stream}

5: for each feature value pair (w, m) in stream do

6: fori:=1tobdo

7 RJ[i] := ReservoirUpdate(n, k, m, h;(w), R[i])

8 n:=n+|m(l-p)]

9:  n:=n+1 with probability m(1—p) — |m(1—p)]

10: {Post-processing to compute signature }

11: fori:=1...bdo

12:  if R[i] > £ then

13: Sl =1
14: else
15: Sli]:=0

3 Discussion

Time and Space While we have provided a con-
stant time, approximate update mechanism, the con-
stants involved will practically remain larger than
the cost of performing single hardware addition
or subtraction operations on a traditional 32-bit
counter. This leads to a tradeoff in space vs. time,
where a high-throughput streaming application that
is not concerned with online memory requirements
will not have reason to consider the developments in
this article. The approach given here is motivated
by cases where data is not flooding in at breakneck
speed, and resource considerations are dominated by
a large number of unique elements for which we
are maintaining signatures. Empirically investigat-
ing this tradeoff is a matter of future work.

Random Walks As we here only care for the sign
of the online sum, rather than an approximation of
its actual value, then it is reasonable to consider in-
stead modeling the problem directly as a random
walk on a linear Markov chain, with unit updates
directly corresponding to forward or backward state
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Figure 4: A simple 8-state Markov chain, requiring
lg(8) = 3 bits. Dark or light states correspond to a
prediction of a running sum being positive or negative.
States are numerically labeled to reflect the similarity to
a small bit integer data type, one that never overflows.

transitions. Assuming a fixed probability of a posi-
tive versus negative update, then in expectation the
state of the chain should correspond to the sign.
However if we are concerned with the global statis-
tic, as we are here, then the assumption of a fixed
probability update precludes the analysis of stream-
ing sources that contain local irregularities.’

In distributional semantics, consider a feature
stream formed by sequentially reading the n-gram
resource of Brants and Franz (2006). The pair: (the
dog : 3,502,485), can be viewed as a feature value
pair: (leftWord="the’ : 3,502,485), with respect to
online signature generation for the word dog. Rather
than viewing this feature repeatedly, spread over a
large corpus, the update happens just once, with
large magnitude. A simple chain such as seen in
Fig. 4 will be “pushed” completely to the right or
the left, based on the polarity of the projection, irre-
spective of previously observed updates. Reservoir
Counting, representing an online uniform sample, is
agnostic to the ordering of elements in the stream.

4 Conclusion

We have presented a novel approximation scheme
we call Reservoir Counting, motivated here by a de-
sire for greater space efficiency in Online Locality
Sensitive Hashing. Going beyond our results pro-
vided for synthetic data, future work will explore ap-
plications of this technique, such as in experiments
with streaming social media like Twitter.
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Abstract

We investigate the empirical behavior of n-
gram discounts within and across domains.
When a language model is trained and evalu-
ated on two corpora from exactly the same do-
main, discounts are roughly constant, match-
ing the assumptions of modified Kneser-Ney
LMs. However, when training and test corpora
diverge, the empirical discount grows essen-
tially as a linear function of the n-gram count.
We adapt a Kneser-Ney language model to
incorporate such growing discounts, result-
ing in perplexity improvements over modified
Kneser-Ney and Jelinek-Mercer baselines.

1 Introduction

Discounting, or subtracting from the count of each
n-gram, is one of the core aspects of Kneser-Ney
language modeling (Kneser and Ney, 1995). For all
but the smallest n-gram counts, Kneser-Ney uses a
single discount, one that does not grow with the n-
gram count, because such constant-discounting was
seen in early experiments on held-out data (Church
and Gale, 1991). However, due to increasing com-
putational power and corpus sizes, language model-
ing today presents a different set of challenges than
it did 20 years ago. In particular, modeling cross-
domain effects has become increasingly more im-
portant (Klakow, 2000; Moore and Lewis, 2010),
and deployed systems must frequently process data
that is out-of-domain from the standpoint of the lan-
guage model.

In this work, we perform experiments on held-
out data to evaluate how discounting behaves in the
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cross-domain setting. We find that, when training
and testing on corpora that are as similar as possi-
ble, empirical discounts indeed do not grow with n-
gram count, which validates the parametric assump-
tion of Kneser-Ney smoothing. However, when the
train and evaluation corpora differ, even slightly, dis-
counts generally exhibit linear growth in the count of
the n-gram, with the amount of growth being closely
correlated with the corpus divergence. Finally, we
build a language model exploiting a parametric form
of the growing discount and show perplexity gains of
up to 5.4% over modified Kneser-Ney.

2 Discount Analysis

Underlying discounting is the idea that n-grams will
occur fewer times in test data than they do in training
data. We investigate this quantitatively by conduct-
ing experiments similar in spirit to those of Church
and Gale (1991). Suppose that we have collected
counts on two corpora of the same size, which we
will call our train and test corpora. For an n-gram
w = (Wi, ..., W), let kyain(w) denote the number of
occurrences of w in the training corpus, and kies (w)
denote the number of occurrences of w in the test
corpus. We define the empirical discount of w to be
d(w) = kirain(w) — keest(w); this will be negative
when the n-gram occurs more in the test data than
in the training data. Let W; = {w : Kkyin(w) = i}
be the set of n-grams with count ¢ in the training
corpus. We define the average empirical discount
function as

i) = g - d(w)

¢ weW;

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 24-29,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



Kneser-Ney implicitly makes two assumptions:
first, that discounts do not depend on n-gram count,
i.e. that d(4) is constant in i. Modified Kneser-Ney
relaxes this assumption slightly by having indepen-
dent parameters for 1-count, 2-count, and many-
count n-grams, but still assumes that d(7) is constant
for ¢ greater than two. Second, by using the same
discount for all n-grams with a given count, Kneser-
Ney assumes that the distribution of d(w) for w in a
particular W; is well-approximated by its mean. In
this section, we analyze whether or not the behavior
of the average empirical discount function supports
these two assumptions. We perform experiments on
various subsets of the documents in the English Gi-
gaword corpus, chiefly drawn from New York Times

(NYT) and Agence France Presse (AFP).!

2.1 Are Discounts Constant?

Similar corpora To begin, we consider the NYT
documents from Gigaword for the year 1995. In
order to create two corpora that are maximally
domain-similar, we randomly assign half of these
documents to train and half of them to test, yielding
train and test corpora of approximately SOM words
each, which we denote by NYT95 and NYT95'. Fig-
ure 1 shows the average empirical discounts d()
for trigrams on this pair of corpora. In this setting,
we recover the results of Church and Gale (1991)
in that discounts are approximately constant for n-
gram counts of two or greater.

Divergent corpora In addition to these two cor-
pora, which were produced from a single contigu-
ous batch of documents, we consider testing on cor-
pus pairs with varying degrees of domain difference.
We construct additional corpora NYT96, NYTO06,
AFP95, AFP96, and AFP06, by taking SOM words
from documents in the indicated years of NYT
and AFP data. We then collect training counts on
NYT95 and alternately take each of our five new cor-
pora as the test data. Figure 1 also shows the average
empirical discount curves for these train/test pairs.
Even within NYT newswire data, we see growing
discounts when the train and test corpora are drawn

!Gigaword is drawn from six newswire sources and contains
both miscellaneous text and complete, contiguous documents,
sorted chronologically. Our experiments deal exclusively with
the document text, which constitutes the majority of Gigaword
and is of higher quality than the miscellaneous text.
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Figure 1: Average empirical trigram discounts d(i) for
six configurations, training on NYT95 and testing on the
indicated corpora. For each n-gram count k, we compute
the average number of occurrences in test for all n-grams
occurring k times in training data, then report k£ minus
this quantity as the discount. Bigrams and bigram types
exhibit similar discount relationships.

from different years, and between the NYT and AFP
newswire, discounts grow even more quickly. We
observed these trends continuing steadily up into n-
gram counts in the hundreds, beyond which point it
becomes difficult to robustly estimate discounts due
to fewer n-gram types in this count range.

This result is surprising in light of the constant
discounts observed for the NYT95/NYT95' pair.
Goodman (2001) proposes that discounts arise from
document-level “burstiness” in a corpus, because
language often repeats itself locally within a doc-
ument, and Moore and Quirk (2009) suggest that
discounting also corrects for quantization error due
to estimating a continuous distribution using a dis-
crete maximum likelihood estimator (MLE). Both
of these factors are at play in the NYT95/NYT95
experiment, and yet only a small, constant discount
is observed. Our growing discounts must therefore
be caused by other, larger-scale phenomena, such as
shifts in the subjects of news articles over time or in
the style of the writing between newswire sources.
The increasing rate of discount growth as the source
changes and temporal divergence increases lends
credence to this hypothesis.

2.2 Nonuniformity of Discounts

Figure 1 considers discounting in terms of averaged
discounts for each count, which tests one assump-
tion of modified Kneser-Ney, that discounts are a
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Figure 2: Empirical probability mass functions of occur-
rences in the test data for trigrams that appeared 10 times
in training data. Discounting by a single value is plau-
sible in the case of similar train and test corpora, where
the mean of the distribution (8.50) is close to the median
(8.0), but not in the case of divergent corpora, where the
mean (6.04) and median (1.0) are very different.

constant function of n-gram counts. In Figure 2, we
investigate the second assumption, namely that the
distribution over discounts for a given n-gram count
is well-approximated by its mean. For similar cor-
pora, this seems to be true, with a histogram of test
counts for trigrams of count 10 that is nearly sym-
metric. For divergent corpora, the data exhibit high
skew: almost 40% of the trigrams simply never ap-
pear in the test data, and the distribution has very
high standard deviation (17.0) due to a heavy tail
(not shown). Using a discount that depends only on
the n-gram count is less appropriate in this case.

In combination with the growing discounts of sec-
tion 2.1, these results point to the fact that modified
Kneser-Ney does not faithfully model the discount-
ing in even a mildly cross-domain setting.

2.3 Correlation of Divergence and Discounts

Intuitively, corpora that are more temporally distant
within a particular newswire source should perhaps
be slightly more distinct, and still a higher degree of
divergence should exist between corpora from dif-
ferent newswire sources. From Figure 1, we see that
this notion agrees with the relative sizes of the ob-
served discounts. We now ask whether growth in
discounts is correlated with train/test dissimilarity in
a more quantitative way. For a given pair of cor-
pora, we canonicalize the degree of discounting by

selecting the point d(30), the average empirical dis-
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Figure 3: Log likelihood difference versus average empir-

ical discount of trigrams with training count 30 (d(30))
for the train/test pairs. More negative values of the log
likelihood indicate more dissimilar corpora, as the trained
model is doing less well relative to the jackknife model.

count for n-grams occurring 30 times in training.’
To measure divergence between the corpus pair, we
compute the difference between the log likelihood
of the test corpus under the train corpus language
model (using basic Kneser-Ney) and the likelihood
of the test corpus under a jackknife language model
from the test itself, which holds out and scores each
test n-gram in turn. This dissimilarity metric resem-
bles the cross-entropy difference used by Moore and
Lewis (2010) to subsample for domain adaptation.
We compute this canonicalization for each of
twenty pairs of corpora, with each corpus contain-
ing 240M trigram tokens between train and test. The
corpus pairs were chosen to span varying numbers
of newswire sources and lengths of time in order to
capture a wide range of corpus divergences. Our re-
sults are plotted in Figure 3. The log likelihood dif-
ference and d(30) are negatively correlated with a
correlation coefficient value of » = —0.88, which
strongly supports our hypothesis that higher diver-
gence yields higher discounting. One explanation
for the remaining variance is that the trigram dis-
count curve depends on the difference between the
number of bigram types in the train and test corpora,
which can be as large as 10%: observing more bi-
gram contexts in training fragments the token counts

2One could also imagine instead canonicalizing the curves
by using either the exponent or slope parameters from a fitted
power law as in section 3. However, there was sufficient non-
linearity in the average empirical discount curves that neither of
these parameters was an accurate proxy for d(4).



and leads to smaller observed discounts.

2.4 Related Work

The results of section 2.1 point to a remarkably per-
vasive phenomenon of growing empirical discounts,
except in the case of extremely similar corpora.
Growing discounts of this sort were previously sug-
gested by the model of Teh (2006). However, we
claim that the discounting phenomenon in our data is
fundamentally different from his model’s prediction.
In the held-out experiments of section 2.1, growing
discounts only emerge when one evaluates against a
dissimilar held-out corpus, whereas his model would
predict discount growth even in NYT95/NYT95,
where we do not observe it.

Adaptation across corpora has also been ad-
dressed before. Bellegarda (2004) describes a range
of techniques, from interpolation at either the count
level or the model level (Bacchiani and Roark, 2003;
Bacchiani et al., 2006) to using explicit models of
syntax or semantics. Hsu and Glass (2008) employ
a log-linear model for multiplicatively discounting
n-grams in Kneser-Ney; when they include the log-
count of an n-gram as the only feature, they achieve
75% of their overall word error rate reduction, sug-
gesting that predicting discounts based on n-gram
count can substantially improve the model. Their
work also improves on the second assumption of
Kneser-Ney, that of the inadequacy of the average
empirical discount as a discount constant, by em-
ploying various other features in order to provide
other criteria on which to discount n-grams.

Taking a different approach, both Klakow (2000)
and Moore and Lewis (2010) use subsampling to
select the domain-relevant portion of a large, gen-
eral corpus given a small in-domain corpus. This
can be interpreted as a form of hard discounting,
and implicitly models both growing discounts, since
frequent n-grams will appear in more of the re-
jected sentences, and nonuniform discounting over
n-grams of each count, since the sentences are cho-
sen according to a likelihood criterion. Although
we do not consider this second point in constructing
our language model, an advantage of our approach
over subsampling is that we use our entire training
corpus, and in so doing compromise between min-
imizing errors from data sparsity and accommodat-
ing domain shifts to the extent possible.
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3 A Growing Discount Language Model

We now implement and evaluate a language model
that incorporates growing discounts.

3.1 Methods

Instead of using a fixed discount for most n-gram
counts, as prescribed by modified Kneser-Ney, we
discount by an increasing parametric function of the
n-gram count. We use a tune set to compute an av-
erage empirical discount curve d(4), and fit a func-
tion of the form f(z) = a + bz° to this curve using
weighted least-L1-loss regression, with the weight
for each point proportional to i|WW;|, the total to-
ken counts of n-grams occurring that many times
in training. To improve the fit of the model, we
use dedicated parameters for count-1 and count-2 n-
grams as in modified Kneser-Ney, yielding a model
with five parameters per n-gram order. We call this
model GDLM. We also instantiate this model with
c fixed to one, so that the model is strictly linear
(GDLM-LIN).

As baselines for comparison, we use basic inter-
polated Kneser-Ney (KNLM), with one discount pa-
rameter per n-gram order, and modified interpolated
Kneser-Ney (MKNLM), with three parameters per
n-gram order, as described in (Chen and Goodman,
1998). We also compare against Jelinek-Mercer
smoothing (JMLM), which interpolates the undis-
counted MLEs from every order. According to Chen
and Goodman (1998), it is common to use different
interpolation weights depending on the history count
of an n-gram, since MLEs based on many samples
are presumed to be more accurate than those with
few samples. We used five history count buckets so
that JMLM would have the same number of param-
eters as GDLM.

All five models are trigram models with type
counts at the lower orders and independent discount
or interpolation parameters for each order. Param-
eters for GDLM, MKNLM, and KNLM are initial-
ized based on estimates from d(i): the regression
thereof for GDLM, and raw discounts for MKNLM
and KNLM. The parameters of JMLM are initialized
to constants independent of the data. These initial-
izations are all heuristic and not guaranteed to be
optimal, so we then iterate through the parameters
of each model several times and perform line search



Train NYTO00+01 | Train AFP02+05+06
Voc. || 157K 50K 157K 50K
GDLM(*) || 151 131 258 209
GDLM-LIN(*) 151 132 259 210
JMLM || 165 143 274 221
MKNLM || 152 132 273 221
KNLM | 159 138 300 241

Table 1: Perplexities of the growing discounts language
model (GDLM) and its purely linear variant (GDLM-
LIN), which are contributions of this work, versus
the modified Kneser-Ney (MKNLM), basic Kneser-Ney
(KNLM), and Jelinek-Mercer (JMLM) baselines. We
report results for in-domain (NYT00+01) and out-of-
domain (AFP02+05+06) training corpora, for two meth-
ods of closing the vocabulary.

in each to optimize tune-set perplexity.

For evaluation, we train, tune, and test on three
disjoint corpora. We consider two different train-
ing sets: one of 110M words of NYT from 2000
and 2001 (NYT00+01), and one of 110M words of
AFP from 2002, 2005, and 2006 (AFP02+05+06).
In both cases, we compute d(7) and tune parameters
on 110M words of NYT from 2002 and 2003, and
do our final perplexity evaluation on 4M words of
NYT from 2004. This gives us both in-domain and
out-of-domain results for our new language model.
Our tune set is chosen to be large so that we can
initialize parameters based on the average empirical
discount curve; in practice, one could compute em-
pirical discounts based on a smaller tune set with the
counts scaled up proportionately, or simply initialize
to constant values.

We use two different methods to handle out-of-
vocabulary (OOV) words: one scheme replaces any
unigram token occurring fewer than five times in
training with an UNK token, yielding a vocabulary
of approximately 157K words, and the other scheme
only keeps the top 50K words in the vocabulary.
The count truncation method has OOV rates of 0.9%
and 1.9% in the NYT/NYT and NYT/AFP settings,
respectively, and the constant-size vocabulary has
OOV rates of 2% and 3.6%.

3.2 Results

Perplexity results are given in Table 1. As expected,
for in-domain data, GDLM performs comparably to
MKNLM, since the discounts do not grow and so
there is little to be gained by choosing a param-
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eterization that permits this. Out-of-domain, our
model outperforms MKNLM and JMLM by approx-
imately 5% for both vocabulary sizes. The out-
of-domain perplexity values are competitive with
those of Rosenfeld (1996), who trained on New York
Times data and tested on AP News data under simi-
lar conditions, and even more aggressive closing of
the vocabulary. Moore and Lewis (2010) achieve
lower perplexities, but they use in-domain training
data that we do not include in our setting.

We briefly highlight some interesting features of
these results. In the small vocabulary cross-domain
setting, for GDLM-LIN, we find

dyi(i) = 1.31 + 0.27i, dy;(i) = 1.34 + 0.054

as the trigram and bigram discount functions that
minimize tune set perplexity. For GDLM,

dii(1) = 1.19 4 0.32:% dy;(i) = 0.86 + 0.564°-°

In both cases, a growing discount is indeed learned
from the tuning procedure, demonstrating the im-
portance of this in our model. Modeling nonlin-
ear discount growth in GDLM yields only a small
marginal improvement over the linear discounting
model GDLM-LIN, so we prefer GDLM-LIN for its
simplicity.

A somewhat surprising result is the strong per-
formance of JMLM relative to MKNLM on the di-
vergent corpus pair. We conjecture that this is be-
cause the bucketed parameterization of JIMLM gives
it the freedom to change interpolation weights with
n-gram count, whereas MKNLM has essentially a
fixed discount. This suggests that modified Kneser-
Ney as it is usually parameterized may be a particu-
larly poor choice in cross-domain settings.

Overall, these results show that the growing dis-
count phenomenon detailed in section 2, beyond
simply being present in out-of-domain held-out data,
provides the basis for a new discounting scheme that
allows us to improve perplexity relative to modified
Kneser-Ney and Jelinek-Mercer baselines.
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Abstract

In bootstrapping (seed set expansion), select-
ing good seeds and creating stop lists are two
effective ways to reduce semantic drift, but
these methods generally need human super-
vision. In this paper, we propose a graph-
based approach to helping editors choose ef-
fective seeds and stop list instances, appli-
cable to Pantel and Pennacchiotti’s Espresso
bootstrapping algorithm. The idea is to select
seeds and create a stop list using the rankings
of instances and patterns computed by Klein-
berg’s HITS algorithm. Experimental results
on a variation of the lexical sample task show
the effectiveness of our method.

1 Introduction

Bootstrapping (Yarowsky, 1995; Abney, 2004) is a
technique frequently used in natural language pro-
cessing to expand limited resources with minimal
supervision. Given a small amount of sample data
(seeds) representing a particular semantic class of
interest, bootstrapping first trains a classifier (which
often is a weighted list of surface patterns character-
izing the seeds) using the seeds, and then apply it on
the remaining data to select instances most likely to
be of the same class as the seeds. These selected in-
stances are added to the seed set, and the process is

iterated until sufficient labeled data are acquired.
Many bootstrapping algorithms have been pro-
posed for a variety of tasks: word sense disambigua-
tion (Yarowsky, 1995; Abney, 2004), information
extraction (Hearst, 1992; Riloff and Jones, 1999;
Thelen and Riloff, 2002; Pantel and Pennacchiotti,
2006), named entity recognition (Collins and Singer,
1999), part-of-speech tagging (Clark et al., 2003),
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and statistical parsing (Steedman et al., 2003; Mc-
Closky et al., 2006).

Bootstrapping algorithms, however, are known to
suffer from the problem called semantic drift: as the
iteration proceeds, the algorithms tend to select in-
stances increasingly irrelevant to the seed instances
(Curran et al., 2007). For example, suppose we want
to collect the names of common tourist sites from a
web corpus. Given seed instances {New York City,
Maldives Islands}, bootstrapping might learn, at one
point of the iteration, patterns like “pictures of X”
and “photos of X,” which also co-occur with many
irrelevant instances. In this case, a later iteration
would likely acquire frequent words co-occurring
with these generic patterns, such as Michael Jack-
son.

Previous work has tried to reduce the effect of se-
mantic drift by making the stop list of instances that
must not be extracted (Curran et al., 2007; McIntosh
and Curran, 2009). Drift can also be reduced with
carefully selected seeds. However, both of these ap-
proaches require expert knowledge.

In this paper, we propose a graph-based approach
to seed selection and stop list creation for the state-
of-the-art bootstrapping algorithm Espresso (Pantel
and Pennacchiotti, 2006). An advantage of this ap-
proach is that it requires zero or minimal super-
vision. The idea is to use the hubness score of
instances and patterns computed from the point-
wise mutual information matrix with the HITS al-
gorithm (Kleinberg, 1999). Komachi et al. (2008)
pointed out that semantic drift in Espresso has the
same root as fopic drift (Bharat and Henzinger,
1998) observed with HITS, noting the algorithmic
similarity between them. While Komachi et al. pro-
posed to use algorithms different from Espresso to
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avoid semantic drift, in this paper we take advantage
of this similarity to make better use of Espresso.

We demonstrate the effectiveness of our approach
on a word sense disambiguation task.

2 Background

In this section, we review related work on seed se-
lection and stop list construction. We also briefly in-
troduce the Espresso bootstrapping algorithm (Pan-
tel and Pennacchiotti, 2006) for which we build our
seed selection and stop list construction methods.

2.1 Seed Selection

The performance of bootstrapping can be greatly in-
fluenced by a number of factors such as the size of
the seed set, the composition of the seed set and the
coherence of the concept being expanded (Vyas et
al., 2009). Vyas et al. (2009) studied the impact of
the composition of the seed sets on the expansion
performance, confirming that seed set composition
has a significant impact on the quality of expansions.
They also found that the seeds chosen by non-expert
editors are often worse than randomly chosen ones.
A similar observation was made by McIntosh and
Curran (2009), who reported that randomly chosen
seeds from the gold-standard set often outperformed
seeds chosen by domain experts. These results sug-
gest that even for humans, selecting good seeds is a
non-trivial task.

2.2 Stop Lists

Yangarber et al. (2002) proposed to run multiple
bootstrapping sessions in parallel, with each session
trying to extract one of several mutually exclusive
semantic classes. Thus, the instances harvested in
one bootstrapping session can be used as the stop
list of the other sessions. Curran et al. (2007) pur-
sued a similar idea in their Mutual Exclusion Boot-
strapping, which uses multiple semantic classes in
addition to hand-crafted stop lists. While multi-class
bootstrapping is a clever way to reduce human su-
pervision in stop list construction, it is not generally
applicable to bootstrapping for a single class. To ap-
ply the idea of multi-class bootstrapping to single-
class bootstrapping, one has to first find appropri-
ate competing semantic classes and good seeds for
them, which is in itself a difficult problem. Along
this line of research, McIntosh (2010) recently used
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Algorithm 1 Espresso algorithm

1: Input: Seed vector iy

2 Instance-pattern co-occurrence matrix A
3 Instance cutoff parameter k

4 Pattern cutoff parameter m

5: Number of iterations T

6: Output: Instance score vector i

7: Pattern score vector p

8: function ESPRESSO(ig, A, k,m, T)

9: i—ip
10: forr=1,2,....,7do
11: p—ATi
12: Scale p so that the components sum to one.
13: p < SELECTKBEST(p, k)
14: i—Ap
15: Scale i so that the components sum to one.
16: i< SELECTKBEST(i,m)
17: return i and p
18: function SELECTKBEST(v, k)
19: Retain only the k largest components of v, resetting the
remaining components to 0.
20: return v

clustering to find competing semantic classes (nega-
tive categories).

2.3 Espresso

Espresso (Pantel and Pennacchiotti, 2006) is one of
the state-of-the-art bootstrapping algorithms used in
many natural language tasks (Komachi and Suzuki,
2008; Abe et al., 2008; Ittoo and Bouma, 2010;
Yoshida et al., 2010). Espresso takes advantage of
pointwise mutual information (pmi) (Manning and
Schiitze, 1999) between instances and patterns to
evaluate their reliability. Let n be the number of all
instances in the corpus, and p the number of all pos-
sible patterns. We denote all pmi values as an n X p
instance-pattern matrix A, with the (i, j) element of
A holding the value of pmi between the ith instance
and the jth pattern. Let AT denote the matrix trans-
pose of A.

Algorithm 1 shows the pseudocode of Espresso.
The input vector iy (called seed vector) is an n-
dimensional binary vector with 1 at the ith com-
ponent for every seed instance i, and O elsewhere.
The algorithm outputs an n-dimensional vector i and
an p-dimensional vector p, respectively representing
the final scores of instances and patterns. Note that
for brevity, the pseudocode assumes fixed numbers
(k and m) of components in i and p are carried over
to the subsequent iteration, but the original Espresso



allows them to gradually increase with the number
of iterations.

3 HITS-based Approach to Seed Selection
and Stop List Construction

3.1 Espresso and HITS

Komachi et al. (2008) pointed out the similarity
between Espresso and Kleinberg’s HITS web page
ranking algorithm (Kleinberg, 1999). Indeed, if we
remove the pattern/instance selection steps of Algo-
rithm 1 (lines 13 and 16), the algorithm essentially
reduces to HITS. In this case, the outputs i and p
match respectively the hubness and authority score
vectors of HITS, computed on the bipartite graph of
instances and patterns induced by matrix A.

An implication of this algorithmic similarity is
that the outputs of Espresso are inherently biased
towards the HITS vectors, which is likely to be
the cause of semantic drift. Even though the pat-
tern/instance selection steps in Espresso reduce such
a bias to some extent, the bias still persists, as em-
pirically verified by Komachi et al. (2008). In other
words, the expansion process does not drift in ran-
dom directions, but tend towards the set of instances
and patterns with the highest HITS scores, regard-
less of the target semantic class. We exploit this ob-
servation in seed selection and stop list construction
for Espresso, in order to reduce semantic drift.

3.2 The Procedure

Our strategy is extremely simple, and can be sum-
marized as follows.

1. First, compute the HITS ranking of instances
in the graph induced by the pmi matrix A. This
can be done by calling Algorithm 1 with £ =
m = oo and a sufficiently large 7.

2. Next, check the top instances in the HITS rank-
ing list manually, and see if these belong to the
target class.

3. The third step depends on the outcome of the
second step.

(a) If the top instances are of the target class,
use them as the seeds. We do not use a
stop list in this case.
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(b) If not, these instances are likely to make a
vector for which semantic drift is directed;
hence, use them as the stop list. In this
case, the seed set must be prepared manu-
ally, just like the usual bootstrapping pro-
cedure.

4. Run Espresso with the seeds or stop list found
in the last step.

4 Experimental Setup

We evaluate our methods on a variant of the /lexi-
cal sample word sense disambiguation task. In the
lexical sample task, a small pre-selected set of a tar-
get word is given, along with an inventory of senses
for each word (Jurafsky and Martin, 2008). Each
word comes with a number of instances (context
sentences) in which the target word occur, and some
of these sentences are manually labeled with the cor-
rect sense of the target word in each context. The
goal of the task is to classify unlabeled context sen-
tences by the sense of the target word in each con-
text, using the set of labeled sentences.

To apply Espresso for this task, we reformulate
the task to be that of seed set expansion, and not
classification. That is, the hand-labeled sentences
having the same sense label are used as the seed set,
and it is expanded over all the remaining (unlabeled)
sentences.

The reason we use the lexical sample task is that
every sentence (instance) belongs to one of the pre-
defined senses (classes), and we can expect the most
frequent sense in the corpus to form the highest
HITS ranking instances. This allows us to com-
pletely automate our experiments, without the need
to manually check the HITS ranking in Step 2 of
Section 3.2. That is, for the most frequent sense
(majority sense), we take Step 3a and use the highest
ranked instances as seeds; for the rest of the senses
(minority senses), we take Step 3b and use them as
the stop list.

4.1 Datasets

We used the seven most frequent polysemous nouns
(arm, bank, degree, difference, paper, party and
shelter) in the SENSEVAL-3 dataset, and line (Lea-
cock et al., 1993) and interest (Bruce and Wiebe,



Task Method MAP AUC R-Precision P@30 P@50 P@100

arm Random 84.3 +4.1 59.6 +8.1 80.9 +2.2 89.5 +10.8 87.7 £9.6 854 +7.2
HITS 85.9 59.7 79.3 100 98.0 89.0

bank Random 74.8 +£6.5 61.6 +9.6 72.6 +4.5 829 +14.8 80.1 £13.5 76.6 £10.9
HITS 84.8 77.6 78.0 100 100 94.0

degree Random 69.4 +3.0 54.3 +4.2 66.7 +2.3 76.8 9.5 73.8 £7.5 70.5 £5.3
HITS 62.4 49.3 63.2 56.7 64.0 66.0

difference Random 48.3 +3.8 54.5+£5.0 47.0 £4.4 53.9 £10.7 50.7 +8.8 479 +6.1
HITS 50.2 60.1 51.1 60.0 60.0 48.0

paper Random 75.2 +4.1 56.4 +7.1 71.6 £3.3 82.3 +9.8 79.6 +8.8 76.9 +6.1
HITS 75.2 61.0 75.2 73.3 80.0 78.0

party Random 79.1 £5.0 57.0 £9.7 76.6 £3.1 84.5 £10.7 82.7 £9.2 80.2 £7.5
HITS 85.2 68.2 78.5 100 96.0 87.0

shelter Random 749 +£2.3 51.5+3.3 732 +1.3 77.3 +£7.8 76.0 £5.6 74.5 £3.5
HITS 77.0 54.6 72.0 76.7 84.0 79.0

line Random 445 +15.1 363 %169 40.1 £14.6 75.0 £21.0 69.8 £24.1 62.3 +£27.9
HITS 72.2 68.6 68.5 100 100 100

interest Random 64.9 +8.3 64.9 £12.0 63.7 £10.2 87.6 £13.2 853 +13.7 81.2+13.9
HITS 75.3 83.0 80.1 100 94.0 77.0

Avg. Random 68.4 55.1 65.8 78.9 76.2 72.8
HITS 74.2 64.7 71.8 85.2 86.2 79.8

Table 1: Comparison of seed selection for Espresso (T = 5, ngeeq = 7). For Random, results are reported as (mean +
standard deviation). All figures are expressed in percentage terms. The row labeled “Avg.” lists the values macro-

averaged over the nine tasks.

1994) datasets! for our experiments. We lowercased
words in the sentence and pre-processed them with
the Porter stemmer (Porter, 1980) to get the stems of
words.

Following (Komachi et al., 2008), we used two
types of features extracted from neighboring con-
texts: collocational features and bag-of-words fea-
tures. For collocational features, we set a window of
three words to the right and left of the target word.

4.2 Evaluation methodology

We run Espresso on the above datasets using differ-
ent seed selection methods (for majority sense of tar-
get words), and with or without stop lists created by
our method (for minority senses of target words).

We evaluate the performance of the systems ac-
cording to the following evaluation metrics: mean
average precision (MAP), area under the ROC curve
(AUC), R-precision, and precision@n (P@n) (Man-
ning et al., 2008). The output of Espresso may con-
tain seed instances input to the system, but seeds are
excluded from the evaluation.

Thttp://www.d.umn.edu/~tpederse/data.html
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5 Results and Discussion

5.1 Effect of Seed Selection

We first evaluate the performance of our seed se-
lection method for the majority sense of the nine
polysemous nouns. Table 1 shows the performance
of Espresso with the seeds chosen by the proposed
HITS-based seed selection method (HITS), and with
the seed sets randomly chosen from the gold stan-
dard sets (Random; baseline). The results for Ran-
dom were averaged over 1000 runs. We set the num-
ber of seeds ngeq = 7 and number of iterations T =5
in this experiment.

As shown in the table, HITS outperforms the
baseline systems except degree. Especially, the
MAP reported in Table 1 shows that our approach
achieved improvements of 10 percentage points on
bank, 6.1 points on party, 27.7 points on line, and
10.4 points on interest over the baseline, respec-
tively. AUC and R-precision mostly exhibit a trend
similar to MAP, except R-precision in arm and shel-
ter, for which the baseline is better. It can be seen
from the P@n (P@30, P@50 and P@100) reported
in Table 1 that our approach performed considerably
better than baseline, e.g., around 17-20 points above



Task Method MAP AUC R-Precision P@10 P@20 P@30
arm NoStop 127 +4.3 51.8 +10.8 13.9+9.8 21.4 4£19.1 15.1 £12.0 14.1 £10.4
HITS 134 +4.1 53.7 £10.5 15.0 £9.5 238 +17.7 17.5+12.0 15.5+10.2
bank NoStop 325451 73.0+8.5 45.1 £10.3 80.4 £21.8 703 +£21.2 62.6 £18.1
HITS 33.7 £3.7 75.4 +£5.7 47.6 8.1 82.6 £18.1 72.7 +£18.5 65.3+15.5
degree NoStop 347442 69.7 5.6 43.0 +£7.1 70.0 £18.7 62.8 £15.7 55.8+14.3
HITS 357 +43 71.7+5.6 44.3 +7.6 724 +16.4 644 +159 58.3 +16.2
difference  NoStop 20.2 £3.9 57.1 £6.7 22.3 +8.3 358 +£18.7 27.7+14.0 25.5+11.9
HITS 21.2 +3.8 59.1 +6.3 24.2 +8.4 38.2 £20.5 30.2 +14.0 28.0 +11.9
paper NoStop 259 +6.6 53.1 £10.0 27.7+9.8 552 +£34.7 424 +£254 36.0 £17.8
HITS 272 +6.3 56.3 +9.1 29.4 +9.5 57.4 +35.3 45.6 £25.3 38.7 +£17.5
party NoStop 23.0£53 594 +10.8 30.5+9.1 59.6 £25.8 46.8 £17.4 38.7 £12.7
HITS 24.1 +£5.0 62.5+9.8 32.1+94 61.6 +26.4 479 £16.6 40.8 +£12.7
shelter NoStop 243 +£2.4  50.6 £3.2 25.1 +£4.6 254 £11.7 269 £10.3 259 £8.7
HITS 25.6 2.3 53.4 +£3.0 26.5 +4.8 28.8 129 29.0 £10.4 28.1 8.2
line NoStop 6.5 £1.8 383453 2.1 £4.1 0.8 £4.4 1.8 +£8.9 23 £11.0
HITS 6.7 £1.9 38.8 5.8 24 +4.4 1.0 4.6 2.0 £8.9 2.5 +£11.1
interest NoStop 294 +£7.6 61.0+12.1 33.7+13.2 69.6+40.3 67.04+39.1 65.7+37.8
HITS 31.2+5.6 63.6 £9.1 36.1 £10.5 81.0 £29.4 78.1 £27.0 77.4 +£24.3
Avg. NoStop 232 57.1 27.0 46.5 40.1 36.3
HITS 24.3 59.4 28.6 49.6 43.0 394

Table 2: Effect of stop lists for Espresso (nsiop = 10, ngeeq = 10, T = 20). Results are reported as (mean =+ standard
deviation). All figures are expressed in percentage. The row labeled “Avg.” shows the values macro-averaged over all

nine tasks.

the baseline on bank and 25-37 points on line.

5.2 Effect of Stop List

Table 2 shows the performance of Espresso using
the stop list built with our proposed method (HITS),
compared with the vanilla Espresso not using any
stop list (NoStop).

In this case, the size of the stop list is set to ng0p =
10, and the number of seeds ng.cq = 10 and iterations
7 = 20. For both HITS and NoStop, the seeds are
selected at random from the gold standard data, and
the reported results were averaged over 50 runs of
each system. Due to lack of space, only the results
for the second most frequent sense for each word are
reported; i.e., the results for more minor senses are
not in the table. However, they also showed a similar
trend.

As shown in the table, our method (HITS) outper-
forms the baseline not using a stop list (NoStop), in
all evaluation metrics. In particular, the P@n listed
in Table 2 shows that our method provides about
11 percentage points absolute improvement over the
baseline on interest, for all n = 10, 20, and 30.
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6 Conclusions

We have proposed a HITS-based method for allevi-
ating semantic drift in the bootstrapping algorithm
Espresso. Our idea is built around the concept of
hubs in the sense of Kleinberg’s HITS algorithm, as
well as the algorithmic similarity between Espresso
and HITS. Hub instances are influential and hence
make good seeds if they are of the target seman-
tic class, but otherwise, they may trigger semantic
drift. We have demonstrated that our method works
effectively on lexical sample tasks. We are currently
evaluating our method on other bootstrapping tasks,
including named entity extraction.
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Abstract

The written form of Arabic, Modern Standard
Arabic (MSA), differs quite a bit from the
spoken dialects of Arabic, which are the true
“native” languages of Arabic speakers used in
daily life. However, due to MSA’s prevalence
in written form, almost all Arabic datasets
have predominantly MSA content. We present
the Arabic Online Commentary Dataset, a
52M-word monolingual dataset rich in dialec-
tal content, and we describe our long-term an-
notation effort to identify the dialect level (and
dialect itself) in each sentence of the dataset.
So far, we have labeled 108K sentences, 41%
of which as having dialectal content. We also
present experimental results on the task of au-
tomatic dialect identification, using the col-
lected labels for training and evaluation.

1 Introduction

The Arabic language is characterized by an interest-
ing linguistic dichotomy, whereby the written form
of the language, Modern Standard Arabic (MSA),
differs in a non-trivial fashion from the various spo-
ken varieties of Arabic. As the variant of choice for
written and official communication, MSA content
significantly dominates dialectal content, and in turn
MSA dominates in datasets available for linguistic
research, especially in textual form.

The abundance of MSA data has greatly aided re-
search on computational methods applied to Arabic,
but only the MSA variant of it. A state-of-the-art
Arabic-to-English machine translation system per-
forms quite well when translating MSA source sen-
tences, but often produces incomprehensible output
when the input is dialectal. For example, most words
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Src (MSA): ¢ daSlaall il (praymall (o AL 038 (5 i e
TL: mtY snrY h*h Alvip mn Almjrmyn ixDE limHAkmp ?

MT: When will we see this group of"offenders"subject"to"a trial ?

at kraﬂs\a‘e\'
Src (Lev): \GL ¢ aSlatt el (pe AL i gl ¢ il

TL: AymtY, rH n$wf hAl§lp mn Almjrmyn bttHAkm, ?
=

MT:'Aimity"suggested"NCov"HaIpr"Btaathakm of criminals ?

Figure 1: Two roughly equivalent Arabic sentences, one
in MSA and one in Levantine Arabic, translated by the
same MT system into English. An acceptable translation
would be When will we see this group of criminals un-
dergo trial (or tried)?. The MSA variant is handled well,
while the dialectal variant is mostly transliterated.

of the dialectal sentence of Figure 1 are transliter-
ated.! Granted, it is conceivable that processing di-
alectal content is more difficult than MSA, but the
main problem is the lack of dialectal training data.”

In this paper, we present our efforts to create
a dataset of dialectal Arabic, the Arabic Online
Commentary Dataset, by extracting reader com-
mentary from the online versions of three Arabic
newspapers, which have a high degree (about half)
of dialectal content (Levantine, Gulf, and Egyptian).
Furthermore, we describe a long-term crowdsourced
effort to have the sentences labeled by Arabic speak-
ers for the level of dialect in each sentence and the
dialect itself. Finally, we present experimental re-
sults on the task of automatic dialect classification
with systems trained on the collected dialect labels.

!The high transliteration rate is somewhat alarming, as the
first two words of the sentence are relatively frequent: AymtY
means ‘when’ and rH corresponds to the modal ‘will’.

21t can in fact be argued that MSA is the variant with the
more complex sentence structure and richer morphology.

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 37-41,
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Figure 2: One possible breakdown of spoken Arabic into
dialect groups: Maghrebi, Egyptian, Levantine, Gulf, and
Iraqi. Habash (2010) also gives a very similar breakdown.

2 The AOC Dataset

Arabic is the official language in over 20 countries,
spoken by more than 250 million people. The of-
ficial status only refers to a written form of Arabic
known as Modern Standard Arabic (MSA). The spo-
ken dialects of Arabic (Figure 2) differ quite a bit
from MSA and from each other. The dominance of
MSA in available Arabic text makes dialectal Arabic
datasets hard to come by.?

We set out to create a dataset of dialectal Ara-
bic to address this need. The most viable re-
source of dialectal Arabic text is online data, which
18 more individual-driven and less institutionalized,
and therefore more likely to contain dialectal con-
tent. Possible sources of dialectal text include we-
blogs, forums, and chat transcripts. However, we-
blogs usually contain relatively little data, and a
writer might use dialect in their writing only occa-
sionaly, forums usually have content that is of little
interest or relevance to actual applications, and chat
transcripts are difficult to obtain and extract.

We instead diverted our attention to online com-
mentary by readers of online content. This source
of data has several advantages:

e A large amount of data, with more data becom-
ing available on a daily basis.

e The data is publicly accessible, exists in a struc-
tured, consistent format, and is easy to extract.

o A high level of topic relevance.

3The problem is somewhat mitigated in the speech domain,
since dialectal data exists in the form of phone conversations
and television program recordings.
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Al-Youm

News Source Al-Ghad | Al-Riyadh | Al-Sabe’
# articles 6.30K 34.2K 45.7K
# comments 26.6K 805K 565K

# sentences 63.3K 1,686K 1,384K
# words 1.24M 18.8M 32.1M
comments/article 4.23 23.56 12.37

sentences/comment 2.38 2.09 2.45

words/sentence 19.51 11.14 23.22

Table 1: A summary of the different components of the
AOQOC dataset. Overall, 1.4M comments were harvested
from 86.1K articles, corresponding to 52.1M words.

e The prevalence of dialectal Arabic.

The Arabic Online Commentary dataset that we
created was based on reader commentary from the
online versions of three Arabic newspapers: Al-
Ghad from Jordan, Al-Riyadh from Saudi Arabia,
and Al-Youm Al-Sabe’ from Egypt.* The common
dialects in those countries are Levantine, Gulf, and
Egyptian, respectively.

We crawled webpages corresponding to articles
published during a roughly-6-month period, cover-
ing early April 2010 to early October 2010. This
resulted in crawling about 150K URL’s, 86.1K of
which included reader commentary (Table 1). The
data consists of 1.4M comments, corresponding to
52.1M words.

We also extract the following information for each
comment, whenever available:

e The URL of the relevant newspaper article.

e The date and time of the comment.

e The author ID associated with the comment.’
e The subtitle header.”

e The author’s e-mail address.’

The author’s geographical location.’

The AOC dataset (and the dialect labels of Sec-
tion 3) is fully documented and publicly available.®

*URL’s: www.alghad. com, www.alriyadh.com, and
WWW.youm7.com.

3These fields are provided by the author.

®Data URL: http://cs. jhu.edu/~ozaidan/AOC/.
The release also includes all sentences from articles in the 150K
crawled webpages.



3 Augmenting the AOC with Dialect
Labels

We have started an ongoing effort to have each sen-
tence in the AOC dataset labeled with dialect labels.
For each sentence, we would like to know whether
or not it has dialectal content, how much dialect
there is, and which variant of Arabic it is. Having
those labels would greatly aid researchers interested
in dialect by helping them focus on the sentences
identified as having dialectal content.

3.1 Amazon’s Mechanical Turk

The dialect labeling task requires knowledge of Ara-
bic at a native level. To gain access to native Arabic
speakers, and a large number of them, we crowd-
sourced the annotation task to Amazon’s Mechani-
cal Turk (MTurk), an online marketplace that allows
“Requesters” to create simple tasks requiring human
knowledge, and have them completed by “Workers”
from all over the world.

3.2 The Annotation Task

Of the 3.1M available sentences, we selected a
‘small’ subset of 142,530 sentences to be labeled by
MTurk Workers.” We kept the annotation instruc-
tions relatively simple, augmenting them with the
map from Figure 2 (with the Arabic names of the
dialects) to illustrate the different dialect classes.

The sentences were randomly grouped into
14,253 sets of 10 sentences each. When a Worker
chooses to perform our task, they are shown the 10
sentences of some random set, on a single HTML
page. For each sentence, they indicate the level of
dialectal Arabic, and which dialect it is (if any). We
offer a reward of $0.05 per screen, and request each
one be completed by three distinct Workers.

3.3 Quality Control

To ensure high annotation quality, we insert two ad-
ditional control sentences into each screen, taken
from the article bodies. Such sentences are almost
always in MSA Arabic. Hence, a careless Worker
can be easily identified if they label many control
sentences as having dialect in them.

"There are far fewer sentences available from Al-Ghad than
the other two sources (fourth line of Table 1). We have taken
this imbalance into accout and heavily oversampled Al-Ghad
sentences when choosing sentences to be labeled.
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News Source #* 2 BT * @ It
Al-Ghad 18,947 409K 11,350 | 240K
Al-Riyadh 31,096 378K 20,741 | 288K
Al-Youm Al-Sabe’ || 13,512 334K 12,527 | 327K
ALL 63,555 | 1,121K || 44,618 | 855K

Table 2: A breakdown of sentences for which > 2 anno-
tators agreed on whether dialectal content exists or not.

Another effective method to judge a Worker’s
quality of work is to examine their label distribution
within each news source. For instance, within the
sentences from Al-Youm Al-Sabe’, most sentences
judged as having dialectal content should be clas-
sified as Egyptian. A similar strong prior exists for
Levantine within Al-Ghad sentences, and for Gulf
within Al-Riyadh sentences.

Using those two criteria, there is a very clear
distinction between Workers who are faithful and
those who are not (mostly spammers), and 13.8%
of assignments are rejected on these grounds and re-
posted to MTurk.

3.4 Dataset Statistics

We have been collecting labels from MTurk for a pe-
riod of about four and a half months. In that period,
11,031 HITs were performed to completion (cor-
responding to 110,310 sentences, each labeled by
three distinct annotators). Overall, 455 annotators
took part, 63 of whom judged at least 50 screens.
Our most prolific annotator completed over 6,000
screens, with the top 25 annotators supplying about
80% of the labels, and the top 50 annotators supply-
ing about 90% of the labels.

We consider a sentence to be dialectal if it is la-
beled as such by at least two annotators. Similarly,
a sentence is considered to be MSA if it has at least
two MSA labels. For a small set of sentences (2%),
no such agreement existed, and those sentences were
discarded (they are mostly sentences identified as
being non-Arabic). Table 2 shows a breakdown of
the rest of the sentences.®

8Data
RCLMT/.

URL: http://cs.jhu.edu/~ozaidan/



Accuracy (%)
Precision (%)
Recall (%)

Classification Task
Al-Ghad MSA vs. LEV
Al-Riyadh MSA vs. GLF
Al-Youm Al-Sabe’ MSA vs. EGY
MSA vs. dialect
LEV vs. GLF vs. EGY
MSA vs. LEV vs. GLF vs. EGY

79.6
75.1
80.9
71.8
83.5
69.4

70.6
66.9
1.7
71.2
N/A
N/A

78.2
74.6
84.4
77.6
N/A
N/A

Table 3: Accuracy, dialect precision, and dialect recall
(10-fold cross validation) for various classification tasks.

4 Automatic Dialect Classification

One can think of dialect classification as a lan-
guage identification task, and techniques for lan-
guage identification can be applied to dialect clas-
sification. We use the collected labels to investigate
how well a machine learner can distinguish dialectal
Arabic from MSA, and how well it can distinguish
between the different Arabic dialects.

We experiment with a language modeling ap-
proach. In a classification task with c classes, we
build ¢ language models, one per class. At test
time, we score a test sentence with all ¢ models,
and choose the class label of the model assigning
the highest score (i.e. lowest perplexity). We use the
SRILM toolkit to build word trigram models, with
modified Kneser-Ney as a smoothing method, and
report the results of 10-fold cross validation.

Table 3 illustrates the performance of this method
under various two-, three-, and four-way scenarios.
We find that it is quite good at distinguishing each
dialect from the corresponding MSA content, and
distinguishing the dialects from each other.

We should note that, in practice, accuracy is prob-
ably not as important of a measure as (dialect) pre-
cision, since we are mainly interested in identifying
dialectal data, and much less so MSA data. To that
end, one can significantly increase the precision rate
(at the expense of recall, naturally) by biasing clas-
sification towards MSA, and choosing the dialectal
label only if the ratio of the two LM scores exceeds
a certain threshold. Figure 3 illustrates this tradeoff
for the classification task over Al-Ghad sentences.
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Figure 3: Dialect precision vs. recall for the classification
task over Al-Ghad sentences (MSA vs. Levantine). The
square point corresponds to the first line in Table 3.

5 Related Work

The COLABA project (Diab et al., 2010) is an-
other large effort to create dialectal Arabic resources
(and tools). They too focus on online sources such
as blogs and forums, and use information retrieval
tasks for measuring their ability to properly process
dialectal Arabic content.

The work of Irvine and Klementiev (2010) is sim-
ilar to ours in spirit, as they too use MTurk to find an-
notators with relatively uncommon linguistic skills,
to create translation lexicons between English and
42 rare languages. In the same vein, Zaidan and
Callison-Burch (2011) solicit English translations of
Urdu sentences from non-professional translators,
and show that translation quality can rival that of
professionals, for a fraction of the cost.

Lei and Hansen (2011) build Gaussian mixture
models to identify the same three dialects we con-
sider, and are able to achieve an accuracy rate of
71.7% using about 10 hours of speech data for train-
ing. Biadsy et al. (2009) utilize a much larger dataset
(170 hours of speech data) and take a phone recog-
nition and language modeling approach (Zissman,
1996). In a four-way classification task (with Iraqi
as a fourth dialect), they achieve a 78.5% accuracy
rate. It must be noted that both works use speech
data, and that dialect identification is done on the
speaker level, not the sentence level as we do.



6 Current and Future Work

We have already utilized the dialect labels to identify
dialectal sentences to be translated into English, in
an effort to create a Dialectal Arabic-to-English par-
allel dataset (also taking a crowdsourcing approach)
to aid machine translation of dialectal Arabic.
Given the recent political unrest in the Middle
East (early 2011), another rich source of dialectal
Arabic are Twitter posts (e.g. with the #Egypt
tag) and discussions on various political Facebook
groups. Here again, given the topic at hand and
the individualistic nature of the posts, they are very
likely to contain a high degree of dialectal data.
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Abstract

We address the problem of part-of-speech tag-
ging for English data from the popular micro-
blogging service Twitter. We develop a tagset,
annotate data, develop features, and report
tagging results nearing 90% accuracy. The
data and tools have been made available to the
research community with the goal of enabling
richer text analysis of Twitter and related so-
cial media data sets.

1 Introduction

The growing popularity of social media and user-
created web content is producing enormous quanti-
ties of text in electronic form. The popular micro-
blogging service Twitter (twitter.com) is one
particularly fruitful source of user-created content,
and a flurry of recent research has aimed to under-
stand and exploit these data (Ritter et al., 2010; Shar-
ifi et al., 2010; Barbosa and Feng, 2010; Asur and
Huberman, 2010; O’Connor et al., 2010a; Thelwall
etal., 2011). However, the bulk of this work eschews
the standard pipeline of tools which might enable
a richer linguistic analysis; such tools are typically
trained on newstext and have been shown to perform
poorly on Twitter (Finin et al., 2010).

One of the most fundamental parts of the linguis-
tic pipeline is part-of-speech (POS) tagging, a basic
form of syntactic analysis which has countless appli-
cations in NLP. Most POS taggers are trained from
treebanks in the newswire domain, such as the Wall
Street Journal corpus of the Penn Treebank (PTB;
Marcus et al., 1993). Tagging performance degrades
on out-of-domain data, and Twitter poses additional
challenges due to the conversational nature of the
text, the lack of conventional orthography, and 140-
character limit of each message (“tweet”). Figure 1
shows three tweets which illustrate these challenges.
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(a) @Gunservatively@ obozo, willy goy nutsp
whenp PA, elects\, ap Republicany Governory
nextp Tuen ., Cany youq sayy redistrictingy, ?,

(b) Spendingy, thep dayy withhhp mommmay; !

(¢c) Imao; ..., sloy top thep coolp assy asianp
officery 4p #1$ notg runniny, myp licensey andg
#2$ notg takiny, druy boop top jaily ., Thanky,
up Godp ., #ameny

)

Figure 1: Example tweets with gold annotations. Under-
lined tokens show tagger improvements due to features
detailed in Section 3 (respectively: TAGDICT, METAPH,
and DISTSIM).

In this paper, we produce an English POS tagger
that is designed especially for Twitter data. Our con-
tributions are as follows:

* we developed a POS tagset for Twitter,

* we manually tagged 1,827 tweets,

» we developed features for Twitter POS tagging
and conducted experiments to evaluate them, and

* we provide our annotated corpus and trained POS
tagger to the research community.

Beyond these specific contributions, we see this
work as a case study in how to rapidly engi-
neer a core NLP system for a new and idiosyn-
cratic dataset. This project was accomplished in
200 person-hours spread across 17 people and two
months. This was made possible by two things:
(1) an annotation scheme that fits the unique char-
acteristics of our data and provides an appropriate
level of linguistic detail, and (2) a feature set that
captures Twitter-specific properties and exploits ex-
isting resources such as tag dictionaries and phonetic
normalization. The success of this approach demon-
strates that with careful design, supervised machine
learning can be applied to rapidly produce effective
language technology in new domains.

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 42-47,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



Tag Description
Nominal, Nominal + Verbal

Examples %

N common noun (NN, NNS) books someone  13.7

O pronoun (personal/WH; not it you u meeee 6.8
possessive; PRP, WP)

S nominal + possessive books’ someone’s 0.1

" proper noun (NNP, NNPS) lebron usa iPad 6.4
proper noun + possessive ~ America’s 0.2

r N

he’s booK'll iono 1.6
(=1 don’t know)

nominal + verbal

M proper noun + verbal Mark’ll 0.0
Other open-class words
V  verb incl. copula, might gonna 15.1
auxiliaries (V*, MD) ought couldn’t is
eats
A adjective (T ) good fav il 5.1
R adverb (R*, WRB) 2 (i.e., t00) 4.6
! interjection (UH) lol haha FTWyea 2.6
right
Other closed-class words
D determiner (WDT, DT, the teh its it’'s 6.5

WPS, PRPS)
P pre- or postposition, or
subordinating conjunction

while to for 2 (i.e., 8.7
to) 4 (i.e., for)

(IN, TO)

& coordinating conjunction  and n & + BUT 1.7
(CO)

T verb particle (RP) out off Up UP 0.6

X existential there, both 0.1
predeterminers (EX, PDT)

Y X+ verbal there’s all’'s 0.0

Twitter/online-specific

# hashtag (indicates #acl 1.0

topic/category for tweet)

@ at-mention (indicates
another user as a recipient
of a tweet)

~ discourse marker,
indications of continuation
of a message across
multiple tweets

U URL or email address

E emoticon

@BarackObama 4.9

RT and : in retweet 3.4
construction RT
@user : hello

http:/bit.ly/xyz 1.6
)b (: <800 1.0

Miscellaneous
$ numeral (CD) 2010 four 9:30 1.5
, punctuation (¥, $, ', (, W ... ?21? 11.6

Jors st )

G other abbreviations, foreign
words, possessive endings,
symbols, garbage (E'W,
POS, SYM, LS)

ily (I love you) wby 1.1
(what about you)’s
$->

awesome...I'm

Table 1: The set of tags used to annotate tweets. The
last column indicates each tag’s relative frequency in the
full annotated data (26,435 tokens). (The rates for M and
Y are both < 0.0005.)
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2 Annotation

Annotation proceeded in three stages. For Stage 0,
we developed a set of 20 coarse-grained tags based
on several treebanks but with some additional cate-
gories specific to Twitter, including URLs and hash-
tags. Next, we obtained a random sample of mostly
American English1 tweets from October 27, 2010,
automatically tokenized them using a Twitter tok-
enizer (O’Connor et al., 2010b),> and pre-tagged
them using the WSJ-trained Stanford POS Tagger
(Toutanova et al., 2003) in order to speed up man-
ual annotation. Heuristics were used to mark tokens
belonging to special Twitter categories, which took
precedence over the Stanford tags.

Stage 1 was a round of manual annotation: 17 re-
searchers corrected the automatic predictions from
Stage O via a custom Web interface. A total of
2,217 tweets were distributed to the annotators in
this stage; 390 were identified as non-English and
removed, leaving 1,827 annotated tweets (26,436 to-
kens).

The annotation process uncovered several situa-
tions for which our tagset, annotation guidelines,
and tokenization rules were deficient or ambiguous.
Based on these considerations we revised the tok-
enization and tagging guidelines, and for Stage 2,
two annotators reviewed and corrected all of the
English tweets tagged in Stage 1. A third anno-
tator read the annotation guidelines and annotated
72 tweets from scratch, for purposes of estimating
inter-annotator agreement. The 72 tweets comprised
1,021 tagged tokens, of which 80 differed from the
Stage 2 annotations, resulting in an agreement rate
of 92.2% and Cohen’s « value of 0.914. A final
sweep was made by a single annotator to correct er-
rors and improve consistency of tagging decisions
across the corpus. The released data and tools use
the output of this final stage.

2.1 Tagset

We set out to develop a POS inventory for Twitter
that would be intuitive and informative—while at
the same time simple to learn and apply—so as to
maximize tagging consistency within and across an-

'We filtered to tweets sent via an English-localized user in-
terface set to a United States timezone.
http://github.com/brendanc/tweetmotif



notators. Thus, we sought to design a coarse tagset
that would capture standard parts of speech® (noun,
verb, etc.) as well as categories for token varieties
seen mainly in social media: URLs and email ad-
dresses; emoticons; Twitter hashtags, of the form
#tagname, which the author may supply to catego-
rize a tweet; and Twitter at-mentions, of the form
@user, which link to other Twitter users from within
a tweet.

Hashtags and at-mentions can also serve as words
or phrases within a tweet; e.g. Is #gadaffi going down?.
When used in this way, we tag hashtags with their
appropriate part of speech, i.e., as if they did not start
with #. Of the 418 hashtags in our data, 148 (35%)
were given a tag other than #: 14% are proper nouns,
9% are common nouns, 5% are multi-word express-
sions (tagged as G), 3% are verbs, and 4% are some-
thing else. We do not apply this procedure to at-
mentions, as they are nearly always proper nouns.

Another tag, ~, is used for tokens marking spe-
cific Twitter discourse functions. The most popular
of these is the RT (“retweet”) construction to publish
a message with attribution. For example,

RT @USER1 : LMBO ! This man filed an
EMERGENCY Motion for Continuance on
account of the Rangers game tonight | <«
Wow Imao

indicates that the user @USER1 was originally the
source of the message following the colon. We ap-
ply ~ to the RT and : (which are standard), and
also <, which separates the author’s comment from
the retweeted material.* Another common discourse
marker is ellipsis dots (...) at the end of a tweet,
indicating a message has been truncated to fit the
140-character limit, and will be continued in a sub-
sequent tweet or at a specified URL.

Our first round of annotation revealed that, due to
nonstandard spelling conventions, tokenizing under
a traditional scheme would be much more difficult

30ur starting point was the cross-lingual tagset presented by
Petrov et al. (2011). Most of our tags are refinements of those
categories, which in turn are groupings of PTB WSJ tags (see
column 2 of Table 1). When faced with difficult tagging deci-
sions, we consulted the PTB and tried to emulate its conventions
as much as possible.

“These “iconic deictics” have been studied in other online
communities as well (Collister, 2010).
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than for Standard English text. For example, apos-
trophes are often omitted, and there are frequently
words like ima (short for I’m gonna) that cut across
traditional POS categories. Therefore, we opted not
to split contractions or possessives, as is common
in English corpus preprocessing; rather, we intro-
duced four new tags for combined forms: {nominal,
proper noun} x {verb, possessive}.’

The final tagging scheme (Table 1) encompasses
25 tags. For simplicity, each tag is denoted with a
single ASCII character. The miscellaneous category
G includes multiword abbreviations that do not fit
in any of the other categories, like ily (I love you), as
well as partial words, artifacts of tokenization errors,
miscellaneous symbols, possessive endings,® and ar-
rows that are not used as discourse markers.

Figure 2 shows where tags in our data tend to oc-
cur relative to the middle word of the tweet. We
see that Twitter-specific tags have strong positional
preferences: at-mentions (@) and Twitter discourse
markers (~) tend to occur towards the beginning of
messages, whereas URLs (U), emoticons (E), and
categorizing hashtags (#) tend to occur near the end.

3 System

Our tagger is a conditional random field (CRF; Laf-
ferty et al., 2001), enabling the incorporation of ar-
bitrary local features in a log-linear model. Our
base features include: a feature for each word type,
a set of features that check whether the word con-
tains digits or hyphens, suffix features up to length 3,
and features looking at capitalization patterns in the
word. We then added features that leverage domain-
specific properties of our data, unlabeled in-domain
data, and external linguistic resources.

TwORTH: Twitter orthography. We have features
for several regular expression-style rules that detect
at-mentions, hashtags, and URLs.

NAMES: Frequently-capitalized tokens. Micro-
bloggers are inconsistent in their use of capitaliza-
tion, so we compiled gazetteers of tokens which are
frequently capitalized. The likelihood of capital-

. . . Ncap+0£C

ization for a token is computed as —NTC where
>The modified tokenizer is packaged with our tagger.
SPossessive endings only appear when a user or the tok-

enizer has separated the possessive ending from a possessor; the

tokenizer only does this when the possessor is an at-mention.
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Figure 2: Average position, relative to the middle word in the tweet, of tokens labeled with each tag. Most tags fall

between —1 and 1 on this scale; these are not shown.

N 1is the token count, N, is the capitalized to-
ken count, and « and C' are the prior probability
and its prior weight.” We compute features for
membership in the top N items by this metric, for
N € {1000, 2000, 3000, 5000, 10000, 20000}.
TAGgDIcT: Traditional tag dictionary. We add
features for all coarse-grained tags that each word
occurs with in the PTB? (conjoined with their fre-
quency rank). Unlike previous work that uses tag
dictionaries as hard constraints, we use them as soft
constraints since we expect lexical coverage to be
poor and the Twitter dialect of English to vary sig-
nificantly from the PTB domains. This feature may
be seen as a form of type-level domain adaptation.
DisTSiM: Distributional similarity. When train-
ing data is limited, distributional features from un-
labeled text can improve performance (Schiitze and
Pedersen, 1993). We used 1.9 million tokens from
134,000 unlabeled tweets to construct distributional
features from the successor and predecessor proba-
bilities for the 10,000 most common terms. The suc-
cessor and predecessor transition matrices are hori-
zontally concatenated into a sparse matrix M, which
we approximate using a truncated singular value de-
composition: M =~ USVT, where U is limited to
50 columns. Each term’s feature vector is its row
in U; following Turian et al. (2010), we standardize
and scale the standard deviation to 0.1.

METAPH: Phonetic normalization. Since Twitter
includes many alternate spellings of words, we used
the Metaphone algorithm (Philips, 1990)° to create
a coarse phonetic normalization of words to simpler
keys. Metaphone consists of 19 rules that rewrite
consonants and delete vowels. For example, in our

Ta = 1k, C = 10; this score is equivalent to the posterior

probability of capitalization with a Beta(0.1,9.9) prior.

8Both WSJ and Brown corpora, no case normalization. We
also tried adding the WordNet (Fellbaum, 1998) and Moby
(Ward, 1996) lexicons, which increased lexical coverage but did
not seem to help performance.

Via the Apache Commons implementation: http://
commons .apache.org/codec/
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data, {thangs thanks thanksss thanx thinks thnx}
are mapped to ONKS, and {Imao Imaoo Imaooooo}
map to LM. But it is often too coarse; e.g. {war we're
wear were where worry } map to WR.

We include two types of features. First, we use
the Metaphone key for the current token, comple-
menting the base model’s word features. Second,
we use a feature indicating whether a tag is the most
frequent tag for PTB words having the same Meta-
phone key as the current token. (The second feature
was disabled in both —TAGDICT and —METAPH ab-
lation experiments.)

4 Experiments

Our evaluation was designed to test the efficacy of
this feature set for part-of-speech tagging given lim-
ited training data. We randomly divided the set of
1,827 annotated tweets into a training set of 1,000
(14,542 tokens), a development set of 327 (4,770 to-
kens), and a test set of 500 (7,124 tokens). We com-
pare our system against the Stanford tagger. Due
to the different tagsets, we could not apply the pre-
trained Stanford tagger to our data. Instead, we re-
trained it on our labeled data, using a standard set
of features: words within a 5-word window, word
shapes in a 3-word window, and up to length-3
prefixes, length-3 suffixes, and prefix/suffix pairs.!”
The Stanford system was regularized using a Gaus-
sian prior of 02 = 0.5 and our system with a Gaus-
sian prior of 02 = 5.0, tuned on development data.
The results are shown in Table 2. Our tagger with
the full feature set achieves a relative error reduction
of 25% compared to the Stanford tagger. We also
show feature ablation experiments, each of which
corresponds to removing one category of features
from the full set. In Figure 1, we show examples
that certain features help solve. Underlined tokens

'We used the following feature modules in the Stanford tag-
ger: bidirectionalbwords, naacl2003unknowns,
wordshapes (-3, 3), prefix(3), suffix(3),
prefixsuffix (3).



Dev.  Test
Our tagger, all features 88.67 89.37
independent ablations:
—DISTSIM 87.88 88.31 (—1.06)
—TAGDICT 88.28  88.31 (—1.06)
—TWORTH 87.51 88.37 (—1.00)
—METAPH 88.18 88.95 (—0.42)
—NAMES 88.66 89.39 (+0.02)
Our tagger, base features  82.72  83.38
Stanford tagger 85.56 85.85
Annotator agreement 92.2

Table 2: Tagging accuracies on development and test
data, including ablation experiments. Features are or-
dered by importance: test accuracy decrease due to ab-
lation (final column).

Tag Acc. Confused Tag Acc. Confused
\% 91 N ! 82 N
N 85 A L 93 \'

s 98 ~ & 98 A
P 95 R U 97 s
N 71 N $ 89 P
D 95 A # 89 A
(e} 97 A G 26 s
A 79 N E 88 s
R 83 A T 72 P

@ 99 \% A 45 A
~ 91

Table 3: Accuracy (recall) rates per class, in the test set
with the full model. (Omitting tags that occur less than
10 times in the test set.) For each gold category, the most
common confusion is shown.

are incorrect in a specific ablation, but are corrected
in the full system (i.e. when the feature is added).

The —TAcGDICT ablation gets elects, Governor,
and next wrong in tweet (a). These words appear
in the PTB tag dictionary with the correct tags, and
thus are fixed by that feature. In (b), withhh is ini-
tially misclassified an interjection (likely caused by
interjections with the same suffix, like ohhh), but is
corrected by METAPH, because it is normalized to the
same equivalence class as with. Finally, s/o in tweet
(c) means “shoutout”, which appears only once in
the training data; adding DISTSIM causes it to be cor-
rectly identified as a verb.

Substantial challenges remain; for example, de-
spite the NaMEs feature, the system struggles to
identify proper nouns with nonstandard capitaliza-
tion. This can be observed from Table 3, which
shows the recall of each tag type: the recall of proper
nouns (*) is only 71%. The system also struggles

46

with the miscellaneous category (G), which covers
many rare tokens, including obscure symbols and ar-
tifacts of tokenization errors. Nonetheless, we are
encouraged by the success of our system on the
whole, leveraging out-of-domain lexical resources
(TAGDICT), in-domain lexical resources (DISTSIM),
and sublexical analysis (METAPH).

Finally, we note that, even though 1,000 train-
ing examples may seem small, the test set accuracy
when training on only 500 tweets drops to 87.66%,
a decrease of only 1.7% absolute.

5 Conclusion

We have developed a part-of-speech tagger for Twit-
ter and have made our data and tools available to the
research community at http://www.ark.cs.
cmu.edu/TweetNLP. More generally, we be-
lieve that our approach can be applied to address
other linguistic analysis needs as they continue to
arise in the era of social media and its rapidly chang-
ing linguistic conventions. We also believe that the
annotated data can be useful for research into do-
main adaptation and semi-supervised learning.
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Semisupervised condensed nearest neighbor for part-of-epch tagging
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Abstract tions, its probability of error is bound by twice the

Bayes probability of error (Cover and Hart, 1967).
This paper introduces a new training set con-  \emory-based learning has been applied to a wide
densation technique designed for mixtures range of natural language processing tasks including

of labeled and unlabeled data. It finds a -
condensed set of labeled and unlabeled data part-of-speech tagging (Daelemans et al., 1996), de-

points, typically smaller than what is obtained pendency parsing (Nivre, 2003) and word sense dis-

using condensed nearest neighbor on the la- ambiguation (Kubler and Zhekova, 2009). Memory-

beled data only, and improves classification based learning algorithms are said to be lazy be-

accuracy. We evaluate the algorithm on semi-  cause no model is learned from the labeled data
supervised part-of-speech tagging and present  noints. The labeled data poirdse the model. Con-

the best published result on the Wall Street g4 ently, classification time is proportional to the
Journal data set. . L .

number of labeled data points. This is of course im-

practical. Many algorithms have been proposed to

1 Introduction make memory-based learning more efficient. The

é?uition behind many of them is that the set of la-

Labeled data for natural language processing tas led dat int be reduced q d si
such as part-of-speech tagging is often in short sup~ o cata POINTS can be reduced or condensed, since

ply. Semi-supervised learing algorithms are dena"y labeled data points are more or less redundant.

signed to learn from a mixture of labeled and un:I'he algorithms try to extract a subset of the overall

labeled data. Many different semi-supervised algot_ralnlng set that correctly classifies all the discarded

rithms have been applied to natural language préil-_ata} pct)rl]nts th(rjmljghdthe nejlrest nelgrgbt(_)r rulef. Ilntu-
cessing tasks, but the simplest algorithm, name Vely, the model inds good representatives ot clus-

self-training, is the one that has attracted most atte grsin the daFa.or discards _the data points t.h atare far
tion, together with expectation maximization (Ab_from the decision boundaries. Such algorithms are

ney, 2008). The idea behind self-training is simplfa”ed training set condensation algorithms.
to let a model trained on the labeled data label the The need for training set condensation is partic-
unlabeled data points and then to retrain the modalarly important in semi-supervised learning where
on the mixture of the original labeled data and theve rely on a mixture of labeled and unlabeled data
newly labeled data. points. While the number of labeled data points
The nearest neighbor algorithm (Cover and Harts typically limited, the number of unlabeled data
1967) is a memory-based or so-called lazy learrpoints is typically high. In this paper, we intro-
ing algorithm. It is one of the most extensivelyduce a new semi-supervised learning algorithm that
used nonparametric classification algorithms, sincombines self-training and condensation to produce
ple to implement yet powerful, owing to its theo-small subsets of labeled and unlabeled data points
retical properties guaranteeing that for all distributhat are highly relevant for determining good deci-
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sion boundaries. T={x,y), - (Xn,yn) }, C =10
for (x;,y;) € T do

2 Semi-supervised condensed nearest if C'(x;) # y; then
neighbor C=CU{{xi,u)}
The nearest neighbor (NN) algorithm (Cover and end if
: . end for
Hart, 1967) is conceptually simple, yet very pow- return O

erful. Given a set of labeled data poirftslabel any
new data point (feature vectog) with y wherex’
is the data point i most similar tox and (x’, y).
Similarity is usually measured in terms of Euclidean 7 — fix, 4}, ..., (xn,yn)}, C =0
distance. The generalization of the nearest neighboror (x; 4.} € T do

Figure 1: CONDENSED NEAREST NEIGHBOR

algorithm, £ nearest neighbor, finds tihemost simi- if C'(x;) # yi Or Po((xi, yi)|x:) < 0.55 then
lar data pointg, to x and assigns the labelj such C=CU{(xi,y)}
that: end if

- I E / I end for

§ = arg max Yo yen, B x)ly" = o/ etumn. C

with E(-,-) Euclidean distance anjd- || = 1 if the Figure 2: WEAKENED CONDENSED NEAREST NEIGH
argument is true (else 0). In other words, thenost ggRr.

similar points take a weighted vote on the class of

Naive implementations of the algorithm store all , _ ,
the labeled data points and compare each of them fethniques such as bagging (Breiman, 1996), CNN

the data point that is to be classified. Several strat& Unstable (Alpaydin, 1997).

gies have been proposed to make nearest neighboVe also introduce a weakened version of the al-
classification more efficient (Ang|u”|’ 2005) In gorlthm Wh|Ch not Only inCIUdeS miSCIaSSiﬁed data
particular, training set condensation techniques haR®ints in the classifie’, but also correctly classi-
been much studied. fied data points which were labeled with relatively

The condensed nearest neighbor (CNN)aIgorithM’W confidence. S@ includes all data points that
was first introduced in Hart (1968). Finding a subWere misclassified and those whose correct label
set of the labeled data points may lead to faste¥as predicted with low confidence. The weakened
and more accurate classification, but finding the beg§pndensed nearest neighbor (WCNN) algorithm is
subset is an intractable problem (Wilfong, 1992)sketched in Figure 2.

CNN can be seen as a simple technique for approxi- C' inspectsk nearest neighbors when labeling
mating such a subset of labeled data points. new data points, wheré is estimated by cross-

The CNN algorithm is defined in Figure 1 with validation. CNN was first generalized 6NN in
the set of labeled data points afit) is label pre- Gates (1972).
dicted fort by a nearest neighbor classifier "trained” Two related condensation techniques, namely re-
onT. moving typical elements and removing elements by

Essentially we discard all labeled data pointglass prediction strength, were argued not to be
whose label we can already predict with the curuseful for most problems in natural language pro-
rent subset of labeled data points. Note that weessing in Daelemans et al. (1999), but our experi-
have simplified the CNN algorithm a bit comparedments showed that CNN often perform about as well
to Hart (1968), as suggested, for example, in Alpayas NN, and our semi-supervised CNN algorithm
din (1997), iterating only once over data rather thateads to substantial improvements. The condensa-
waiting for convergence. This will give us a smallertion techniques are also very different; While re-
set of labeled data points, and therefore classificaoving typical elements and removing elements by
tion requires less space and time. Note that whilelass prediction strength are methods for removing
the NN rule is stable, and cannot be improved bgata points close to decision boundaries, CNN ide-
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LT= {<X17y1>7 ceey <Xnyyn>}' C=0,C"=90
2: U ={(x1),...,(x'm)} # unlabeled data
g 3: for (x;,y;) € T do
4. if C(x;) # yi or Po({x;,y:)|xi) < 0.55
S then
s : Good 5: ¢C=CU {<Xi7 yz>}
: ! : representative 6: end if
Bl Y | 7: end for
e 8: for (x';) € U do
9: if Pr((x's, T(x';))|w;) > 0.90 then
) 10: C=CU{{xy,,Tx))}
11:  endif
12: end for

13: for (x;,y;) € C do
Figure 3: Unlabeled data may help find better representd4:  if C'(x;) # y; then

tives in condensed training sets. 15: C'=C"U{(xi,yi)}
16: endif
17: end for

ally only removes elements close to decision boundg. return ¢’
aries when the classifier has no use of them.
Intuitively, with relatively simple problems, Figure 4: $MI-SUPERVISED CONDENSED NEAREST
e.g. mixtures of Gaussians, CNN and WCNN try tgVEIGHBOR.
find the best possible representatives for each clus-

ter in the distribution of data, i.e. finding the pointsthat are labeled with confidence greater than 90%.
closest to the center of each cluster. Ideally, CNNve then obtain a new WCNK" from the new data

returns one point for each cluster, namely the cerset which is a mixture of labeled and unlabeled data
ter of each cluster. However, a sample of labelegoints. See Figure 4 for details.

data may not include data points that are near the

center of a cluster. Consequently, CNN sometime8 Part-of-speech tagging

needs several points to stabilize the representation of

a cluster; e.g. the two positives in Figure 3. Our part-of-speech tagging data set is the standard

When a large number of unlabeled data pointgata set from Wall Street Journal included in Pen_n-
that are labeled according to nearest neighbors poli (Marcus et al., 1993). We use the standard splits
ulates the clusters, chances increase that we find &3 construct our data set in the following way, fol-
points near the centers of our clusters, e.g. the "god@Wing Segaard (2010): Each word in thel d%m
representative” in Figure 3. Of course the centers ¢F assoclzl_ated with a feature vecter = (x;, z7)
our clusters may move, but the positive results op¥Nerez; isthe prediction onv; of a supervised part-
tained experimentally below suggest that it is mor@-SPeech tagger, in our case SVMTb@Gimenez
likely that labeling unlabeled data by nearest neigh?"

d Marquez, 2004) trained on Sect. 0-18, aﬁd
bors will enable s to do better training set conder!S @ Prediction ony; from an unsupervised part-of-
sation.

speech tagger (a cluster label), in our case Unsu-
This is exactly what semi-supervised Condense%os (Biemann, 2006) trained on the British National
nearest neighbor (SCNN) does. We first run a

orpus?  We train a semi-supervised condensed

WCNN ¢ and obtain a condensed set of labeled CI(,jlgﬂearest neighbor classifier on Sect. 19 of the devel-
points. To this set of labeled data points we add gpment data and unlabeled data from the Brown cor-
large number of unlabeled data points labeled by RUs and apply it to Sect. 22-24. The labeled data

NN classifier?" on the original data set. We use @ thtp:/mww.lsi.upc.estnip/SVMTool/
simple selection criterion and include all data points 2nttp://wortschatz.uni-leipzig.deichiemann/software/
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points are thus of the form (one data point or wort
per line):

JJ JJ 17* e
NNS NNS 1 0T -

IN IN 428 &

DT DT 425 4

where the first column is the class labels or th ¢
gold tags, the second column the predicted tags al |
the third column is the "tags” provided by the unsu-
pervised tagger. Words marked by ™" are out-of-
vocabulary words, i.e. words that did not occur ir
the British National Corpus. The unsupervised tac
ger is used to cluster tokens in a meaningful way.
Intuitively, we try to learn part-of-speech tagging byrigyre 5: Normalized accuracy (range: 92.62-94.82) and

learning when to rely on SVMTool. condensation (range: 310-512 data points).
The best reported results in the literature on Wall

Street Journal Sect. 22—24 are 97.40% in Suzuki e} ters in the dat King it ier to identi
al. (2009) and 97.44% in Spoustova et al. (2009) USt€rs In the data, making it €asier o iden ify rep-

both systems use semi-supervised learning tecf€Sentative data points. Since we can easier identify

niques. Our semi-supervised condensed neare}(}g{)resentative data p_oints, training set condensation
neighbor classifier achieves an accuracy of 97.509 pecomes more effective.

Equally importantly it condensates the available data
points, from Sect. 19 and the Brown corpus, that
is more than 1.2M data points, to only 2249 datd he implementation used in the experiments builds
points, making the classifier very fast. CNN alone i®n Orange 2.0b for Mac OS X (Python and C++).
a lot worse than the input tagger, with an accuracin particular, we made use of the implementations
of 95.79%. Our approach is also significantly betteef Euclidean distance and random sampling in their
than Sggaard (2010) who apply tri-training (Li andpackage. Our code is available at:

Zhou, 2005) to the output of SVMTool and Unsu-

Implementation

cst. dk/ ander s/ sccn/

pos.
| acc (%) data points err.red 5 Conclusions
CNN 95.79 3,811 . We have introduced a new learning algorithm that
g\c/mom g;ig 2’2_49 40.6% simultane_ously condensates labeled data and learns
Segaard 97 27 i from a mixture of Iabeled. and unlabeled data. We
Suzuki et al. 97.40 . have compared the algorithm to condensed nearest
Spoustovaetal| 97.44 - neighbor (Hart, 1968; Alpaydin, 1997) and showed

In our second experiment, where we vary th
amount of unlabeled data points, we only train ou
ensemble on the first 5000 words in Sect. 19 anglfe
evaluate on the first 5000 words in Sect. 22—24'"9:
The derived learning curve for the semi-supervise

éhat the algorithm leads to more condensed models,
gnd that it performs significantly better than con-

nsed nearest neighbor. For part-of-speech tag-
the error reduction over condensed nearest
aeighbor is more than 40%, and our model is 40%

learner is depicted in Figure 5. The immediate droﬁmaller than the one induced by condensed nearest

in the red scatter plot illustrates the condensation el

eighbor. While we have provided no theory for

fect of semi-supervised learning: when we begin téemi-supervised condensed nearest neighbor, we be-

add unlabeled data, accuracy increases by more th

Ig;]ve that these results demonstrate the potential of

1.5% and the data set becomes more condenséli'f proposed method.
Semi-supervised learning means that we populate
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Abstract

Transliteration, a rich source of proper noun
spelling variations, is usually recognized by
phonetic- or spelling-based models. How-
ever, a single model cannot deal with dif-
ferent words from different language origins,
e.g., “get” in “piaget” and “target.” Li et

al. (2007) propose a method which explicitly
models and classifies the source language ori-
gins and switches transliteration models ac-
cordingly. This model, however, requires an
explicitly tagged training set with language
origins. We propose a novel method which
models language origins as latent classes. The
parameters are learned from a set of translit-
erated word pairs via the EM algorithm. The
experimental results of the transliteration task
of Western names to Japanese show that the
proposed model can achieve higher accuracy
compared to the conventional models without
latent classes.

Introduction

Satoshi Sekine
Rakuten Institute of Technology, New York
215 Park Avenue South, New York, NY

satoshi.b.sekine@mail.rakuten.com

recognizing word-to-word transliteration correspon-
dence. These methods usually learn a single model
given a training set. However, single models cannot
deal with words from multiple language origins. For
example, the “get” parts in “piagetf 7 > = piaje”’
(French origin) and “target &# —7% > I tagettd
(English origin) may differ in how they are translit-
erated depending on their origins.

Li et al. (2007) tackled this issue by proposing a
class transliteration modeWhich explicitly models
and classifies origins such as language and genders,
and switches corresponding transliteration model.
This method requires training sets of transliterated
word pairs with language origin. However, it is diffi-
cult to obtain such tagged data, especially for proper
nouns, a rich source of transliterated words. In ad-
dition, the explicitly tagged language origins are not
necessarily helpful for loanwords. For example, the
word “spaghetti” (Italian origin) can also be found
in an English dictionary, but applying an English
model can lead to unwanted results.

In this paper, we proposelatent class transliter-
ation model which models the source language ori-

Transliteration (e.g.,/N7 7 43~ baraku obama gin as unobservable latent classes and applies appro-
Barak Obama”) is phonetic translation between larpriate transliteration models to given transliteration
guages with different writing systems. Words argpairs. The model parameters are learned via the EM
often transliterated when imported into differet lanalgorithm from training sets of transliterated pairs.
guages, which is a major cause of spelling variationd/e expect that, for example, a latent class which is
of proper nouns in Japanese and many other lamostly occupied by Italian words would be assigned
guages. Accurate transliteration is also the key t® “spaghetti /2/~/"7 1 supagetiand the pair will
robust machine translation systems. be correctly recognized.

Phonetic-based rewriting models (Knight and In the evaluation experiments, we evaluated the
Jonathan, 1998) and spelling-based supervised maatcuracy in estimating a corresponding Japanese
els (Brill and Moore, 2000) have been proposed fatransliteration given an unknown foreign word,
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@ The substitution probabilites?(a« — ) are

S f1 extime learned from transliterated pairs. Firstly, we obtain
’/'//'/ \\\ an edit operation sequence using the normal DP for
edit distance computation. In Figure 1 the sequence
t furekkusutaimu is f—f, ¢ —u, l-r, e—e, ¢ —k, x—k, ... and so on.
\ﬁi Secondly, non-match operations are merged with ad-

jacent edit operations, with the maximum length of
Figure 1: Minimum edit operation sequence in the alphasubstitution pairs limited tdV. WhenW = 2,
beta model (Underlined letters are match operations) for example, the first non-match operation—u is

merged with one operation on the left and right, pro-

ducing f~fu and -ur. Finally, substitution prob-
using lists of Western names with mixed langpilities are calculated as relative frequencies of all
guages. The results showed that the proposed modgibstitution operations created in this way. Note that
achieves higher accuracy than conventional modejge minimum edit operation sequence is not unique,

without latent classes. so we take the averaged frequencies of all the possi-
Related researches include Llitjos and Blackle minimum sequences.

(2001), where it is shown that source language ori- _ _
gins may improve the pronunciation of proper nouns  Class Transliteration Model

In text-to-speech systems. Another one by Ahma‘ﬁ'he alpha-beta model showed better performance in
and Kondrak (2005) estimates character-based ermal\ s such as spelling correction (Brill and Moore,

probabilities from query logs via the EM algorithm.zooo)’ transliteration (Brill et al., 2001), and query

This quel is less general than ours beqquse it OnJa}fteration (Hagiwara and Suzuki, 2009). However,
deals with character-based error probability. the substitution probabilities learned by this model
are simply the monolithic average of training set
statistics, and cannot be switched depending on the

We adopted thalpha-beta mode(Brill and Moore, ~Source language origin of given pairs, as explained
2000), which directly models the string substituin Section 1.

tion probabilities of transliterated pairs, as the base Li et al. (2007) pointed out that similar problems
model in this paper. This model is an extension t@rise in Chinese. Transliteration of Indo-European
the conventional edit distance, and gives probabifames such asii/E LIk / Alexandra” can be ad-
ities to general string substitutions in the form ofdressed by Mandarin pronunciatiddiffyin) “Ya-Li-

a — B (a, 3 are strings of any length). The wholeShan-Da while Japanese names such as A /

probability of rewriting words with ¢ is given by: ~ Yamamoto” can only be addressed by considering
the Japanese pronunciation, not the Chinese pro-

2 Alpha-Beta Model

S| nunciation ‘Shan-Beri Therefore, Li et al. took
Pap(t|s) = max HP(ai — (), (1) intoconsideration two additional factors, i.e., source
TePart(t),SePart(s) ;) language originl and gender / first / last names

and proposed a model which linearly combines the
wherePart(z) is all the possible partitions of word -nditioned probabilities”(¢|s, 1, g) to obtain the
x. Taking logarithm and regardinglog P(o — )  transliteration probability of — ¢ as:
as the substitution cost ef — (3, this maximiza-

tion is equivalent to finding a minimum of total sub- P(t|8)sofs = Z P(t,1,g]s)

stitution costs, which can be solved by normal dy- lLg

namic programming (DP). In practice, we condi- _ P(tls.1. ) P(1 2
tioned P(a — () by the position ofa in words, % (s Lg)PLgls) ()

i.e., at the beginning, in the middle, or at the end of

the word. This conditioning is simply omitted in theWe call the factore = (I, g) asclassesn this paper.

equations in this paper. This model can be interpreted as firstly computing
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the class probability distribution giveR(c|s) then Here, f,,(a — [3) is the frequency of substitution
taking a weighted sum oP(t|s, ¢) with regard to pair « — [ in the n-th transliterated pair, whose
the estimated classand the target. calculation method is explained in Section 2. The

Note that this weighted sum can be regardefinal transliteration probability is given by:
as doingsoft-clusteringof the inputs into classes
with probabilities. Alternatively, we can employ

hard-clusteringby taking one class such that = Pratens (t|s) = ZP(t,z| ZP z|s)P(t|s, z)

arg max, , (1, g|s) and compute the transliteration

probability by: - Z TP (s]2)P(t]s, ) @)
P(t|$)hara o<  P(t|s,c). )

The proposed model cannot explicity model
) ) P(s|z), which is in practice approximated by
4 Latent Class Transliteration Model P(t|s,z). Even omitting this factor only has a

The model explained in the previous section inteMarginal effect on the performance (within 1.1%).

grates different transliteration models for words wit
different language origins, but it requires us to buil

class detection modeifrom training pairs explicitly Here we evaluate the performance of the transliter-
tagged with language origins. ation models as an information retrieval task, where

Instead of assigning an explicit classto each the model ranks target for a given source’, based
transliterated pair, we can introduce a random vargn the modelP(t’\s) We used all the/, in the

ablez and consider a conditioned string substitutiodest setX;.,; = {(s\,t')]1 < n < M} as target

probability P(ec — f[2). This latent class cor-  candidates and!, for queries. Five-fold cross vali-
responds to the classes of transliterated pairs whigfation was adopted when learning the models, that
share the same transliteration characteristics, suchijgsthe datasets described in the next subsections are
language origins and genders. Althougls not di-  equally splitted into five folds, of which four were
rectly observable from sets of transliterated wordsysed for training and one for testing. The mean re-

we can compute it via EM algorithm so that it max-ciprocal rank (MRR) of top 10 ranked candidates
imizes the training set likelihood as shown bE|OVV\NaS used as a performance measure.

Due to the space limitation, we only show the up-
date equationsX;,.:, is the training set consisting 5.1 Experimental Settings

of transliterated pair§(s,, tn)|L < n < N}, NiS pataset 1: Western Person Name List This
the number of training pairs, arfd is the number of yataset contains 6,717 Western person names and

(:5 Experiments

latent classes. their Katakana readings taken from an European
name websité% 7 LA\ 4§ 1, consisting of Ger-
Parameters: P(z = k) = m,, P(a — 82) man (de), English (en), and French (fr) person name
(4) pairs. The numbers of pairs for these languages are
TR P(tn|sn, 2 = k) 2,470, 2,492, and 1,747, respectively. Accent marks
E-Step: vk = —3 , (5 } . }
K Tk P(ta|sn, 2 = k) for non-English languages were left untouched. Up
s percase was normalized to lowercase.
Ptalsn;2) = TGPart(tiI)l?é)(gpart(sn)HP(ai —Fil2) " Dataset 2: Western Proper Noun List This
dataset contains 11,323 proper nouns and their
M-Step: 7} = Ni Z Yok (6) Japanese counterparts extracted from Wikipedia in-
N’ . .
terwiki. The languages and numbers of pairs con-
Fala — B) tained are: German (de): 2,003, English (en): 5,530,
P(a— Blz = k)* Zm fu(a—-p)  Spanish (es): 781, French (fr): 1,918, ltalian (it):

http://www.worldsys.org/europe/
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Language | de en fr Language | de en es fr it
Precision(%)\ 804 77.1 747 Precision(%)\ 65.4 83.3 482 57.7 66.1

Table 1: Language Class Detection Result (Dataset 1) Table 2: Language Class Detection Result (Dataset 2)

Model \ Dataset 1| Dataset 2

1,091. Linked English and Japanese titles are ex-

tracted, unless the Japanese title contains any other AB 94.8 90.9
; HARD 90.3 89.8

characters than Katakana, hyphen, or middle dot.
The language origin of titles were detected SOFT 95.7 92.4
- 2 LATENT 95.8 92.4

whether appropriate country names are included in
E;; f|r T\t j?;t;niifogi?rﬂzr;?? ?;“;Iej'xlgh(e; Con_TabIe 3: Model Performance Comparison (MRR; %)
France),” “1 # U 7 @ (of Italy),” they are marked

as German, French, and Italian origin, respectivelyransliteration modeP(c|s) and Equation (3) (Table

If the sentence contains any of Spain, Argentind.2, 5.2). The overall precision is relatively lower
Mexico, Peru, or Chile plus®”(of), it is marked than, e.g., Li et al. (2007), which is attributed to the
as Spanish origin. If they contain any of Amer-fact that European names can be quite ambiguous
ica, England, Australia or Canada plu®®(of), it  (e.g., “Charles” can read” v+ —/- X charuzu” or

is marked as English origin. The latter parts of /L sharuru”) The precision of Dataset 2 is
Japanese/foreign titles starting from “” or “(” wereeven worse because it has more classes. We can also
removed. Japanese and foreign titles were split intase the result of the latent class transliteration for
chunks by middle dots and™ respectively, and re- clustering by regarding™ = arg maxy, v, as the
sulting chunks were aligned. Titles pairs with differ-class of the pair. The resulting cluster purity way
ent numbers of chunks, or ones with foreign chawas 0.74.

acter length less than 3 were excluded. All accenlt . . .
. e ransliteration Model Comparison We show
marks were normalized (German “i3” was converte . : ) :
e evaluation results of transliteration candidate re-

to"ss"). trieval task using each d?45(t|s) (AB), Phara(t]s)
Implementation Details P(c|s) of the class (HARD), Py (t|s) (SOFT), andPagent (t|s) (LA-
transliteration model was calculated by a characFENT) (Table 5.2). The number of latent classes
ter 3-gram language model with Witten-Bell dis-wasK = 3 for Dataset 1 and( = 5 for Dataset 2,
counting. Japanese Katakanas were all convert&éhich are the same as the numbers of language ori-
to Hepburn-style Roman characters, with minogins. LATENT shows comparable performance ver-
changes so as to incorporate foreign pronunciatiossis SOFT, although it can be higher depending on
such as “wi /7 +" and “we / 7 =.” The hyphens the value ofK, as stated below. HARD, on the other
“—"were replaced by the previous vowels (e.g4 “ hand, shows lower performance, which is mainly
"7y T 4 —"is converted to “supagettii.”) due to the low precision of class detection. The de-
The maximum length of substitution paifg de- tection errors are alleviated in SOFT by considering
scribed in Section 2 was s& = 2. The EM al- the weighted sum of transliteration probabilities.
gorithm parameter®(a — [3|z) were initialized to ~ We also conducted the evaluation based on the
the probabilityP(a — 3) of the alpha-beta model top-1 accuracy of transliteration candidates. Be-
plus Gaussian noise, ang were uniformly initial- cause we found out that the tendency of the results
ized to1/K. Based on the preliminary results, weis the same as MRR, we simply omitted the resultin

repeated EM iterations for 40 times. this paper.
The simplest model AB incorrectly reads “Felix
52 Results | 7=V v A" “Read | U — " as “7 1 U %

Language Class Detection We firstly show the Firisu”and “l7"— K~ Reada” This may be because
precision of language detection using the clasg&nglish pronunciation “x /7 A kkusu and “ea /
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+ — i” are influenced by other languages. SOFHaizhou Li, Khe Chai Sum, Jin-Shea Kuo, and Minghui
and LATENT can find correct candidates for these Dong. 2007. Semantic transliteration of personal
pairs. Irregular pronunciation pairs such as “Caen nNames. IrProc. of ACL 2007pages 120-127.
| 57— kan’ (French; misread & + —> shan) Ariadna Font Llitjos anq 'Alf';m W. Black. 200;. .Knowl-
and “Laemmle /L A U Remuri (English; misread edge of Ianguage origin improves pronunC|at|on accu-
“1J 7 2, Riamui) were misread by SOFT but not by racy. InProc. of Eurospeecipages 1919-1922.
LATENT. For more irregular cases such as “Hilda
A /L4 Iruda’(English), it is difficult to find correct
counterparts even by LATENT.

Finally, we investigated the effect of the number
of latent classe&’. The performance is higher when
K is slightly smaller than the number of language
origins in the dataset (e.gf; = 4 for Dataset 2) but
the performance gets unstable for larger valuek of
due to the EM algorithm initial values.

6 Conclusion

In this paper, we proposed a latent class translitera-
tion method which models source language origins
as latent classes. The model parameters are learned
from sets of transliterated words with different ori-
gins via the EM algorithm. The experimental re-
sult of Western person / proper name transliteration
task shows that, even though the proposed model
does not rely on explicit language origins, it achieves
higher accuracy versus conventional methods using
explicit language origins. Considering sources other
than Western languages as well as targets other than
Japanese is the future work.
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Abstract

Beginning with Goldsmith (1976), the phono-
logical tier has a long history in phonological
theory to describe non-local phenomena. This
paper defines a class of formal languages, the
Tier-based Strictly Local languages, which be-
gin to describe such phenomena. Then this
class is located within the Subregular Hier-
archy (McNaughton and Papert, 1971). Itis
found that these languages contain the Strictly
Local languages, are star-free, are incompa-
rable with other known sub-star-free classes,
and have other interesting properties.

addresses the expressivity or properties of tier-based
patterns in terms of formal language theory.

This paper begins to fill this gap by defining Tier-
Based Strictly Local (TSL) languages, which gen-
eralize the Strictly Local languages (McNaughton
and Papert, 1971). It is shown that TSL languages
are necessarily star-free, but are incomparable with
other known sub-star-free classes, and that natural
groups of languages within the class are string exten-
sion learnable (Heinz, 2010b; Kasprzik and Kotzing,
2010). Implications and open questions for learn-
ability and Optimality Theory are also discussed.

Section 2 reviews notation and key concepts. Sec-
tion 3 reviews major subregular classes and their re-
lationships. Section 4 defines the TSL languages,
relates them to known subregular classes, and sec-

The phonological tier is a level of representationion 5 discusses the results. Section 6 concludes.
where not all speech sounds are present. For ex-

ample, the vowel tier of the Finnish wonghivaa 2 Preliminaries
‘Hello’ is simply the vowels in order without the
consonantsaiaa. We assume familiarity with set notation. A finite al-
Tiers were originally introduced to describe tongohabet is denote®. Let %7, X=", 3* denote all
systems in languages (Goldsmith, 1976), and subsgequences over this alphabet of lengthof length
guently many variants of the theory were proposet#ss than or equal ta, and of any finite length, re-
(Clements, 1976; Vergnaud, 1977; McCarthy, 197%pectively. The empty string is denot&@nd|w| de-
Poser, 1982: Prince, 1984; Mester, 1988; Oddenptes the length of word. For all stringsw and all
1994; Archangeli and Pulleyblank, 1994; Clementgonempty strings, |w|,, denotes the number of oc-
and Hume, 1995). Although these theories differ ircurrences ot. in w. For instancejaaaale, = 3. A
their details, they each adopt the premise that repr&nguagel is a subset oE*. The concatenation of
sentational levels exist which exclude certain speedivo languaged.; Ly = {uv : u € Ly andv € Lo}.
sounds. For L C ¥* ando € X, we often writeLo instead
Computational work exists which incorporatesof L{c}.
and formalizes phonological tiers (Kornai, 1994; We define generalized regular expressions
Bird, 1995; Eisner, 1997). There are also learninGRESs) recursively.  GREs include, () and
algorithms which employ them (Hayes and Wilsongach letter of¥. If R and S are GREs then
2008; Goldsmith and Riggle, to appear). HoweverRS, R + S, R x S, R, and R* are also GREs.
there is no work of which the authors are aware thathe language of a GRE is defined as follows.

1 Introduction
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L) = 0. Forallo € S U{\}, L(o) = {o}.

/— PT—SP

If R and S are regular expressions then o o
and L(R x S) = L(R) n L(S). Also,
L(R) = ¥ — L(R) and L(R*) = L(R)". TSL

For example, the GRE denotes the language". Figure 1: Proper inclusion relationships among subreg-
A language isregular iff there is a GRE defin- ular language classes (indicated from left to right). This
ing it. A language isstar-freeiff there is a GRE paper establishes the TSL class and its place in the figure.

defining it which contains no instances of the Kleene

star (*). Itis well known that the star-free languagesippear; Rogers et al., 2010). Figure 1 summarizes
(1) are a proper subset of the regular languages, (ose earlier results as well as the ones made in
are closed under Boolean operations, and (3) haveis paper. This section defines the Strictly Local

multiple characterizations, including logical and al{SL), Locally Threshold Testable (LTT) and Piece-

gebraic ones (McNaughton and Papert, 1971).

String u is afactor of string w iff dz,y € X*
such thatw = zuy. If also |u| = k thenwu is ak-
factor of w. For examplegab is a 2-factor oluaabbb.
The functionF}, maps words to the set @ffactors
within them.

F(w) = {u : uis ak-factor ofw}

For example f(abc) = {ab, be}.

The domainF}, is generalized to languagds C
¥* in the usual way:Fj(L) = UyerFi(w). We
also consider the function whictountsk-factors up
to some threshold.

Fi+(w) = {(u,n) : uis ak-factor ofw and

n = |wl, iff |w|, <telsen =t}

For examplers 3(aaaaab) = {(aa,3), (ab,1)}.

A stringu = o109 --- 0 IS asubsequencef a
stringw iff w € Y*01 X 03" - -- X¥opX*. Since
|u| = k we also say is ak-subsequencef w. For
example,ab is a 2-subsequence ohicceceeechee.

wise Testable (PT) classes. The Locally Testable
(LT) languages and the Strictly Piecewise (SP) lan-
guages are discussed by Rogers and Pullum (to ap-
pear) and Rogers et al. (2010), respectively. Readers
are referred to these papers for additional details on
all of these classes. The Tier-based Strictly Local
(TSL) class is defined in Section 4.

Definition 1 A language L is Strictly k-Local iff
there exists a finite st C Fj(xX*x) such that

L={weX": Fp(xwx) C S}

The symbolsx and x invoke left and right word
boundaries, respectively. A language is said to be
Strictly Local iff there is somek for which it is
Strictly k-Local. For example, lef = {a,b,c} and
L = aa*(b+ c). ThenL is Strictly 2-Local because
for S = {xa,ab,ac,aa,bx,cx} and everyw € L,
every2-factor of xwix belongs taS.

The elements ob can be thought of as thaer-
missiblek-factors and the elements i, (x¥X*x) —

By definition \ is a subsequence of every string in® are theforbiddenk-factors. For eiamplebb and
5*. The functionP<;, maps words to the set of sub- > are forbidden 2-factors fak = aa”(b + ¢).

sequences up to lengthfound in those words.
Pi(w) = {u € ©=F : u is a subsequence af}

For exampleP<5(abc) = {\, a,b, c,ab,ac,bc}. As

More generally, any SL languagde excludes ex-
actly those words with any forbidden factors; i.B.,
is the intersection of the complements of sets defined
to be those words whickontain a forbidden fac-

above, the domains df;. ; and P~ are extended to tor. Note the set of forbidden factors is finite. This

languages in the usual way.

3 Subregular Hierarchies

Several important subregular classes of languages C(w)
have been identified and their inclusion relation-

provides another characterization of SL languages
(given below in Theorem 1).
Formally, let thecontainerof w € xX>*x be

= {u € ¥* : wis afactor of x uix}

ships have been established (McNaughton and Pler example(C'(xa) = aX*. Then, by the immedi-
pert, 1971; Simon, 1975; Rogers and Pullum, tately preceding argument, Theorem 1 is proven.
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Theorem 1 Consider any Strictl-Local language  To illustrate, let¥ = {a,b,c}, T = {b,c}, and

L. Then there exists a finite set of forbidden factor§ = {xb, xc,be, cb,bx,cx}. Elements ofS are

S C Fj(xX*x) such thatl = N, C(w). the permissiblek-factors on tier7. Elements of
Definition 2 A languageL is Locally ¢-Threshold £2(*T7x) — 5 = {bb, cc} are the forbidden fac-
k-Testableiff 3¢,k € N such thatvw,v € X, if tors on_tlerT. The language this describe mchdes
words likeaabaaacaaabaa, but excludes words like
aabaaabaaacaa sincebd is a forbidden 2-factor on
A language is Locally Threshold Testable iff thergjor 7 This example captures the nature of long-

is somek andt for which it is Locally ¢-Threshold  gisiance dissimilation patterns found in phonology

Fi, 1(w) = Fj4(v) thenw € L < v € L.

k-Testable. (Suzuki, 1998; Frisch et al., 2004; Heinz, 2010a).
Definition 3 A languageL is Piecewisek-Testable Let Lp stand for this particular dissimilatory lan-
iff 3k € N such thatvw,v € ¥*, if P<x(w) = guage.

Poi(v)thenw € L & v e L. Like SL languages, TSL languages can also be

characterized in terms of the forbidden factors. Let

A language is Piecewise Testable iff there is sdme
guag thetier-based containeof w € xT*x beCr(w) =

for which it is Piecewisd:-Testable.

4 Tier-based Strictly Local Languages {u e X" : wisafactor on tie” of x ux}

This section provides the main results of this paper 0" €xamplelr(xb) = (X — T)*b*. In general
ifw=o0y-- 0, € T*thenCp(w) =
4.1 Definition

The definition of Tier-based Strictly Local lan-

guages is similar to the one for SL languages witih the case wherev begins (ends) with a word
the exception that forbiddet+factors only apply to boundary symbol then the first (lasfy in the pre-
elements on a tief’ C X, all other symbols are ig- vious GRE must be replaced witlt — 7')*.

nored. In order to define the TSL languages, it IS heorem 2 For any L € TSL, let T,k S be

necessary to introduce an “erasing” function (somei-he tier, length, and permissible factors, respec-

times called strl'ng projection), which erases Symfively, and S the forbidden factors. Thed, —
bols not on the tier. R

S0 (S — T)oo(8 = T)* - (8 — T) 0, 5"

Nwes Cr(w).
Er(or--op) =ur--uy Proof The structure of the proof is identical to the
one for Theorem 1. d

whereu; = o; iff o; € T andu,; = X otherwise.
For example, ifY = {a,b,c} andT = {b,c}
then Er(aabaaacaaabaa) = beb. A stringu = 42  Relations to other subregular classes
o1 -0 € XT*x is afactor on tier Tof a stringw
iff » is a factor of Ep(w).
Then the TSL languages are defined as follows.

This section establishes that TSL languages prop-
erly include SL languages and are properly star-free.

Theorem 3 shows SL languages are necessarily TSL.
Definition 4 A languageL is Strictly k-Local on  Thegrems 4 and 5 show that TSL languages are not
Tier T' iff there exists a tiefl” C X and finite set pecessarily LTT nor PT, but Theorem 6 shows that

S C Fj(xT*x) such that TSL languages are necessarily star-free.

L={weX: F(xEp(w)x) C S} Theorem 3 SL languages are TSL.

Again, S represents the permissibiefactors on the Proof Inclusion follows immediately from the defi-

tier 7', and elements ifFy(x7T*x) — S represent hitions by setting the tief” = .. _ =
the forbidderk-factors on tiefl’. A languagel, isa | he fact that TSL languages properly include SL

Tier-based Strictly Locaiff it is Strictly k-Local on ©nes follows from the next theorem.
Tier T for somel’ C ¥ andk € N. Theorem 4 TSL languages are not LTT.
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Proof It is sufficient to provide an example of a TSLboundary symbol, the fiit(lasﬁ)in the GRE above

language which is not LTT. Consider any thresholdhould be replaced witd70. Since everyCr(w)

t and lengthk. Consider the TSL languagep dis-  can be expressed as a GRE without the Kleene-star,
cussed in Section 4.1, and consider the words every TSL language is star-free. 0

w = a*ba*ba*ca® andv = a*ba*ca*ba” _
Together Theorems 1-4 establish that TSL lan-

Clearly w ¢ Lp andv € Lp. However, guages generalize the SL languages in a different

F(xwx) = Fi(xvx); i.e., they have the same way than the LT and LTT languages do (Figure 1).
k-factors. In fact for any factof € Fi(xwx),

it is the case thatjw|; = |v[;. Therefore 4.3 Other Properties
Fii(xwx) = Fp(xvx). If Lp were LTT,
it would follow by definition that either both
w,v € Lp or neitherw, v belong toLp, which is
clearly false. Hencd.p ¢ LTT. O

There are two other properties of TSL languages
worth mentioning. First, TSL languages are closed
under suffix and prefix. This follows immediately
because no word of any TSL language contains
any forbidden factors on the tier and so neither does
Theorem 5 TSL languages are not PT. any prefix or suffix ofw. SL and SP languages—but
_not LT or PT ones—also have this property, which has
§;1teresting algebraic consequences (Fu et al., 2011).
Next, consider that the choice @ C X and

k € N define systematic classes of languages which
w = a¥(ba*bakcakca®)*  and are TSL. LetLr, denote such a class. It follows
ik immediately thatlr . is a string extension class

) (Heinz, 2010b). A string extension class is one
Clearlyw ¢ Lp andv € Lp. But observe that Which can be defined by a functiofi whose do-
P<p(w) = P<x(v). Hence, even though the two main is ¥* and whose codomain is the set of all
words have exactly the same k-subsequences (ffite subsets of some set. A grammarG is a
any k), both words are not ifip. It follows thatL,  particular finite subset oft and the language of the
does not belong to PT. O grammar is all words whiclf maps to a subset of
G. For L}, the grammar can be thought of as the

Although TSL languages are neither LTT nor PTS€t Of permissible factors on tiéf and the func-
Theorem 6 establishes that they are star-free. ~ tionisw — Fi(xEp(w)x). In other words, every

Theorem 6 TSL languages are star-free. word is mapped to the set bffactors present on tier
T. (So here the codomain-the possible grammars—is
Proof Consider any language which is Strictlyk-  the powerset of 7, (xT*x).)
Local on TierT" for someT" C ¥ andk € N. By String extension classes have quite a bit of
Theorem 2, there exists a finite SetC Fj, (17" x)  structure, which faciliates learning (Heinz, 2010b;
such thatl, = N5 Cr(w). Since the star-free lan- Kasprzik and Koétzing, 2010). They are closed un-
guages are closed under finite intersection and corger intersection, and have a lattice structure under
plement, it is sufficient to show th&tr(w) is star-  the partial ordering given by the inclusion relation
free for allw € xT™x. (C). Additionally, these classes are identifiable in
First consider anyw = oy ---0, € T*. Since the limit from positive data (Gold, 1967) by an in-
(X —=T)* = X*Ty* andx* = (), the selCr(w) can  cremental learner with many desirable properties.
be written as In the case just mentioned, the tier is known in
0070 oy 070 00 0T0 -+ 0, advance. Learners V\_/hich identify in the limit a class
of TSL languages with an unknown tier but known
This is a regular expression without the Kleene-stak exist in principle (since such a class is of finite
In the cases where begins (ends) with a word size), but it is unknown whether any such learner is

Proof As above, it is sufficient to provide an exam
ple of a TSL language which is not PT. Consider an
lengthk and the languagé p. Let

v = a¥(ba*cakbak ca
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efficient in the size of the input sample. the tier; i.e. by forbidding factor$odu, o, W, 0d}
on tierT ={0,u,a}. Thus words likdulolilu are ac-
5 Discussion ceptable since [i] is not on the relevant tier. The rea-
sonable hypothesis which follows from this discus-

Having established the main results, this section digjon is that all humanly possible segmental phono-
cusses some implications for phonology in generajgctic patterns are TSL (since TSL contains SL).
Optimality Theory in particular, and future research. Additionally, the fact thaC 7, is closed under in-

There are three classes of phonotactic constrainigrsection has interesting consequences for Optimal-
in phonology: local segmental patterns, longity Theory (OT) (Prince and Smolensky, 2004). The
distance segmental patterns, and stress patteiRgersection of two languages drawn from the same
(Heinz, 2007). Local segmental patterns are Sktring extension class is only as expensive as the in-
(Heinz, 2010a). Long-distance segmental phonQersection of finite sets (Heinz, 2010b). It is known
tactic patterns are those derived from processes §fat the generation problem in OT is NP-hard (Eis-
consonant harmony and disharmony and vowel hager, 1997; Idsardi, 2006) and that the NP-hardness is
mony. Below we show each of these patterns belonge to the problem of intersecting arbitrarily many
to TSL. For exposition, assum&={l,r,i,0,u,0}. arbitrary regular sets (Heinz et al., 2009). It is un-

Phonotactic patterns derived from attested longnown whether intersecting arbitrarily many TSL
distance consonantal assimilation patterns (Rosets is expensive, but the results here suggest that
and Walker, 2004; Hansson, 2001) are SP; on thiemay only be the intersections across distifigty,
other hand, phonotactic patterns derived from atlasses that are problematic. In this way, this work
tested long-distance consonantidsimilation pat- suggests a way to factor OT constraints characteri-
terns (Suzuki, 1998) are not (Heinz, 2010a). Howzable as TSL languages in a manner originally sug-
ever, both belong to TSL. Assimilation is obtainedgested by Eisner (1997).
by forbidding disagreeing factors on the tier. For Future work includes determining automata-
example, forbiddinglr and r on the liquid tier theoretic characterizations of TSL languages and
T = {l,r} yields only words which do not contain procedures for deciding whether a regular set be-
both [I] and [r]. Dissimilation is obtained by for- |ongs to TSL, and if so, for whal’ and k. Also,
bidding agreeing factors on the tier; e.g. forbiddinghe erasing function may be used to generalize other
[l andrr on the liquid tier yields a language of thesubregular classes.
same character dsp.

The phonological literature distinguishes threé® Conclusion
kinds of vowel harmony patterns: those without neu-

tral vowels, those with opaque vowels and thos-erhe TSL languages generalize the SL languages

with transparent vowels (Bakovi¢, 2000; Nevinsand have wide application within phonology. Even

2010). Formally, vowel harmony patterns wﬂhoutthm{gh V|rtuaIIy_ al segmenta_l phonotactic 1con
_ straints present in the phonologies of the world’s lan-
neutral vowels are the same as assimilatory conso- : .
uages, both local and non-local, fall into this class,

nant harmony. For example, a case of back harmaon

can be described by forbidding disagreeing factor'siS striking how highly restricted (sub-star-free) and

T R, . well-structured the TSL languages are.
{iu, io, 6u, 60, ui, W, oi, A} on the vowel tier
T :«_[i,'o,u,o}. If'a vgwel is opaque, it does: not har’AcknowIedgementS
monize but begins its own harmony domain. For ex-
ample if [i] is opaque, this can be described by forWe thank the anonymous reviewers for carefully
bidding factors{iu, io du, 6o, W, b} on the vowel checking the proofs and for their constructive crit-
tier. Thus words likdulolil 6 are acceptable becauseicism. We also thank the participants in the Fall
oi is a permissible factor. If a vowel is transpar-2010 Formal Models in Phonology seminar at the
ent, it neither harmonizes nor begins its own hardJniversity of Delaware for valuable discussion, es-
mony domain. For example if [i] is transparent (as irpecially Jie Fu. This research is supported by grant
Finnish), this can be described by removing it fron#1035577 from the National Science Foundation.
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Lost in Translation: Authorship Attribution using Frame Semantics
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Abstract

We investigate authorship attribution using
classifiers based on frame semantics. The pur-
pose is to discover whether adding semantic
information to lexical and syntactic methods
for authorship attribution will improve them,
specifically to address the difficult problem of
authorship attribution of translated texts. Our
results suggest (i) that frame-based classifiers
are usable for author attribution of both trans-
lated and untranslated texts; (ii) that frame-
based classifiers generally perform worse than
the baseline classifiers for untranslated texts,
but (iii) perform as well as, or superior to
the baseline classifiers on translated texts; (iv)
that—contrary to current belief—naive clas-
sifiers based on lexical markers may perform
tolerably on translated texts if the combination
of author and translator is present in the train-
ing set of a classifier.

1 Introduction

Authorship attribution is the following problem: For
a given text, determine the author of said text among
a list of candidate authors. Determining author-
ship is difficult, and a host of methods have been
proposed: As of 1998 Rudman estimated the num-
ber of metrics used in such methods to be at least
1000 (Rudman, 1997). For comprehensive recent
surveys see e.g. (Juola, 2006; Koppel et al., 2008;
Stamatatos, 2009). The process of authorship at-
tribution consists of selecting markers (features that
provide an indication of the author), and classifying
a text by assigning it to an author using some appro-
priate machine learning technique.
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1.1 Attribution of translated texts

In contrast to the general authorship attribution
problem, the specific problem of attributing trans-
lated texts to their original author has received little
attention. Conceivably, this is due to the common
intuition that the impact of the translator may add
enough noise that proper attribution to the original
author will be very difficult; for example, in (Arun
et al., 2009) it was found that the imprint of the
translator was significantly greater than that of the
original author. The volume of resources for nat-
ural language processing in English appears to be
much larger than for any other language, and it is
thus, conceivably, convenient to use the resources at
hand for a translated version of the text, rather than
the original.

To appreciate the difficulty of purely lexical or
syntactic characterization of authors based on trans-
lation, consider the following excerpts from three
different translations of the first few paragraphs of
Turgenev’s /Isopsauckoe I'ne3no:

Liza ""A nest of nobles"
Ralston

Translated by W. R. Shedden-

A beautiful spring day was drawing to a close. High
aloft in the clear sky floated small rosy clouds,
which seemed never to drift past, but to be slowly
absorbed into the blue depths beyond.

At an open window, in a handsome mansion situ-
ated in one of the outlying streets of O., the chief
town of the government of that name—it was in the
year 1842—there were sitting two ladies, the one
about fifty years old, the other an old woman of
seventy.

A Nobleman’s Nest

The brilliant, spring day was inclining toward the

Translated by I. F. Hapgood

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 65-70,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



evening, tiny rose-tinted cloudlets hung high in the
heavens, and seemed not to be floating past, but re-
treating into the very depths of the azure.

In front of the open window of a handsome house,
in one of the outlying streets of O * * * the capital
of a Government, sat two women; one fifty years of
age, the other seventy years old, and already aged.

A House of Gentlefolk Translated by C. Garnett

A bright spring day was fading into evening. High
overhead in the clear heavens small rosy clouds
seemed hardly to move across the sky but to be
sinking into its depths of blue.

In a handsome house in one of the outlying streets
of the government town of O—- (it was in the year
1842) two women were sitting at an open window;
one was about fifty, the other an old lady of seventy.

As translators express the same semantic content
in different ways the syntax and style of different
translations of the same text will differ greatly due
to the footprint of the translators; this footprint may
affect the classification process in different ways de-
pending on the features.

For markers based on language structure such as
grammar or function words it is to be expected that
the footprint of the translator has such a high im-
pact on the resulting text that attribution to the au-
thor may not be possible. However, it is possi-
ble that a specific author/translator combination has
its own unique footprint discernible from other au-
thor/translator combinations: A specific translator
may often translate often used phrases in the same
way. Ideally, the footprint of the author is (more or
less) unaffected by the process of translation, for ex-
ample if the languages are very similar or the marker
is not based solely on lexical or syntactic features.

In contrast to purely lexical or syntactic features,
the semantic content is expected to be, roughly, the
same in translations and originals. This leads us to
hypothesize that a marker based on semantic frames
such as found in the FrameNet database (Ruppen-
hofer et al., 2006), will be largely unaffected by
translations, whereas traditional lexical markers will
be severely impacted by the footprint of the transla-
tor.

The FrameNet project is a database of annotated
exemplar frames, their relations to other frames and
obligatory as well as optional frame elements for
each frame. FrameNet currently numbers approxi-
mately 1000 different frames annotated with natural
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language examples. In this paper, we combine the
data from FrameNet with the LTH semantic parser
(Johansson and Nugues, 2007), until very recently
(Das et al., 2010) the semantic parser with best ex-
perimental performance (note that the performance
of LTH on our corpora is unknown and may dif-
fer from the numbers reported in (Johansson and
Nugues, 2007)).

1.2 Related work

The research on authorship attribution is too volu-
minous to include; see the excellent surveys (Juola,
2006; Koppel et al., 2008; Stamatatos, 2009) for
an overview of the plethora of lexical and syntac-
tic markers used. The literature on the use of se-
mantic markers is much scarcer: Gamon (Gamon,
2004) developed a tool for producing semantic de-
pendency graphs and using the resulting information
in conjunction with lexical and syntactic markers to
improve the accuracy of classification. McCarthy
et al. (McCarthy et al., 2006) employed WordNet
and latent semantic analysis to lexical features with
the purpose of finding semantic similarities between
words; it is not clear whether the use of semantic
features improved the classification. Argamon et
al. (Argamon, 2007) used systemic functional gram-
mars to define a feature set associating single words
or phrases with semantic information (an approach
reminiscent of frames); Experiments of authorship
identification on a corpus of English novels of the
19th century showed that the features could improve
the classification results when combined with tra-
ditional function word features. Apart from a few
studies (Arun et al., 2009; Holmes, 1992; Archer et
al., 1997), the problem of attributing translated texts
appears to be fairly untouched.

2 Corpus and resource selection

As pointed out in (Luyckx and Daelemans, 2010) the
size of data set and number of authors may crucially
affect the efficiency of author attribution methods,
and evaluation of the method on some standard cor-
pus is essential (Stamatatos, 2009).

Closest to a standard corpus for author attribu-
tion is The Federalist Papers (Juola, 2006), origi-
nally used by Mosteller and Wallace (Mosteller and
Wallace, 1964), and we employ the subset of this



corpus consisting of the 71 undisputed single-author
documents as our Corpus 1.

For translated texts, a mix of authors and transla-
tors across authors is needed to ensure that the at-
tribution methods do not attribute to the translator
instead of the author. However, there does not ap-
pear to be a large corpus of texts publicly available
that satisfy this demand.

Based on this, we elected to compile a fresh cor-
pus of translated texts; our Corpus II consists of En-
glish translations of 19th century Russian romantic
literature chosen from Project Gutenberg for which
a number of different versions, with different trans-
lators existed. The corpus primarily consists of nov-
els, but is slightly polluted by a few collections of
short stories and two nonfiction works by Tolstoy
due to the necessity of including a reasonable mix
of authors and translators. The corpus consists of 30
texts by 4 different authors and 12 different transla-
tors of which some have translated several different
authors. The texts range in size from 200 (Turgenev:
The Rendezvous) to 33000 (Tolstoy: War and Peace)
sentences.

The option of splitting the corpus into an artifi-
cially larger corpus by sampling sentences for each
author and collating these into a large number of new
documents was discarded; we deemed that the sam-
pling could inadvertently both smooth differences
between the original texts and smooth differences in
the translators’ footprints. This could have resulted
in an inaccurate positive bias in the evaluation re-
sults.

3 Experiment design

For both corpora, authorship attribution experiments
were performed using six classifiers, each employ-
ing a distinct feature set. For each feature set the
markers were counted in the text and their relative
frequencies calculated. Feature selection was based
solely on training data in the inner loop of the cross-
validation cycle. Two sets of experiments were per-
formed, each with with X = 200 and X = 400
features; the size of the feature vector was kept con-
stant across comparison of methods, due to space
constraints only results for 400 features are reported.
The feature sets were:

Frequent Words (FW): Frequencies in the text of
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the X most frequent words'. Classification
with this feature set is used as baseline.

Character N-grams: The X most frequent N-
grams for N = 3,4, 5.

Frames: The relative frequencies of the X most
frequently occurring semantic frames.

Frequent Words and Frames (FWaF): The X/2
most frequent features; words and frames resp.
combined to a single feature vector of size X.

In order to gauge the impact of translation upon an
author’s footprint, three different experiments were
performed on subsets of Corpus II:

The full corpus of 30 texts [Corpus Ila] was used
for authorship attribution with an ample mix of au-
thors an translators, several translators having trans-
lated texts by more than one author. To ascertain
how heavily each marker is influenced by translation
we also performed translator attribution on a sub-
set of 11 texts [Corpus IIb] with 3 different transla-
tors each having translated 3 different authors. If the
translator leaves a heavy footprint on the marker, the
marker is expected to score better when attributing
to translator than to author. Finally, we reduced the
corpus to a set of 18 texts [Corpus IIc] that only in-
cludes unique author/translator combinations to see
if each marker could attribute correctly to an author
if the translator/author combination was not present
in the training set.

All classification experiments were conducted
using a multi-class winner-takes-all (Duan and
Keerthi, 2005) support vector machine (SVM). For
cross-validation, all experiments used leave-one-out
(i.e. N-fold for N texts in the corpus) validation.
All features were scaled to lie in the range [0, 1] be-
fore different types of features were combined. In
each step of the cross-validation process, the most
frequently occurring features were selected from the
training data, and to minimize the effect of skewed
training data on the results, oversampling with sub-
stitution was used on the training data.

"The most frequent words, is from a list of word frequencies
in the BNC compiled by (Leech et al., 2001)



4 Results and evaluation

We tested our results for statistical significance us-
ing McNemar’s test (McNemar, 1947) with Yates’
correction for continuity (Yates, 1934) against the
null hypothesis that the classifier is indistinguishable
from a random attribution weighted by the number
of author texts in the corpus.

Random Weighted Attribution

Corpus I I[la 1IIb Ilc
Accuracy 57.6 28.7 339 26.5

Table 1: Accuracy of a random weighted attribution.

FWaF performed better than FW for attribution of
author on translated texts. However, the difference
failed to be statistically significant.

Results of the experiments are reported in the ta-
ble below. For each corpus results are given for
experiments with 400 features. We report macro’
precision/recall, and the corresponding F1 and ac-
curacy scores; the best scoring result in each row is
shown in boldface. For each corpus the bottom row
indicates whether each classifier is significantly dis-
cernible from a weighted random attribution.

400 Features
Corpus Measure FW  3-grams 4-grams 5-grams Frames FWaF
I precision  96.4 97.0 97.0 99.4 80.7 920
recall 90.3 97.0 91.0 97.6 66.8 933
F1 93.3 97.0 93.9 98.5 73.1 92.7
Accuracy 95.8 97.2 97.2 98.6 803  93.0
p<0.05: v v v v v v
Ila precision  63.8 61.9 59.1 57.9 827 819
recall 66.4 60.4 60.4 60.4 708  80.8
F1 65.1 61.1 59.7 59.1 76.3 81.3
Accuracy 80.0 73.3 73.3 73.3 76.7 90.0
p<0.05: v v v v v v
1Ib precision 91.7 47.2 472 38.9 70.0  70.0
recall 91.7 583 58.3 50.0 639 639
F1 91.7 522 522 43.8 66.8  66.8
Accuracy  90.9 63.6 63.6 54.5 63.6  63.6
p<0.05: v % 3 % % %
Ilc precision  42.9 43.8 42.4 51.0 60.1  75.0
recall 52.1 42.1 42.1 50.4 59.6  75.0
F1 47.0 429 422 50.7 59.8  75.0
Accuracy 55.6 50.0 44.4 55.6 61.1 72.2
p<0.05: 3 % 3 3 % v

Table 2: Authorship attribution results

Zeach author is given equal weight, regardless of the number
of documents
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4.1 Corpus I: The Federalist Papers

For the Federalist Papers the traditional authorship
attribution markers all lie in the 95+ range in accu-
racy as expected. However, the frame-based mark-
ers achieved statistically significant results, and can
hence be used for authorship attribution on untrans-
lated documents (but performs worse than the base-
line). FWaF did not result in an improvement over
FW.

4.2 Corpus II: Attribution of translated texts

For Corpus Ila—the entire corpus of translated texts—
all methods achieve results significantly better than
random, and FWaF is the best-scoring method, fol-
lowed by FW.

The results for Corpus IIb (three authors, three
translators) clearly suggest that the footprint of the
translator is evident in the translated texts, and that
the FW (function word) classifier is particularly sen-
sitive to the footprint. In fact, FW was the only one
achieving a significant result over random assign-
ment, giving an indication that this marker may be
particularly vulnerable to translator influence when
attempting to attribute authors.

For Corpus Ilc (unique author/translator combina-
tions) decreased performance of all methods is evi-
dent. Some of this can be attributed to a smaller
(training) corpus, but we also suspect the lack of
several instances of the same author/translator com-
binations in the corpus.

Observe that the FWaF classifier is the only
classifier with significantly better performance than
weighted random assignment, and outperforms the
other methods. Frames alone also outperform tradi-
tional markers, albeit not by much.

The experiments on the collected corpora strongly
suggest the feasibility of using Frames as markers
for authorship attribution, in particular in combina-
tion with traditional lexical approaches.

Our inability to obtain demonstrably significant
improvement of FWaF over the approach based on
Frequent Words is likely an artifact of the fairly
small corpus we employ. However, computation of
significance is generally woefully absent from stud-
ies of automated author attribution, so it is conceiv-
able that the apparent improvement shown in many
such studies fail to be statistically significant under



closer scrutiny (note that the exact tests to employ
for statistical significance in information retrieval—
including text categorization—is a subject of con-
tention (Smucker et al., 2007)).

5 Conclusions, caveats, and future work

We have investigated the use of semantic frames as
markers for author attribution and tested their appli-
cability to attribution of translated texts. Our results
show that frames are potentially useful, especially
so for translated texts, and suggest that a combined
method of frequent words and frames can outper-
form methods based solely on traditional markers,
on translated texts. For attribution of untranslated
texts and attribution to translator traditional markers
such as frequent words and n-grams are still to be
preferred.

Our test corpora consist of a limited number of
authors, from a limited time period, with translators
from a similar limited time period and cultural con-
text. Furthermore, our translations are all from a sin-
gle language. Thus, further work is needed before
firm conclusions regarding the general applicability
of the methods can be made.

It is well known that effectiveness of authorship
markers may be influenced by topics (Stein et al.,
2007; Schein et al., 2010); while we have endeav-
ored to design our corpora to minimize such influ-
ence, we do not currently know the quantitative im-
pact on topicality on the attribution methods in this
paper. Furthermore, traditional investigations of au-
thorship attribution have focused on the case of at-
tributing texts among a small (N < 10) class of
authors at the time, albeit with recent, notable ex-
ceptions (Luyckx and Daelemans, 2010; Koppel et
al., 2010). We test our methods on similarly re-
stricted sets of authors; the scalability of the meth-
ods to larger numbers of authors is currently un-
known. Combining several classification methods
into an ensemble method may yield improvements
in precision (Raghavan et al., 2010); it would be
interesting to see whether a classifier using frames
yields significant improvements in ensemble with
other methods. Finally, the distribution of frames in
texts is distinctly different from the distribution of
words: While there are function words, there are no
‘function frames’, and certain frames that are com-
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mon in a corpus may fail to occur in the training
material of a given author; it is thus conceivable that
smoothing would improve classification by frames
more than by words or N-grams.
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Abstract 2gether (6326) | togetha (919) tgthr (250) togeda (20)
2getha (1266) togather (207) | tOgether (57) | togethaa (10)
L. 2gthr (178) togehter (94) togeter (49) 2getter (10)
Most text message normalization approaches 2qetha (46) togethor (29) | tagether (18) | 2gtr (6)

are based on supervised learning and rely on
human labeled training data. In addition, the
nonstandard words are often categorized into
different types and specific models are de-
signed to tackle each type. In this paper,
we propose a unified letter transformation ap-
proach that requires neither pre-categorization
nor human supervision. Our approach mod-
els the generation process from the dictionary
words to nonstandard tokens under a sequence
labeling framework, where each letter in the
dictionary word can be retained, removed, or
substituted by other letters/digits. To avoid
the expensive and time consuming hand label-
ing process, we automatically collected a large
set of noisy training pairs using a novel web-
based approach and performed character-level
alignment for model training. Experiments on
both Twitter and SMS messages show that our
system significantly outperformed the state-
of-the-art deletion-based abbreviation system
and the jazzy spell checker (absolute accuracy
gain of 21.69% and 18.16% over jazzy spell
checker on the two test sets respectively).

1 Introduction

Recent years have witnessed the explosive growth
of text message usage, including the mobile phone
text messages (SMS), chat logs, emails, and sta-
tus updates from the social network websites such
as Twitter and Facebook. These text message col-
lections serve as valuable information sources, yet
the nonstandard contents within them often degrade
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Table 1: Nonstandard tokens originated from “together”
and their frequencies in the Edinburgh Twitter corpus.

the existing language processing systems, calling
the need of text normalization before applying the
traditional information extraction, retrieval, senti-
ment analysis (Celikyilmaz et al., 2010), or sum-
marization techniques. Text message normalization
is also of crucial importance for building text-to-
speech (TTS) systems, which need to determine pro-
nunciation for nonstandard words.

Text message normalization aims to replace the
non-standard tokens that carry significant mean-
ings with the context-appropriate standard English
words. This is a very challenging task due to the
vast amount and wide variety of existing nonstan-
dard tokens. We found more than 4 million dis-
tinct out-of-vocabulary tokens in the English tweets
of the Edinburgh Twitter corpus (see Section 2.2).
Table 1 shows examples of nonstandard tokens orig-
inated from the word “together”. We can see that
some variants can be generated by dropping let-
ters from the original word (“tgthr”) or substitut-
ing letters with digit (‘“2gether”); however, many
variants are generated by combining the letter in-
sertion, deletion, and substitution operations (“to-
gethaa”, “2gthr”). This shows that it is difficult to
divide the nonstandard tokens into exclusive cate-
gories.

Among the literature of text normalization

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 71-76,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



(for text messages or other domains), Sproat et
al. (2001), Cook and Stevenson (2009) employed the
noisy channel model to find the most probable word
sequence given the observed noisy message. Their
approaches first classified the nonstandard tokens
into various categories (e.g., abbreviation, stylistic
variation, prefix-clipping), then calculated the pos-
terior probability of the nonstandard tokens based
on each category. Choudhury et al. (2007) de-
veloped a hidden Markov model using hand anno-
tated training data. Yang et al. (2009), Pennell and
Liu (2010) focused on modeling word abbreviations
formed by dropping characters from the original
word. Toutanova and Moore (2002) addressed the
phonetic substitution problem by extending the ini-
tial letter-to-phone model. Aw et al. (2006), Kobus
et al. (2008) viewed the text message normalization
as a statistical machine translation process from the
texting language to standard English. Beaufort et
al. (2010) experimented with the weighted finite-
state machines for normalizing French SMS mes-
sages. Most of the above approaches rely heavily
on the hand annotated data and involve categorizing
the nonstandard tokens in the first place, which gives
rise to three problems: (1) the labeled data is very
expensive and time consuming to obtain; (2) it is
hard to establish a standard taxonomy for categoriz-
ing the tokens found in text messages; (3) the lack of
optimized way to integrate various category-specific
models often compromises the system performance,
as confirmed by (Cook and Stevenson, 2009).

In this paper, we propose a general letter trans-
formation approach that normalizes nonstandard to-
kens without categorizing them. A large set of noisy
training word pairs were automatically collected via
a novel web-based approach and aligned at the char-
acter level for model training. The system was tested
on both Twitter and SMS messages. Results show
that our system significantly outperformed the jazzy
spell checker and the state-of-the-art deletion-based
abbreviation system, and also demonstrated good
cross-domain portability.

2 Letter Transformation Approach

2.1 General Framework

Given a noisy text message 7', our goal is to nor-
malize it into a standard English word sequence .S.
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Figure 1: Examples of nonstandard tokens generated by
performing letter transformation on the dictionary words.

Under the noisy channel model, this is equivalent to
finding the sequence S that maximizes p(S|T):

S = arg maxg p(S|T) = arg maxs(np(ﬂ\Si))p(S)

where we assume that each non-standard token T;
is dependent on only one English word S;, that is,
we are not considering acronyms (e.g., “bbl” for
“be back later”) in this study. p(S) can be cal-
culated using a language model (LM). We formu-
late the process of generating a nonstandard token
T; from dictionary word S; using a letter transfor-
mation model, and use the model confidence as the
probability p(7;|S;). Figure 1 shows several exam-
ple (word, token) pairs'. To form a nonstandard to-
ken, each letter in the dictionary word can be labeled
with: (a) one of the 0-9 digits; (b) one of the 26 char-
acters including itself; (c) the null character ““-”’; (d)
a letter combination. This transformation process
from dictionary words to nonstandard tokens will be
learned automatically through a sequence labeling
framework that integrates character-, phonetic-, and
syllable-level information.

In general, the letter transformation approach will
handle the nonstandard tokens listed in Table 2 yet
without explicitly categorizing them. Note for the
tokens with letter repetition, we first generate a set
of variants by varying the repetitive letters (e.g. C; =
{“pleas”, “pleeas”, “pleaas”, “plecaas”, ‘pleecaas”}
for T; = {“pleecaas™}), then select the maximum
posterior probability among all the variants:

p(T3|S;) = max p(T;|S;)
T;eC;

IThe ideal transform for example (5) would be “for” to “4”.
But in this study we are treating each letter in the English word
separately and not considering the phrase-level transformation.



(1) abbreviation tgthr, weeknd, shudnt
4got, sumbody, kulture
tOgether, h3r3, Stop, doinq
thimg, macam

betta, hubbie, cutie

pleeeaas, togtherrr

(2) phonetic sub w/- or w/o digit

(3) graphemic sub w/- or w/o digit

(4) typographic error

(5) stylistic variation

(6) letter repetition

l (7) any combination of (1) to (6) luvvvin, 2moro, mOrnin ‘

Table 2: Nonstandard tokens that can be processed by the
unified letter transformation approach.

2.2 Web based Data Collection w/o Supervision

We propose to automatically collect training data
(annotate nonstandard words with the corresponding
English forms) using a web-based approach, there-
fore avoiding the expensive human annotation. We
use the Edinburgh Twitter corpus (Petrovic et al.,
2010) for data collection, which contains 97 mil-
lion Twitter messages. The English tweets were
extracted using the TextCat language identification
toolkit (Cavnar and Trenkle, 1994), and tokenized
into a sequence of clean tokens consisting of letters,
digits, and apostrophe.

For the out-of-vocabulary (OOV) tokens consist-
ing of letters and apostrophe, we form n Google
queries for each of them in the form of either
“wy wo wg” OOV or OOV “wi we w3”, where wq
to ws are consecutive context words extracted from
the tweets that contain this OOV. n is set to 6 in this
study. The first 32 returned snippets for each query
are parsed and the words in boldface that are differ-
ent from both the OOV and the context words are
collected as candidate normalized words. Among
them, we further select the words that have longer
common character sequence with the OOV than with
the context words, and pair each of them with the
OOV to form the training pairs. For the OOV tokens
consisting of both letters and digits, we use simple
rules to recover possible original words. These rules

LR ENTY 9 66, L2

include: 1 — “one”, “won”, “1”’; 2 — “to”, “two”,
“t00”; 3 — “e”; 4 — “for”, “fore”, “four”; 5 — “s”;
6 — “b”7; 8 — “ate”, “ait”, “eat”, “eate”, “ight”,
“aight”. The OOV tokens and any resulting words
from the above process are included in the noisy
training pairs. In addition, we add 932 word pairs
of chat slangs and their normalized word forms col-
lected from InternetSlang.com that are not covered
by the above training set.

These noisy training pairs were further expanded
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and purged. We apply the transitive rule on these
initially collected training pairs. For example, if the
two pairs “(cause, cauz)” and “(cauz, coz)” are in the
data set, we will add “(cause, coz)” as another train-
ing pair. We remove the data pairs whose word can-
didate is not in the CMU dictionary. We also remove
the pairs whose word candidate and OOV are simply
inflections of each other, e.g., “(headed, heading)”,
using a set of rules. In total, this procedure generated
62,907 training word pairs including 20,880 unique
candidate words and 46,356 unique OOVs.?

2.3 Automatic Letter-level Alignment

Given a training pair (S;, T;) consisting of a word .S;
and its nonstandard variant 7;, we propose a proce-
dure to align each letter in .S; with zero, one, or more
letters/digits in 7;. First we align the letters of the
longest common sequence between the dictionary
word and the variant (which gives letter-to-letter cor-
respondence in those common subsequences). Then
for the letter chunks in between each of the obtained
alignments, we process them based on the following
three cases:

(a) (many-to-0): a chunk in the dictionary word
needs to be aligned to zero letters in the variant.
In this case, we map each letter in the chunk to
“-” (e.g., “birthday” to “bday”), obtaining letter-
level alignments.

(b) (0-to-many): zero letters in the dictionary word
need to be aligned to a letter/digit chunk in the
variant. In this case, if the first letter in the
chunk can be combined with the previous letter
to form a digraph (such as “wh” when aligning
“sandwich” to “sandwhich’), we combine these
two letters. The remaining letters, or the entire
chunk when the first letter does not form a di-
graph with the previous letter, are put together
with the following aligned letter in the variant.

(c) (many-to-many): non-zero letters in the dictio-
nary word need to be aligned to a chunk in the
variant. Similar to (b), the first letter in the vari-
ant chunk is merged with the previous alignment
if they form a digraph. Then we map the chunk
in the dictionary word to the chunk in the vari-
ant as one alignment, e.g., “someone” aligned to
“somel”.

2Please contact the first author for the collected word pairs.



The (b) and (c) cases above generate chunk-level
(with more than one letter) alignments. To elimi-
nate possible noisy training pairs, such as (“you”,
“haveu”), we keep all data pairs containing digits,
but remove the data pairs with chunks involving
three letters or more in either the dictionary word or
the variant. For the chunk alignments in the remain-
ing pairs, we sequentially align the letters (e.g., “ph”
aligned to “f-”). Note that for those 1-to-2 align-
ments, we align the single letter in the dictionary
word to a two-letter combination in the variant. We
limit to the top 5 most frequent letter combinations,
which are “ck”, “ey”, “ie”, “ou”, “wh”, and the pairs
involving other combinations are removed.

After applying the letter alignment to the col-
lected noisy training word pairs, we obtained
298,160 letter-level alignments. Some example
alignments and corresponding word pairs are:

e — ’_ (have, hav) q — k (iraq, irak)

e — a (another, anotha)  q — g (iraq, irag)

e — 3 (online, Onlin3) w — wh (watch, whatch)

2.4 Sequence Labeling Model for P(T;|S;)

For a letter sequence S;, we use the conditional ran-
dom fields (CRF) model to perform sequence tag-
ging to generate its variant 7T;. To train the model,
we first align the collected dictionary word and its
variant at the letter level, then construct a feature
vector for each letter in the dictionary word, using
its mapped character as the reference label. This la-
beled data set is used to train a CRF model with L-
BFGS (Lafferty et al., 2001; Kudo, 2005). We use
the following features:
e Character-level features
Character n-grams: c_j, cp, ¢1, (c—2 c_1),
(c-1 co), (co c1), (c1 e2), (c-3 c—2 c-1),
(C_Q C_1 CQ), (6_1 Co Cl), (CO C1 CQ), (Cl (&) Cg).
The relative position of character in the word.
e Phonetic-level features
Phoneme n-grams: p_1, po, p1, (P—1 Po),
(po p1). We use the many-to-many letter-
phoneme alignment algorithm (Jiampojamarn
et al,, 2007) to map each letter to multiple
phonemes (1-to-2 alignment). We use three bi-
nary features to indicate whether the current,
previous, or next character is a vowel.
e Syllable-level features
Relative position of the current syllable in the
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word; two binary features indicating whether
the character is at the beginning or the end of
the current syllable. The English hyphenation
dictionary (Hindson, 2006) is used to mark all

the syllable information.
The trained CRF model can be applied to any En-
glish word to generate its variants with probabilities.

3 Experiments

We evaluate the system performance on both Twitter
and SMS message test sets. The SMS data was used
in previous work (Choudhury et al., 2007; Cook and
Stevenson, 2009). It consists of 303 distinct non-
standard tokens and their corresponding dictionary
words. We developed our own Twitter message test
set consisting of 6,150 tweets manually annotated
via the Amazon Mechanical Turk. 3 to 6 turkers
were required to convert the nonstandard tokens in
the tweets to the standard English words. We extract
the nonstandard tokens whose most frequently nor-
malized word consists of letters/digits/apostrophe,
and is different from the token itself. This results
in 3,802 distinct nonstandard tokens that we use as
the test set. 147 (3.87%) of them have more than
one corresponding standard English words. Similar
to prior work, we use isolated nonstandard tokens
without any context, that is, the LM probabilities
P(S) are based on unigrams.

We compare our system against three approaches.
The first one is a comprehensive list of chat slangs,
abbreviations, and acronyms collected by Internet-
Slang.com; it contains normalized word forms for
6,105 commonly used slangs. The second is the
word-abbreviation lookup table generated by the su-
pervised deletion-based abbreviation approach pro-
posed in (Pennell and Liu, 2010). It contains
477,941 (word, abbreviation) pairs automatically
generated for 54,594 CMU dictionary words. The
third is the jazzy spell checker based on the Aspell
algorithm (Idzelis, 2005). It integrates the phonetic
matching algorithm (DoubleMetaphone) and Leven-
shtein distance that enables the interchanging of two
adjacent letters, and changing/deleting/adding of let-
ters. The system performance is measured using the
n-best accuracy (n=1,3). For each nonstandard to-
ken, the system is considered correct if any of the
corresponding standard words is among the n-best
output from the system.



Twitter (3802 pairs) | SMS (303 pairs)
stem A

System Accuracy 1-best [ 3-best 1-best [ 3-best
InternetSlang 7.94 8.07 4.95 4.95
(Pennell et al. 2010) 20.02 27.09 21.12 28.05
Jazzy Spell Checker 47.19 56.92 43.89 55.45
LetterTran (Trim) 57.44 64.89 58.09 70.63
LetterTran (All) 59.15 67.02 58.09 70.96
LetterTran (All) + Jazzy | 68.88 78.27 62.05 75.91
(Choudhury et al. 2007) n/a n/a 59.9 n/a
(Cook et al. 2009) n/a n/a 594 n/a

Table 3: N-best performance on Twitter and SMS data
sets using different systems.

Results of system accuracies are shown in Ta-
ble 3. For the system “LetterTran (All)”, we first
generate a lookup table by applying the trained CRF
model to the CMU dictionary to generate up to
30 variants for each dictionary word.> To make
the comparison more meaningful, we also trim our
lookup table to the same size as the deletion ta-
ble, namely “LetterTran (Trim)”. The trimming was
performed by selecting the most frequent dictionary
words and their generated variants until the length
limit is reached. Word frequency information was
obtained from the entire Edinburgh corpus. For both
the deletion and letter transformation lookup tables,
we generate a ranked list of candidate words for each
nonstandard token, by sorting the combined score
p(T;|S;) x C(S;), where p(T;]S;) is the model con-
fidence and C(S;) is the unigram count generated
from the Edinburgh corpus (we used counts instead
of unigram probability P(S;)). Since the string sim-
ilarity and letter switching algorithms implemented
in jazzy can compensate the letter transformation
model, we also investigate combining it with our ap-
proach, “LetterTran(All) + Jazzy”. In this configura-
tion, we combine the candidate words from both sys-
tems and rerank them according to the unigram fre-
quency; since the “LetterTran” itself is very effective
in ranking candidate words, we only use the jazzy
output for tokens where “LetterTran” is not very
confident about its best candidate ((p(7;|.S;) x C(.S;)
is less than a threshold § = 100).

We notice the accuracy using the InternetSlang
list is very poor, indicating text message normal-
ization is a very challenging task that can hardly

3We heuristically choose this large number since the learned
letter/digit insertion, substitution, and deletion patterns tend to
generate many variants for each dictionary word.
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be tackled by using a hand-crafted list. The dele-
tion table has modest performance given the fact
that it covers only deletion-based abbreviations and
letter repetitions (see Section 2.1). The “Letter-
Tran” approach significantly outperforms all base-
lines even after trimming. This is because it han-
dles different ways of forming nonstandard tokens
in an unified framework. Taking the Twitter test
set for an example, the lookup table generated by
“LetterTran” covered 69.94% of the total test to-
kens, and among them, 96% were correctly normal-
ized in the 3-best output, resulting in 67.02% over-
all accuracy. The test tokens that were not covered
by the “LetterTrans” model include those generated
by accidentally switching and inserting letters (e.g.,
“absolotuely” for “absolutely”) and slangs (“addy”
or “address”). Adding the output from jazzy com-
pensates these problems and boosts the 1-best ac-
curacy, achieving 21.69% and 18.16% absolute per-
formance gain respectively on the Twitter and SMS
test sets, as compared to using jazzy only. We also
observe that the “LetterTran” model can be easily
ported to the SMS domain. When combined with
the jazzy module, it achieved 62.05% 1-best accu-
racy, outperforming the domain-specific supervised
system in (Choudhury et al., 2007) (59.9%) and
the pre-categorized approach by (Cook and Steven-
son, 2009) (59.4%). Regarding different feature cat-
egories, we found the character-level features are
strong indicators, and using phonetic- and syllabic-
level features also slightly benefits the performance.

4 Conclusion

In this paper, we proposed a generic letter trans-
formation approach for text message normaliza-
tion without pre-categorizing the nonstandard to-
kens into insertion, deletion, substitution, etc. We
also avoided the expensive and time consuming hand
labeling process by automatically collecting a large
set of noisy training pairs. Results in the Twitter
and SMS domains show that our system can signif-
icantly outperform the state-of-th