Repurposing Entailment for Multi-Hop Question Answering Tasks

Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, Niranjan Balasubramanian

[How to correct problems with metadata yourself]


Abstract
Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs. We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on a large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models.
Anthology ID:
N19-1302
Volume:
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Month:
June
Year:
2019
Address:
Minneapolis, Minnesota
Editors:
Jill Burstein, Christy Doran, Thamar Solorio
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2948–2958
Language:
URL:
https://aclanthology.org/N19-1302
DOI:
10.18653/v1/N19-1302
Bibkey:
Cite (ACL):
Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, and Niranjan Balasubramanian. 2019. Repurposing Entailment for Multi-Hop Question Answering Tasks. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2948–2958, Minneapolis, Minnesota. Association for Computational Linguistics.
Cite (Informal):
Repurposing Entailment for Multi-Hop Question Answering Tasks (Trivedi et al., NAACL 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/N19-1302.pdf
Code
 StonyBrookNLP/multee +  additional community code
Data
MultiNLIOpenBookQARACESNLI