Multi-prototype Chinese Character Embedding

Yanan Lu, Yue Zhang, Donghong Ji

[How to correct problems with metadata yourself]


Abstract
Chinese sentences are written as sequences of characters, which are elementary units of syntax and semantics. Characters are highly polysemous in forming words. We present a position-sensitive skip-gram model to learn multi-prototype Chinese character embeddings, and explore the usefulness of such character embeddings to Chinese NLP tasks. Evaluation on character similarity shows that multi-prototype embeddings are significantly better than a single-prototype baseline. In addition, used as features in the Chinese NER task, the embeddings result in a 1.74% F-score improvement over a state-of-the-art baseline.
Anthology ID:
L16-1138
Volume:
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
Month:
May
Year:
2016
Address:
Portorož, Slovenia
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
855–859
Language:
URL:
https://aclanthology.org/L16-1138
DOI:
Bibkey:
Cite (ACL):
Yanan Lu, Yue Zhang, and Donghong Ji. 2016. Multi-prototype Chinese Character Embedding. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 855–859, Portorož, Slovenia. European Language Resources Association (ELRA).
Cite (Informal):
Multi-prototype Chinese Character Embedding (Lu et al., LREC 2016)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/L16-1138.pdf