YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations
Abstract
In this paper, we perform convolutional neural networks (CNN) to learn the joint representations of question-answer pairs first, then use the joint representations as the inputs of the long short-term memory (LSTM) with attention to learn the answer sequence of a question for labeling the matching quality of each answer. We also incorporating external knowledge by training Word2Vec on Flashcards data, thus we get more compact embedding. Experimental results show that our method achieves better or comparable performance compared with the baseline system. The proposed approach achieves the accuracy of 0.39, 0.42 in English valid set, test set, respectively.- Anthology ID:
- I17-4032
- Volume:
- Proceedings of the IJCNLP 2017, Shared Tasks
- Month:
- December
- Year:
- 2017
- Address:
- Taipei, Taiwan
- Editors:
- Chao-Hong Liu, Preslav Nakov, Nianwen Xue
- Venue:
- IJCNLP
- SIG:
- Publisher:
- Asian Federation of Natural Language Processing
- Note:
- Pages:
- 194–198
- Language:
- URL:
- https://aclanthology.org/I17-4032
- DOI:
- Cite (ACL):
- Min Wang, Qingxun Liu, Peng Ding, Yongbin Li, and Xiaobing Zhou. 2017. YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations. In Proceedings of the IJCNLP 2017, Shared Tasks, pages 194–198, Taipei, Taiwan. Asian Federation of Natural Language Processing.
- Cite (Informal):
- YNUDLG at IJCNLP-2017 Task 5: A CNN-LSTM Model with Attention for Multi-choice Question Answering in Examinations (Wang et al., IJCNLP 2017)
- PDF:
- https://preview.aclanthology.org/teach-a-man-to-fish/I17-4032.pdf